
DFTCalc:
A Tool for Efficient Fault Tree Analysis

(extended version)?

Florian Arnold1, Axel Belinfante1, Freark Van der Berg1,
Dennis Guck1, Mariëlle Stoelinga1

1 Department of Computer Science, University of Twente, The Netherlands
{f.arnold,d.guck,a.f.e.belinfante,m.i.a.stoelinga}@utwente.nl

f.i.vanderberg@student.utwente.nl

Abstract. Effective risk management is a key to ensure that vital as-
sets like our nuclear power plants, medical equipment, and power grids
are dependable. Also, risk management is often required by law. Fault
Tree Analysis (FTA) is a widely used methodology here, computing im-
portant dependability measures like system reliability and availability.
This paper presents DFTCalc, a powerful tool for FTA that provides
(1) efficient fault tree modelling via compact representations; (2) effec-
tive analysis, allowing a wide range of dependability properties to be
analysed; (3) efficient analysis, via state-of-the-art stochastic techniques;
and (4) a flexible and extensible framework, where gates can easily be
changed or added. Technically, DFTCalc is realised via stochastic model
checking, an innovative technique offering a wide plethora of powerful
analysis techniques, including aggressive compression techniques to keep
the underlying state space small.

1 Introduction

Risk analysis is a key feature in reliability engineering: in order to design and
build medical devices, smart grids, and internet shops that meet the required
dependability standards, we need to assess how dependable these systems are,
and take appropriate measures if they are not dependable enough. This analysis
is most useful when carried out at design time. Then important reliability deci-
sions are made concerning the system architecture, the level of redundancy and
spare management.

Fault Trees. Fault tree analysis (FTA) is a graphical technique that is often
used in industry [27]. Fault trees (FTs) model how component failures lead to
system failures: The leaves of a FT are basic events (BEs) that represent com-
ponent failures, e.g. the failure of a motor. The other nodes express how failures

? This research has been partially funded by the NWO under the project ArRangeer
(12238), and by the DFG/NWO bilateral project ROCKS (DN 63-257) and by the
European Commission’s FP7 under the project TREsPASS (318003).

2 Arnold, Belinfante, Berg, Guck, Stoelinga

propagate through the system via AND and OR gates. For instance, a car fails,
if either the motor, the battery or the starting mechanism fails. Quantitative
fault tree analysis derives the probability of a system failure from the probabil-
ities of the components’ failure. There are two important models: Discrete time
FTs equip each BE with a probability p, representing the probability that the
component fails within a certain discrete time interval. In this paper we con-
sider continuous FTs. Here, each BE is equipped with a probability distribution
f showing how the failure behaviour evolves over time, i.e. F (t) represents the
probability that the BE is still running at time point t. The root of the tree,
called the top-level event, represents a system failure. FTA typically computes
for a given FT the system reliability, i.e. the probability that the system has not
failed within a given mission time T , the mean time to failure (MTTF), i.e. the
expected time of a failure to occur, and the availability, i.e. the time that the
system is up in the long run.

Dynamic Fault Trees (DFTs) extend standard (or static) fault trees with a
number of intuitive gates. These gates facilitate the modelling of often recurring
concepts in reliability engineering: spare management, functional dependencies,
and order-dependent behaviour. We focus on DFTs without maintenance.

DFTCalc. DFTCalc is a powerful tool for modelling and analysis of DFTs.
It can efficiently model DFTs and provides means to compute various depend-
ability metrics, given BEs whose failure probabilities are given by exponential
and phase type distributions. The major innovation of DFTCalc is the deploy-
ment of stochastic model checking (SMC) techniques [3]: SMC is an innovative
technique to systematically explore the state space of a stochastic system and
provides a wide plethora of powerful analysis techniques, with fully-fledged tool
support. By deploying SMC, DFTCalc can handle DFTs with BEs that are
statistically dependent; in fact, the FDEP gate has specifically been designed to
model interdependent events. Repairs, however, have not yet been included.

The main problem in time-dependent reliability analysis is its complexity:
The state space of models of real systems can grow very large [21] and, thus,
highly efficient techniques are needed to yield results in a reasonable amount of
time. Furthermore, an accurate modelling of all dependencies in these inherently
complex systems requires an ever growing diversity of new gates. DFTCalc con-
stitutes an architectural framework that addresses both challenges, and thereby
yields four major advantages:

– Increased modelling power. Compared to earlier DFT tools, DFTCalc’s
input language is more powerful and imposes fewer syntactic restrictions:
DFTCalc allows any DFT to be a spare component or a trigger, and is
no longer restricted to BEs as in [22]. This is a great advantage in practice,
since spare components and triggers are often complete subsystems.

– Increased analytical power. SMC enables DFTCalc to analyse a wide range
of dependability metrics, namely those expressed in a large subset of the logic
CSL [1]. Also, as argued in [6], certain DFTs give rise to non-determinism.
These can be handled by DFTCalc.

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 3

inputs

output

(a) OR

inputs

output

(b) AND

k/n

inputs

output

(c) VOTING

inputs

output

(d) PAND

output

Primary
Spares

(e) SPARE

dummy output

trigger

Dependent events

(f) FDEP

Fig. 1. Dynamic fault tree gates.

– Efficiency. DFTCalc uses compositional aggregation techniques (Section 3)
that lead to significant speed ups of several orders of magnitude.

– Flexibility. The compositional aggregation approach makes the framework
very extendable. In order to change the behaviour of a gate or add new gate
types, we only need to provide the underlying, relatively simple model in the
form of an input/output interactive Markov chain (Section 2.2).

Related work. A wide range of FTA methods exists: Classically, one obtains the
minimal cut sets in the FT [4]. That is, those minimal sets of BEs whose failure
results in a system failure. This enables to order components based on their
structural importance. Further, with additional probabilistic information one
can compute the system reliability. A popular technique is to exploit Bayesian
networks, which used both in discrete time [9] and in continuous time [8]. Our
approach focuses on continuous timed systems. Therefore, we will translate DFTs
into continuous time Markov chains (CTMCs) and use state of the art techniques
as described in [1,2]. This allows us to compute reliability measures by use of
efficient techniques for transient analysis of CTMCs.

A wide number of commercial and academic tools for static fault tree analysis
are available. Some are merely drawing tools, while others provide probabilistic
analysis, like the popular FaultTree+ package from Isograph [19]. Dynamic FTA
is supported by tools like Windchill [24], NASA’s Galileo/ASSAP software [12],
and the simulation tool DFTSim [10]. A first implementation of DFT analysis
using I/O-IMCs was realized in Coral [7], the predecessor of DFTCalc.

Organisation of the paper. Section 2 presents DFTCalc’s modelling and
analysis capabilities and Section 3 the architecture and internal structure. In
Section 4 we provide experimental results and Section 5 concludes the paper.

2 Dynamic fault trees: modelling and analysis

2.1 Dynamic Fault Trees

DFT modelling. Dynamic fault trees (DFTs) model the failure propagation in
complex systems. The leaves of a DFT are labeled with basic events and the
non-leaves with gates. The root is called top-level event.

4 Arnold, Belinfante, Berg, Guck, Stoelinga

System fails

CPU unitCPU FDEP

P BTrigger

CS SS

Motor unit

Switching unit

MS

Motors

MA MB

Pump unit

Pump 1 Pump 2

PA PS PB

Fig. 2. The cardiac assist system DFT.

Basic events. A basic event (BE) represents the failure behaviour of a basic
system component, and can be in three different modes: dormant, active and
failed. The dormant mode indicates that a component is not in use, but acts as
a stand-by or spare; the active mode indicates that the component is in use and
works normally; finally the failed mode indicates that the component has failed.
In active mode, a component fails with a certain rate λ which is the parameter
of an exponetial distribution. In dormant mode the failure rate is decreased
by a dormancy factor α ∈ [0, 1]. In case α = 0 the BE cannot fail (cold BE)
and in case α = 1 the failure rate is the same as in active mode (warm BE).
Alternatively, the failure behaviour can be specified by a phase type distribution,
see Sec. 2.3. In that case, the dormancy factor reduces each rate of the phase
type distribution.

Gates. A gate expresses how component failures induce a system failure. Gates
consist of one or more inputs, and one output. Figure 1 depicts the DFT gates.

(a) The OR gate fails when at least one input fails.
(b) The AND gate fails when all of its inputs fail.
(c) The VOTING gate fails when at least k out of n inputs fail.
(d) The PAND gate fails when all of its inputs fail from left to right.
(e) The SPARE gate consists of a primary input and one or more spare inputs.

At system start, the primary is active and the spares are in dormant mode.
When the primary input fails, one of the spare inputs is activated and re-
places the primary. If no more spares are available, the SPARE gate fails.
Note that a spare component can be shared among several spare gates.

(f) The FDEP (functional dependency) gate consists of one trigger event and
several dependent events. When the trigger event occurs, all dependent events
fail. The FDEP has a ”dummy” output, which is represented by a dotted line
and ignored in calculations.

Example 1. Fig. 2 depicts a DFT representing a cardiac assist system (CAS) [9]
consisting of three subsystems: the CPU, the motor and pump units. If either

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 5

one of these subsystems fails, then the entire CAS fails, as modelled by the top
level OR gate. The CPU unit consists of a primary (P) and a backup (B) CPU,
as indicated by the SPARE gate. The primary and backup CPU are subject to
a common cause failure, modelled by the CPU FDEP gate: if either the crossbar
switch (CS) or the system supervisor (SS) fails, the primary and backup CPU
become unavailable. The motor unit consists of a primary (MA) and a backup
(MB) motor. If the primary fails, the motor switching component (MS) will turn
on the backup motor. Because of the PAND gate the failure of the switching
component can then be ignored. Finally, the pump unit consists of two pumps
(PA and PB), which share a common cold spare (PS).

2.2 Input/output interactive Markov chains

DFTCalc uses input/output interactive Markov chains (I/O-IMCs) [6] to for-
mally encode the semantics of DFT gates and leaves. I/O-IMCs extend inter-
active Markov chains (IMCs) [17] by integrating features from input/output
automata. An I/O-IMC consists of a number of states which are connected via
transitions. As in interactive Markov chains, transitions are classified as either
Markovian transitions or interactive transitions. Markovian transitions represent
a system delay. They are labeled with rates λ indicating that the transition can
be taken after an exponentially distributed delay with parameter λ. In other
words, the time until a Markovian transition is taken, represented by random
variable X, is defined by the cumulative distribution function (CDF)

P(X ≤ t) = 1− e−λt, for any t ∈ R+.

On the other hand, interactive transitions are executed instantly. They are la-
beled with different kinds of actions:

(a) Input actions (denoted a?) can only be taken, if another I/O-IMC executes
an output action a!; we say that a? requires synchronization on a!. The
action is thus possibly subject to delays.

(b) Output actions (denoted a!) cannot be delayed and have to be taken imme-
diately. They emit the output signal a! on which corresponding input actions
can synchronize.

(c) Internal actions (denoted a;) cannot be delayed, quite like output actions.
However, they are not visible to other I/O-IMCs, i.e. they do not require
synchronization.

I/O IMCs are input-enabled, meaning that all states in an I/O-IMC can respond
to all input signals from any other I/O-IMC in the considered system. These
concepts are formalized in the following definition.

Definition 1 (Input/Output Interactive Markov Chain). An input/out-
put interactive Markov chain is a tuple I = (S, s0, Act, −→ , 99K) where S is a
set of states, s0 ∈ S is the initial state, Act is a finite set of actions (or signals),
where Act = {ActI , ActO, Actint} with ActI the set of input actions, ActO the
set of output actions and Actint the set of internal actions, and

6 Arnold, Belinfante, Berg, Guck, Stoelinga

– −→ ⊆ S ×Act× S is a set of interactive transitions, and
– 99K ⊆ S × R>0 × S is a set of Markovian transitions.

I/O-IMC s are input enabled, such that ∀s ∈ S.α ∈ ActI ,∃s′ ∈ S.(s, α, s′) ∈ −→ .

We abbreviate (s, α, s′) ∈ −→ by s α−−→ s′ and (s, λ, s′) ∈ 99K by s
λ

99K s′. Further,
we write α? iff α ∈ ActI , α! iff α ∈ ActO and α; iff α ∈ Actint.

One of the key properties of I/O-IMCs is that they are compositional. Com-
plex models consisting of various interacting I/O-IMCs can be aggregated in a
stepwise, hierarchical manner to obtain one I/O-IMC representation of the whole
system. We denote with I1||I2 the parallel composition of I/O IMCs I1 and I2.
Then Ic = I1||I2 is again an I/O-IMC (with the Cartesian product of I1 and I2
as state space) expressing the joint behavior of its constituents:

(a) If an action does not require synchronisation, then I1 and I2 evolve indepen-
dently.

(b) If an action a? on an interactive transition requires synchronisation, then
it can only be taken at the time when another I/O-IMC performs output
action a!.

This behaviour is defined formally in the following definition.

Definition 2 (Parallel Composition). Let I1 = (S1, s0,1, Act1, −→ 1, 99K1)
and I2 = (S2, s0,2, Act2, −→ 2, 99K2) be I/O-IMCs. I1 and I2 are composable, if

ActO1 ∩ Act
O
2 = Actint1 ∩ Act2 = Act1 ∩ Actint2 = ∅. The parallel composition of

I1 and I2 is then defined by:

I1||I2 = (S1×S2, (s0,1, s0,2), {(ActI1∪Act
I
2)\(Act

O
1 ∪Act

O
2), Act

O
1 ∪Act

O
2 , Act

int
1 ∪Act

int
2 }, −→ , 99K)

where −→ and 99K are defined as the smallest relation satisfying

(a) s1
α−−→ s′1 and s2

α−−→ s′2 and α ∈ Act1 ∩Act2 implies (s1, s2) α−−→ (s′1, s
′
2)

(b) s1
α−−→ s′1 and α 6∈ Act2 implies (s1, s2) α−−→ (s′1, s2) for any s2 ∈ S2

(c) s2
α−−→ s′2 and α 6∈ Act1 implies (s1, s2) α−−→ (s1, s

′
2) for any s1 ∈ S1

(d) s1
λ

99K s′1 implies (s1, s2)
λ

99K (s′1, s2) for any s2 ∈ S2

(e) s2
λ

99K s′2 implies (s1, s2)
λ

99K (s1, s
′
2) for any s1 ∈ S1.

The first three constraints define the behaviour for interactive transitions: (a)
describes the synchronisation between an input action α? and an output action
α! where (b) and (c) describe the independent evolving of either I/O-IMC. The
last two constraints (d) and (e) show that the I/O-IMCs can delay independanly.
Hence, no synchronisation over Markovian transitions is done. This behaviour is
justified by the memoryless property of exponential distributions: if two Marko-
vian transitions with rate λ and µ competing for execution, then the remaining
delay of the µ-transition after taking the λ-transition is exponentially distributet
with rate µ.
After the parallel composition of two I/O-IMCs we can hide those actions which
are no longer subject to further synchronisation. This is formally defined in the
following.

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 7

A 1 2 3
ν act!

B 1

2

3 4

(a) Two examples of I/O IMCs

a?

µ

λ

act?

act?
fail!

A||B 1,1

1,3

2,1

2,3

3,2

3,3 3,4

(b) Parallel composition of A and B, hiding signal act

µ

ν

ν

µ

act;

act;

λ

fail!

Fig. 3. Composition and hiding of I/O IMCs

Definition 3 (Hiding). Let I = (S, s0, Act, −→ , 99K) be a I/O-IMC and A ⊆
ActO a set of output actions. We define hide A in I as the I/O-IMC given by
I \A = (S, {ActI , ActO \A,Actint ∪A}, −→ , 99K, s0).

Example 2. Consider the two I/O-IMCs A and B in Fig. 3(a), where A describes
an activation after a delay given by rate ν and B describes a dormant BE with
dormant failure rate µ and active failure rate λ. States are depicted by circles,
initial states by an incoming arrow, Markovian transitions by dashed lines, and
interacting transitions by solid lines. While A has only one possible path from
the initial to the final state, B can either directly reach state 3 by a Markovian
transition, or move via state 2. The path taken is determined by a race con-
dition: If the delay generated by the Markovian transition is shorter than the
delay caused by the synchronization on action a, then B executes the transition
from state 1 to state 3. When composing A and B we synchronize on action act.
Since B has act as input, it has to wait for A’s output action act!. All Marko-
vian transitions and non-synchronising signals are essentially interleaved during
composition. All synchronising signals are transformed into internal actions and
thereby hidden.

2.3 Phase-type distribution

In the most generic case the failure times of components are represented via
exponential distributions which capture the non-aging of mechanical elements
with its memoryless property. Besides, we also have to resort to a different fam-
ily of distributions to model the failure time accurately. In DFTCalc we use
phase-type distributions to solve this problem. A phase-type (PH) distribution
is a probability distribution constructed of several exponential distributions. An
important property of PH distributions is that they can approximate any contin-
uous distribution with arbitrary precision [20]. Therefore, DFTCalc allows the
user to annotate the basic components with any suitable distribution. Formally,
a phase-type distribution represents the distribution of the time until absorp-
tion in an absorbing CTMC [25]. An example is given in Fig. 4. We will focus on

8 Arnold, Belinfante, Berg, Guck, Stoelinga

1 2 3 4
1

0

0

1

2

1

2

1

Fig. 4. CTMC representation of an APH distribution. The absorbing state is coloured
in black.

acyclic phase-type (APH) distributions, that is, the representing Markov chains
are acyclic.

Definition 4 (Continuous time Markov chain). A continuous time Markov
chain (CTMC) is a tuple C = (S,Q,−→π), where S is a finite set of states, Q :
(S × S) → R is an infinitesimal generator matrix, and −→π : S → [0, 1] is the
initial probability distribution on S.

For any two states s, s′ ∈ S, Q(s, s′) represents the rate of the transition from
s to s′. By definition Q(s, s′) ≥ 0 for all s, s′ ∈ S with s 6= s′, and Q(s, s) =
−
∑
s6=s′ Q(s, s′) otherwise. The negative diagonal value, E(s) = −Q(s, s) is

called the exit rate of state s.

Definition 5 (Acyclic phase-type distribution). Let C = (S,Q,−→π) be a
CTMC with S = {s0, s1, . . . , sn}. If the last state sn ∈ S is absorbing, i.e.
E(s) = 0, and all other states si ∈ S, for 0 ≤ i < n, are transient, i.e. there is
a nonzero probability that si will never be visited once it is left, then C describes
an acyclic phase-type (APH) distribution.

In other words, an APH distribution describes the time of absorption of a CTMC
C without cycles and exactly one absorbing state. APH distributions are often
represented in the following way: If C represents an APH distribution, its in-
finitesimal generator matrix can be written as

Q =

[
A
−→
A

−→
0 0

]
.

Since we consider CTMCs with an acyclic graph structure A is an upper trian-
gular matrix. Further, A is called APH-generator and is non-singular. We will
map the initial distribution −→π to a new initial distribution −→α for all transient
states, such that α(s) = π(s) for all s ∈ S \ {sn}. The pair (−→α ,A) is then the
representation of an APH distribution.

Example 3. Consider the CTMC C depicted in Fig. 4. By definition, C represents
a APH distribution with

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 9

1 2 3 4 5 6

(a) (b)

act? 1

2

1

2

1 f !

1 2 3 4

5 6 7 8

9

1

2

1
2
1

f !

1

2

1

2

1
f !

act? act? act? act?

Fig. 5. (a) I/O-IMC representation of an active BE with APH distribution; (b) I/O-
IMC representation of an dormant BE with APH distribution.

Q =

−3 1 2 0

−0 −3 1 2

−0 0 −1 1

−0 0 0 0

=

3 1 2 0

0 A 1
−→
A

0 0 1 1

0
−→
0 0 0

−→π = [1, 0, 0, 0] = [−→α , 0]. Hence the corresponding APH distribution is given by
APH = (−→α ,A).

COX normalform. The COX normalform [13] is a special representation of
an APH distribution. In a COX representation of an APH, every state, apart
from the absorbing state, has a transition to the next state, possibly a transition
to the absorbing state, and no other transitions. Furthermore, it has descending
exit rates and a Dirac initial distribution, that is, the state with the highest exit
rate is the only possible starting state. Any APH can be transformed into a COX
representation, by first applying the so-called spectral polynomial algorithm to
yield a canonical ordered bidiagonal representation in time O(n3), where n is the
size of the given APH representation. Once an ordered bidiagonal representation
is obtained, we can transform it into a COX representation in O(n) [25].

Phase type distribution in BEs. We now define how to model the failure
behaviour of basic components with APH distributions. That is, instead of an-
notating the BEs with failure rates as for the BE B in Fig. 3(a), we annotate
them with the CTMC representation of the APH distribution which determines
the component’s failure probability over time. To embed this feature into the
I/O-IMC formalism, it is necessary that there is a unique initial state, i.e. the
initial probability distribution is a Dirac distribution, such that we can plug in
the APH distribution instead of the exponential distribution. An example for
the I/O-IMC of a BE with APH distribution is presented in Fig. 5.

We can also model the failure behaviour of dormant BEs with APHs. Dor-
mant BEs have a different failure distribution, depending on whether they are

10 Arnold, Belinfante, Berg, Guck, Stoelinga

still in dormant mode or have been activated. We model these two phases by
linking two APHs which describe the distribution of a failure over time. The
dormant APH distribution is obtained by applying a dormancy factor α to all
rates in the CTMC that represents the APH distribution in dormant mode. The
corresponding I/O-IMC starts with this CTMC, and once the component is ac-
tivated, the I/O-IMC moves to the equivalent state in the APH that represents
the active mode. The assumption behind this model approach is that the aging of
the component in dormant mode is memorised when the component is activated
[7].

Representation of Phase type distributions in BEs. Due to the use of
I/O-IMCs we can only embed those APHs that have a Dirac initial probability
distribution. When deriving an APH representation of a certain distribution, for
instance by fitting algorithms [18], they usually do not fulfill this requirement.
However, there are algorithms available to transform any APH distribution into a
COX representation [13], an APH representation with a Dirac initial distribution.

2.4 DFT analysis

DFTCalc can compute a number of different reliability metrics, namely all
metrics that can be expressed as reachability properties in the logic CSL. This
includes properties such as:

(1) Timed-Reliability : the probability that the system fails until a given time
point T or in a given interval [T, T ′];

(2) Mean time to failure: the expected time to a system failure;
(3) Reliability : the probability that the system fails in the long-run.

In case of non-determinism, we calculate the minimum and maximum values
for the above metrics. Each of these properties can either be evaluated from the
initial state (i.e. the system is fully functional), or by setting evidence (i.e certain
components have failed already).

DFTCalc fruitfully exploits the technique of compositional aggregation, see
Fig. 8. Whereas traditional FTA methods translate a DFT into a large and mono-
lithic CTMC, we do this in a stepwise fashion: First, DFTCalc translates each
element (i.e., gate or BE) into an input-output interactive Markov chain (I/O-
IMC), implementing the methodology from [6,7]. Then, we obtain the underlying
CTMC by composing all I/O-IMCs. We compose these I/O-IMCs one-by-one,
and employ aggressive state space compression technique in each step, to keep
the state space minimal.

3 DFTCalc’s structure: architecture and interface

Architecture. DFTCalc combines dedicated code and the state-of-the-art
model checkers CADP, MRMC and IMCA:

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 11

DFT dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

DFTCalc

Reliability

Fig. 6. The DFTCalc tool-chain.

CADP [15] supports construction, minimisation and analysis of IMCs. It com-
piles and generates the state space from a LotosNT [26] specification. The com-
positional verification engine of CADP can compose a network of communicat-
ing IMCs. The tool set also enables minimisation modulo strong and branching
bisimulation.

MRMC [21] is a model checker for discrete-time and continuous-time Markov
reward models. It supports the verification of properties expressed by the logics
PCTL and CSL as well as their reward extensions CSRL and PCTRL. There is
also a CTMDP extension available1 which provides recent analysis techniques
based on [11].

IMCA [16] is a tool for the quantitative analysis of IMCs. In particular, it sup-
ports the verification of IMCs against unbounded reachability, time- and interval-
bounded reachability, expected-time objectives, and long-run average objectives.

The architecture of DFTCalc is displayed in Fig. 6 and the processing
steps in Fig. 7: First, dft2lntc translates a DFT in Galileo format into .lnt

format, a process calculus enriched with data that is input to CADP. Techni-
cally, this step transforms each DFT element into an I/O-IMC representing the
element’s behaviour. Additionally, a .exp file is generated that defines the in-
teraction between components. The clear distinction between local component
and global system information together with the compositional semantics of
I/O-IMCs makes DFTCalc highly flexible: New components can be added or
existing components adapted by specifying their behaviour in .lnt format and
adding them to the tool’s library. In the next step, the CADP tool set [15] uses
the compositional aggregation method to generate the state space of the system,
which is a I/O-IMC representation of the whole DFT. The output of CADP is
a .bcg file. This format is translated either into a .ctmdpi file, which is input
to the Markov Reward Model Checker MRMC [21], or into an .ma file, which
is the input of the Interactive Markov Chain Analyzer IMCA [16]. Finally, the
requested dependability metrics are computed.

Compositional aggregation. Compositional aggregation of I/O-IMCs lies at
the heart of DFTCalc. As depicted in Fig. 8, after transforming each DFT
element into an I/O-IMC, we iteratively compose the obtained I/O-IMCs. We

1 http://depend.cs.uni-sb.de/tools/ctmdp/

http://depend.cs.uni-sb.de/tools/ctmdp/

12 Arnold, Belinfante, Berg, Guck, Stoelinga

toplevel ”Sys”;

”Sys” or ”CPU” ”En”;

”En” and ”EA” ”ES”;

”CPU”’ lambda=0.01;

”EA”’ lambda=0.05;

”ES”’ lambda=0.02;

System fails

CPU energy

EA ES

1

2

34

5

6

a?

13

2

53

f!
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Mission time (in 10000h)

P
ro

b
a
b
il
it

y
to

fa
il

Fig. 7. Graphical overview of the processing steps in DFTCalc.

take two I/O-IMCs, compose them, hide all action labels that are no longer
needed for synchronisation, and then minimise the composition via bisimulation
minimisation. This process continues until a single I/O-IMC remains. The order
of the aggregation process heavily influences the number of states in the obtained
I/O-IMC, and is determined by a smart heuristic. Compositional aggregation
yields reductions up to several orders of magnitude [7]. Given a DFT D, the
involved steps to obtain one minimal I/O-IMC representation of D are:

(1) Each element in D is transformed into its corresponding I/O-IMC. The inter-
action between components in D is preserved by matching input and output
signals: Once failed, basic events in D send output signals and attached gates
receive the corresponding input signal. In this way, the signals are passed
on bottom-up from the leafs of D to its root. This step results in a set of
I/O-IMCs.

(2) Two interacting I/O-IMCs are composed in parallel with Def. 2. The order
in which the I/O-IMCs are chosen and composed is determined by a smart
heuristic which calculates for each possible aggregation a metric based on
the number of outgoing transitions of the product state [14].

(3) All signals that are no longer necessary for composition, i.e. those signals
which require no more synchronisation, are hidden and transformed into
internal actions.

(4) The composed I/O-IMC is minimised using branching bisimulation [17].
(5) If more than one I/O-IMC is left, go to Step 2; otherwise continue with

Step 6.
(6) The aggregated I/O-IMC is analysed with respect to the chosen metrics.

Usually, we do not have non-determinism in the aggregated model and can
obtain a CTMC, otherwise we obtain an IMC.

Web Interface. DFTCalc can be used by downloading a stand-alone version,
and via a web interface. Both are accessible at http://fmt.cs.utwente.nl/

tools/dftcalc/. DFTCalc is open source, but requires a license for CADP,
which is free for academic institutions. The web interface is realised with the
use of PUPTOL [5] and extends the downloadable version with a GUI as well
as the plot function and is shown in Fig. 9. It allows the user to (1) input DFT
models via a text screen, the topmost box in Fig. 9; (2) select the dependability
metrics. This can be (a) the reliability for one or more mission times x, or (b)
the probability on a system failure during an interval [T1, T2], or (c) the mean

http://fmt.cs.utwente.nl/tools/dftcalc/
http://fmt.cs.utwente.nl/tools/dftcalc/

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 13

(a) DFT (b) Transformation (c) Composition (d) Minimisation (e) CTMC

Fig. 8. Graphical overview of the compositional aggregation of DFT models.

DFTCalc
Dynamic Fault Tree Calculator

This page has last been updated by Dennis Guck on May, 23. 2013. stats

1. DFTCalc Web-Tool

What does it do?

DFTCalc is a tool for efficient Fault Tree Analysis. It takes as input a DFT (dynamic fault tree) in Galileo-format and a
set of mission times, and computes the system unreliability for each mission time, i.e. the probability that the
system fails within the mission time. Further it is capable of computing the mean time to failure (MTTF), i.e. the
expected time that the system will fail.

Jump to the Web-Tool form, below

Usage

To experiment with the DFTCalc tool you can use this web-based version. Just provide a DFT in Galileo-format in
the text area , or choose one of the existing examples. There are three different objectives to compute:

Unreliability in interval [0,T]
provide a set of missions times (either by enumerating the values, or by providing lower and upper
bounds and step increment), and choose between MRMC and IMCA.

Unreliability in interval [T1,T2]
provide a lower bound T1 > 0 and an upper bound T2 > T1, and obtain the probability that the
system don't fail before T1 but in the interval [T1,T2].
For this computation, IMCA is used.

Mean time to failure (MTTF)
Obtain the systems mean time to failure.
(optionally, provide values for a plot -- longest mission time, step value -- to override the
defaults)
For this computation, IMCA is used.

click on the 'Show Result' button (to obtain textual output)
or the 'Show Plot' button (to obtain a graph),
or the 'Show Plot and store data set' (to obtain a graph, and store its data for later use in a combined plot).

Each time that you click on 'Show Plot and store data set', you will not only get the graph that 'Show Plot' gives you
too, but also an additional check-button. If you check one or more of these check-buttons, and click on 'Plot
selected data sets in combined plot' you will get a single plot, created from the selected data sets. If you specified a
name for a data set, this name will be used in the combined plot to identify the curve of that data set.
Try, for example, to create a plot of MTTF values for 'dft test1', using scenarios 'without evidence, with given plot
parameters', and 'failed B', 'failed C' and 'failed B and failed C'.

When you click on 'Permalink', what you entered in the form is stored on the server, and an URL is generated that,
when you access it, will give you the form, populated with the stored form data. You can store this URL, or mail it to
others, to allow them to repeat what you did.

To reduce the computation time of subsequent queries on a given DFT (with given evidence), intermediate
computation results are cached for you on the server (they are removed when your session expires).

Additional settings

Evidence: list the names of the components that have failed.
Error bound: Error bound to be used in the computations.
Prob: indicate whether in case of non-determinism, minimal or maximal probability must be computed.
Time: indicate whether in case of non-determinism, minimal or maximal expected time (for MTTF) must
be computed, or whether the setting given for 'Prob' must be used.
Verbosity: indicate level of verbosity
Coloured output: indicate whether or not to use coloured text in the verbose output.
No pointmarks: indicate whether to omit the point marks in plots.

Web tool

Example DFTs are loaded automatically by using the drop-down box below.

Home Web Tool Contact

compute mean time to failure for CAS with evidence setting failed MS

DFT:
toplevel "SYSTEM";
"SYSTEM" or "FDEP" "CPU" "MOTOR" "PUMPS";
"FDEP" fdep "TRIGGER" "P" "B";
"TRIGGER" or "CS" "SS";
"CPU" wsp "P" "B";
"MOTOR" or "SWITCH" "MOTORS";
"SWITCH" pand "MS" "MA";
"MOTORS" csp "MA" "MB";
"PUMPS" and "PUMP1" "PUMP2";
"PUMP1" csp "PA" "PS";
"PUMP2" csp "PB" "PS";
"P" lambda=5.0e-5 dorm=0;
"B" lambda=5.0e-5 dorm=0.5;
"CS" lambda=2.0e-5 dorm=0;
"SS" lambda=2.0e-5 dorm=0;
"MS" lambda=1.0e-6 dorm=0;
"MA" lambda=1.0e-4 dorm=0;
"MB" lambda=1.0e-4 dorm=0;
"PA" lambda=1.0e-4 dorm=0;
"PB" lambda=1.0e-4 dorm=0;
"PS" lambda=1.0e-4 dorm=0;

Compute unreliability in interval [0,T],
for mission times T (T>0), given as

list of values
range, from: to: step:

Model checker: MRMC IMCA
Compute unreliability in interval [T1,T2]
T1: T2:
Compute MTTF (for plot: to: 40000 step: 5)

Evidence: MS

Error bound: E-4 Prob: min Time: as Prob Verbosity: off Coloured output No pointmarks
Show Result Show Plot Show Plot and store data set Data set name: CAS failed MS

Permalink

Stored data sets (to be used for combined plot):
dataset 0: CAS -

dataset 1: CAS failed MS -

Plot selected data sets in combined plot

Resource usage according to memtime: 0.25 user, 0.10 system, 0.40 elapsed -- Max VSize = 11164KB, Max RSS = 1516KB

Powered by puptol

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000 35000 40000

U
nr

el
ia

bi
lit

y

Time Units

CAS
CAS failed MS

MTTF

Fig. 9. DFTCalc web-tool interface.

time to failure; (3) set various options: which model checker to use; the error
bound, the level of verbosity, and whether to color output. The results can be
given either by numbers, via the button show result, or as a plot, via the button
plot result. The input and configuration of the web interface can be saved via
the button permalink.

4 Case Studies

We show the applicability of DFTCalc for three case studies: a multiproces-
sor computing system (MCS) [23,7]; the cardiac assist system (CAS) [9,8] from
Figure 2; and a fault-tolerant parallel processor (FTPP) [7]. The MCS and CAS
models were originally developed for discrete time models [23,9], but were ana-
lyzed — as we do — for continuous time models in [7,8]. The reliability data for
the MCS and CAS case studies are given in Table 1.

All our experiments were conducted on a single core of a 2.7 GHz Intel
Core2Duo processor with 2GB RAM running on Linux. Figure 11 presents the
increasing failure probability over time for two systems as well as their expected

14 Arnold, Belinfante, Berg, Guck, Stoelinga

(a) Reliability of the MCS components.

Failure dormancy
Components rate (λ) factor (α)

N 2.0e−9/h −
P1, P2 5.0e−7/h −
PS 6.0e−6/h −
D11, D21 8.0e−5/h −
D12, D22 8.0e−8/h 0.5

M1, M2 3.0e−8/h −
M3 3.0e−8/h 0.5

(b) Reliability of the CAS components.

Failure dormancy
Components rate (λ) factor (α)

CS, SS 2.0e−5/h −
P 5.0e−5/h −
B 5.0e−5/h 0.5

MS 1.0e−6/h −
MA, MB 1.0e−4/h −
PA, PB 1.0e−4/h −
PS 1.0e−4/h 0.1

Table 1. Reliability data for MCS and CAS.

failure time. Table 2 compares Coral and DFTCalc: DFTCalc is up to three
times faster than Coral and thereby also faster than earlier tools like Galileo [7].

Multiprocessor computing system (MCS). Figure 10(a) depicts the physi-
cal description of the MCS. The system consists of two computing modules CMi
(i=1 or 2). They are connected via a bus, powered by a power supply (PS) and
share a spare memory module M3. Each computing module consists of a proces-
sor Pi, a memory module Mi and two hard drives, a primary Di1 and a backup
Di2. The system fails, if either both computing modules fail, the communica-
tion bus fails or the power supply fails. A computing module fails, if both hard
drives fail, or the processor fails or the memory fails (where the shared spare
memory is not available or also fails). The corresponding DFT is depicted in
Figure 10(b). We also analyzed an extension of the MCS (4CM) which contains
two more copies of the computing modules connected to the same bus with an
own power source and a separate spare memory.

Fault-tolerant parallel processor (FTPP). The FTPP-n [7] models a redun-
dant computer system consisting of four groups of n processors and is depicted
for n = 4 in Fig. 12. The system consists of 4n processors divided into four log-
ical groups. Each group is equippted with a shared cold spare. Furthermore, a
network element physically connects one processor of each group to the system.
If a network element fails, all connected processors become unavailable. In our
set-up, all network elements have a failure rate equal to 0.017, and all processors
have a failure rate equal to 0.11.

Results. The scalability of DFTCalc is shown in Table 2. We provide several
comparisions with the predecessor Coral. For each case study we computed the
probability that the system will fail until a given mission time t. The computation
time includes each analysis step, the transformation of the DFT into I/O-IMCs,
their compositional aggregation and minimisation as well as the analysis. In
this experiment we used the model checker MRMC. The average speed up of
DFTCalc to Coral is approximately a factor of 2.

Fig. 11 depicts the failure probability over time as well as the expected time
to failure for the MCS and CAS case studies. Fig. 11(a) provides the failure
probability until a mission time of 100000 hours for the 2CM and the 4CM

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 15

BUS

P2

CM2

M2

P1

CM1

M1

PS

M3

D11 D12

D21 D22

(a) Architecture of the MCS

System fails

Computing modulesBUS

Computing module 1 Computing module 2

Disks CM1 Memory CM1 Memory CM2 Disks CM2

Disk11 Disk12 Memory1 Memory3 Memory2 Disk21 Disk22

Power system

Power1 Power2
Power-
supply

(b) DFT of the MCS.

Fig. 10. The multiprocessor computing system (MCS).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Mission time (in 10000h)

P
ro

b
a
b
il
it

y
to

fa
il

2CMs

4CMs

expected-time

(a) Failure probability of the MCS over time.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Mission time (in 10000h)

P
ro

b
a
b
il
it

y
to

fa
il

CAS

CAS with failed MS

expected-time

(b) Failure probability of the CAS over time.

Fig. 11. Reliability plots for MCS and CAS.

system. Fig. 11(b) depicts the failure probability for a fully functional CAS
system and for one with a broken motor switch until a mission time of 40000
hours.

5 Conclusion

We have presented an efficient tool chain which allows to model and analyse
DFTs with a number of prominent dependability metrics. The flexible architec-
ture of DFTCalc exploits state-of-the-art techniques to compose, compress and
analyse DFTs, and is easily extendable. We have conducted several case studies
demonstrating DFTCalc’s high performance in the analysis of DFTs.

16 Arnold, Belinfante, Berg, Guck, Stoelinga

As future work, we aim to enable the allocation of a cost structure to DFT
elements. This will support the practical decision making process by allowing to
analyse reliability requirements as an investment. We will further make use of
DFTCalc’s flexible architecture and implement additional gates to broaden it’s
application range to other formalisms like attack trees. The basic components
will be annotated with repair rates to allow a realistic modelling of the long-term
behaviour of complex systems.

Model Tool Time (s) P(fail) States Transitions Speedup

MCS 2CMs, t=10000 Coral 131.492 0.998963 18 55 1

DFTCalc 55.395 0.998963 18 55 2.37371

MCS 4CMs, t=10000 Coral 339.752 0.997927 151 992 1

DFTCalc 201.461 0.997927 151 992 1.68644

CAS, t=10000 Coral 135.155 0.0460314 16 50 1

DFTCalc 51.267 0.0460314 16 50 2.64794

FTPP-4 , t=1 Coral 491.114 0.0192186 142 923 1

DFTCalc 234.905 0.0192186 72 386 2.09069

FTPP-5, t=1 Coral 730.761 0.0030616 2167 27438 1

DFTCalc 603.630 0.0030616 400 3369 1.21061

Table 2. Results of the case studies.

System fails

Group 1

2/3

Group 2

2/3

Group 3

2/3

Group 4

2/3

Sp. 1.2Sp. 1.1 Sp. 1.3 Sp. 2.2Sp. 2.1 Sp. 2.3 Sp. 3.2Sp. 3.1 Sp. 3.3 Sp. 4.2Sp. 4.1 Sp. 4.3

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

AS BS CS DS

FDEP 1 FDEP 2 FDEP 3 FDEP 4

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

N1 N2 N3 N4

Fig. 12. The FTPP-4 case study.

DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version) 17

References

1. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms
for continuous-time Markov chains. IEEE TSE, 29(6):524–541, 2003.

2. C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Efficient computation
of time-bounded reachability probabilities in uniform continuous-time Markov de-
cision processes. Theoretical Computer Science, 345(1):2 – 26, 2005.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4. R. E. Barlow and F. Proschan. Statistical theory of reliability and life testing:

probability models. Holt, Rinehart and Winston, 1975.
5. A. F. E. Belinfante and A. Rensink. Publishing your prototype tool on the web:

PUPTOL, a framework. Technical Report TR-CTIT-13-15, Centre for Telematics
and Information Technology, University of Twente, Enschede, June 2013.

6. H. Boudali, P. Crouzen, and M. I. A. Stoelinga. Dynamic fault tree analysis using
Input/Output interactive Markov chains. In DSN, pages 708–717, 2007.

7. H. Boudali, P. Crouzen, and M. I. A. Stoelinga. A rigorous, compositional, and
extensible framework for dynamic fault tree analysis. IEEE TDSC, 7:128–143,
2010.

8. H. Boudali and J. Dugan. A continuous-time bayesian network reliability modeling
and analysis framework. IEEE transactions on reliability, 55(1):86–97, 2006.

9. H. Boudali and J. B. Dugan. A Bayesian network reliability modeling and analysis
framework. IEEE Transactions on Reliability, 55:86–97, 2005.

10. H. Boudali, A. P. Nijmeijer, and M. I. A. Stoelinga. DFTSim: A simulation tool
for extended dynamic fault trees. In ANSS 2009, page 31, 2009.

11. P. Buchholz, E. M. Hahn, H. Hermanns, and L. Zhang. Model checking algorithms
for ctmdps. In CAV, pages 225–242, 2011.

12. D. Coppit and K. Sullivan. Galileo: a tool built from mass-market applications. In
International Conference on Software Engineering, pages 750–753, 2000.

13. D. R. Cox. A use of complex probabilities in the theory of stochastic processes.
Proceedings of the Cambridge Philosophical Society, 51(2):313–319, 1955.

14. P. Crouzen and F. Lang. Smart reduction. In Proceedings of the 14th international
conference on Fundamental approaches to software engineering: part of the joint
European conferences on theory and practice of software, FASE’11/ETAPS’11,
pages 111–126, 2011.

15. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A toolbox for
the construction and analysis of distributed processes. International Journal on
Software Tools for Technology Transfer, pages 1–19, 2012.

16. D. Guck, T. Han, J. P. Katoen, and M. Neuhausser. Quantitative timed analysis
of interactive Markov chains. In NFM, volume 7226 of LNCS, pages 8–23, 2012.

17. H. Hermanns. Interactive Markov Chains. Springer, Berlin, 2002.
18. A. Horváth and M. Telek. Phfit: A general phase-type fitting tool. In Proceedings

of the 12th International Conference on Computer Performance Evaluation, Mod-
elling Techniques and Tools, TOOLS ’02, pages 82–91, London, UK, UK, 2002.
Springer-Verlag.

19. Isograph. Fault Tree +. www.isograph-software.com/2011/software/.
20. M. A. Johnson and M. R. Taaffe. The denseness of phase distributions. School of

Industrial Engineering Research Memoranda 88-20, Purdue University, 1988.
21. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The

ins and outs of the probabilistic model checker MRMC. Perf. Eval., 68(2):90–104,
2011.

www.isograph-software.com/2011/software/

18 Arnold, Belinfante, Berg, Guck, Stoelinga

22. R. Manian, J. Bechta Dugan, D. Coppit, and K. Sullivan.
23. S. Montani, L. Portinale, A. Bobbio, M. Varesio, and D. Codetta-Raiteri. A tool

for automatically translating dynamic fault trees into dynamic Bayesian networks.
In RAMS, pages 434–441, 2006.

24. PTC. Windchill FTA. http://www.ptc.com/product/relex/fault-tree.
25. R. Pulungan. Reduction of Acyclic Phase-Type Representations. PhD thesis, Uni-

versität des Saarlandes, Saarbruecken, Germany, 2009.
26. S. Sighireanu, A. Catry, D. Champelovier, H. Garavel, F. Lang, G. Schaeffer,

W. Serwe, and J. Stöcker. Lotos nt user’s manual (version 2.7), 2012.
27. W. E. Veseley, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault tree hand-

book, NUREG-0492. Technical report, NASA, 1981.

http://www.ptc.com/product/relex/fault-tree

	DFTCalc: A Tool for Efficient Fault Tree Analysis (extended version)

