
appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
77

17
--

FR
+E

N
G

Distributed Systems and Services

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Verifying Safety of Fault-Tolerant Distributed
Components – Extended Version

Rabéa Ameur-Boulifa — Raluca Halalai — Ludovic Henrio — Eric Madelaine

N° 7717

Septembre 2011

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

http://hal.inria.fr/inria-00621264/fr/
http://hal.archives-ouvertes.fr

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Verifying Safety of Fault-Tolerant Distributed
Components � Extended Version

Rabéa Ameur-Boulifa∗ , Raluca Halalai† , Ludovic Henrio‡ , Eric

Madelaine‡

Theme : Distributed Systems and Services
Équipe-Projet Oasis

Rapport de recherche n° 7717 � Septembre 2011 � 31 pages

Abstract: We shows how to ensure correctness and fault-tolerance of dis-
tributed components by behavioural speci�cation. We specify a system combin-
ing a simple distributed component application and a fault-tolerance mechanism.
We choose to encode the most general and the most demanding kind of faults,
Byzantine failures, but only for some of the components of our system. With
Byzantine failures a faulty process can have any behaviour, thus replication is the
only convenient classical solution; this greatly increases the size of the system,
and makes model-checking a challenge. Despite the simplicity of our application,
full study of the overall behaviour of the combined system requires us putting
together the speci�cation for many features required by either the distributed
application or the fault-tolerant protocol: our system encodes hierarchical com-
ponent structure, asynchronous communication with futures, replication, group
communication, an agreement protocol, and faulty components. The system we
obtain is huge and we have proved its correctness by using at the same time data
abstraction, compositional minimization, and distributed model-checking.

Key-words: Byzantine faults, distributed systems, software components, be-
havioural semantics, veri�cation, model-checking, distributed model-checking

This work was partialy funded by the ANR international project ANR09-BLAN-0375-01
between INRIA and Un. of Tsinghua, Beijing, China.

∗ Institut Telecom, Telecom ParisTech, LTCI CNRS
† Technical University of Cluj-Napoca, Romania
‡ INRIA-I3S-CNRS, University of Nice Sophia Antipolis

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Véri�cation de la correction de composants
distribués tolérants aux pannes � Extended

Version Étendue

Résumé : Nous montrons comment assurer la correction et la tolérance aux
pannes de composants distribués à l'aide de spéci�cations comportementales.
Nous spéci�ons un système combinant une application distribuée très simple
avec un mécanisme de tolérance aux pannes. Nous avons choisi le type de
fautes le plus général et le plus exigeant, les pannes Byzantines, mais seulement
pour une partie des composants de notre système. Avec des pannes Byzan-
tines un composant peut avoir n'importe quel comportement, et la replication
est la seule solution classique convenable; ceci augmente de beaucoup la taille
du système, et sa véri�cation par des techniques de model-checking est un dé�.
Malgré la simplicité de notre application, l' étude complète du système nous
oblige à combiner de nombreux aspects nécessaires à l'application distibuée ou
au protocole de tolérance aux pannes: notre système utilise une architecture de
composants hiérarchiques, des communications asynchrones avec futurs, de la
replication, de la communication de groupe, et un protocole de consensus. Le
système obtenu est très gros, et nous avons pouvé sa correction en combinant
des techniques d'abstraction de données, de minimisation compositionnelle, et
de model-checking distribué.

Mots-clés : pannes Byzantines, systèmes répartis, composants logiciels, sé-
mantique comportementale, véri�cation, model-checking, model-checking dis-
tribué

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 3

1 Introduction

Safety in distributed systems is a wide research area which needs to be tackled
at several levels: from the safety of the execution platform, to the correctness of
the communication protocols and to correctness of the distributed applications.
This article aims at evaluating the adequacy of formal method techniques for
the veri�cation of real-size distributed applications. The objective tackled by
this article is really challenging because the application we consider features
several non-functional concerns which contribute to the explosion of the number
of states that can be reached by the application. Indeed we choose to provide a
model and prove properties for a distributed application featuring fault-tolerance
similar to Byzantine fault tolerance (BFT).

Our work is placed in the context of component oriented programming. In-
deed from a programming model point of view, components provide well-de�ned
modularity, and easiness to compose large applications from the composition
of basic blocks. Also components require the precise de�nition of interfaces
through which the basic blocks cooperate, which is crucial for a precise design
of an application, but also strongly helps the formal speci�cation of the appli-
cation. Our components also allow a hierarchical and modular design, better
specifying the structure of the application. We choose GCM[2] as our compo-
nent model because it is naturally adapted to distribution, hierarchy, and one-
to-many communication, but also it provides recon�guration capabilities which
we want to consider in future works. GCM is an extension of the Fractal com-
ponent models with support for deployment, scalability, autonomic behaviour,
and asynchronous communication; it also shares a lot of similarities with SCA
[3]. In the VerCors [8] platform, we provide tools for verifying the behaviour of
such distributed component applications.

This paper shows how to specify the behaviour and to verify properties of dis-
tributed component applications with request queues, future proxies and group
proxies, and one-to-many interfaces. To illustrate our approach, we choose a sim-
ple distributed application featuring fault-tolerance by replication. Though the
fault-tolerance properties we address are not outstanding, we think this applica-
tion is a good opportunity to investigate on the use of model-checking to ensure
safety of fault-tolerant applications. This article has the following objectives:

� Promote the use of formal methods to ensure safety of distributed systems.

� Provide a model for one-to-many communication.

� Study the modelling of faulty processes, and investigate the use of model-
checking for verifying fault-tolerance from an application point of view.
Indeed, most of the existing studies on this domain focus on the proof
of correctness of the protocols only, not on the whole distributed applica-
tion [14].

� Investigate the adequacy of distributed model-checking for verifying a dis-
tributed and asynchronous application that generates a huge state-space.

We do not model recon�guration and adaptation, but we design our speci�cation
in such a way that those aspects can be added to the model in the future.

In the following, Section 2 presents the related works, with a particular focus
on BFT and GCM components. Then, we describe our fault-tolerant application

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 4

and its modelling in Section 3. Finally, Section 4 describes the distributed model
checking phase and the properties we verify.

2 Background and Related Works

2.1 Formal Methods for Component Models

As the formal methods matured, they have been integrated into environments
that support the development of component-based systems. They ensure the
correct behaviour of the assembly of complex applications in all the stages of
the development lifecycle (from speci�cation to execution). However, although
those frameworks share the same basic concepts, they substantially di�er in the
range of application domains and supported features. For instance, some of
them are dedicated to embedded systems veri�cation [10, 4] while the others
are dedicated to software engineering. We focus below on related works for
behavioural speci�cation and veri�cation of distributed components.

Creol [19] is a programming model featuring active objects, requests and fu-
tures, similarly to our approach. A framework provides component modelling
for Creol; it provides a formal language [13] that supports compositional rea-
soning and makes automatic testing and veri�cation possible. This language is
de�ned over communication labels, and speci�es components in terms of traces
of observable behaviour at the interfaces.

Cadena [16] is an environment for modelling and verifying CCM component-
based systems. The framework o�ers a rigorous type-based language [20] for
describing component connectors, and the interaction between them. The com-
positional analysis is based on the assume-guarantee reasoning. However, the
component model does not support hierarchical structure.

SOFA [24] is a framework for developing distributed systems. It supports
component-based development as well as formal veri�cation. The SOFA 2 com-
ponent model is hierarchical and supports recon�guration, making it quite close
to ProActive/GCM even though one-to-many communication and asynchrony
with futures are not o�ered by default in SOFA. SOFA uses �behaviour proto-
cols� for specifying possible interactions between components and checking the
correctness of the assembly, making the veri�cation process in SOFA quite dif-
ferent from ours, but our approach could also be applied to SOFA components.

This article relies on the pNets [1] formalism for describing the behaviour
of parametrized networks of LTSs. We showed in [1] how to build models for
GCM components, asynchronous communication, and futures. [7] describes how
to specify group communication in pNets. Additionally to faulty components,
this article extends the preceding semantics by specifying one-to-many commu-
nication at the GCM level, and the management of proxy instances.

The CADP toolset [11] is one of the prominent platforms for the speci�ca-
tion, veri�cation, and testing of distributed systems in the academic landscape.
It handles several input formalisms, and provides an extensible API. The toolset
includes engines for building hierarchically the state-space of systems, building
and manipulating LTSs on distributed infrastructures, minimizing LTSs along
several behavioural equivalences, model-checking properties, checking equiva-
lences between systems, building test suites, evaluating performances, etc.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 5

2.2 Verifying Byzantine Fault-tolerant Systems

Byzantine fault tolerance (BFT) has a long history [22, 26]; results in this re-
search area are very di�cult to obtain and to prove. Indeed, BFT supposes
that a faulty process can have any behaviour. The name BFT comes from the
original problem raised by Lamport relying on Byzantine generals that must all
take the same decision (attack or retreat), knowing that some of the generals
are traitors. Traitors can say anything to the others, but the others must all act
identically. In computer science, this situation represents either a faulty process
behaving �randomly� or a malicious entity. BFT has gain new interests since
the apparition of a new form of large scale distributed computations relying on
entities that, by nature, cannot be trusted. Typically a P2P storage application
cannot make any assumption on the kind of misbehaviour the peers can have.

The purpose of this paper is not to prove that a BFT protocol is correct but
to understand whether it is possible to represent all the aspects of a complete
component application communicating by request-replies, and at the same time
reason about the fault-tolerance of this entire application. We focus on a speci�c
application similar to [21] but simplify it: our application consists of a Master
component replicating data to be stored on several workers. The master updates
the worker value, and gathers replies from workers to retrieve the stored value.
If enough non-faulty workers are instantiated, and enough identical replies are
returned to the master, the stored value can be retrieved. The objective of this
paper is not to study the implementation of the component model, this is why we
make the assumption that communications are performed safely. More precisely,
we suppose that the middleware ensures that messages systematically follow the
bindings, and that a component can only reply to the requests it received. For
example, a faulty component cannot communicate to any component of the
application, and a faulty components cannot reply instead of a non-faulty one.

Note that the master is supposed to be non-faulty; Protocols for dealing
with a faulty master exist and have been heavily studied and implemented.
For example, recently [21] implemented a BFT storage in the same settings
as our application. Here we simplify the problem and focus on the correct
handling of faulty workers, similarly to the case studied in Section 4.2 in [26].
If f is the number of tolerated faults, 2f + 1 slaves are su�cient for reaching
a consensus. However, as it is generally required in BFT, i.e. when the master
can be faulty, we instantiate 3f + 1 slaves. Section 4 will show that specifying
a whole application with those simplifying hypotheses already requires the full
power of distributed model-checking over a cloud-like architecture.

Our approach for encoding Byzantine faults is the following: faulty slaves can
feature any behaviour, upon veri�cation the model-checker will then explore all
the possible behaviours, including the malicious ones. We then specify a simple
agreement procedure where the Master component waits until enough slaves
answered correctly. In order to count them, our architecture description is aware
of which slave is faulty, but the business code does not use this information.

2.3 Distributed Components and their Semantics

This section recalls the component structure and semantics of GCM, a complete
de�nition can be found in [17].

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 6

non-functional server interfaces
(binding, contents, lifecycle, ...)

controller part

content part

client interface

internal interface

server interface non-functional client interface

external interface

Figure 1: A GCM component

primitive
component

primitive
component

bindingComposite component

Figure 2: A component system

Component Structure. The structure of GCM components is inherited from
Fractal: A GCM component can be either composite (i.e. composed of sub-
components), or primitive (a basic element encapsulating the business code).
A component comprises a content (providing the functional code) and a mem-
brane (a container managing non-functional operations). The interfaces are the
only access points to components. Each interface is either client (emitting invo-
cations) or server (receiving invocations). We distinguish functional interfaces
addressing the business of the application from non-functional ones invoked to
manage, monitor, and introspect the application. A binding connects a client
interface to a server interface (Fig. 2); a message emitted by a client interface is
transmitted to the server interface bound to it. In composite components, inter-
faces are either internal � exposed to the subcomponents � or external � exposed
to other components. The interface cardinality indicates how many bindings can
be made from or to this interface. In this paper, we only use two interface car-
dinalities: singleton (one-to-one binding) and multicast (one-to-many binding).
The di�erent parts of a GCM component are shown in Fig. 1, whereas Fig. 2
shows an assembly of components bound together, on the left there is a compos-
ite composed of two primitives; the �gure also illustrates di�erent bindings.

Communication. The basic communication paradigm in GCM is asynchronous
message sending: communication consists in synchronously dropping a message
in a request queue at the receiver side, and creating a future to represent the
result of the invocation. A future is an empty object representing the result of
a computation performed in parallel. Once the future is created, the execution
continues immediately on the sender side. When the request treatment is �n-
ished, the result is automatically returned to replace all the references to the
corresponding future. When a component accesses a future, it is blocked until
the result is returned. However, future references can safely be passed between
components, inside invocation parameters, or inside a request result. To pre-
vent shared memory between components, parameters and results are copied;
no object is passed by reference.

A multicast interface is a client interface that transforms a single invocation
into a list of invocations, sent in parallel to a set of connected interfaces. The
result of an invocation on a multicast interface is a list of results. Invocation
parameters can be distributed according to a distribution policy that can be
customized. Typical distribution policies include broadcast that sends the same
parameter to each connected component, and scatter that splits the parameter.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 7

BFT Composite
Good
Slave1

Good
Slave3

Good
Slave2

Bad
Slave1

Master

Read(fid)

Write(fid, b)

Write,
Commit,

Read

Error

Figure 3: Component Structure of our application

Component Behaviour. Primitive components encapsulate the business code,
their behaviour is highly dependent on the application; it is provided by the
application programmer. The only constraints they must respect are: they serve
requests of the request queue, they emit new requests on their client interfaces,
and can receive a result for the futures they hold. We consider here only mono-
threaded primitive components: a single request is served at a time.

By contrast, composite components have a prede�ned behaviour: they serve
requests in the reception order, and delegate the requests to sub-components,
according to the bindings. For example, when a composite component receives
a request from the outside, it delegates its service to one of the sub-components.

3 Our Fault-tolerant Application and its Speci�-
cation

This section describes informally our application, and then presents its be-
havioural model. We present the architecture using the pNets model [1], a
formalism to encode labeled transition systems with value passing, parametrized
topologies of processes, and di�erent types of communication. We describe then
the primitive component internal behaviour, and the semantic-level process gen-
erated from the GCM architecture. We focus on the parts of the speci�cation
that are directly related to one-to-many communications and fault-tolerance,
details of the other processes are given in [6].

3.1 Distributed Component for Fault-tolerant Storage

Fig. 3 shows the architecture of our application. It consists of a main composite
component BFT-Composite. The white part of the composite is the functional
content made of a Master component and several slaves. Some of those slaves are
called good slaves, i.e. non-faulty, the bad ones are faulty and behave randomly.
In practice one never knows which of the slaves is good or bad but it is necessary
that the veri�cation process knows this information to be able to count the
number of good and bad slaves.

Properties of Interest. From a high-level point of view, we are interested
in the storage properties of our application: the stored value can be retrieved
unchanged, even if some of the slaves are faulty. Of course, some additional
properties are crucial like: the master always �nally answers to the requests it
receives. Also, the master must rely on the slaves for storing the value, and does

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 8

Write

Commit

Read

Body

Proxy
_Read[c]

_Commit[c]
Proxy

Proxy
_Write[c]

Slave[k]

Queue

CO

CO

CO

Body

Queue

Read

AC_f

Call_*R_*

Group Manager

Proxy Manager

Activate_*

BC

BC

BC

Master

Write

Q Write(fid,b)

Q Read(fid)

R Write(fid)

R Read(fid,b)

Serve *

Q commit(?)

R ACGet(f)
R ACSet

ACSet(f)
ACGet

Q Read()

Q Write(b)

Figure 4: pNet Architecture for the whole system

not distinguish good slaves from bad slaves, for example, for writing data the
master must broadcast a write request to all the slaves.

3.2 Architecture

We describe here the architecture of the semantic model of our use-case. The
overall architecture of the system is shown in Fig. 4. It is composed of:

� An indexed family of slaves receiving invocations from the master. Each
of them has a queue1 storing the requests not treated yet, a body part
describing how to treat the incoming requests and delegate them to the
behavioural speci�cation of methods Write, Commit, and Read. Each
requests can reply to the master by updating a future (represented by
the arrows between the Write box and the CO element). The system is
instantiated with 3 good slaves and 1 bad slave.

� A Master component receiving requests from a client and forwarding them
to the slaves (that are bound to it). It also has a request queue and a body
delegating the treatment of requests to sub-parts of the master. Treatment
of read and write methods will be detailed below.

� The connections that are one-to-one bindings, except for BC (broadcast)
that dispatches a request from the master to all the slaves it is bound
to, and CO (collect) that carries a reply from one of the slaves to the
appropriate proxy. Those 2 bindings will be detailed in Section 3.3.1.

To optimize the size of the model, the composite has no request queue and
calls are directly issued to the Master component. This has no consequence
because the requests are directly delegated to the Master component, and the
request queue of the Master is su�cient for dealing with asynchrony.

1We generate the behaviour of each request queue as an individual process able to store a
�nite number of requests with their parameters

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 9

3.3 The Master Body and its methods

Let us �rst describe the communication patterns and name conventions that we
use in this paper. All local methods are triggered by a �rst outgoing commu-
nication of the form !Method, then the response is received as parameter of a
?R_Method incoming communication. For example, in Fig. 6 !Get_Write_Proxy
requires a new group proxy for invoking the Write method on the slaves. The
proxy is returned and stored into p1 by the reply: ?R_Get_Write_Proxy(p1).
On the other side, method invocation towards remote components are of the
form !Call_Method, those method invocations enqueue a request in the remote
request queue, and pass a proxy reference as one of the parameters of the in-
vocation. The remote method will, upon termination, �ll the proxy with the
calculated value; for this, the !R_Method transition synchronizes at the same
time with the invoker that receives the value and with the body of the compo-
nent containing the method, so that next request can be served.

The master body. The body is encoded in generic way: it serves sequentially
functional and non-functional requests. In this work, we only use the service of
each functional request (on method Read, Write, or SetF). This service calls the
adequate method (e.g., !Call_Read), and waits until the method terminates,
signaled by R_ events (e.g., ?R_Read); R_Read synchronizes both with the com-
ponent that triggered the request and with the body. As requests are served one
after the other, this encodes a mono-threaded behaviour for the master.

The Attribute controller. In Fractal, the attribute controller provides read
and write access to the attributes of the components; the only attribute of the
Master component is f � the number of faults that can be handled. The be-
haviour of the attribute controller is very simple: it simply provides a setter
(ACSet) and a getter (ACGet) method for storing and retrieving the value of f.

The Collate method. Based on the vector of replies received by the proxy, this
method computes a consensus in order to know whether enough slaves returned
a correct answer. It is used by the methods Read and Write described below.

agreed_bit:=true

!R_CollateReplies(nb_ones)
else

agreed_bit:=false

!R_CollateReplies(nb_zeros) fi

if ind<MAX−SLAVES−1 then ind:=ind+1; to S1 fi

if nb_ones>nb_zeros then

to S0

if Rep[ind]=False then nb_zeros:=nb_zeros+1 fi

if Rep[ind]=True then nb_ones:=nb_ones+1 fi

?CollateReplies(wRep)
ind:=0;nb_ones:=0;nb_zeros:=0

S0 S2

S1

!R_GetBit(agreed_bit)

?GetBit

MethodCollateReplies

Figure 5: Behaviour of the method: MasterCollateReplies

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 10

Fig. 5 represents the behaviour of Collate in a format similar to Statecharts
[15]: starting from initial state S0, Collate is always used by �rst triggering
a ?CollateReplies sending it a vector of replies currently known; then from
state S1, a complex transition counts the number of True and False in the
vector. It stores in agreed_bit the reply the most frequent and returns (by
!R_CollateReplies) the number of replies that agreed on this value. Then, the
agreed value can be retrieved by a ?GetBit, that returns the agreed_bit value.

The Write method. The write method is the most complex method of our
example, it is shown in Fig. 6. It �rst gets the current value of f, read from the
attribute controller, and initializes the variables agree, awaited, and nb_Slave.
It consists of two phases; �rst, a write request is sent to all the slaves, then
the master waits until enough slaves agree on the reply, agree is the number
of necessary identical replies, and awaited is the number of awaited replies. If
necessary, additional replies are awaited, and awaited is incremented. It is not
possible to wait for more replies than the number of slaves; if such a situation
occurs, it means that the BFT hypothesis is not veri�ed, more exactly, more than
f slaves are faulty and an error is raised. When enough identical replies have
been received, the write method enters a commit phase that behaves similarly
to the write phase. At the end the method returns to the initial phase, emitting
a !R_Write that also indicates the end of the method.

!Get_Write_Proxy

?R_Get_Write_Proxy(p1)

?R_WaitN_Write(p1,wRep)

!CollateReplies(wRep)

?R_CollateReplies(nb_w_agree)

?R_Get_Commit_Proxy(p2)

!Call_Proxy_Write(p1,b)

!Call_Proxy_Commit(p2,b)

!WaitN_Commit(p2,nbWait)

?R_WaitN_Commit(cRep)

!CollateReplies(cRep)

?R_CollateReplies(nb_c_agree)

!WaitN_Write(p1,nbWait)

[nb_c_agree<agree

& nbWait<nb_Slave]

nbWait ++

!WaitN_Commit(p2, nbWait)

[nb_w_agree<agree

nbWait ++

!WaitN_Write(p1, nbWait)

Error

[nb_w_agree<agree

 & nbWait=nb_Slave]

& nbWait<nb_Slave]

!Error(not BFT)

[nb_w_agree>=agree]
nbWait:=agree

[nb_c_agree<agree

& nbWait=nb_slave]

!Error(not BFT)

!Get_Commit_Proxy

?Call_Write(b)

nb_Slave:=3*f+1

agree:=2*f+1

!Call_GetF

nbWait:=agree

?R_GetF(f)MethodWrite

[nb_c_agree>=agree]

!R_Write

Figure 6: Behaviour of the Write method

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 11

BC:
Q_Read(p)

Q_Commit(p)
BC:

BC:

Q_Write(...) !Slave[i].Q_Write(p,b)!Q_Write(g,p,b)

?R_WaitN_Write

!Call_Proxy_Write(p,b)

!WaitN_Write CO:
R_Write(p)

?R_Write(p)

Proxy_Write[p]

!Call_Proxy_Read(p)

CO:

?R_Read(p,val)

!Call_Proxy_Commit(p,b)

CO:

?R_Commit(p)

Proxy Manager

?R_Get_*_Proxy (p)

!Get_*_Proxy

?Q_Unbind

?Q_Bind

Proxy_Read[p]

Proxy_Commit[p]

Activate_Write(p,g) i ∈ g

i ∈ g
cf figure 9

Figure 7: Focus on the elements for managing the group

The Read method. The behaviour of the Read method is very similar to
the Write method above. The main di�erence is that, after triggering remote
invocations and waiting for enough identical replies, it inputs the agreed bit
found by the collate method and returns this value to the client.

3.3.1 The Master Proxies

Managing groups of slaves. We �rst focus on the management of groups
of slaves, i.e. groups to which the write, read and commit requests will be ad-
dressed. The part of the pNets that deal with this aspect is shown in Fig. 7. It
includes a proxy manager (Fig. 8) that returns an available proxy through its
Get_*_Proxy invocations. If recon�guration was enabled, it would receive bind
and unbind requests for adding or removing slaves. When a new proxy is re-
quested, one proxy is activated (among the families of Proxy_write, Proxy_Read,
or Proxy_Commit proxies), and given the group g on which next invocation will
be performed. A reference to this proxy is returned, and can be used to re-
motely invoke Write, Read, or Commit on the slaves. The group g passed
upon activation is used later inside the broadcast communication: the circle BC:
Q_Write(...) performs a synchronization involving the proxy and all the slaves
of g sending them the same invocation, !Slave[i].Q_Write(p,b), where p is
the proxy identi�er. The symmetric communication is performed by the CO:

R_Write(p) that collects replies from all the slaves of g and returns them to
the Proxy_Write pNet: each member of g can send a reply to the master. Note
that g can be modi�ed inside the manager and a copy of the group is passed
upon activation of a proxy. This guarantees that the CO operation will be per-
formed on the same group as the invocation, even if, in the manager, the group
is changed in the meantime.

The Write proxy. (see Fig. 9) Upon activation, the write proxy waits for an
invocation from the master write method. It then initializes the WRep array of
received replies as well as len � the number of replies currently received. Its

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 12

[WPool[p].free=True]

?Get_Write_Proxy
p:=0

Proxy Manager
WPool:array[1..Max_Proxy]
RPool:...

?Get_XXX_Proxy
{for each XXX method}

!R_Get_Write_Proxy(p)

WPool[p].free:=False
?Activate_Write(p, group)

[p<Max_Proxy]
p++

[WPool[p].free=False]

!Error(NoMoreProxy)
[p=Max_Proxy]

group:array[1..MaxSlave]?Unbind(i)
group[i]:=False

group[i]:=True
?Bind(i)

Figure 8: Behaviour of the Proxy Manager

two main behaviours are then (1) to receive a reply from an element of the
group, which updates the Wrep array, and the len value; and (2) to ful�ll a
WaitN_Write invocation from the master write, which returns the current array
of received replies once the number of awaited replies is reached. Proxies for
read and commit method are similar to the write request proxy.

3.4 The Slave Components and their methods

The behaviour of the slaves is much simpler than the one of the master. We
encode two kinds of slaves: good slaves behave as expected, whether bad slaves
behave randomly and encode the byzantine faulty processes. We instantiate as
many faulty processes as the number of faults we can tolerate. The fact that
the system description distinguishes between faulty and non-faulty processes has
no in�uence here because the functional parts of the components never use this
knowledge: the code of the Master component never distinguishes between the
communications towards the faulty slaves, and towards the non-faulty ones.

Proxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy WriteProxy Write

?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)?Activate_Write(group)

?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)?WaitN_Write(nbWait)

[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)[group(i)=false] ?R_Write(i,val)

[len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait][len>=nbWait]
!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)!R_WaitN_Write(wRep)

[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);[group(i)=true] ?R_Write(i,val);
if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;if wRep(i)=undef then len:=len+1 fi;
wRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := valwRep(i) := val

?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)?Call_Proxy_Write(b)
wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]wRep:=[undef...undef]
nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0nbWait:=0;len:=0

!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)!Q_Write(group,p,b)

Figure 9: Behaviour of the Write request proxy (Proxy for Read and Commit
are similar)

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 13

MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)MethodWrite(Good)

?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)

!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)!SetBit(b)

?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)?R_SetBit(b1)

!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)!R_Write(p,b1)

MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)MethodWrite(Bad)

?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)?Call_Write(p,b)

!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true)!R_Write(p,true) !R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)!R_Write(p,false)

Figure 10: The Write method of the (Good and Bad) slaves

The slave body serves successively the requests (Commit, Read and Write)
arriving at the slave queue much similarly to the master body. The bad slaves
and the good slaves have the same body, they all serve the request in a FIFO
order, and no two requests are served at the same time: the slaves are mono-
threaded. The slaves have three methods: Write, Read and Commit; we show
the method Write for the good and bad slaves in Fig. 10, the behaviour of a
good slave consists in storing the bit value b received thanks to a call to !SetBit
that sets a local attribute of the slave. There is a method !GetBit for reading
this value, it is called by the Read request. The bad slave as shown in Fig. 10
replies randomly to each individual request. The commit phase is here to show
how a commit phase would be implemented, but it is not used by our slaves: it
would be useful if the master could also have a faulty behaviour.

According to the BFT hypothesis, a bad slave can behave arbitrarily. How-
ever, we have to restrict a little this behaviour so that it can be encoded and
veri�ed by �nite model-checking techniques. Here are the hypotheses we make
and the reasons why it is safe to make them:

� Bad slaves do not steal the identity of another entity: we suppose here
that the underlying middleware guarantees the identity of the components
sending requests or replies. It is the classical �oral messages� assumption
of [22].

� Bad slaves only reply to required requests. We suppose again that the mid-
dleware veri�es this to guarantee the integrity of the program execution.

� Bad slaves only reply to requests in the order required. This assumption is
stronger but we can show that it has no in�uence on the �nal result. First,
the master is single threaded, waits for enough replies before requiring
another computation, and does not access the future afterward; thus late
replies would have no in�uence on the computation. In principle, a bad
slave could serve the request in the wrong order and use this information
to behave in a malicious manner; but the exhaustive exploration of all the
possible replies is even more general than the scenarios using out of order
service of requests.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 14

4 Building the model, and running the veri�ca-
tion tools

In this section we describe the methods and tools used to build the behavioural
model of our application and to check its properties, and we discuss the combi-
nation of advanced techniques we have used to master the model complexity.

We build the behavioural model of our case-study in three steps (Fig. 11).
From the speci�cation of the component architecture and behaviour, our tool
ADL2N [8] builds a hierarchical and parametrized pNets model, including the
data types, the behaviour, and the architecture of the system. Then abstractions
are applied on the data domains, yielding a �nitary model. Finally the model is
encoded using a combination of several input formalisms from the CADP toolset
[11]: the Fiacre language [5] provides syntax for data types and expressions,
de�nition of LTS, and a form of composition of processes by synchronization on
channels; the EXP and SVL languages [11] support the hierarchical encoding of
our pNets, and the scripting of the various veri�cation tasks.

Then we run a combination of CADP tools, the most important ones are:
ceasar.open for generating transition systems from Fiacre programs, either on
a single machine, or on parallel infrastructures when used in combination with
distributor; exp.open to build product of transition systems described in EXP
format; and Evaluator4, the new version of the model-checker that deals with
the MCL (Model Checking Language) logics [23], which is an extension of the
alternation-free regular µ-calculus with facilities for manipulating data.

The Vercors2 tool platform should assist the programmer in the encoding and
veri�cation of his application. It includes the Vercors editors, the ADL2N, ABS
and N2F tools; it is currently under development. For this paper, we already
have been able to generate approximately 50% of the Fiacre and EXP code.

Behavioural

=
model

generation

semantics

ABS* N2F

State−space
generation

+
Model−checking

ADL2N

Architecture

Interfaces

Behaviour

Properties

Component
Specifications :

CADP

Evaluator4

Caesar.open

Distributor

Exp.open

Translation

Fiacre
+ EXP
+ SVL

Abstractions

Data

Vercors

Editors
Component pNets

pNets

Finitary

Figure 11: Tool chain and corresponding processing steps

One goal of this work is to experiment with various methods for mastering
the state explosion inherent to large models, such methods consist of:

1. data abstraction

2. hierarchical hiding and minimization

3. use of contextual environment information

4. distributed state-space generation

2http://www-sop.inria.fr/oasis/index.php?page=vercors

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 15

We have used 1) in several ways. First, all data variables have been given
abstract types with (very small) �nite domains, in fact we choose the smallest
abstract domain that preserves the formulas to be proven. Secondly, the topology
parameters of the system (the number of slaves and number of proxy instances)
have been reduced to a minimum number, though signi�cant for our scenario;
proving properties that would be valid for any values of such parameters is
out of the scope of model-checking. Finally, the request queues raises another
issue: their explicit representation has a size exponential in the number of values
that the queue cells admit. Our approach is to encode a (small) �nite model
of the queue, including events denoting an error when this �nite queue is out-
of-bounds. Then we check by model-checking whether this event is reachable,
or the chosen size is su�cient. The soundness of these approaches is worth
discussing; for the domains of value-passing parameters, we can de�ne �nite
abstractions that preserve safety and liveness properties [9]; for the length of
queues, we are building an under-approximation, and we check explicitly its
validity. But for topology parameters, we have no such general result and we
only prove properties for a given instantiation, that is already very helpful as
a �debugging tool�. Proving more general properties is not in the scope of this
paper.

Method 2) is now quite classical when using bisimulation-based tools. Let
us remark that to be optimal, we have to generate models speci�cally for each
formula to prove. Method 3) has been proposed and advocated by the CADP
developers, and is indeed very important when combined with 2). The problem
arises when you build subsystems hierarchically without taking into account the
speci�c way in which other pieces of the system interact with a given subsystem.
The context information can be built automatically by the CADP tools from
the behaviour of the other subsystems (in which case it is guaranteed to be
sound), or can be speci�ed manually (that may lead to under-approximations).
We chose the second option, and we used the context behaviour to reduce further
the possible values of input data of some methods, by symmetry arguments.

Method 4) is a hot research topic. We are using a local Cloud platform,
providing large computing resources (>1300 cores and 3 Tbytes of RAM), where
we can submit jobs in the form of task work�ows. In our case, tasks consist of
compilation of input formalisms, generation of transition systems for subsystems,
minimization and product of systems, and model-checking. Tasks can be parallel,
but for the current version of CADP, only LTS generation can run in a distributed
way [12]. We were able to build systems with more than 109 states explicitly
stored in distributed memory [18], but then the bottleneck is the merging of
this structure before minimization or model-checking on a single machine. In
practice, the good strategy is to decompose the system in such a way that
subsystems are of reasonable size, or can be strongly constrained by contextual
information, and to run concurrently the tasks computing the behaviour of each
subsystem. Then minimization, product, and model-checking tasks are run as
soon as their inputs are available, in a coarse-grain concurrent work�ow.

Parameter Domains and System Sizes. We ran the use-case with 3 good
slaves and 1 bad slave, allowing for 1 failure. We also generated the model in
two di�erent con�gurations, with the length Q of the Master Queue respectively
2 (for OutOfBounds detection) and 1 (for optimization).

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 16

As we do not have yet enough tool support at the level of the formalism
compilers, we had to do a signi�cant part of the Fiacre/Exp/SVL programming
by hand, so we chose to build one single model with enough events visible to
prove our formulas of interest. The intermediate code consists in 43 Fiacre
processes for a total of 2900 lines of code, and of 330 lines of synchronization
vectors in EXP format encoding 240 pNet structures.

Then the system is divided in 12 subsystems (9 for the Master itself); each
part is encoded in a Fiacre source �le, and its state space computed using dis-
tributor. So we have at this level 12 independent tasks in our work�ow, running
on 2 to 10 cloud nodes each. Each resulting automaton is reduced by branch-
ing bisimulation (with as much local actions hidden as possible), before being
composed in a hierarchical way, using 4 synchronization products. The �nal
product is minimized again, before running Evaluator4 for checking our proper-
ties. Decomposing the system in an e�ciently manner currently requires human
operation: the choice of subsystems is a compromise between: identifying pro-
cesses that may be reused easily (through relabeling); de�ning subsystems that
are big enough to take advantage of a distributed generation; choosing pieces
which environment behaviour is well-speci�ed.

The system sizes (states/transitions, after minimization) and computation
times are summarized in the following table:

Q. size Queue Intermediate Master GoodSlave Global Total time
Q=1 21/229 542/3107 2M/45M 744/6550 22K/110K 10'
Q=2 237/3189 542/3107 5.8M/103M 5936/61K 34K/164K 59'

The middle columns in the table give reduced sizes for the most interesting sub-
systems: the Master queue, the biggest intermediate subsystem in our decompo-
sition of the Master, the whole Master component, the (good) Slave component,
and �nally the global system, comprising the Master, 4 Slaves, and a Client.
The last column gives the global computation time.

Correctness Properties. Once the behavioural model generated, we veri�ed
several properties, written using the MCL logics; they express various facets
of the system correctness. Some properties express global correctness of the
application, seen from the (external) client point of view. Others require the
visibility of some internal events of the system, and reveal the feasibility of
several scenarios, or the impossibility of some errors.

Let us start with simple reachability properties: all requests (Write or Read)
sent to the system can terminate and return successfully. The �rst formula means
that for each possible value of �d (the identi�er of a client request), the action
R_Read denoting the return of the corresponding Read request is reachable
with some returned value val. This property is True, meaning that the Read
request can terminate (this holds also for Write requests).

forall fid:nat among {0...2}. exists b:bool.

<true* . {R_Read !fid !b}> true

Next formula checks the reachability of the BFT Error events. This property
is False, meaning that we instantiated enough good slaves.

< true* . 'Error (NotBFT)'> true

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 17

We then ensure that the Master's queue cannot receive too many requests.
Its validity depends on the system client(s). Here we have proved that a queue
depth of 1 is su�cient to prove all of our correctness properties, if we have a
single client, and if this client waits for replies before sending the next request.

< true* . 'Error (Master-OutOfBounds)'> true

Also, we have proved Inevitability properties like the following one. It ensures
that it is (fairly) inevitable that after a Write request, either the system sends
the corresponding Write response or raises an error. Here fairness means "fair
reachability of predicates" in the sense of Queille and Sifakis [25]:

[true* . ({Q_Write ?fid:nat ?bit:bool})

. (not ('Error.*' or {R_Write !fid}))*]

< (not ('Error.*' or {R_Write !fid}))*

. ('Error.*' or {R_Write !fid}) > true

Similarily, we have shown that it is fairly inevitable that Read requests are
replied, and also that the system is functionally correct: after a Write request
(and before the next one), a Read request will answer with the correct value.

To summarise, we proved by model-checking that our application consisting
of 1 master and 4 slaves (3 good ones and bad one) behaves correctly: 1) it
answers to Read and Write requests, 2) the answers are correct in the sense that
the read value is the value that has been written, 3) for this it relies on the slaves
for storing the data (the master only performs a consensus), and 4) enough good
slaves have been instantiated and the NotBFT error cannot be raised.

5 Conclusion

This paper shows the modelisation and veri�cation by model-checking of a sys-
tem that features: one-to-many communication, asynchronous communication
with futures, byzantine faults, replication, and consensus. We showed here the
possibility to encode and verify the correct behaviour of a whole distributed
application that tolerates some faulty processes. Handling byzantine faults is
a di�cult task, because no assumption can be made on the behaviour of the
faulty processes. Such a random behaviour makes automatic veri�cation of the
correction of a whole application even more di�cult because a lot of possible
states must be considered.

A next step could be to integrate the generation of faulty process, replication
management, and consensus methods to our speci�cation environment: the user
would identify the possibly faulty components and the environment would gener-
ate BFT-like behaviour and replication for those components, but also broadcast
and consensus operations. The new system could then be model-checked to de-
cide whether the whole application is fault-tolerant.

Another lesson drawn here is that the behaviour of the whole application is
huge, we used all the power of the distributed version of CADP on a cloud-like
environment to verify the application. This shows that application-level fault-
tolerance can be veri�ed by a model-checker, but also that adding any other
feature to the system (e.g. recon�guration for changing the number of replicates
at runtime) may be very di�cult. To master such complexity we should use
semantic properties of the programming model and of the middleware to get
better and smaller abstractions at the level of the generated behaviour.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 18

References

[1] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, and E. Madelaine.
Behavioural models for distributed Fractal components. Annals of Télé-
communications, 64(1-2):25�43, 2009.

[2] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio,
and Ch. Pérez. GCM: a grid extension to Fractal for autonomous distributed
components. Annals of Télécommunications, 2009.

[3] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, and O. Hurley. SCA service
component architecture, assembly model speci�cation. Technical report,
March 2007.

[4] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Compositional veri-
�cation for component-based systems and application. IET Software, 4(3),
2010.

[5] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. La ng, F. Peres,
R. Saad, J. Stoecker, and F. Vernadat. The syntax and semantics of Fiacre.
In Rapport LAAS #07264 Rapport de Contrat Projet OpenEmbeDD, Mai
2007.

[6] R. Ameur Boulifa, R. Halalai, L. Henrio, and E. Madelaine. Verifying
safety of fault-tolerant distributed components (extended version). Research
Report RR-7717, INRIA, August 2011.

[7] R. Ameur Boulifa, L. Henrio, and E. Madelaine. Behavioural models for
group communications. In WCSI-10: International Workshop on Compo-
nent and Service Interoperability, Malaga, Spain, 2010.

[8] A. Cansado and E. Madelaine. Speci�cation and veri�cation for grid
component-based applications: From models to tools. In F. de Boer,
M. Bonsangue, and E. Madelaine, editors, FMCO'08, volume 5751 of LNCS,
pages 180�203. Springer, Heidelberg, 2008.

[9] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing
systems. In J. Parrow B. Jonsson, editor, Int. Conf. on Concurrency Theory
(CONCUR'94), volume 836 of LNCS, pages 417�432. Springer, Heidelberg,
1994.

[10] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and
Y. Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the
IEEE, 91(1):127�144, January 2003.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serve. Cadp 2010: A toolbox
for the construction and analysis of distributed processes. In TACAS'11,
volume 6605 of LNCS, Saarbrücken, Germany, 2011. Springer, Heidelberg.

[12] H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Jou-
bert, I. Smarandache-Sturm, and G. Stragier. Distributor and bcg_merge:
Tools for distributed explicit state space generation. In J. Palsberg H. Her-
manns, editor, TACAS'06, volume 3920 of LNCS, pages 445�449. Springer,
Heidelberg, 2006.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 19

[13] I. Grabe, M. Ste�en, and A. B. Torjusen. Executable Interface Speci�ca-
tions for Testing Asynchronous Creol Components. Research Report 375,
University of Oslo, Dept. of Computer Science, July 2008.

[14] R. Guerraoui, N. Kneºevi¢, V. Quéma, and M. Vukoli¢. The next 700
BFT protocols. In Proceedings of the 5th European conference on Computer
systems, EuroSys '10, pages 363�376, New York, NY, USA, 2010. ACM.

[15] D. Harel. Statecharts: A visual formalism for complex systems, 1987.

[16] J. Hatcli�, W. Deng, M. B. Dwyer, G. Jung, and V. Ranganath. Ca-
dena: An integrated development, analysis, and veri�cation environment
for component-based systems. In Proc. of the 25th Int. Conf. on Software
Engineering, 2003.

[17] L. Henrio, F. Kammüller, and M. Rivera. An asynchronous distributed
component model and its semantics. In F. de Boer, M. Bonsangue, and
E. Madelaine, editors, FMCO'08, volume 5751 of LNCS, pages 159�179.
Springer, Heidelberg, 2008.

[18] L. Henrio and E. Madelaine. Experiments with distributed model-checking
of group-based applications. In Sophia-Antipolis Formal Analysis Workshop,
page 3p., France Sophia-Antipolis, Oct 2010.

[19] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: a types-safe object-oriented
model for distributed concurrent systems. Journal of Theoretical Computer
Science, 365(1 � 2):23 � 66, 2006.

[20] G. Jung and J. Hatcli�. A type-centric framework for specifying heteroge-
neous, large-scale, component-oriented, architectures. Science of Computer
Programming, 75(7):615�637, 2010.

[21] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: specula-
tive byzantine fault tolerance. In Proceedings of twenty-�rst ACM SIGOPS
symposium on Operating systems principles, SOSP '07, pages 45�58, New
York, NY, USA, 2007. ACM.

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4:382�401, July 1982.

[23] R. Mateescu and D. Thivolle. A model checking language for concurrent
value-passing systems. In K. Sere J. Cuellar, T. S. E. Maibaum, editor,
FM'08, volume 5014 of LNCS. Springer, Heidelberg, 2008.

[24] P. Parizek and F. Plasil. Assume-guarantee veri�cation of software compo-
nents in sofa 2 framework. Software, IET, 4(3):210 �211, june 2010.

[25] J.-P. Queille and J. Sifakis. Fairness and Related Properties in Transition
Systems � A Temporal Logic to Deal with Fairness. Acta Informatica,
19:195�220, 1983.

[26] F. B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: a tutorial. ACM Comput. Surv., 22:299�319, December
1990.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 20

A Behaviour of Other Methods

We include in this appendix the behaviour of the methods we could not �t in
the body of the paper; we will publish a research report including all the �gures
and additional details during the summer.

A.1 Master Methods

!Get_Read_Proxy

?R_Get_Read_Proxy(p1)

!WaitN_Read(p1,awaited)

?R_WaitN_Read(p1,rRep)

!CollateReplies(rRep)

?R_CollateReplies(nb_r_agree)

?R_GetF(f)
agree:=2*f+1; awaited:=agree; nb_Slave:=3*f+1

!Call_Proxy_Read(p1,b)

!Call_GetF

?Call_Read

[nb_r_agree>=agree]

!GetBit

MethodRead

[nb_r_agree<agree
& awaited=nb_slave]

!Error(notBFT)

!R_Read(b)

?R_GetBit(b)

!WaitN_Read(p1, awaited)

awaited ++
& awaited<nb_slave]

[nb_r_agree<agree

Error

Figure 12: MasterRead Method

The Master Read method. The behaviour of the Read method shown in
Fig. 12 is very similar to the Write method in Fig. 6. The main di�erence
is that, after triggering remote invocations and waiting for enough identical
replies, it inputs the bit value found by the collate method via the !GetBit,

?R_GetBit(b) sequence, the value b received is returned to the client.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 21

?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)?Serve_SetF(f)

?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)?Serve_Write(b)
?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()?Serve_Read()

!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)!Call_SetF(f)

!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)!Call_Write(b)

!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()!Call_Read()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()?T_SetF()
?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()?T_Write()

?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()?T_Read()

?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop?Serve_Stop

!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start!Start

!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop!Stop

?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Start?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind?Serve_Unbind
!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind!Unbind

?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind?Serve_Bind

!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind!Bind

Figure 13: Behaviour of the MasterBody

The master body. The body shown in Fig. 13 is encoded in generic way:
it serves sequentially functional and non-functional requests. In this work, we
only use the service of each functional request (on method Read, Write). This
service calls the adequate method (e.g., !Call Read), and waits until the method
terminates, signaled by R events (e.g., ?R Read); R Read synchronizes both with
the component that triggered the request and with the body. As requests are
served one after the other, this encodes a mono-threaded behaviour.

ACFACFACFACFACFACFACFACFACFACFACFACFACFACFACFACFACF

?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)

f:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=val

!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet

?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet

f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1

!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)

Figure 14: The ACF Process: attribute controller that stores the value of f

The Attribute controller. (see Fig. 14) In Fractal, the attribute controller
provides read and write access to the attributes of the components; the only
attribute of the Master component is f, the number of faults that can be handled.
The behaviour of the attribute controller is very simple: it simply provides
a setter and a getter method for storing and retrieving the value of f. This
controller is crucial for the Write and Read methods to know the current value
of f and to reach a consensus.

A.2 Slave Methods

Body of the slave component. The body of the slave component, Fig. 15,
is very similar to the master body, except that the slave only serves requests
Read, Commit, and Write.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 22

SlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBodySlaveBody

?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)?Serve_Write(p,b)

?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)?Serve_Read(p)
?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)?Serve_Commit(p,b)

!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)!Call_Write(p,b)

!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)!Call_Read(p)

!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)!Call_Commit(p,b)
?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write?R_Write

?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read?R_Read

?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit?R_Commit

Figure 15: Behaviour for the Body of a slave component

MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)MethodRead(Good)

?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)

!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit!GetBit

?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)?R_GetBit(b)

!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)!R_Read(p,b)

MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)MethodRead(Bad)

?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)?Call_Read(p)

!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,true)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)!R_Read(p,false)

Figure 16: Slave (Good and Bad) Read Method

Read methods of the Slaves The method Read of the good and bad slaves
are shown in Figure 16. For the good slave, this method accesses the stored bit
by a call to !GetBit, and replies with the value that has been read. For a bad
slave, the method returns a random value (either true or false).

MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)MethodCommit(Good)

?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)

!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)!R_Commit(p,b)

MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)MethodCommit(bad)

?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)?Call_Commit(p,b)

!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false)!R_Commit(p,false) !R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)!R_Commit(p,true)

Figure 17: Slave (Good and Bad) Commit Method

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 23

Commit methods of the Slaves As stated in the body of the paper the
Commit method (Fig.17) has a trivial behaviour and always replies true for the
good slave,k it replies randomly for the bad one.

MethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBitMethodBit

?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)?SetBit(b)
?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit?GetBit

!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)!R_GetBit(b)

!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)!R_SetBit(b)

Figure 18: MethodBit process of the good slaves

The Slaves' MethodBit process. Finally the MethodBit process of Fig.18
is used by the good slaves to store and retrieve the value of the stored bit. It
provides the two methods GetBit and SetBit.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 24

B Behavioural Semantics of GCM

We gather here the de�nition and explanation of the behavioural semantics, in
terms of pNets, of various features of GCM systems.

B.1 Graphical versus Formal Presentation of pNets

The pNets model has been formally de�ned in [1], and a slightly modi�ed (sim-
pli�ed) version in which the notion of transducer was removed, in [8]. We use
here the [8] de�nition. One can de�ne a notion of �static� pNet, in which the
possible synchronisations do not depend on the state of the transducer (or of
speci�c subnets playing the role of the transducer). Such static pNets are ex-
actely those that can be represented easily by the graphical constructs used in
this paper.

The following rules de�ne the mapping between graphics and pNets con-
structs: formalize... => V2

ASP/ProActive active objects

Fig. 19 illustrates the structure of the pNets expressing a asynchronous com-
munication between 2 active objects. A method call to a remote activity goes
through a proxy, that locally creates a �future� object, while the request goes
to the remote request queue. The request arguments include the references to
the caller and callee objects, but also to the future. Later, the request may
eventually be served, and its result value will be sent back and used to update
the future value.

Proxy

Queue

Body

Server RoleClient Role

Body

Proxy

?Q_M(fid, ˜arg)

Serve_M(fid, ˜arg)

!R_M(fid, val)

?Proxy[fid].
R_M(val)GetValue(val)

Proxy[fid].

!Proxy[fid].
Q_M(˜arg)

!Q_M(fid, ˜arg)

!Q_M(fid, ˜arg)

[fid]

Figure 19: Simple pNets model for the Communication between two Active
Objects

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 25

Hierarchical Processes

This �rst construction applies to hierarchical component structures, with inter-
faces, but none of the speci�c non-functional features of Fractal or GCM.

From the information in a Component structure, it is straightforward to
generate a pNet representing the communication between the interfaces and the
subcomponents, from the following elements:

• the pNet has one hole for each (parametric) subcomponent;

• the pNet global actions pAG and hole sorts ÕJ are sets of actions of the
form Ci.Itf [!|?]m(˜arg) for performing / serving a method m with each
argument arg ∈ ΣTarg,V ,

• its transducer has one parameterized synchronisation vector for each bind-
ing in B̃.

Master Slave[i]

MasterSlave(Composite)

?M(˜arg)?A !B!M(i, ˜arg)

Figure 20: Graphical representation of a parametrized network for a hierarchical
component

Graphically a parameterized pNet is represented by a set of boxes (holes).
Each box is surrounded by labelled ports encoding a particular Sort (sort con-
straint pAG) of the pNet. The box is �lled with a pLTS or another pNet (hi-
erarchy) satisfying the Sort inclusion condition (L ⊆ pAG). The ports can be
interconnected through edges for synchronization. The edges are labelled with a
parametrized action or τ (unobservable action). The edges connecting the boxes
express the synchronization between them. Each edge is translated to a syn-
chronization vector of the form <!M(˜arg), ?M(˜arg) >→M(˜arg), expressing a
rendez-vous between actions !M(˜arg), and ?M(˜arg), visible as a global action
M(˜arg).

For the example above, the three edges will be translated into the following
synchronisation vectors:

<Master.!M(i, ˜arg), Slave[i].?M(˜arg) >→ M(i, ˜arg)

<Master.?A,− >→ ?A
< −,Slave[i].!B >→ !B(i)

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 26

Structure of GCM Components

We start here with a simple subset of GCM features, excluding any dynamic
recon�guration. The structure of pNets models for such components includes:

� a Request Queue

� a Body encoding the service policy

� for primitive components, pLTSs for each service method s of the compo-
nent, and eventually for other local methods

� for composite components, children pNets for each subcomponent

� when necessary, Future proxies and Group proxies for each client interface
of the component.

The following �gures give the overall pNet structure for GCM primitive (resp.
composite) component, with edges representing the synchronisation vectors. The
pLTS representing the inside of the boxes (Queue, Body, Proxies) will be detailed
later.

Primitive component

The pNet for a simple primitive component as depicted in Figure 21 is composed
of two parts: the membrane, which will contain the Queue and the Proxy (cor-
responding to theM2 method found on the component's client interface), and
the content, with the Body and the pLTS for the service method (M1) found
on the server interface. The basic communication scenario is as follows: the in-
coming requests toM1 arrive to the Queue, which will then issue a Serve_M1
request to the Body, which, at its turn, will send the Call request to the box
containing the pLTS for the corresponding method (M1), and after the exe-
cution of the method has terminated, it will return the result by sending the
R_M1(val) response. The calls to the M2 method will go through the asso-
ciated Proxy, and the Body will be able to retrieve the value of the future by
calling GetValue(fid2, val).

?Q M1(fid1, ˜arg)

Body

ProxyQueue
?R M2(val)

M1

!Q M2(fid2, ˜arg)

Call M1(fid1, ˜arg)

Serve M1(fid1, ˜arg)

GetValue(fid2, val)

!R M1(val)

Figure 21: Simple Primitive Component

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 27

Composite component

Figure 23 shows the pNets for a composite component shown in Figure 22. The
composite component B is composed of two subcomponents C and D, and has
two external interfaces (1 client and 1 server). Requests arriving on the server
interfaces are of the form !Q_foo(f), the request is enqueued in the queue of
B, then it will be served (Serve_foo(f)) by the body and delegated to C. For
this a proxy Proxy(fB1) waits for the result of the remote call to C. Note the
synchronisation that occurs at the same time between the proxy Proxy(fB1),
the body of the composite and the request queue of C. When the request is
�nished in C, the result is returned to the proxy; it can then be obtained by the
Body (GetValue_foo(val)), and returned (R_foo(f,val)). The other proxies
(another one in B and two in C) are manipulated similarly. For clarity of the
�gure, we omitted the communications with proxy Proxy(fB2).

Let us now focus on the remote call from the composite B to its subcom-
ponentC. Similarly to the composite case, Q_foo(fB1) is enqueued in C's queue
then served by the body, which delegates two calls, one towards D, and the other
towards B (relying on two di�erent proxies). When the result is obtained it is
returned to Proxy(fB1) by a communication R_foo(fB,val).

Figure 22: Composite Component

B

C D

E

BCD(Composite)

Proxy(fB1) Proxy(fB2)

Body

Queue

Queue

Body

Proxy(fC2)

Body

Queue

Body

Queue

Proxy(fC)

?Call bar

?R bar(val)

!GetValue bar(val)

Serve bar(fC)

?R gee(fB2, val)

!Q gee(fC2)

?Q gee(fC2)

!R gee(fB2, val)

Serve bar(fB2)

Serve gee(fC2)

R bar(fB2, val)

Q bar(fB2)!R foo(f, val)

?Q foo(f)

Serve foo(f)

!Q gee(fC2)

GetValue foo(val)

GetValue bar(val)

R foo(fB1, val)

!Q bar(fC)

Q foo(fB1)

Figure 23: pNet for the Composite Componentof Figure ??, with futures

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 28

Body

The body process is the place where the service policy of the component is
encoded. By default, this policy picks requests from the Queue in Fifo order (�rst
in �rst out), and executes them in a monothreaded way. This is represented in
Figure 24, where the action ?ServeFirst_M(fid,args) picks the �rst request
from the queue, calls the corresponding service body, then synchronizes with the
service termination to send back the result to the caller. Naturally, there will be
one such loop for each possible service method in the component.

In the case of a user-de�ned policy, the application developer will be in charge
of providing its speci�cation in the form of a state-machine, that may be �state-
full�, meaning that the selection of requests in the queue may depend on the
internal state of the component. The developer will use the same communication
primitives as the defaut Body.

Body

?ServeFirst M(fid, args)

!R M(fid, val)

!Call M(args)

Figure 24: pLTS of the Body

Queue

The Queue pNet encodes an unbounded Fifo queue, containing requests com-
posed by a method name and its arguments, and a selection mode (typically
oldest or younguest request matching a predicate).

Typically, we need to instanciate this queue as a bounded structure, before
running model-checking tools. However, di�erent model-checkers may use di�er-
ent representation for queues, so we chose to keep an abstract Queue structure
in the pNet, and to leave to backend tools the choice of the queue representation.

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 29

Future proxies

The behaviour of the future proxy pNet is as follows: the proxy starts by a
Call_M transition. This allows the component to perform the remote call.
Then the proxy will wait for the response transition (R_M) to synchronise on
the response value. Finally, the component body may access the content of the
future through a !GetValue transition.
The second image is an optimized version of the future proxy LTS, that could be
used when one proxy would be enough (rather than creating a new proxy each
time there is a new future to be handled), so the same one would be recycled
and reused several times.

!GetValue M(val)

?Call M

?R M(val)

Proxy M[f]

?Call M

?R M(val)

!GetValue M(val)

Proxy M[f]

Figure 25: pLTS of the Future Proxy

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 30

Group proxies and Proxy manager

Figure 26 is taken from the case-study of this paper, and focuses on the pNet
representing the behaviour of a multicast interface. In general, there will be
one Group Manager for each multicast interface in a component. Each Group

Manager pNet includes a Proxy Manager, which deals with the instantiation/activation
of proxies, and one indexed family of proxies for each method in the interface.
The Proxy Manager answers to requests from the component methods by ac-
tivating a new proxy for the called method, passing the value of the current

group to this proxy, and returns the proxy identi�er to the calling method. Af-
ter this, all messages relative to this method call instance (broadcasting the call
to the elements of the group, collecting answers, and replying to Wait requests
from the calling method), are parameterized by this proxy identi�er. Whenever
the interface receives Bind or Unbind requests, they modify the �current group�
internal variable of the Proxy Manager pNet. Remark that this will only a�ect
proxies that will be activated later.

BC:
Q_Read(p)

Q_Commit(p)
BC:

BC:

Q_Write(...) !Slave[i].Q_Write(p,b)!Q_Write(g,p,b)

?R_WaitN_Write

!Call_Proxy_Write(p,b)

!WaitN_Write CO:
R_Write(p)

?R_Write(p)

Proxy_Write[p]

!Call_Proxy_Read(p)

CO:

?R_Read(p,val)

!Call_Proxy_Commit(p,b)

CO:

?R_Commit(p)

Proxy Manager

?R_Get_*_Proxy (p)

!Get_*_Proxy

?Q_Unbind

?Q_Bind

Proxy_Read[p]

Proxy_Commit[p]

Activate_Write(p,g) i ∈ g

i ∈ g
cf figure 9

Figure 26: Focus on the elements for managing the group

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Verifying Safety of Fault-Tolerant Distributed Components 31

Attribute Controller

In Fractal, the attribute controller provides read and write access to the at-
tributes of the components; the only attribute of the Master component is f �
the number of faults that can be handled. The behaviour of the attribute con-
troller is very simple: it simply provides a setter (ACSet) and a getter (ACGet)
method for storing and retrieving the value of f.

ACFACFACFACFACFACFACFACFACFACFACFACFACFACFACFACFACF

?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)?ACSet(val)

f:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=valf:=val

!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet!R_ACSet

?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet?ACGet

f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1f:=1

!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)!R_ACGet(f)

Figure 27: The ACF Process: attribute controller that stores the value of f

RR n° 7717

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

Centre de recherche INRIA Sophia Antipolis – Méditerranée
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

in
ria

-0
06

21
26

4,
 v

er
si

on
 1

 -
13

 S
ep

 2
01

1

	Introduction
	Background and Related Works
	Formal Methods for Component Models
	Verifying Byzantine Fault-tolerant Systems
	Distributed Components and their Semantics

	Our Fault-tolerant Application and its Specification
	Distributed Component for Fault-tolerant Storage
	Architecture
	The Master Body and its methods
	The Master Proxies

	The Slave Components and their methods

	Building the model, and running the verification tools
	Conclusion
	Behaviour of Other Methods
	Master Methods
	Slave Methods

	Behavioural Semantics of GCM
	Graphical versus Formal Presentation of pNets

