
Using Datalog and Boolean Equation Systems

for Program Analysis ⋆

Maŕıa Alpuente, Marco A. Feliú, Christophe Joubert, and Alicia Villanueva

Universidad Politécnica de Valencia, DSIC / ELP
Camino de Vera s/n, 46022, Valencia, Spain

{alpuente,mfeliu,joubert,villanue}@dsic.upv.es

Abstract. This paper describes a powerful, fully automated method to
evaluate Datalog queries by using Boolean Equation Systems (Bess), and its
application to object-oriented program analysis. Datalog is used as a spec-
ification language for expressing complex interprocedural program analyses
involving dynamically created objects. In our methodology, Datalog rules
encoding a particular analysis together with a set of constraints (Datalog
facts that are automatically extracted from program source code) are dy-
namically transformed into a Bes, whose local resolution corresponds to the
demand-driven evaluation of the program analysis. This approach allows us to
reuse existing general purpose verification toolboxes, such as Cadp, providing
local Bes resolutions with linear-time complexity. Our evaluation technique
has been implemented and successfully tested on several Java programs and
Datalog analyses that demonstrate the feasibility of our approach.

Keywords: program analysis, Datalog, boolean equation system, demand-
driven evaluation

1 Introduction

Program analysis is a technique for statically determining dynamic properties of pro-
grams. Static analysis generally executes an abstract version of the program’s seman-
tics on abstract data, rather than on concrete data. While originally established as
a technique used in optimizing compilers, program analysis is also commonly used
in software-development tools that help to find program errors and also derive safety
properties of programs.

Recently, a large number of program analyses have been developed in Data-
log [15,18], a simple relational query language rich enough to describe complex in-
terprocedural program analyses involving dynamically created objects.

The advantages of formulating dataflow analyses as a Datalog query are twofold. On
the one hand, analyses that take hundreds of lines of code in a traditional language
can be expressed in a few lines of Datalog [18]. On the other hand, an important
number of optimization techniques for Datalog have been studied extensively in logic
programming and deductive databases [1,4]. The two general approaches for evaluating

⋆ This work has been supported by the Spanish MEC under grant TIN2007-68093-C02-02, by the
Generalitat Valenciana GVPRE/2008/113, and by the Universidad Politécnica de Valencia,
under grant PAID-06-07 (TACPAS).



Datalog queries are the top-down and the bottom-up methods. Given a set of rules, the
bottom-up approach computes all facts that can be inferred from the program and then
selects those that unify with the given query. The top-down, goal-directed approach
computes on-demand. While bottom-up computation may be very inefficient, the top-
down approach is prone to infinite loops and redundant computations. Optimization
methods for both approaches that resolve the major drawbacks have been developed,
such as bottom-up transformations based on magic sets [3] and top-down evaluation
with tabling [4]. In the Query-Sub-Query (QSQ) optimization technique [16], goals are
generated top-down, but whenever possible, goals are propagated in sets at a time,
rather than one at a time, and all generated goals and facts are memoized.

This paper describes the use of Boolean Equation Systems (Bes) [2] to evaluate
Datalog queries and its application to object-oriented program analysis. Our technique
is based on top-down evaluation guided by the given query, and makes use of tables
and finite data domains to ensure termination. Our method is not a direct evaluation
method because it transforms the rules prior to evaluate them. Similarly to the QSQ
technique [16], computation is done by proceeding with a set tuples at a time. This
can be a great advantage for large datasets since it makes disk accesses more efficient.
In our program analysis methodology, Datalog rules encoding a particular analysis,
together with a set of constraints (Datalog facts that are automatically extracted
from program source code), are dynamically transformed into a Bes, whose local
resolution corresponds to the demand-driven evaluation of the program analysis. This
approach allows us to reuse existing general purpose verification toolboxes, such as
Cadp, providing local Bes resolutions with linear-time complexity.

Related Work. The description of data-flow analyses as a database query was pi-
oneered by Ullman [15] and Reps [13] who applied Datalog’s bottom-up magic-set
implementation to automatically derive a local implementation.

Recently, Bess with typed parameters [11], called Pbes, have been successfully
used to encode several hard verification problems such as the first-order value-based
modal µ-calculus model-checking problem [12], and the equivalence checking of various
bisimulations [5] on (possibly infinite) labeled transition systems. However, Pbess have
not yet been used to compute complex interprocedural program analyses involving
dynamically created objects.

The closest related work proposes the use of Dependency Graphs (Dgs) for rep-
resenting satisfaction problems, including propositional Horn Clauses satisfaction and
Bes resolution [10]. A linear time algorithm for propositional Horn Clauses satis-
fiability is described in terms of the least solution of a Dg equation system. This
corresponds to an alternation-free Bes, which can only deal with propositional logic
problems. The extension of Liu and Smolka’s work [10] to Datalog query evaluation is
not straightforward. This is testified by the encoding of data-based temporal logics in
equation systems with parameters in [12], where each boolean variable may depend on
multiple data terms. Dgs are not sufficiently expressive to represent such data depen-
dencies on each vertex. Hence, it is necessary to work at a higher level, on the Pbes

representation.

Recently, a very efficient Datalog program analysis technique based on binary de-
cision diagrams (Bdds) has been developed in the Bddbddb system [18], which scales

2



to large programs and is competitive w.r.t. the traditional (imperative) approach. The
computation is achieved by a fixed point computation starting from the everywhere
false predicate (or some initial approximation based on Datalog facts). Datalog rules
are then applied in a bottom-up manner until saturation is reached, so that all solu-
tions satisfying each relation of a Datalog program are exhaustively computed. These
sets of solutions are then used to answer complex formulas.

In contrast, our approach focus on demand-driven techniques to solve a set of
queries with no a priori computation of the derivable atoms. In the context of pro-
gram analysis, note that all program updates, like pointer updates, might potentially
be inter-related, leading to an exhaustive computation of all results. Therefore, im-
provements to top-down evaluation remain attractive for program analysis applica-
tions. Recently, Zheng and Rugina [19] showed that demand-driven Cfl-reachability
with worklist algorithm can compare favorably with an exhaustive solution, especially
in terms of memory consumption. Our technique to solve Datalog programs based on
local Bes resolution goes towards the same direction and provides a novel approach
to demand-driven program analyses.

Plan of the Paper. The rest of the paper is organized as follows: Section 2 recalls Data-
log definitions and the BES formalism with its parameterised extension. Our method-
ology to transform Datalog query to an implicit Bes with parameters is described in
Section 3. Section 4 illustrates the application of Datalog and Bes to program analysis,
together with experimental results on Java programs and context-insensitive pointer
analysis. Finally, Section 5 concludes and highlights future research directions.

2 Preliminaries

2.1 Datalog

Datalog [15] is a relational language using declarative rules to both describe and query
a deductive database. A Datalog rule is a function-free Horn clause over an alphabet
of predicate symbols (e.g. relation names or arithmetic predicates, such as <) whose
arguments are either variables or constant symbols. A Datalog program R is a finite
set of Datalog rules.

Definition 1 (Syntax of Rules). Let P be a set of predicate symbols, V be a finite
set of variable symbols, and C a set of constant symbols. A Datalog rule r, also called
clause, defined over a finite alphabet P ⊆ P and arguments from V ∪C, V ⊆ V, C ⊆ C,
has the following syntax:

p0(a0,1, . . . , a0,n0
) : − p1(a1,1, . . . , a1,n1

), . . . , pm(am,1, . . . , am,nm
).

where each pi is a predicate symbol of arity ni with arguments ai,j ∈ V ∪C (j ∈ [1..ni]).

The atom p0(a0,1, . . . , a0,n0
) in the left-hand side of the clause is the rule’s head,

where p0 is neither arithmetic nor negated. The finite conjunction of subgoals in the
right-hand side of the formula is the rule’s body, i.e., atoms that may optionally be
negated or arithmetic, and contain all variables appearing in the head. Following logic

3



programming terminology, a rule with empty body (m = 0) is called a fact whereas
a rule with empty head and m > 0 is called a goal. To keep the presentation simple,
we restrict our syntax to predicate symbols of arity 1. A syntactic object (argument,
atom, or rule) that contains no variables is called ground. The Herbrand Universe of
a Datalog program R defined over P , V and C, denoted UR, is the finite set of all
ground arguments, i.e., constants of C. The Herbrand Base of R, denoted BR, is the
finite set of all ground atoms that can be built by assigning elements of UR to the
predicate symbols in P . A Herbrand Interpretation of R, denoted I (from a set I of
Herbrand interpretations, I ⊆ BR), is a set of ground atoms.

Definition 2 (Fixed point semantics). Let R be a Datalog program. The least
Herbrand model of R is a Herbrand interpretation I of R defined as the least fixed point
of a monotonic, continuous operator TR : I → I known as the immediate consequences
operator and defined by:

TR(I) = {h ∈ BR | h : −b1, ..., bm is a ground instance of a rule in R,
with bi ∈ I, i = 1..m, m ≥ 0}

Note that TR computes both, ground atoms derived from applicable rules–called
intentional database (or idb)–, and ground instances of rules with an empty body
(m = 0), also called extensional database (edb). The choice of minimal model as the
semantics of a Datalog program is justified by the assumption that all facts that are
not in the database are false.

The number of Herbrand models being finite for a Datalog program R, there always
exists a least fixed point for TR, denoted µTR, which is the least Herbrand model of
R. In practice, one is generally interested in the computation of some specific atoms,
called queries, and not in the whole database of atoms. Hence, queries may be used
to prevent the computation of facts that are irrelevant for the atoms of interest, i.e.,
facts that are not derived from the query.

Definition 3 (Query Evaluation). A Datalog query q is a pair 〈G, R〉 where:

• R is a Datalog program defined over P , V and C,
• G is a set of goals.

Given a query q, its evaluation consists in computing µT{q}, {q} being the extension
of the Datalog program R with the Datalog rules in G.

The evaluation of a Datalog program augmented with a set of goals deduces all
the different constant combinations that, when assigned to the variables in the goals,
can make one of the goal clauses true, i.e., all atoms bi in its body are satisfied.

2.2 Parameterised Boolean Equation System

Given X a set of boolean variables and D a set of data terms, a Parameterised Boolean
Equation System [11] (Pbes) B = (x0, M1, ..., Mn) is a set of n blocks Mi, each one
containing pi ∈ N fixed-point equations of the form

xi,j(~di,j : ~Di,j)
σi= φi,j

4



with j ∈ [1..pi] and σi ∈ {µ, ν}, also called sign of equation i, the least (µ) or greatest
(ν) fixed point operator. Each xi,j is a boolean variable from X that binds zero or more
data terms di,j of type Di,j

1 which may occur in the boolean formula φi,j (from a set Φ
of boolean formulae). x0 ∈ X , defined in block M1, is a boolean variable whose value
is of interest in the context of the local resolution methodology. Boolean formulae φi,j

are formally defined as follows.

Definition 4 (Boolean Formula). A boolean formula φ, defined over an alphabet
of (parameterised) boolean variables X ⊆ X and data terms D ⊆ D, has the following
syntax given in positive form:

φ, φ1, φ2 ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | X(e) | ∀d ∈ D. φ | ∃d ∈ D. φ

where boolean constants and operators have their usual definition, e is a data term
(constant or variable of type D), X(e) denotes the call of a boolean variable X with
parameter e, and d is a term of type D.

A boolean environment δ ∈ ∆ is a partial function mapping each (parameterised)
boolean variable x(d : D) to a predicate δ(x) : X → (D → B), with B = {true, false}.
Boolean constants true and false abbreviate the empty conjunction ∧∅ and the empty
disjunction ∨∅ respectively. A data environment ε ∈ E is a partial function mapping
each data term e of type D to a value ε(e) : D → D, which forms the so-called support
of ε, noted supp(ε). Note that ε(e) = e when e is a constant data term. The overriding
of ε1 by ε2 is defined as (ε1 ⊘ ε2)(x) = if x ∈ supp(ε2) then ε2(x) else ε1(x). The
interpretation function [[φ]]δε, where [[.]] : Φ → ∆ → E → B, gives the truth value of
boolean formula φ in the context of δ and ε, where all free boolean variables x are
evaluated by δ(x), and all free data terms d are evaluated by E(d).

Definition 5 (Semantics of Boolean Formula). Let δ : X → (D → B) be a
boolean environment and ε : D → D be a data environment. The semantics of a
boolean formula φ is inductively defined by the following interpretation function:

[[true]]δε = true

[[false]]δε = false

[[φ1 ∧ φ2]]δε = [[φ1]]δε ∧ [[φ2]]δε
[[φ1 ∨ φ2]]δε = [[φ1]]δε ∨ [[φ2]]δε

[[x(e)]]δε = (δ(x))(ε(e))
[[∀d ∈ D. φ]]δε = ∀ v ∈ D, [[φ]]δ(ε ⊘ [v/d])
[[∃d ∈ D. φ]]δε = ∃ v ∈ D, [[φ]]δ(ε ⊘ [v/d])

Definition 6 (Semantics of Equation Block). Given a Pbes B = (x0, M1, ..., Mn)

and a boolean environment δ, the solution [[Mi]]δ to a block Mi = {xi,j(di,j : Di,j)
σi=

φi,j}j∈[1,pi] (i ∈ [1..n]) is defined as follows:

[[{xi,j(di,j : Di,j)
σi= φi,j}j∈[1,pi]]]δ = σiΨiδ

1 To simplify our description in the rest of the paper, we intentionally restrict to one the
maximum number of data term parameter d : D.

5



where Ψiδ : (Di,1 → B) × . . . × (Di,pi
→ B) → (Di,1 → B) × . . . × (Di,pi

→ B) is
a vectorial functional defined as

Ψiδ(g1, ..., gpi
) = (λvi,j : Di,j .[[φi,j ]](δ ⊘ [g1/xi,1, ..., gpi

/xi,pi
])[vi,j/di,j ])j∈[1,pi]

where gi : Di → B, i ∈ [1..pi].

A Pbes is alternation-free if there are no mutual recursion between boolean vari-
ables defined by least (σi = µ) and greatest (σi = ν) fixed point boolean equations.
In this case, equation blocks can be sorted topologically such that the resolution of a
block Mi only depends upon variables defined in a block Mk with i < k. A block Mi is
closed when the resolution of all its boolean formulae φi,j only depends upon boolean
variables xi,k from Mi.

Definition 7 (Semantics of alternation-free PBES). Given an alternation-free
Pbes B = (x0, M1, ..., Mn) and a boolean environment δ, the semantics [[B]]δ to B is
the value of its main variable x0 given by the semantics of M1, i.e., δ1(x0), where the
contexts δi are calculated as follows:

δn = [[Mn]][] (the context is empty because Mn is closed)
δi = ([[Mi]]δi+1) ⊘ δi+1 for i ∈ [1, n − 1]

where each block Mi is interpreted in the context of all blocks Mk with i < k.

3 Datalog Queries and Boolean Equation Systems

An elegant and direct intermediate representation of a Datalog query can be given
as an implicit Bes parameterised with typed boolean variables. In this section, we
present reductions between Datalog query evaluation and Pbes resolution for both
directions of reducibility. The reductions are linear-time with a suitable representation
of the problem instances. As in [18], we assume that Datalog programs have stratified
negation (no recursion through negation), and totally-ordered finite domains, without
considering comparison operators.

3.1 Datalog query representation

We propose a transformation of the Datalog query into a related query, expressed
as a parameterised boolean variable of interest and a Pbes, which is subsequently
evaluated using traditional Pbes evaluation techniques.

Proposition 1. Let q = 〈G, R〉 be a Datalog query, defined over P , V and C, and
Bq = (x0, M1), with σ1 = µ, a Pbes defined over a set X of boolean variables xp in
one-to-one correspondence with predicate symbols p of P plus a special variable x0, a
set D of data terms in one-to-one correspondence with variable and constant symbols
of V ∪ C, and M1 the block containing exactly the following equations, where fresh

6



variables are existentially quantified after the transformation:

x0
µ
=

∨

:− q1(d1), ..., qm(dm). ∈G

m
∧

i:=1

xqi
(di) (1)

{xp(d : D)
µ
=

∨

p(d) :− p1(d1),... pm(dm). ∈R

m
∧

i:=1

xpi
(di) | p ∈ P} (2)

Then q is satisfiable if and only if [[B]]δ(x0) = true.

Boolean variable x0 encodes the set of Datalog goals G, whereas (paremeterised)
boolean variables xp(d : D) represent the set of Datalog rules R modulo renaming.

In our framework, the reverse direction of reducibility consists in the transformation
of a parameterised boolean variable of interest, defined in a Pbes, into a related
relation of interest expressed as a Datalog query, which could be evaluated using
traditional Datalog evaluation techniques.

Proposition 2. Let B = (x0, M1), with σ1 = µ, be a Pbes defined over a set X
of boolean variables and a set D of data terms, and qB = 〈G, R〉 be a Datalog query
defined over a set P of predicate symbols p in one-to-one correspondence with boolean
variables xp of X \ {x0}, a set V ∪ C of variable and constant symbols in one-to-
one correspondence with data terms of D, and 〈G, R〉 containing exactly the following
Datalog rules:

G =











: − q1,1(d1,1), . . . , q1,nj
(d1,nj

).,
...

: − qni,1(dni,1), . . . , qni,nj
(dni,nj

).

∣

∣

∣

∣

∣

∣

∣

x0
µ
=

ni
∨

i=1

nj
∧

j=1

xqi,j
(di,j) ∈ M1







R =











p(d) : − p1,1(d1,1), . . . , p1,nj
(d1,nj

).,
...

p(d) : − pni,1(dni,1), . . . , pni,nj
(dni,nj

).

∣

∣

∣

∣

∣

∣

∣

xp(d)
µ
=

ni
∨

i=1

nj
∧

j=1

xpi,j
(di,j) ∈ M1







Then [[B]]δ(x0) = true if and only if qB = 〈G, R〉 is satisfiable.

Example 1. We illustrate the reduction method from Datalog to Pbes by means of
a simple Datalog example. Let q = 〈G, R〉 be the following Datalog query with D =
{mary , alice,mark , X, Y, Z}:

:- superior (mary, Y).

supervise(mary, alice).

supervise(alice, mark).

superior(X, Y) :- supervise(X, Y).

superior(X, Y) :- supervise(X, Z), superior(Z, Y).

By using Proposition 1, we obtain the following Pbes:

x0
µ
= ∃Y ∈ D . xsuperior(mary , Y )

xsupervise(mary , alice)
µ
= true

xsupervise(alice ,mark)
µ
= true

xsuperior(X : D, Y : D)
µ
= xsupervise(X, Y ) ∨

∃Z ∈ D.(xsupervise(X, Z) ∧ xsuperior(Z, Y ))

7



In the rest of this paper, we will develop the use of Pbess to solve Datalog queries.

3.2 Instantiation to parameterless BES

Among the different known techniques for solving a Pbes, such as Gauss elimination
with symbolic approximation, and use of patterns, under/over approximations, or
invariants, we consider the resolution method based on transforming the Pbes into a
parameterless boolean equation system (Bes) that can be solved by linear time and
memory algorithms [11,7] when data domains are finite.

Definition 8 (Boolean Equation System). A Boolean Equation System (Bes)
B = (x0, M1, ..., Mn) is a Pbes where data domains are removed and boolean variables,
being independent from data parameters, are considered propositional.

To obtain a direct transformation into a parameterless Bes, we first described the
Pbes in a simpler format. This simplification step consists in introducing new vari-
ables, such that each formula at the right-hand side of a boolean equation only contains
at most one operator. Hence, boolean formulae are restricted to pure disjunctive or
conjunctive formulae.

Given a Datalog query q = 〈G, R〉, by applying this simplification to the Pbes of
Proposition 1, we obtain the following Pbes:

x0
µ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm)

gq1(d1),...,qm(dm)
µ
=

m
∧

i:=1

xqi
(di)

xp(d : D)
µ
=

∨

p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm)

rp1(d1),...,pm(dm)
µ
=

m
∧

i:=1

xpi
(di)

By applying the instantiation algorithm of Mateescu [11], we eventually obtain
a parameterless Bes, where all possible values of each typed data terms have been
enumerated over their corresponding finite data domains.

The resulting implicit parameterless Bes is defined as follows, where � is the
standard preorder of relative generality (instantiation ordering).

x0
µ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (3)

gq1(d1),...,qm(dm)
µ
=

∨

1≤i≤m, ei∈Di∧ di�ei

gc
q1(e1),...,qm(em) (4)

gc
q1(e1),...,qm(em)

µ
=

m
∧

i:=1

xqiei
(5)

8



xpd

µ
=

∨

p(d) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (6)

rp1(d1),...,pm(dm)
µ
=

∨

1≤i≤m, ei∈Di∧ di�ei

rc
p1(e1),...,pm(em) (7)

rc
p1(e1),...,pm(em)

µ
=

m
∧

i:=1

xpiei
(8)

Observe that Equation 1 is transformed into a set of parameterless equations
(3, 4, 5). First, Equation 3 describes the set of parameterised goals gq1(d1),...,qm(dm)

of the query. Then, Equation 4 represents the instantiation of each variable parameter
di to the possible values ej from the domain. Finally, Equation 5 states that each in-
stantiated goal gc

q1(e1),...,qm(em) is satisfied whenever the values ej make all predicates

qi of the goal true. Similarly, Equation 2 (describing Datalog rules) is encoded into a
set of parameterless equations (6, 7, 8).

3.3 Optimizations

The parameterless Bes described above is inefficient since it adopts a brute-force
approach that, in the very first steps of the computation (Equation 4), enumerates
all possible tuples of the query. It is well-known that a Datalog program runs in
O(nk) time, where k is the largest number of variables in any single rule, and n
is the number of constants in the facts and rules. Similarly, for a simple query like
:- superior(X,Y)., with X and Y elements of a domain D of size 10 000, Equation 4
will generate D2, i.e., 108, boolean variables representing all possible combinations of
values X and Y in relation superior. Usually, for each atom in a Datalog program, the
number of facts that are given or inferred by the Datalog rules is much lower than the
domain′s size to the power of atom′s arity. Ideally, the Datalog query evaluation
should enumerate (given or inferred) facts only on-demand.

Among the existing optimizations for top-down evaluation of Datalog queries, the
so-called Query-Sub-Query [16] technique consists in minimizing the number of tuples
derived by a rewriting of the program based on the propagation of bindings. Basically,
the method aims at keeping the bindings of variables between atoms p(a) in a rule.
In our Datalog evaluation technique based on Bes, we adopt a similar approach: two
boolean equations (Equations 4 and 7 slightly modified) only enumerate the values
of variable arguments that appear more than once in the body of the corresponding
Datalog rule, otherwise arguments are kept unchanged. Moreover, if the atom p(a) is
part of the Extensional Database, the only possible values of its variable arguments are
values that reproduce a given fact of the Datalog program. We note Dp

i the subdomain
of D that contains all possible values of the ith variable argument of p if p is in
Extensional Database, otherwise Dp

i = D. Hence, the resulting Bes resolution is likely
to process fewer facts and be more efficient than the brute-force approach.

Following this optimization technique, a parameterless Bes can directly be derived
from the previous Bes representation which we define as follows:

x0
µ
=

∨

:− q1(d1),...,qm(dm). ∈G

gq1(d1),...,qm(dm) (9)

9



gq1(d1),...,qm(dm)
µ
=

∨

{a1, ..., am}∈({V ∪D
q1
1

}×...×{V ∪D
qm
1

}) |

gpc

q1(a1),...,qm(am)

if (∃ j ∈ [1..m], j 6= i | di = dj ∧ di ∈ V )

then ai ∈ D
qi
1

∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (10)

gpc

q1(a1),...,qm(am)

µ
=

m
∧

i:=1

xqiai
(11)

xqa

µ
= xf

qa
∨ xr

qa
(12)

xf
qa

µ
=

∨

(e:=a ∧ a∈C) ∨ (e∈D
q

1
∧ a∈V ) | q(e).∈R

xc
qe

(13)

xc
qe

µ
= true (14)

xr
pa

µ
=

∨

p(a) :− p1(d1),...,pm(dm). ∈R

rp1(d1),...,pm(dm) (15)

rp1(d1),...,pm(dm)
µ
=

∨

{a1, ..., am}∈({V ∪D
p1

1
}×...×{V ∪D

pm
1

}) |

rpc

p1(a1),...,pm(am)

if (∃ j ∈ [1..m], j 6= i | di = dj ∧ di ∈ V )

then ai ∈ D
pi
1

∧ (∀ j ∈ [1..m], di = dj | aj := ai) else ai := di (16)

rpc

p1(a1),...,pm(am)

µ
=

m
∧

i:=1

xpiai
(17)

Observe that Equations 9, 11, 15 and 16 correspond respectively to Equations 3, 5, 6
and 8 of previous Bes definition with only a slight renaming of generated boolean
variables. The important novelty is that, instead of enumerating all possible values
of the domain, as it is done in Equation 4, the corresponding new Equation 10 only
enumerates the values of variable arguments that are repeated in the body of a rule,
otherwise variable arguments are kept unchanged i.e., ai := di. Indeed, the generated
boolean variables gpc

q1(a1),...,qm(am) may still refer to atoms containing variable argu-

ments. Thus, the combinatorial explosion of possible tuples is avoided at this point
and delayed to future steps. Equation 12 generates two boolean successors for variable
xqa

: xf
qa

when q is a relation that is part of the Extensional Database, and xr
qa

when
q is defined by Datalog rules. In Equation 13, each value of a (variable or constant)
that leads to a given fact q(e). of the program, generates a new boolean variable xc

qe
,

that is true by definition of a fact. Equation 15 simply infers Datalog rules whose head
is pa. Note that Equations 10, 13, and 16 enumerate possible values of subdomains
Dpi

1 instead of full domain D. With the Datalog program described in Example 1, this

restriction would consist in using two new subdomains Dsupervise
1 = {mary, alice} and

Dsupervise
2 = {alice,mark} instead of domain D = {mary , alice,mark} for the values

of each variable argument in relation supervise.

3.4 Solutions extraction

Considering the optimized parameterless Bes defined above, the query satisfiability
problem is reduced to the local resolution of boolean variable x0. The value (true

10



or false) computed for x0 indicates whether there exists at least one satisfiable goal
in G. We can remark that the Bes representing the evaluation of a Datalog query
is only composed of one equation block containing alternating dependencies between
disjunctive and conjunctive variables. Hence, it can be solved by optimized depth-
first search (Dfs) for such a type of equation block. However, since the Dfs strategy
can only conclude the existence of a solution to the query by computing a minimal
number of boolean variables, it is necessary to use a breadth-first search (Bfs) strategy
to compute all the different solutions of a Datalog query. Such a strategy will ”force”
the resolution of all boolean variables that have been put in the Bfs queue, even if
the satisfiability of the query has been computed in the meantime. Consequently, the
solver will compute all possible boolean variables xc

qe
, which are potential solutions

for the query. Upon termination of the Bes resolution (ensured by finite data domains
and table-based exploration), query solutions, i.e., combinations of variable values
{e1, . . . , em}, one for each atom of the query that lead to a satisfied query, are extracted
from all boolean variables xc

qe
that are reachable from boolean variable x0 through a

path of true boolean variables.

4 Application to JAVA Program Analysis

There is a strong interest in developing efficient demand-driven evaluation techniques
that are applicable for program analysis since they naturally fit into Integrated Devel-
opment Environments (Ides) that dynamically provide analysis results to a program-
mer during the development of its code. Actually, demand-driven techniques are often
considered better than global approaches during the program development since they
usually encounter errors more rapidly by exploring only a portion of the code.

This also applies to Datalog queries: the more specific the query (i.e., the higher
the number of constant arguments), the better demand-driven resolution of the query,
as compared to a global-based method, since only facts from the Datalog program that
are necessary to answer the query will be inferred.

4.1 Datalog-based program analysis

The Datalog approach to static program analysis [18] can be summarized as follows.
Each program element, namely variables, types, code locations, function names, are
grouped in their respective domains. Thus, each argument ai,j of a predicate symbol
pi is typed by a domain Ai,j of values. Hence, atoms pi : ℘(Ai,j)

ni → B are considered
as relations among program’s elements defined in their respective domains. By con-
sidering only finite program domains, Datalog programs are ensured to be safe (query
evaluation generates a finite set of facts). Each program statement is decomposed
into basic program operations, namely load, store, assignment, and variable declara-
tions. Each kind of basic operation is described by a relation in a Datalog program. A
program operation is then described as a tuple satisfying the corresponding relation.

Example 2. Consider the simple Java program [18] on the left-hand side of the fol-
lowing example:

11



public A foo { ... p = new Object(); /* o1 */

q = new Object(); /* o2 */

p.f = q;

r = p.f; ... }

⇒

vP_0(p, o1).

vP_0(q, o2).

store(p, f, q).

load(p, f, r).

where o1 and o2 are heap allocations (extracted from corresponding bytecode). The
Datalog pointer analysis approach consists first in extracting Datalog constraints (rela-
tions on the right-hand side of the above example) from the program. Then, it deduces
further pointer-related information as output, like points-to relations vP from local
variables and method parameters to heap objects as well as points-to relations hP
between heap objects through field identifiers. The relation vP 0 consists of initial
points-to relations (v, h) of a program, i.e., vP 0(v,h) holds if there exists a direct
assignment within the program between a reference to a heap object h and a variable
v. Other Datalog constraints such as store and load relations are calculated similarly.

In this framework, a program analysis consists in either querying extracted relations
or computing new relations from existing ones. Datalog is both used to specify a static
code analysis as well as to evaluate queries on given and inferred facts from the analysis.

Example 3. Consider the Datalog program that defines context-insensitive points-to
analysis given in Fig. 1 (pa.datalog [18]).

### Domains

V 262144 variable.map

H 65536 heap.map

F 16384 field.map

### Relations

vP 0 (variable : V, heap : H) inputtuples

store (base : V, field : F, source : V) inputtuples

load (base : V, field : F, dest : V) inputtuples

assign (dest : V, source : V) inputtuples

vP (variable : V, heap : H) outputtuples

hP (base : H, field : F, target : H) outputtuples

### Rules

vP (V1, H1) :- vP 0(V1, H1).

vP (V1, H1) :- assign(V1, V2), vP(V2, H2).

hP (H1, F1, H2) :- store(V1, F1, V2), vP(V1, H1), vP(V2, H2).

vP (V2, H2) :- load (V1, F1, V2), vP(V1, H1), hP(H1, F1, H2).

Fig. 1. Datalog specification of a context-insensitive points-to analysis

The program consists of three parts:

1. A declaration of domains, with domain names and size (number of elements).
2. A list of relations specified by a predicate symbol, its arguments over spe-

cific domains and whether it is derived from an applicable Datalog rule (value
outputtuples), or extracted from the program source code (value inputtuples).

12



3. A finite set of Datalog rules, defining the outputtuples relations.

A Datalog query consists of a set of goals over the relations defined in the Datalog
program, e.g., :- vP(X,Y). where X and Y are variable arguments of vP, meaning
computing the complete set of variables in the domain of X that may point to any
heap object Y at any point during program execution. From the initial relations of
Example 2, we deduce by inferring the Datalog rules given by Fig. 1 the following
output relations: vP(p, o1), vP(q, o2), hP(o1, f, 02), and vP(r, o2). For in-
stance, the output relation vP (r, o2) indicates that variable r points to same heap
allocation o2 as variable q.

4.2 Datalog-based program analyzer

We implemented the Datalog query transformation to Bes in a powerful, fully au-
tomated Datalog solver tool, called Datalog Solve, developed within the Cadp

verification toolbox [8]. Without loss of generality, in this section, we describe the
Datalog Solve tool focusing on Java program analysis. Other source languages
and classes of problems can be specified in Datalog and solved by our tool.

: input/output

(.tuples) (.tuples)

vP hP

Y/N (query satisfiability)

Output tuples (query answers)

finite domains

Datalog facts : provides

(+
 d

ia
gn

os
tic

)

re
so

lu
tio

n

im
pl

ic
it 

B
E

S

(.map)

heap

(.map)

var

(.tuples)

vP0

(.tuples)

hP0

(.tuples)

assign

Datalog Solve

(.class)

Java program Joeq compiler

(.datalog)

analysis
specification

Cæsar Solve

(Cadp)

library

Fig. 2. Java program analysis using Datalog Solve tool

Datalog Solve takes three different inputs (see Fig. 2): the domain definitions
(.map), the Datalog constraints or facts (.tuples), and a Datalog query q = 〈G, R〉
(.datalog, like pa.datalog in Fig. 1). The domain definitions state the possible val-
ues for each predicate’s argument of the query. These are meaningful names for the
numerical values that are used to efficiently described the Datalog constraints. For
example, in the context of pointer analyses, variable names (var.map) and heap lo-
cations (heap.map) are two domains of interest. The Datalog constraints represent
information relevant for the analysis. For instance, vP0.tuples gives all direct refer-
ences from variables to heap objects in a given program. For efficiency reasons, these
combinations are described by numerical values in the range 0..(domain size − 1).

13



Both, domain definitions and facts are specified in the .datalog input file (see Fig. 1)
and they are automatically extracted from program source code by using the Joeq

compiler framework [17] that we slightly modified to generate tuple-based instead of
Bdd-based input relations.

Datalog Solve (120 lines of Lex, 380 lines of Bison and 3 500 lines of C code)
proceeds in two steps:

1. The front-end of Datalog Solve constructs the optimized Bes representation
given by Equations 9-17 by extracting from the inputs (a particular analysis) the
set of Datalog goals, rules and facts defining each boolean variable.

2. The back-end of our tool carries out the demand-driven generation, resolution and
interpretation of the Bes by means of the generic Cæsar Solve library of Cadp,
devised for local Bes resolution and diagnostic generation.

This architecture clearly separates the implementation of Datalog-based static analyses
from the resolution engine, which can be extended and optimized independently.

Upon termination (ensured by safe input Datalog programs), Datalog Solve

returns both the query’s satisfiability and the computed answers represented numer-
ically in various output files (.tuples files). The tool takes as a default query the
computation of the least set of facts that contains all the facts that can be inferred
using the given rules. This represents the worst case of a demand-driven evaluation
and computes all the information derivable from a Datalog program.

4.3 Experimental Results

The Datalog Solve tool was applied to a number of Java programs by comput-
ing the context-insensitive pointer analysis described above. To test the scalability

Table 1. Description of the Java projects used as benchmarks.

Name Description Classes Methods Vars Allocs

freetts (1.2.1) speech synthesis system 215 723 8K 3K
nfcchat (1.1.0) scalable, distributed chat client 283 993 11K 3K
jetty (6.1.10) server and servlet container 309 1160 12K 3K
joone (2.0.0) Java neural net framework 375 1531 17K 4K

and applicability of the transformation, we applied our technique to four of the most
popular 100% Java projects on Sourceforge that could compile directly as standalone
applications and were used as benchmarks for the Bddbddb tool [18]. They are all
real applications with tens of thousands of users each. Projects vary in the number of
classes, methods, variables, and heap allocations. The information details, shown on
Table 1, are calculated on the basis of a context-insensitive callgraph precomputed by
the Joeq compiler. All experiments were conducted using Java JRE 1.5, Joeq version

14



Table 2. Times (in seconds) and peak memory usages (in megabytes) for each bench-
mark and context-insensitive pointer analysis.

Name time (sec.) memory (Mb.)

freetts (1.2.1) 10 61
nfcchat (1.1.0) 8 59
jetty (6.1.10) 73 70
joone (2.0.0) 4 58

20030812, on a Intel Core 2 T5500 1.66GHz with 3 Gigabytes of RAM, running Linux
Kubuntu 8.04.

The analysis time and memory usage of our context insensitive pointer analysis,
shown on Table 2, illustrate the scalability of our Bes resolution and validate our
theoretical results on real examples. Datalog Solve solves the (default) query for
all benchmarks in a few seconds. The computed results were verified by comparing
them with the solutions computed by the Bddbddb tool on the same benchmark of
Java programs and analysis.

5 Conclusions and Future Work

This paper presents a novel approach to solve Datalog queries based on Boolean Equa-
tion System (Bes) resolution and its application to program analysis. By using a
local fixed point computation of Bess, our technique not only keeps the robustness
of bottom-up over top-down evaluation semantics (problem of repeated computations
and infinite loops), but also preserves the effectiveness of demand-driven techniques by
taking advantage of constants and constraints that are part of the query’s goals in order
to reduce the search space. A new deductive database solver, called Datalog Solve,
was designed and implemented, and several Java programs were analyzed modulo a
context-insensitive pointer analysis encoded in Datalog. The tool architecture is based
on the well-established verification framework Cadp, which provides a generic library
for local Bes resolution.

As a future work, we plan to endow Datalog Solve with new, optimized strate-
gies for local Bes resolution, e.g., rewriting of Datalog rules to allow goal-directed
bottom-up evaluation, as in the Magic sets approach with complexity guarantees [14].
Another interesting improvement we plan to explore is to use the rewriting logic frame-
work implemented in the reflective, functional programming language Maude [6] as a
solver for Java program analyses using reflection. Finally, we could benefit from the
regular structure of our Bes encoding by distributing the Bes resolution over a net-
work of workstations with balanced partitioning preserving locality, similarly to the
work of [9] that successfully applied a distributed Bes resolution algorithm to numer-
ous verification problems.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.

15



2. H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science,
126(1):3–30, 1994.

3. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic Sets and Other Strange
Ways to Implement Logic Programs. In Proc. 5th ACM SIGACT-SIGMOD Symp. on

Principles of Database Systems PODS’86, pages 1–15. ACM Press, 1986.
4. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer, 1990.
5. T. Chen, B. Ploeger, J. van de Pol, and T. A. C. Willemse. Equivalence Checking for In-

finite Systems Using Parameterized Boolean Equation Systems. In Proc. 18th Int’l Conf.

on Concurrency Theory CONCUR’07, volume 4703 of LNCS, pages 120–135. Springer-
Verlag, 2007.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C.Talcott.
All About Maude: A High-Performance Logical Framework, How to Specify, Program and

Verify Systems in Rewriting Logic, volume 4350 of LNCS. Springer-Verlag, 2007.
7. A. van Dam, B. Ploeger, and T.A.C. Willemse. Instantiation for Parameterised Boolean

Equation Systems. In Proc. 5th Int’l Colloquium on Theoretical Aspects of Computing

ICTAC’08, LNCS. Springer-Verlag, 2008.
8. H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox for the

Construction and Analysis of Distributed Processes. In Proc. 19th Int. Conf. on Computer

Aided Verification CAV’07, volume 4590 of LNCS, pages 158–163. Springer-Verlag, 2007.
9. C. Joubert and R. Mateescu. Distributed On-the-Fly Model Checking and Test Case

Generation. In Proc. 13th Int’l SPIN Workshop on Model Checking of Software SPIN’06,
volume 3925 of LNCS, pages 126–145. Springer-Verlag, 2006.

10. X. Liu and S. A. Smolka. Simple Linear-Time Algorithms for Minimal Fixed Points.
In Proc. 25th Int’l Colloquium on Automata, Languages, and Programming ICALP’98,
volume 1443 of LNCS, pages 53–66. Springer-Verlag, 1998.

11. R. Mateescu. Local Model-Checking of an Alternation-Free Value-Based Modal Mu-
Calculus. In Proc. 2nd Int’l Workshop on Verication, Model Checking and Abstract

Interpretation VMCAI’98, 1998.
12. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-Passing

Systems. In Proc. 15th Int’l Symp. on Formal Methods FM’08, volume 5014 of LNCS.
Springer-Verlag, 2008.

13. T. W. Reps. Solving Demand Versions of Interprocedural Analysis Problems. In Proc.

5th Int’l Conf. on Compiler Construction CC’94, volume 786 of LNCS, pages 389–403.
Springer-Verlag, 1994.

14. K. Tuncay Tekle, Katia Hristova, and Yanhong A. Liu. Generating specialized rules and
programs for demand-driven analysis. In Proc. 12th Int’l Conf. on Algebraic Methodology

and Software Technology AMAST’08, volume 5140 of LNCS. Springer-Verlag, 2008.
15. J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I and II,

The New Technologies. Computer Science Press, 1989.
16. L. Vieille. Recursive Axioms in Deductive Databases: The Query/Subquery Approach.

In Proc. 1st Int’l Conf. on Expert Database Systems EDS’86, pages 253–267, 1986.
17. J. Whaley. Joeq: a Virtual Machine and Compiler Infrastructure. In Proc. Workshop on

Interpreters, Virtual Machines and Emulators IVME’03, pages 58–66. ACM Press, 2003.
18. J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog with Binary Decision

Diagrams for Program Analysis. In Proc. Third Asian Symp. on Programming Languages

and Systems APLAS’05, volume 3780 of LNCS, pages 97–118. Springer-Verlag, 2005.
19. X. Zheng and R. Rugina. Demand-driven alias analysis for C. In Proc. 35th ACM

SIGPLAN-SIGACT Symp. on Principles of Programming Languages POPL’08, pages
197–208. ACM Press, 2008.

16


	 Using Datalog and Boolean Equation Systems for Program Analysis  
	María Alpuente, Marco A. Feliú, Christophe Joubert, and Alicia Villanueva

