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Abstract In the context of Industry 4.0, (cyber) manufacturing systems enters in
a world of services which is a convenient paradigm to match virtual and physical
systems covering Cloud computing, big data, Internet-of-Things (IoT) and mobil-
ity. The coordination and control of such complex system by the way of actors or
services requires methods and techniques to design, verify and deploy the services,
possibly on the fly making service engineering an unavoidable approach to develop
new generation cyber manufacturing systems. In this position paper, we advocate a
service based component model that would be helpful to reach this goal.

1 Introduction

Following the Web revolution, that enabled to connect non only people but also sys-
tems through unified communication protocols, a new step, called Industry 4.0, is
engaged that interleave computation processes and physical processes in the recent
so-called field cyber-physical systems (CPS) which defines a new and multidisci-
plinary that cover many engineering areas such as mechatronics (from electrical
or mechanical), robotics... [22]. This new step arises with new converging techno-
logical computer science advanced like massively distributed and cloud computing,
Internet-of-Things (IoT), revisited artificial intelligence and big data, mobility with
variety of computer systems and sensors, new user customs and mobile applica-
tions. We face a new interconnected world, the production systems are not only con-
nected to the management systems (ERP) but also opened to the client side (B2C)
and the suppliers side (B2B) including supply management, manufacturing, client
relationship... Cyber-Physical Production Systems (CPPSs) consist of autonomous
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and cooperative elements and subsystems that are connected based on the context
within and across all levels of production, from processes through machines up to
production and logistics networks [14] Business processes can be connected to man-
ufacturing processes. Cyber manufacturing is transformative concept that involves
the translation of data from interconnected systems into predictive and prescriptive
operations to achieve resilient performance [10].

The glue paradigm between processes and systems is the notion of service, which
apogee is the cloud stack XaaS and the Service Oriented Architectures (SOA). Ser-
vices are also somewhere compatible with (high level) business processes in enter-
prise architecture frameworks. Of course the definition of service varies a lot from
one context to another. At low levels a service can be a script, a procedure, an opera-
tion or a method, depending on the implementation language. At intermediate level
a service is a kind of process the coordinates other service (through service compo-
sition and orchestration) to achieve a specific or independent goal. At high level a
service can be interpreted as a process that monopolize shared resources (and maybe
people) to fulfil all or part of a business or production process. The coordination and
control of such complex system by the way of actors or services requires methods
and techniques to design, verify and deploy the services, possibly on the fly mak-
ing service engineering an unavoidable approach to develop new generation cyber-
manufacturing systems. This is part of requirements of CPS mentioned by Wang et
al. in the category ’design methodology’ "Research challenges include development
of techniques for efficiently integrating or relating multiple models/viewpoints/data
sets, CPS design methodology for trustworthy end-to-end services including adap-
tive and autonomous systems,and platforms for safe and secure CPS design that
underpin design methodology, facilitating integration and establishing desired sys-
tem level properties." [22]. As mentioned by Bauer et al. the traditional automation
pyramid is dissolving and manufacturing IT is moving towards service-orientation
and app-orientation [7]. As an example, in cloud manufacturing, SOA was identi-
fied to meet the requirements of all higher level manufacturing CPS layers due to
the reduced time constraints present [16].

However service engineering is still a craft activity at the implementation level [19,
15]. Two main levers are still required to go further. First, we need service models
that can fit to various semantics and various granularity levels. Indeed, the concept
of cyber-physical production system (CPPS) covers many classes of (physical) sys-
tems, from the manufacturing workshop to the power distribution network. Taking
the example of Holonic Manufacturing Systems, the control of such systems is of-
ten recursive, if not fractal, in order to aggregate the available resources and enable
a heterarchic control architecture. Therefore, services that might be used at vari-
ous levels of the architecture need to fit various granularity and the portability of
services between different applications with their own semantic requires an adapt-
ability of the services to be effective. Second, we need analysis tools to check the
service model properties on various aspects (structure, dynamics, functional and
non-functional), and model transformations to compute new models or to generate
code in the spirit of model driven engineering (MDE).
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In this position paper, we advocate a service based component model with em-
bedded contracts that would be helpful to reach this goal. This model is abstract,
in the sense of Service Oriented Architectures (SOA), to capture various semantics.
Applying the proposed methodology with early verification from formal models
reinforces confidence in the services early in the development process: they are cor-
rected, they embed evaluated test data, and contracts can be reinforced. That helps
to correct software as soon as possible in the process and allows to apply then ad-
vanced development techniques such as agile ones (thanks to the qualified test data
we constructed) or Design-by-Contract (thanks to contract we reinforced).

We present the general process in section 2, the service models in section 3, the
service contract in section 4 and the way to supply them, the service implementation,
by the way of model transformation in section 5. Section 6 illustrates the approach
on a small part of a vehicule control system. Some related references are discussed
in section 7. In conclusion, we draw some perspective for manufacturing.

2 A development process for trusted services

We assume a general presentation, which is not specialized to manufacturing sys-
tems, where services denote software services, whatever implementation links to
physical systems. Service based systems, as well as component based systems, are
realized according to a composition principle (maybe several composition opera-
tors) such as high level services are hierarchically composed of lower level services
where the low level services (the leafs) are atomic. We assume that (software) com-
ponents are containers of related services ; the reason for grouping services in a
component can be multiple: same provider, same business, same time, same job,
same deployment node...

The design activities associated to composition are (1) to define the goal and
properties (functional and non-functional), (2) to find the adequate services, (3) to
define a service orchestration and (4) to check that the composition is correct and
consistent with the service goal and properties and delivers a trusted composite ser-
vice. Step (2) and (3) can be manual or automatic, depending on the repository
management. The implementation activities are transformations of design models
to the target code.

In order to build trusted services we need to specify formal models, then to verify
them before implementation and storage on the shelf. This development sketch is
illustrated by Figure 1.

The principle of component or service on the shelf is not yet accessible in prac-
tice and software designers cannot pick up services and compose them the way we
can design electronic devices or mechanical assemblies or building constructions.
Furthermore automating these activities remains challenging. In practice again,the
service market is hardly available at design time and is often implemented by sim-
ple API at the implementation level, the service interfaces are poorly defined, often
only a signature and a comment, so that searching candidate service require human
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Fig. 1 Applied Specification, Verification and Implementation process

actions and understanding. We will see section 3 a service model with rich interfaces
to express service contracts. Also services are merely final services, considered as
a whole. This means that all its requirements are already given by some libraries or
other services, e.g. we cannot change the providers of an intermediate service ex-
cept if it belongs to us. We will see section 3 a service model where the requirements
are specified by service contracts, the notion of service contract will be developed
in 4. There is also a gap between the service paradigm, well-defined at the archi-
tecture level and its representation at the implementation level, where the notion
of service does not exist: a service is implemented by XML descriptions and pro-
gramming statements (java class for example), if service (or component) oriented
programming would exist, the traceability links would be explicit. We will see sec-
tion 5 the basis for service implementation that preserve the service structure and
traceability..

3 Service Modelling

In Service-based Component (SbC) models, a functionality is implemented by
the services provided by some components. Provided services are not necessarily
atomic calls and may possess a complex behaviour, in which other services might
be needed (called). These needs are either satisfied internally by other services of
the same component, or specified as required services in the component’s interface.
The required services can then be bound to provided services from other compo-
nents, which might also require others, and so on. A provided service needs all
its direct and indirect dependencies satisfied in order to be available for use. The
process of providing trusted service on the shelf or designing is based on a triple:
service model, property model and verification model.
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Fig. 2 Abstract Service based Component Metamodel, contracts and verifications

In the service based component model SbCM of Figure 2, the components (types)
are characterised by an abstract state and services. Components are assembled on
their access points (EndPoint) which can be ports, interfaces or services according
to the concrete languages (SCA, Sofa, Fractal, Kmelia). A service specification may
vary from the simple signature to the detailed description of dynamic behaviour
with communications and service composition. An assembly (also called architec-
ture) binds components, possibly using other assemblies, upon a client-ship rela-
tion (classical use of client/server contract). The connector paradigm is reduced to
binding because it is usually its representation in component implementations. A
composite encapsulates assemblies, and thereafter components, upon an inclusion
relation (parent/child contract) that may promote child observable features (state,
services). The involved features cover structural, functional and dynamic aspects.
The service behaviour and the communications are described, depending on the
specification language, by control structures, regular expressions, process algebra,
state machines, ....

4 Service Contracts and Verification

We separate the specification and verification concerns. As illustrated by Figure 2,
the SbCM meta-model is enriched with a contract layer (CSbCM) and a verification
layer (VCSbCM). Layering enables to disconnect system models from properties to
check (the contracts) and tools to verify. The layers enable to target verification on
specific verification tools.
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The contract layer is used to establish a service relation between classifiers (e.g.
services, components), A classifier is a kind of black-box encapsulating an imple-
mentation. A contract is more than the assertions of Design by contract when in-
cluding the composition of services, service interactions, quality of service [1].

According to [13], a Trusted Component is a reusable software element possess-
ing specified and guaranteed property qualities. The notion of contract is helpful
to model various kind of correctness properties. But it should be made precise and
extended to cope with the expressiveness of the SbC models. The properties, e.g.
interoperability, are classified at different contract levels ?

1. Static: the compatibility of interface signatures (names and types); does a ser-
vice or component give enough information about its interface(s) in order to be
(re)usable by others? The service call should respect the service signature. The
signature matching between the involved services of component interfaces covers
at least name resolution, visibility rules, typing and subtyping rules.

2. Architectural: the availability of the required components and services, the cor-
rectness of the linked service interfaces; Assuming that services can be composed
from other (sub)services, connecting services is possible only if their structures
are compatible (but not necessary identical).

3. Functional or computational: do the services do what they must do? These cor-
rectness properties may be checked both on individual service in regard to their
container component and on the compositions. This third level deals with service
compliance. If the services use a Hoare-like specification, post-conditions relate
to their pre-conditions. The caller pre-condition is stronger than the called one.
The called post-condition is stronger than the caller’s one. Each part involved in
the assembly should fulfil its counterpart of the contract.

4. Behavioural or interactions: the correct interaction between two or more services
which are combined. he behavioural consistency property states that the execu-
tion of the service actions does not lead to inconsistent states (such as deadlock).
The properties depends on the interaction model features: sequential vs. concur-
rent, call vs. synchronisations, synchronous vs asynchronous, pair vs. multipart
communication, shared data, atomic/structured actions...

5. Quality of service: the non-functional requirements (time, size...) are fulfilled.
For example, several services can be candidate but some are more efficient or
more secure or more available than others.

In order to cope with different meaning and different context, we introduce the
notion of multi-level contract in [1] where a contract is defined at different structure
levels (service, component, assembly, composition) according to different expected
requirement levels: syntax compatibility like CORBA IDL, structural compatibil-
ity, functional compatibility, behavioural compatibility and QoS compatibility. This
vision of contracts provides a convenient framework to master both the incremen-
tal construction of SbC and the verification of multi-aspect properties by combined
techniques. Also it provides a foundation for searching service in libraries (on the
shelf).
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The verification layer is based on a triple <property, rule, technique>. There is
no wide-spectrum formal languages that enable the verification of all the properties
in once. Usually, a modelling language is coupled with a verification technique and
dedicated tools. e.g. the B notation is supported by the Atelier-B or Rodin theorem
provers, LOTOS is supported by the CADP model checker. To target various kind
of properties, a full formal analysis requires model transformations to target the
adequate tools for the kind of properties to check. In the case of the process of
Figure 1, the functional contract is checked using the theorem prover; the interaction
contract is model checked and the conformance of the behaviour against the contract
is controlled using test.Note that model testing uses the same MDE facilities to
generate code for test harnesses than the one of service application models.

5 Service Implementation

Model Driven Engineering (MDE) emphasizes the use of models and meta-models
to improve the software productivity and some aspects of the software quality such
as maintainability or interoperability. According to the principles of Model Driven
Engineering [8] one can transform and refine service models to executable programs
by plunging in a technical domain (a framework) that preserve the service structure
and traceability.

Figure 3 illustrates the mapping between a platform independent model and a
platform specific level. This can result from a sequence of transformation, not nec-
essary one step transformation. For example, one can target a specific implemen-
tation framework model, for example REST or SOAP web service model but high
level models like WSDL or BPEL can also be intermediate models. This depends
on the technical architecture but also the available model transformation.

Fig. 3 Model concrete Data and Function Mapping
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Some primitive functions of the component model are kept abstract at the model
level and have to be mapped to concrete ones. This verification step checks if these
mappings are well-defined and consistent.

The link with physical devices of CPS can be achieved in the same way.

6 Experimentations

This section will briefly introduce the experimentation context, an illustrative exam-
ple and will include various references on previous works and experimentations.

We experimented the approach with a simplified version of a platoon of vehicles
case study, which can share similarities with AGV (Automated Guided Vehicle),
where the embedded application should ensure safety properties such as avoiding
collisions or not losing a vehicle. The vehicles and the driver are components which
interact to know their position and speed in order to control their move. We consider
here only the speed and the position (X axis only) of the vehicles. The vehicles are
designed to follow their predecessor (which they consider to be their pilot) except
the first one which follows a component taking the role of the driver. The driver is
assumed to be a special kind of vehicle that controls its own values according to a
target position. Each running vehicle can compute its own speed by considering its
current speed and position, its predecessor’s position and speed and a safety distance
with its predecessor.

The approach has been experimented with the COSTO, a CASE tool dedicated
to the development of Service and Component Based Software Systems. The speci-
fication language is Kmelia a wide-spectrum language dedicated to the development
of correct service based components [2]. To be short Kmelia allows to define service
behaviours with extended state machines using an action language which includes
synchronous communication on channels. Components contain several services and
several components can be assembled using client-server links. A composite com-
ponent encapsulate assemblies in which services of the subcomponents can be pro-
moted at the composite level.

Figure 4 shows a small architecture composed of a driver and three vehicle com-
ponents. We use the SCA notation [17] to make explicit the component’s interfaces
with provided and requires services (called references in SCA). Each component
has a configuration service conf (used when instantiating the component), a main
service run, which is launch automatically after configuration (autorun). The run
and conf services assign values to the vehicle’s state. The run service activates the
vehicle behaviour and services to give their position and speed, it’s a loop that ends
when the platoon reach its goal. The computeSpeed service reads the vehicle’s state
to compute the next speed. Other services like stop which interrupts a vehicle, have
been omitted for simplicity.

In Kmelia the components, assemblies and compositions can be analysed accord-
ing to various facets and levels, as detailed in [2]. The general verification approach
is explained in [1]. It is instrumented by the COSTO tool, a set of Eclipse plugins
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Fig. 4 Component model of the Platoon system

including an editor, a type checker, several analysis tools and exportations to exter-
nal tools like MEC, CADP (Lotos), AtelierB and Rodin (Event-B), but also a Java
code generator and an assistant to generate and execute test harnesses [5].

Previous works detail the verification techniques: the verification of functional
contracts inside services/components [2] and in service composition [3] (theorem
proving), the verification of behavioural compatibility [6] (model checking), the
verification of consistency between service contracts and concrete behaviour [4]
(model testing). For sake of space we redirect the reader to there references and we
just enumerate in the remaining some kind of properties that can be checked on the
platoon example (S-safety, L-liveness, F-Failure...):

S1 A vehicule moves in the bad direction because the given values are false or in-
correct (not in the scope, not the same unit or representation...). This can lead to
collision with other vehicules, people or environment.

S2 A vehicule leaves the platoon to be autonomous (with no driver) but does not
reconnect its follower to its driver (dynamic service reconfiguration).

S3 A hacker intercepts the communications between two vehicules to send non-
authorized information, the service contract should not be interruptible (broken
subservice dependency).

L1A vehicule waits because it cannot find its predecessor position or speed (service
availability) or understand the given values (bad parameters or result type) or
cannot read the values on time (bad QoS or synchronization).

L2A vehicule cannot move because the physical situation is not consistent the vir-
tual situation (twin failure), for the same reasons as above.

L3The platoon is stopped due to bad configuration or reconfiguration ; e.g. vehicule
is (directly or indirectly) driven by its own position and speed (infinite loop).

F1 An intermediate vehicule accelerates or decelerates suddenly due to a bad inter-
pretation of its received values ; the followers will have the same jerky behaviour.
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F2 The platoon turns round due to bad general configuration or reconfiguration ; at
least this the case L3 where the position and speed are given with a delta of time
which differs from case F1.

7 Related References

This section points out relevant information from related references
Bauer et al. [7] discuss current trends in manufacturing IT. They provide a good

overview on manufacturing services and also apps, including concepts and imple-
mentation. Independent service vendors (ISV) are able to offer their services on the
platform and users should be able to orchestrate services according to their needs in
order to flexibly adapt to changing market conditions. We bring a new perspective
on it by providing service engineering to put this need in practice.

As far as services can encapsulate or abstract not only software but physical
behaviours (like digital twins do), orchestration refers to smart adaptable assembly
systems as introduced by ElMaraghy [18] which creates the possibility of cross-
fertilization of ideas.

Our proposal can take place in the integration part of the general frame for design,
modelling, simulation and integration of cyber physical systems given by Hehen-
berger et al. [9] which includes mechatronic and internet of things (IoT). Abstrac-
tion and interoperability are key concepts for such systems. They denote often a lack
of clearly specified and documented interactions and interfaces between the vari-
ous disciplines and involved components and hence mutual understanding in com-
munication is hindered. Our model can help in providing an abstract service layer
for trust interoperability like an Architecture Description Language(ADL) which is
more service oriented than the ADLs they mentioned. This takes place in the Service
Enablement Layer of Monostori et al. [14] or in the 3rd level of the 5C architecture
for implementation of Cyber-Physical System of Lee and al. [11]. Services can play
roles in both twin models and the integration to higher level layers including produc-
tion monitoring but also business processes or manufacturing simulation as in [20].

Liu et al. introduce a new paradigm of Cyber-Physical Manufacturing Cloud
(CPMC) to bridge gaps among cloud computing, cyberphysical systems, and manu-
facturing [12]. They propose a four-layer service-oriented CPMC architecture where
what we call atomic services could belong to layer 2 (resource virtualization) and
our composed service would belong to layer 4 (core cloud) that handles API, secu-
rity and publication. We think that our model of rich interfaces could be integrated
in layer 4 with verification facilities. Morgan and O’Donnell investigated whether
SOA could be integrated into a cyber-physical manufacturing execution system to
enable cloud monitoring [16]. SOA was identified to not meet the deterministic re-
quirements of low levels but meets those of all higher level manufacturing CPS
layers due to the reduced time constraints present.
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Our service meta-model covers a broad kind of services, it can be enriched with
specialized meta-model like the UML4IoT to exploit IoT in cyber-physical manu-
facturing systems [21].

Compared with the work of Gamboa Quintanilla et al [18], our model is more rich
and more open. Their concept of service corresponds to our notion of atomic service
while their processes are atomic service assemblies. Building high level services
would be possible at implementation only. In addition, they do not include the notion
of required services, communications between services, dynamic behaviour... Those
concepts that make possible rich interfaces and powerful automatic service search
and composition.

8 Conclusion

The service orientation, enforced by cloud computing, become pregnant not only in
software engineering but also in cyber physical systems, production systems and
manufacturing control. The principles of component and service based comput-
ing have been set since two decades but the practice is far from those theories and
the principle "on the shelf" ; services are usually composed by programmers. The
Kmelia model to improves the service selection (search the adequate service) and
the service orchestration (check the deep compatibility before assembling). Some
features of Kmelia are really innovative e.g. rich interface and required service en-
ables to really have modular descriptions of services which are fundamental for ser-
vice interoperability or service substitution... Of course, the illustrated example is
not directly related to CPS and manufacturing but we are convinced that the frame-
work would be helpful to detect statically potential errors when assembling services.
Open perspectives are (1) to extend existing CPS manufacturing service models to
rich interfaces to enable searching and orchestration facilities, (2) to check statically
or on the fly the provision of services and (3) to target various implementation model
(SOA, WSDL...) or to generate implementation to deploy.
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