
Integrating Model-Based Testing and Analysis Tools via Test Case Exchange

Bernhard K. Aichernig, Florian Lorber, Stefan Tiran
Institute for Software Technology

Graz University of Technology, Austria
{aichernig, florber, stiran}@ist.tugraz.at

Abstract—Europe’s industry in embedded system design is
currently aiming for a better integration of tools that support
their development, validation and verification processes. The
idea is to combine model-driven development with model-based
testing and model-based analysis. The interoperability of tools
shall be achieved with the help of meta-models that facilitate
the mapping between different modelling notations. However,
the syntactic and semantic integration of tools is a complex
and costly task. A common problem is that different tools
support different subsets of a language. Furthermore, semantic
differences are a major obstacle to sound integration efforts.

In this paper we advocate an alternative, more pragmatic
approach. We propose the exchange of test cases generated
from the models instead of exchanging the models themselves.
The advantage is that test cases have a much simpler syntax
and semantics, and hence, the mapping between different tools
is easier to implement and to maintain. With a formal testing
approach with adequate testing criteria a set of test cases can
be viewed as partial models that can be formally analysed. We
demonstrate an integration of our test case generator Ulysses
with the CADP toolbox by means of test case exchange. We
generate test cases in Ulysses and verify properties in CADP.
We also generate test cases in CADP and perform a mutation
analysis in Ulysses.

Keywords- tool integration, model-based testing, mutation
testing, model checking, Ulysses, CADP, TGV.

I. INTRODUCTION

The area of high-quality embedded systems is an impor-
tant sector for Europe’s industry. Especially the development
of highly-critical components for the transportation domain,
i.e. avionics, railways, and automotive, is of strategic in-
terest. In order to coordinate and foster the research and
development in this area, the ARTEMIS Industry Associa-
tion was founded in 2007. One of its strategic goals is to
overcome the growing dependence on development tools in
embedded systems design:

“At present, large-scale development environments
come almost exclusively from a small number of
non-European sources, while Europe has a large
number of excellent suppliers - mostly SMEs -
of tools for specific purposes. This situation has
created on the one hand a strong dependence on
external suppliers for the necessary tool frame-
works and on the other a highly fragmented supply
chain within Europe for often critical, specialised
development tools. Often the market for these tools

is limited because they are not readily interopera-
ble with existing frameworks.” [4]

Therefore, ARTEMIS proposes to establish tool platforms
with a common set of interfaces and protocols that will
allow tool vendors to integrate their products. The topic of
the ARTEMIS project CESAR (www.cesarproject.eu) is the
integration of model-driven development tools. In the more
recent ARTEMIS project MBAT (www.mbat-artemis.eu) this
is extended to model-based testing and analysis tools.

The integration of model-based tools is a challenging
task. Usually, not all tools support the full language and
many have implemented syntactic and semantic variations
of a common language standard — provided a common
accepted standard exists. Furthermore, evolving domain
specific extensions of a standard notation turn trustworthy
interoperability into a running target.

One solution to tackle this challenge is to abstract from
concrete syntax and define common meta-models, i.e. ab-
stract syntax. In this case, the needed model transformations
are defined over these meta-models. This approach is imple-
mented, e.g. in the ModelBus framework of Fraunhofer [10].

In this paper we advocate an alternative, more pragmatic
approach for integrating model-based test case generators
and analysis tools: As an alternative to the exchange of mod-
els, we propose to exchange test cases that are automatically
generated from the models.

The rationale behind this bold idea is that we can view
a set of test cases, i.e. a test suite, as a partial model of a
system under test. If we take the view that a test case defines
one particular behaviour and leaves the rest undefined, it
may serve as a specification. The more test cases we add to
a test suite, the more refined our specification becomes. We
took this specification view of test cases previously in our
theoretical work on mutation testing [2]. Now, it forms the
basis of a lightweight bridging between testing and analysis
tools.

The test models in model-based testing are abstract and so
are the generated test cases. These models shall capture the
possible user interaction consisting of stimuli and expected
reactions (observations). For test execution a test adaptor
maps the abstract test cases to the concrete interfaces of
the system-under-test. We propose to map these abstract test
cases between different tools for analysis purposes. These
abstract test cases have a simple syntax and semantics and

http://www.cesarproject.eu
http://www.mbat-artemis.eu


«environment»

AcousticAlarm

SetOn()
SetOff()

«system_under_test»

AlarmSystem

Lock
Unlock
Close
Open

«environment»

AlarmArmed

SetOn()
SetOff()

«environment»

OpticalAlarm

SetOn()
SetOff()

«signal»

Lock

«signal»

Unlock

«signal»

Open

«signal»

Close

+ acousticAlarm

[1]

+ alarmArmed

[1]

+ opticalAlarm

[1]

Figure 1. Car Alarm System - Testing Interface.

can therefore easily be mapped between different tools.
In this paper we demonstrate one such integration and

application scenario. We generate test cases with our model-
based test case generator Ulysses [7]. These test cases have
the form of input-output sequences. We import these test
cases into the CADP toolbox1 and merge them into one
model using the simplifiers of CADP. Then, we model check
certain safety properties with the model checker of CADP.
This ensures that the generated test cases satisfy our original
requirements. If wrong tests have been generated due to
modelling errors, this would be detected. This provides
the necessary trust in the test cases required for safety
certification.

The tool chain works also in the opposite direction.
CADP also provides a test case generator, called TGV
[11], following a different testing strategy. We generate test
cases in TGV and import them into Ulysses. Then, Ulysses
performs a mutation analysis on the modelling level in order
to assess the quality of these test cases with respect to fault-
detection.

The rest of the paper is structured as follows: Section II
presents our running example of a car alarm system. Next,
Section III explains the test case generation technique im-
plemented in Ulysses. Then, in Section IV we analyse these
test cases with the model checker of CADP. Section V
discusses test case generation in CADP, and Section VI
presents their mutation analysis in Ulysses. Finally, we draw
our conclusions in Section VII.

II. RUNNING EXAMPLE

A simplified car alarm system serves as our running
example. The example is inspired from Ford’s automotive
demonstrator within the past EU FP7 project MOGENTES.
The UML test model was created from the following list of
requirements for the car alarm system (CAS):

Requirement 1 (Arming): The system is armed 20
seconds after the vehicle is locked and the bonnet, luggage
compartment and all doors are closed.

Requirement 2 (Alarm): The alarm sounds for 30 sec-
onds if an unauthorised person opens the door, the luggage
compartment or the bonnet. The hazard flasher lights will
flash for five minutes.

1http://www.inrialpes.fr/vasy/cadp/

 

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry 
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry 
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Figure 2. Car Alarm System - State Machine.

Requirement 3 (Deactivation): The anti-theft alarm
system can be deactivated at any time, even when the alarm
is sounding, by unlocking the vehicle from outside.

When trying to construct an animated model based on
textual requirements it is often the case that conflicts or
underspecified situations become apparent. One might think
that the simplistic car alarm system is sufficiently described
by these three textual requirements – the contrary is the case.
What is left unspecified is the case of what happens when an
alarm is ended by the five minute timeout: does the system
go back to armed directly, or does it need to wait for all
doors to be closed again before returning to armed? For our
model, we chose the latter option.

A. Testing Interface

The UML model of the car alarm system comprises four
classes and four signals, as shown in Figure 1. The class
AlarmSystem is marked as system under test (SUT) and may
receive any of the Lock, Unlock, Close, or Open signals.
At the same time, the SUT calls methods of the classes
AlarmArmed, AcousticAlarm, and OpticalAlarm – all of
them marked as being part of the environment.

Notice that the context diagram in Figure 1 specifies
the observations (all calls to methods being part of the
environment) we can make and the stimuli the system under
test can take (all signals). In effect, this diagram specifies
our testing interface.

B. State Machine

Figure 2 shows the CAS state-machine diagram. From
the state OpenAndUnlocked one can traverse to ClosedAnd-
Locked by closing all doors and locking the car. Actions of
closing, opening, locking, and unlocking are modelled by
corresponding signals Close, Open, Lock, and Unlock. As
specified in the first requirement, the alarm system is armed
after 20 seconds in ClosedAndLocked. Upon entry of the
Armed state, the model calls the method AlarmArmed.SetOn.

http://www.inrialpes.fr/vasy/cadp/


Figure 3. Car Alarm System - Mutated State Machine.

Upon leaving the state, which can be done by either unlock-
ing the car or opening a door, AlarmArmed.SetOff is called.
Similarly, when entering the Alarm state, the optical and
acoustic alarms are enabled. When leaving the alarm state,
either via a timeout or via unlocking the car, both acoustic
and optical alarm are turned off. When leaving the alarm
state after a timeout (cf. second requirement) we decided to
interpret the requirements in a way that the system returns
to an armed state only in case it receives a close signal.
Turning off the acoustic alarm after 30 seconds, as specified
in the second requirement, is reflected in the time-triggered
transition leading to the Flash sub-state of the Alarm state.

Notice that our semantics for UML-state machines differs
slightly from the UML standard. In order to support partial
test models, the state-machine only accepts events that
trigger a transition. For example, the state-machine will
only accept Close and Lock events when being in state
OpenAndUnlocked.

III. GENERATING TESTS IN ULYSSES

Ulysses is a test case generator following the model-based
mutation testing strategy. This is similar to the mutation
testing of programs. Program mutation testing provides a
method of assessing and improving a test suite by checking
if its test cases can detect a number of injected faults in a
program. The faults are introduced by syntactically changing
the source code following patterns of typical programming
errors [8], [9]. For a good and recent survey on mutation
testing see [12].

However, in our approach we apply model-based mutation
testing. The idea is to mutate the UML models and generate
those test cases that would kill a set of mutated models. The
generated tests are then executed on the system under test
(SUT) and will detect if a mutated UML state machine has
been implemented. It is a complementary testing approach,
well-suited for dependability analysis, since its coverage is
measured in terms of faults.

� �

�����

����	
��������
��
���

��
��

�	�	

�
�����	
�
��

�
	
���
�
���

����
�
��

����
��������
����	���

�	��
	���������

	���������

���

�����	����� �
�	� �������
���

����

����

���

��

����
�����

Figure 4. Test Case Generation Tool Chain.

As we want to create test cases that cover particular
fault models, we need to deliberately introduce ’bugs’ in
the specification model. In order to do that, we rely on
different mutation operators. As an example, one mutation
operator sets guards of transitions to false2, while other
ones remove entry actions, signal triggers, or change signal
events. Applying these operators to our CAS specification
model yields 76 mutants: 19 mutants with a transition guard
set to false, 6 mutants with a missing entry action, 12
mutants with missing signal triggers, 3 with missing time
triggers, and 36 with changed signal events.

One particular mutant, shown in Figure 3 lacks the
transition from OpenAndUnlocked to OpenAndLocked. This
means that the system simply ignores the Lock event when
being in the OpenAndUnlocked state instead of proceeding
to OpenAndLocked.

Each mutant covers only one particular mutation (one
mutation operation in a particular place): Mutation testing is
based on the assumptions that (A) competent engineers write
almost correct code, i.e. faults are typically “one-liners” and
that (B) there exists a coupling effect so that complex errors
will be found by test cases that can detect very small errors.

Ulysses cannot directly process UML models, but works
on its own intermediate modelling language called Action
Systems [5]. Hence, we first transform the UML diagrams
of the original and mutated models into the input format of
Ulysses. Figure 4 shows this tool chain. The first translation
from UML to Object-Oriented Action Systems (OOAS) is
done by the UMMU tool of AIT. UMMU also generates
the set of mutants defined by its implemented mutation
operators. Then, our tool ARGOS flattens an OOAS into
a normal Action System (AS). The details of these model
transformations have been described in [14]. Ulysses takes
an original Action System model and one mutant as input
and generates an abstract test case that will kill the mutant.
This means that the test case is able to distinguish the
original from the mutated model. Different strategies for
deriving the test cases are available. The different strategies
to kill a mutant have been presented in [1].

Here we will only use one strategy (A5), since the point
of this paper is to show that generated test cases can
be exchanged for deeper analysis. This strategy tries to
minimise the number of generated test cases. Before creating
new test cases for a mutated model, Ulysses first checks
whether any of the previously created test cases is able to

2 This may lead to a transition transforming into a self loop as the model
will ’swallow’ the trigger event (cf. Figure 3).



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ctr Close

ctr Lock

obs after(20)

obs AlarmArmed_SetOn

ctr Open

obs AlarmArmed_SetOff

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOn

obs after(30)

obs AcousticAlarm_SetOff

obs after(270)

obs AlarmArmed_SetOff

obs AcousticAlarm_SetOff

obs OpticalAlarm_SetOff

ctr Close

obs AlarmArmed_SetOn

ctr Unlock

obs pass

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ctr Close

ctr Lock

obs AlarmArmed_SetOn

ctr Open

obs AlarmArmed_SetOff

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOn

ctr Unlock

obs AcousticAlarm_SetOff

obs OpticalAlarm_SetOff

ctr Close

ctr Lock

ctr Open

ctr Close

obs delta

ctr Unlock

obs after(20)

obs pass

0

1

2

3

4

5

6

ctr Close

ctr Lock

ctr Open

ctr Close

obs delta

ctr Unlock

obs pass

Figure 5. Three abstract test cases generated with Ulysses.

kill the mutated specification.
With this technique, Ulysses generates 63 test cases in

23 minutes out of the 76 mutants. Figure 5 shows three of
these abstract test cases. The labels with the prefix ctr denote
controllable events (inputs), those with prefix obs denote
observable events (expected outputs). The end of a test case
is marked with a pass event. The absence of observations,
called quiescence, is represented by a delta observation. In
case of expected quiescence, an output must not occur, only
inputs are possible. Next, we show how these test cases can
be analysed in the CADP toolbox.

IV. ANALYSIS IN CADP

CADP is a toolbox for the design of communication
protocols and distributed systems. It offers a wide set of
functionality for the analysis of labelled transition systems,
ranging from step-by-step simulation to massively parallel
model-checking.

17

0

18

1

20

19

2

21

3

22

4

23

5

24

6

25

7

8

9

10

11

12

13

14

15

16

obs OpticalAlarm_SetOff

ctr Close

obs after(270)

ctr Lock

obs AcousticAlarm_SetOff

ctr Close

ctr Unlock

ctr Lock

obs after(20)

obs OpticalAlarm_SetOff

ctr Open

ctr Unlock

obs AlarmArmed_SetOn

ctr Close

ctr Close

obs AlarmArmed_SetOn

ctr Open

ctr Unlock

obs delta

obs AlarmArmed_SetOff

obs AlarmArmed_SetOff

obs pass

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOn

ctr Unlock
obs after(30)

obs AcousticAlarm_SetOff

obs AcousticAlarm_SetOff

Figure 6. The three test cases of Figure 5 merged with the simplifiers of
CADP.

Our test case generator Ulysses is able to generate the
test cases as labelled transition systems in one of CADP’s
input formats, namely the Aldebaran format. These are text
files describing the vertices and edges in a labelled directed
graph. In the following, we discuss how we merge the set
of generated test cases into a single model.

A. Merging the Test Cases

The merging of the test cases into a model for analysis
comprises three steps.

First, we copy all test cases in one single file and rename
the vertices in order to keep unique identifiers. The only
exception are the start vertices that share the same identifier.
This joins all test cases in the start state. After this syntactic
joining the file is converted into a more efficient binary
representation (BCG format).

Second, we use the CADP Reductor tool to simplify
the joint test cases via non-deterministic automata deter-
minisation. This determinisation follows a classical subset



construction and is initiated with the traces option. The
determinisation merges the common prefixes of test cases.

Third, the CADP Reductor tool is applied again. This time
we run a simplification that merges states that are strongly
bisimilar (option strong)3. Figure 6 shows the merged test
cases of Figure 5. It shows that the merged test cases are
combined into a trace-equivalent model.

When merging all the 63 test cases of the car alarm
system, we obtain a trace-equivalent model with 50 states.
This simplification is actually not necessary for the following
verification process. However, the elimination of redundant
parts facilitates the visual inspection of the behaviour defined
by the test cases. Furthermore, we observed that the visual-
isation of the simplified model provides an insight into the
redundancy of the test cases: the simpler the resulting model,
the more redundant were the original test cases. For example,
common prefixes are merged into a single branch and can
be easily spotted. In Figure 6 we immediately see that all
three test cases start with closing the door. The possibility
of first locking the door and then closing it is not tested!

B. Verification of Test Cases

CADP also provides the Evaluator tool, an on-the-fly
model checker for labelled transition systems. Evaluator
expects temporal properties expressed as regular alternation-
free mu-calculus formula [15]. It is an extension of the
alternation-free fragment of the modal mu-calculus [13]
with action predicates and regular expressions over action
sequences.

The idea is to formally verify certain properties of the
merged test-case model. This serves two main purposes.
First, we can check that our test cases are consistent with our
requirements expressed as temporal properties. This allows
the direct quality control of the test cases without relying
on the models or test case generators. Our discussion with
safety engineers showed that this is an important requirement
for them. Second, since the test cases are generated from the
model, we can detect faults in the models by detecting faults
in the test cases.

We checked several safety properties related to our re-
quirements. For example, the following temporal Property
P1 is satisfied by our test cases.
[true* . "ctr Close" . (not "ctr Open")* . "ctr Lock" (P1)
.
((not "ctr Unlock") and (not "ctr Open"))*
.
"obs after(20)"
.
(not ("obs AlarmArmed_SetOn" or "obs pass"))
]
false

It partly formalises Requirement 1 and says that it must
not happen (expressed by the false at the end) that the

3Note that our test cases have no internal transitions, hence, strong and
weak bisimulation are equivalent.

alarm is not switched to armed after 20 seconds when the
doors are closed and locked. Note that in mu-calculus the
states are expressed via event histories. Here, the state closed
and locked is expressed via a sequence of events: the doors
had been first closed and not later opened etc.

Similarly, Requirement 2 can be checked with a negative
Property P2:

[true* . "obs AlarmArmed_SetOn" . (not "ctr Unlock")* (P2)
.
"ctr Open" . "obs AlarmArmed_SetOff"
.
(not ("obs OpticalAlarm_SetOn" or "obs AcousticAlarm_SetOn"

or "obs pass"))
]
false

It states that when the alarm is armed and an opening of
the door happens, then first the armed signal is switched off
and next one of the alarms is triggered.

So far, this guaranteed, that the test cases showed right
behaviour according to the requirements. It was a soundness
check. We can also check for test case completeness in the
sense that we verify that certain traces are included in our
test cases. For example the next Property P3 checks if a
trace with first locking and then closing the doors leading
to an armed state is included:

<true*><"ctr Lock"> <(not "ctr Unlock")*> <"ctr Close"> (P3)
<((not "ctr Unlock") and (not "ctr Open"))*>
<"obs after(20)"> <"obs AlarmArmed_SetOn"> true

Here the diamond operator <.> is used to express the
existence of traces. It turns out that this property is not
satisfied by our generated test cases. Hence, it seems that
Ulysses never generated such a test case. An inspection of
the (merged) test cases confirmed this. This shows that our
integration with the CADP toolbox allows us to check if
certain scenarios are included in a test suite. In the logic
used, this scenarios can be expressed as regular expressions.

We can also highlight a possibly unwanted behaviour of
our model with the following property that fails the model
checking:

([true* . "obs AcousticAlarm_SetOff" (P4)
.
(not "obs AcousticAlarm_SetOn")*
.
"obs AcousticAlarm_SetOff"
]
false)

Property P4 states that the acoustic alarm should not be
switched off twice. It turns out that in the model the acoustic
alarm is always switched off when the Alarm state is exited,
although it might have been switched off already due to the
30 seconds timeout.

The purpose of this section was to motivate the verifica-
tion of test cases generated from a model in a different tool.
We can check requirement properties, ask if certain scenarios
are included, or highlight additional properties that may be
problematic.



17

0

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

obs AlarmArmed_SetOn

ctr Lock

ctr Open

ctr Close

obs AlarmArmed_SetOff

ctr Unlock

obs OpticalAlarm_SetOff

obs OpticalAlarm_SetOn

obs AcousticAlarm_SetOff

ctr Open
ctr Close

obs after (c_waittime: 20 )

ctr Unlock

ctr Unlock

obs AcousticAlarm_SetOff

ctr Close

obs AlarmArmed_SetOff

ctr Unlock

ctr Lock

ctr Open

obs AcousticAlarm_SetOn

ctr Unlock

obs after (c_waittime: 30 )

obs OpticalAlarm_SetOff

obs AcousticAlarm_SetOff

ctr Unlock

obs after (c_waittime: 270 )

Figure 7. Labelled transition system of the car alarm system.

V. GENERATING TESTS IN CADP

Next, we are going to show that we can also go the
opposite direction of integrating the two tools CADP and
Ulysses. We will first generate test cases with CADP and
then analyse how many UML mutants these test cases can
kill.

Suppose we have a labelled transition system model of the
car alarm system as shown in Figure 7. The CADP toolbox
includes the test case generator TGV [11]. With this test
case generator the tester can specify which test cases shall
be selected from the model. Hence, the tester can steer the
test selection process with so called test purposes. In TGV a
test purpose is a deterministic input-output labelled transition
system that is equipped with two sets of sink states, namely
Accept and Refuse. The former defines the pass verdicts
and at least one accept state must be present while the
latter is used to limit the exploration of the graph during
test case generation. A test purpose has to use the same
alphabet as the specification model. TGV uses transitions
labelled with a star (“*”) in test purposes as a shorthand for
“otherwise”. Test cases are then generated “on-the-fly” from
the synchronous product of the specification model and the
test purpose.

Figure 8 shows a complex test purpose as a graph and in
the input format of TGV. The test purpose asks for a test
case that first exits the Alarm state via a time out and later

4

0

1

2

3

accept

ctr Unlock

obs after (270)

*

*

obs AlarmArmed_SetOff

obs after(30)

*

*

des(0,9,5)
(0,*,0)
(0,"obs after(270)",1)
(1,*,1)
(1,"obs after(30)",2)
(2,*,2)
(2,"ctr Unlock",3)
(3,*,3)
(3,"obs AlarmArmed_SetOff",4)
(4,accept,4)

Figure 8. A complex test purpose demanding a test case that exits the
Alarm state twice.

exits the Alarm state via an Unlock event after the acoustic
alarm has been switched off. Hence, a wanted test case enters
and leaves the Alarm state at least twice. The star label at
State 2 allows any sequence to happen before the final exit
via Unlock. Hence, also several loops through the Alarm
state are possible. However, in practise TGV will select the
shortest possible test case satisfying the test purpose.

For our experiment, we designed 9 different test purposes
by hand and let TGV create test cases. 3 out of the
9 test cases check for observable timeouts (time-triggered
transitions: 20, 30, 300 sec. delay). Four test cases check the
entry and exit actions of the states Armed and Alarm. One
test case checks for the deactivation of the acoustic alarm
after the timeout. The result of the complex test purpose
of Figure 8 is a test case with a depth of 30 transitions
going once through the state SilentAndOpen to Armed before
going to Alarm again and leaving after the acoustic alarm
deactivation by an unlock event. Hence, each observable
event is covered by at least one test case. During the creation
of the test purposes, we relied on a printout of the UML state
machine.

Next we analyse these test cases in Ulysses.

VI. MUTATION ANALYSIS IN ULYSSES

The test cases generated by CADP-TGV can be imported
into Ulysses. Ulysses can then perform a mutation analysis
on our given set of 76 mutants. A mutation analysis shows
which of the mutants were killed by a set of given test cases.
Of course, we first check if the original UML model passes
our imported test cases. This ensures that our LTS model
for CADP is consistent with the UML model for Ulysses.

The mutation analysis of our 9 test cases from TGV shows
the following results: Each analysis of a mutant takes about
5 seconds. Only 42 out of the 76 mutants can be killed
by our 9 test cases designed via test purposes. This is a
killing rate of 55%. A more detailed analysis presented in
Table I shows the fault detecting power of the different test



Table I
MUTATION ANALYSIS OF THE NINE TEST CASES FROM TGV.

acoustic alarm off after20 after270 after30 alarm off alarm on armed off armed on complex Total
Killed Mutants [#] 32 14 32 31 33 27 21 16 42 42
Killing Rate [%] 42 18 42 41 43 36 28 21 55 55

purposes. The first eight test purposes are named after the
observation they are testing for. The ninth is the complex test
case of Figure 8. It is the most efficient test purpose with
respect to the killing rate. Its long test case kills 42 mutants
which equals the total number of killed mutants. Hence, this
test purpose subsumes all others. However, for debugging
purposes it is still a good idea to keep the different test
purposes with shorter test cases. Nevertheless, this mutation
analysis shows that a greater variety in the test purposes
is needed in order to kill more than 42 mutants. Such a
mutation analysis could help to design better test purposes.

This analysis ends our tour from Ulysses to CADP and
back.

VII. CONCLUSION

Summary. The purpose of this paper is to present and
explore our idea of using test cases to integrate different
model-based testing and analysis tools. We have generated
test cases with our tool Ulysses that follows a model-based
mutation testing strategy. These test cases were imported,
merged and verified in the CADP toolbox. We checked
required safety properties and verified that certain scenarios
are missing from the test suite. Next, we generated test
cases in CADP with the help of test purposes. We imported
them into Ulysses and performed a mutation analysis. This
showed that most of the test purposes were redundant. The
main contributions of this work are (1) the new idea of using
tests for tool integration in the given context and (2) the
experiments with the integration scenarios between the two
tools.

Discussion. The case study shows that this method may
be a practical alternative for tool interoperability, where
model transformations from one tool to the other are not
yet available. The whole technique depends on model-based
test case generation. The generated test cases represent a
partial view on the model that can be analysed. With the
right testing strategy the generated test suite may be seen as
a representative abstraction of the original model. The failed
verification of Property P4 showed that this may be sufficient
for bug finding. However, the technique is very sensitive to
testing criteria. The better the model is covered, the better
it is represented by the test cases. For example, branch
coverage will result in a similar abstraction as predicate
abstraction. In this work, we used mutation coverage and
test purposes. Of course, this approach will not replace full
model verification.

As mentioned, the safety engineers we talked to are
mostly interested in the test cases. The tests are needed

for the certification processes. For the safety engineers,
the models are a means to quickly generate high-quality
test cases. However, from a certification point-of-view the
models and test-case generators add a certain level of uncer-
tainty to the whole development process. This is especially
true, if the tools lack support for formal verification of the
models. Therefore, the possibility to verify the test cases by
importing them as a model into a verification tool may be
of great help in practise. Further case studies are needed to
support this thesis.

Related work. To our best knowledge our idea for tool
integration by means of test case generation is novel. The
closest related work that comes to our mind is model
learning [3], [6]. In model learning a finite transition system
is learnt from a finite set of queries to a system under test.
The idea is to construct a formal model when no model is
available. This is more difficult than generating tests from
a given model and import them for analysis in another
tool. However, with model learning algorithms we could
reconstruct a better (smaller) model in the other tool after the
import. The open question is if model learning would scale
in this context. There are other standard minimisation algo-
rithms that need to be investigated first, e.g. Brzozowski’s
algorithm.

The automotive industry has recently developed a com-
mon format for test case exchange: OTX (Open Test se-
quence eXchange) is a domain-specific language at a high
level of abstraction with the aim of the graphic description
of test sequences for the off-board diagnostics. It is available
as ISO standard 13209. In diagnosis, test cases are used for
fault localisation. In model-based diagnosis this is done on
the modelling level. This can be seen as a tool integration
based on test cases, but here the tests with actual outputs are
used to resolve conflicts between the model and the actual
observations. Hence, here the test cases are not used as a
partial representation of the model but of the system under
test. Nevertheless, there seems to be a growing awareness
of the importance of exchanging test cases.

The future will show how far this idea can be taken in
practise.

ACKNOWLEDGEMENT

The UML model and its mutants have been produced
by Rupert Schlick, AIT in the MOGENTES project. The
research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement
Nº 269335 and from the Austrian Research Promotion
Agency (FFG) under grant agreement Nº 829817 for the



implementation of the project MBAT, Combined Model-
based Analysis and Testing of Embedded Systems.

REFERENCES

[1] B. K. Aichernig, H. Brandl, E. Jöbstl, and W. Krenn, “Effi-
cient mutation killers in action,” in IEEE Fourth International
Conference on Software Testing, Verification and Validation,
ICST 2011, Berlin, Germany, March 21–25 , 2011. IEEE
Computer Society, 2011, pp. 120–129.

[2] B. K. Aichernig and J. He, “Mutation testing in UTP,” Formal
Aspects of Computing, vol. 21, no. 1-2, pp. 33–64, 2009.

[3] D. Angluin, “Learning regular sets from queries and coun-
terexamples,” Information and Computation, vol. 75, pp. 87–
106, November 1987.

[4] ARTEMIS Industry Association, “ARTEMIS strategic
research agenda 2011,” 2011. [Online]. Available:
http://www.artemis-ia.eu/sra

[5] R.-J. Back and R. Kurki-Suonio, “Decentralization of pro-
cess nets with centralized control,” in PODC’83, 2nd ACM
SIGACT-SIGOPS Symposium on Principles of Distributed
Computing. ACM, 1983, pp. 131–142.

[6] T. Berg, B. Jonsson, M. Leucker, and M. Saksena, “Insights
to Angluin’s learning,” Electronic Notes in Theoretical Com-
puter Science, vol. 118, no. 0, pp. 3 – 18, 2005, proceedings
of the International Workshop on Software Verification and
Validation (SVV 2003).

[7] H. Brandl, M. Weiglhofer, and B. K. Aichernig, “Automated
conformance verification of hybrid systems,” in 10th Int.
Conf. on Quality Software (QSIC 2010). IEEE Computer
Society, 2010, pp. 3–12.

[8] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test
data selection: Help for the practicing programmer,” IEEE
Computer, vol. 11, no. 4, pp. 34–41, April 1978.

[9] R. G. Hamlet, “Testing programs with the aid of a compiler,”
IEEE Transactions on Software Engineering, vol. 3, no. 4,
pp. 279–290, July 1977.

[10] C. Hein, T. Ritter, and M. Wagner, “Model-driven tool in-
tegration with ModelBus,” in First International Workshop
on Future Trends of Model-Driven Development, FTMDD
2009. Proceedings: In the context of the 11th International
Conference on Enterprise Information Systems (ICEIS), 6-
10th May 2009, Milan, Italy. INSTICC Press, 2009.

[11] C. Jard and T. Jéron, “TGV: theory, principles and algo-
rithms,” International Journal on Software Tools for Tech-
nology Transfer (STTT), vol. 7, no. 4, pp. 297–315, 2005.

[12] Y. Jia and M. Harman, “An analysis and survey of the devel-
opment of mutation testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 649 –678, Sept.-Oct. 2011.

[13] D. Kozen, “Results on the propositional µ-calculus,” Au-
tomata, Languages and Programming, pp. 348–359, 1983.

[14] W. Krenn, R. Schlick, and B. K. Aichernig, “Mapping UML
to labeled transition systems for test-case generation - a
translation via object-oriented action systems,” in Formal
Methods for Components and Objects (FMCO), 2009, pp.
186–207.

[15] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-
checking for regular alternation-free mu-calculus,” Science
of Computer Programming, vol. 46, no. 3, pp. 255 – 281,
2003, special issue on Formal Methods for Industrial Critical
Systems.

http://www.artemis-ia.eu/sra

	Introduction
	Running Example
	Testing Interface
	State Machine

	Generating Tests in Ulysses
	Analysis in CADP
	Merging the Test Cases
	Verification of Test Cases

	Generating Tests in CADP
	Mutation Analysis in Ulysses
	Conclusion
	References

