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Abstract—Because verification and validation are impor-
tant activities in model driven engineering (MDE), verifying
interfaces preservation is considered an interesting step
to understand the evolution of data models by analyzing
their interfaces. The interfaces defined on a data model
can be used to define model evolution correctness using
observational semantics. In this paper, we propose an
approach that supports rigorous analysis, verification and
validation of behavioral re-factoring. Our work addresses
the problem of data model evolution in a formal modelling
and verification setting. We focus on data conservation
in the specific context of space engineering, where data
models may involve thousands of concepts, relationships
and each concept has a number of fields or attributes and
each relationship has a number of properties.

Index Terms—data models evolution, data model
transformation, data models comparison (Bi-simulation),
graphs, labelled transition system (LTS)

I. Introduction

Because project stakeholders require an easy and
safe (behaviour-preserving) technique to update model-
based applications, several approaches based on formal
methods have been proposed [1]–[3]. This work gave rise
to several formal comparison approaches [4]–[6]. In this
paper, we propose an approach that supports analysis
of models behavior preservation after re-factoring. It
consists in checking that the APIs (Application Program-
ming Interfaces) of a source data model still hold on the
target data model. To address the problem of data model
evolution, we have identified three requirements.

Accessibility. Access to model concepts shall be pre-
served after model refactoring i.e. source model getters
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or setters shall be preserved. Accessibility requirement
becomes a path problem in a graph.

Cardinalities. The cardinalities defining the extensions
of the relationships between source model concepts
(specifying the allowed number or range of instances)
shall be preserved after model refactoring.

Knowledge. In order to strengthen concepts evolution,
a knowledge base can be associated to the refactoring
process to define possible knowledge equivalences or
relationships between model concepts. Ontologies are
good candidates for such knowledge bases [7].

This paper deals with the accessibility requirement.
It particularly focuses on the models produced in space
engineering.
This paper is organized as follows. Section 2 overviews
related work. The proposed approach to handle model
evolution and data migration is presented in Section 3.
Basic definitions are presented in Section 4. Section 5
summarizes our results, overviews our experiments and
positions our approach with respect to the state of the art.
Finally, section 6 concludes and provides future work.

II. Related work

The problem of model refactoring has been addressed
by several authors with different perspectives.

Application Programming Interfaces (API). They
offer operators to process model concepts by encap-
sulating modelling details. [8] proposed two categories
of application interfaces: external and internal ones.
External APIs are designed by library maintainers for
clients usage while internal ones are used by the library



code itself. To automatically collect refactoring opera-
tions between two APIs versions, [8] uses the RefFinder
tool, which identifies up to different 52 refactoring types
between two API versions. The identified refactoring
types are structural, only detectable by mechanical trans-
formations. However, [9] observes that APIs breaking
changes are not involved in refactorings. In this case, an
application built with an older version of the component
API, may fail under a new component API version.
When the problem is visible, the application fails to
compile or to link. Moreover, it may succeed to compile
but its behaviour may be altered [10].

Refactoring. Refactoring-based migration tools are
discussed in [11] where the research CatchUp tool is
used to update applications. It uses refactorings descrip-
tions to help application developers migrate their appli-
cations to a new version. It aims to update applications
by recording and playing back the refactorings. Only
few refactorings have full records and replay support.
According to [10], refactoring at model level is inher-
ently more challenging due to difficulties in assessing the
potential impact on structural and behavioral features of
the software system.

Data models comparison. Authors in [6] address
the problem of user interface (UI) evolution. They fo-
cus on the user interface behaviour preservation and
study the design process of a user interface resulting
from the evolution of a former user interface due to
the introduction of new devices and/or new interaction
capabilities. Interface behaviors are described by labelled
transition systems (LTS) and comparison is handled by
bi-simulation of LTS. Furthermore, [4] describe how user
interfaces equivalence, with respect to their interaction
capabilities and appearance, can be measured. The UI di-
vergences are highlighted, and the possibility of leaving
these divergences out of the analysis is provided.

Our previous work [12] proposes an intrusive ap-
proach to manage model evolution based on structural
differences. It results in a set of evolution operators from
source to target models. Models are inspected to identify
a set of differences and may produce false positives/false
negatives.

In this paper, we propose a non-intrusive approach
to handle model evolution. Instead of using a syntactical
approach, we rely on API preservation. We consider that
a data model evolution is correct if the source data model
API is preserved in the target one. The approach is based
on path access preservation and graph bi-simulation [13].

III. Handling model evolution and data migration: our
approach

In order to handle the semantic data changes involved
in the development and exploitation of complex systems
in a critical application domain like space engineering,
we need to design a rigorous protocol to control the
semantic model evolution and data migration.

The approach we propose to compare a source and
a target data model relies on 4 steps. Each step manip-
ulates graphs to handle modelling language’s semantic
evolution. Fig. 1 depicts the defined approach.

• Step 1. Data models refactoring (interpretation).
It identifies, in each data model, the concepts altered
by the evolution. Two input data models will be
compared according to these shared identified con-
cepts. According to the latter, both source and target
data models are interpreted into a shared model.
We use labelled directed graphs (LDG) as ground
shared model. Two LDG are produced for source
(LDGs) and target (LDGt).

• Step 2. Data models projection. For each LDG
produced from Step 1, a set of labelled transition
systems (LTS) with different initial states is pro-
duced.

• Step 3. LTS comparison. The obtained LTS for
both source and target data models are compared
using a simulation relationship. Each target LTS
shall simulate the corresponding source LTS. When
all the source LTS are simulated by the target ones,
concept access path preservation is ensured.

• Step 4. Data conservation. If step 3 succeeds,
source data instances conforming to source and
target data models are migrated. The migration
procedure is defined depending on the kind of
established simulation relation of step 3: strong sim-
ulation (source data instances are reused) or weak
simulation (source data instances are refactored
using the API corresponding to the path identified
by the simulation relation).

IV. Formalisation of our approach

For the accessibility requirement identified in section
I, and according to step 1, we define LDG as the unified
ground model in which data models are transposed.

A. A formal model for checking data model evolution

In the following, C, attr and Bt denote the set of data
model concepts (classes, entities, etc.) of attributes and
of basic types (Boolean, Integer, etc.).

2



Fig. 1. A four steps based approach for data migration.

Definition 1: A Labelled Directed Graph ldg ∈ LDG
is a graph ldg = (V, E) where

• V = C × P(attr × Bt) is a non-empty set of nodes.
Each node represents a concept and its attributes.

• E ⊆ V× label×V is a set of directed edges denoting
the relations between the concepts.

For any e = (vs, l, vt) ∈ E, vs and vt represent
the source and target node of edge e. Node v =

(c, {(a1, t1), . . . , (an, tn)}) ∈ C × P(attr × Bt) defines

• c as a concept (class, entity, relation, etc.), with
• {(a1, t1), . . . , (an, tn)} as a set of typed attributes.

We have considered (l) as a label ⊆

{isa, re f s, haspart, parto f , re f , cast, prop} the set
of relations for: inheritance is_a, aggregation refs,
composition haspart, reflexive composition partof,
references between concepts ref, casting cast and
association property prop. Other relations may be
studied for other analyzed data modelling language.

Definition 2: A labelled transition system lts is a
structure lts = (S , s0,T,→) where S is a finite number of
states, s0 ∈ S is an initial state, T denotes a set of labels
and → ⊆ S × T × S is a transition relation. The specific
label τ ∈ T denotes empty label used to model internal
actions, i.e., non observable actions in our approach. We
note LTS as the set of lts and T ∗ as the set of all possible
sequences built on labels of T [13].

LTS is the projection of graph LDG on each concept,
i.e. each graph ldg has many lts with different initial
states corresponding to different concepts.

Step1. Interpretation

Interpretation is the process that produces a graph g ∈
LDG from a conceptual model cm ∈ CM where CM is

a set of conceptual models like UML, Entity-Relation
(ER), XIF1.

We denote CM
Int
−→ LDG and g = Int(cm) the function

that describes this process. Each concept (e.g. a class for
UML diagrams, an entity for ER, an element for an XIF
data model) resp. each concept relation (e.g. inheritance,
class association, an entity relation) of cm is interpreted
by a node resp. by an edge in the graph g.

Step2. Projection

Projection is the process that produces a set LTS =

{lts_1, · · · lts_n} of lts ⊆ LTS from a graph ldg =

(V, E) ∈ LDG where n correspponds to the number of
nodes in g. We denote LDG

Pro j
−→ LTS and LTS =

Pro j(g) the function that describes this process. The
following transformation rules for projection define a lts.
Nodes of V = C × P(attr × Bt). For each node v =

(c, {(a1, t1), . . . , (an, tn)}) ∈ C × P(attr × Bt) in g,
• the concept c ∈ C defines a state c ∈ S
• each type ti ∈ Bt defines a state ti ∈ S
• each attribute ai defines a transition (c, ai, ti) ∈→

Edges of E ⊆ V × label × V . Each edge e = (vs, l, vt)
∈ E where vs = (cs, {(as1, ts1), . . . , (asn, tsn)}) and
vt = (ct, {(at1, tt1), . . . , (atn, ttn)}) defines a transition
(cs, l, ct) ∈ →.

Initial states for each lts. Finally, each node vi ∈ V of
the graph g = (V, E) defines the initial state of ltsi ∈

{lts1, · · · ltsn}.
The projection results in a set of labelled transition sys-
tems associated to any data model. Therefore, analysis
techniques defined for labelled transition systems can be
applied. In particular, our approach uses lts comparison

1XML Interchange Format (XIF): A standard in space engineering to
define space data models [14].
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techniques based on the definition of a simulation rela-
tionship.

lts as a model for APIs

An api in a set of API is made of operations opi

like getters, setters, testers etc. to respectively access,
modify or query concepts or attributes of a data model.
We note api = {op1, · · · , opm} ∈ API.

For a given lts ∈ LTS , we say that an api ∈ API
of a given concept c is valid if and only if for each
operation opi ∈ api there exists a path, starting from
the initial state corresponding to the concept c, which
accesses each input and output concepts used by any
opi ∈ api. We say that lts satisfies the api API and note
lts |=a api.

This definition can be extended to the APIs of any
concept in a graph g = Int(cm) resulting from the
interpretation of a conceptual model cm. We say that
a set Api ⊆ API of APIs defined on g is satisfied if and
only if for each api ∈ API there exists a ltsi ∈ Pro j(ldg)
such that ltsi |=a api. We note g |=g Api.

Step 3. LTS comparison

Let gs and gt be two ldg. Let ltss ∈ Pro j(gs) and
ltst ∈ Pro j(gt) be two lts with an initial state associated
to the same concept c and api an API defined on the
ltss on the concept c.

We say that api is preserved on ltst if and only if ltst

simulate ltss (written as ltst ∼ ltss). Informally, all the
paths in ltss are also paths in ltst i.e. api is still satisfied
in ltst. Formally, we write

ltst |=a api⇐⇒ ltst ∼ ltss ∧ ltss |=a api

Step4. Data conservation

Let gs and gt be two ldg and Api a set of API defined
on gs such that gs |=g Api. We say that a set Api of
APIs is preserved on gt if and only if for all api ∈ Api
such that ∃ ltss ∈ pro j(gs) ∧ ltss |=a api there exists
a ltst ∈ pro j(gt) such that ltst ∼ ltss ∧ ltss |=a api.
Formally, we write

gt |=g Api
⇐⇒

∀api ∈ Api,∃ ltss ∈ pro j(gs),∃ ltst ∈ Pro j(gt).
such that ltss |=a api ∧ ltst ∼ ltss

Definition 3: Finally, we say that a conceptual model
cmt is a correct evolution of a conceptual model cms

with respect to a set Api of APIs if and only if

gs = Int(cms) |=g Api =⇒ gt = Int(cmt) |=g Api

Once the conceptual model cmt is proved to be a
correct evolution of cms, instances can be migrated.
The APIs of the source conceptual model are used to
rebuild the instances in the target data model. Some of
the produced instances may be partially valued in case
cmt is richer than the source data model.

B. Example

Below, we apply the defined methodology on the
example of a conceptual UML class diagram depicted on
Figure 2. The objective is to check if the class diagram
on the right hand side of Figure 2 is a correct evolution
of the one on the left hand side.

Fig. 2. An example of a data model evolution.

Step1. Interpretation

An example of evolution of an UML class diagram
is given in Figure 2. The source and target data models
are interpreted using the Int function leading to two ldg.
The source data model contains three concepts A, B and
C. Concept B and concept C inherit from concept A.
Concept A has three attributes a1, a2 and a3. Concept
C has one attribute a4 and concept B has one attribute
a5. In the target data model, we decide to push-down
the attribute a3 from concept A to both concepts B and
C.

Step2. Projection

We project the source and target ldg to labelled
transition systems. Since three nodes are identified at
the ldg level, we obtain three lts for both source and
target ldg as shown on Figure 3 for the model on the
left hand side of Figure 2. The initial state of each lts is
one of the three nodes of the associated ldg.

Step 3. LTS comparison

In this case study, strong equivalence is not ensured.
However, each target lts weakly simulates the corre-
sponding source lts. One may notice that the opposite
does not hold.

4



Fig. 3. Projection of a ldg to a set of lts.

Step4. Data conservation

For data migration, we can assert that the obtained ldg
and lts are conform to Definition 3. The functions of the
APIs can be used for data migration.

V. Case Studies

Our approach has been deployed in the space engi-
neering domain. We have studied several case studies
with complex data models. In this section, we review
the case of the Microscope data model. The Microscope
space mission aims at testing the universality of free fall,
for the first time in space [15]. In the following, we con-
sider an extract of the data model used to parameterize
the telemetry processing and especially to combine two
telemetries.

Step1. Interpretation

As shown in Figure 4, it was decided to refactor
the data model by replacing two attributes by two
composition relationships towards a new class, called
AbstractData.

Fig. 4. An extract of a data model evolution in Microscope.

The original attributes signal1 and signal2 are
factorized into a class SessionData, inheriting from
AbstractData and owning a signal attribute of type
Signal. This way, end-users can combine two teleme-
tries with a known signal or not. Thus, we can identify
the following evolutions:
• a new abstract class named AbstractData is

added;

• two new classes named SessionData,
OtherData inheriting from AbstractData
are added;

• a new attribute named signal of type Signal is
added to the class SessionData;

• a new attribute named signalExt of type String
is added to the class OtherData;

• the types of signal1 and signal2 are changed
from Signal to AbstractData.

As explained previously, the source and target data
models are transformed into two LDG. In the source
LDG, the class Signals become one concept. In the
target LDG, three new concepts appear : AbstractData,
SessionData and OtherData.

Step2. Projection

As shown in Figure 5, we project the source and target
LDG to one source lts ltss and one target lts ltst.

Fig. 5. An extract of the projection of the ldg to a set of lts in
Microscope.

As the Signals concept is the only concept that exists
in both sides, the initial state of each lts is Signals.

Step 3. LTS comparison.

As shown in Figure 5, from the initial state Signals,
all the source transitions are feasible if we cast the target
signal1 and signal2 to the concept SessionData:

signal1source = ((S essionData)signal1target).signal

signal2source = ((S essionData)signal2target).signal

Thus, ltst simulates ltss since the following weak sim-
ulation binary relationship R = {< S ignals, S ignals >}
exists. One may notice that the opposite is false because
of the transition signalExt.

Step4. Data conservation

During the migration, the values of the old instances of
the class Signals are preserved, through the creation of
two new instances of the class SessionData, initialized
with these values.
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VI. Conclusion and Future work
Tool support: The use of the CADP2 toolbox helps a

lot. Our investigations proved that we have been able to
get the diagnosis of the comparison results.

Using template transformations, we were able to
transform the Microscope data models to an LDG,
then to obtain an internal representation of labelled
transition system in AUT (automaton) format. Finally,
the simulation between the two automatons is checked,
using observational equivalence relationship, thanks to
the CADP BISIMULATOR module.

Results and Discussion: In this paper, we presented a
semantic observational approach for treating data models
evolution. The main interest of the proposed approach
is the transposition of the information accessibility in
a data model at a logical interface level into a path
problem in a labelled directed graph. The approach
proved capable to capture all evolutions of a data model
into a single logical operator instead of a no-exhaustive
list of evolution operators.

Finally, the proposed approach is generic, it is not
defined for a single specific data modelling language. It
applies to any data modelling language provided that an
interpretation of each data model by a ldg (from which
a set of lts is produced) is defined.

Concluding remarks: We believe that addressing the
problem of model evolution based on model behavior is
promising. Interfaces defined on data models are used to
define model evolution correctness using observational
semantics. They are also used to prove the existence
or the non-existence of composite operators having the
property to preserve information contained in original
instances.

Relying on labelled transition systems has three poten-
tial advantages. First, the overall system is often easier
to understand due to the formal and precise nature of
the representation scheme. Secondly, the behavior of the
system can be analyzed using labelled transition systems
theory and associated techniques, which includes tools
for analysis. Finally, techniques developed for the com-
parison of parallel programs can also be applied.

Future work: As a perspective of this approach,
we expect to realize a comparative study between the
proposed approach and the previous one by compar-
ing traces found by a graph comparison algorithm to
structural differences found previously in [12]. We also
intend to extend our work to address the evolution of
models in presence of cardinalities. Finally, integrating
domain knowledge through the introduction of a domain

2https://cadp.inria.fr/

ontology helps in identifying semantic equivalence at
concepts levels and thus address heterogeneous models
evolution.
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