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Abstract. In this paper, we describe a tool to verify Er-
lang programs and show, by means of an industrial case
study, how this tool is used. The tool includes a num-
ber of components, including a translation component,
a state space generation component and a model checking
component.
To verify properties of the code, the tool first trans-

lates the Erlang code into a process algebraic specifica-
tion. The outcome of the translation is made more effi-
cient by taking advantage of the fact that software writ-
ten in Erlang builds upon software design patterns such
as client–server behaviours. A labelled transition system
is constructed from the specification by use of the µCRL
toolset. The resulting labelled transition system is model
checked against a set of properties formulated in the µ-
calculus using the Cæsar/Aldébaran toolset.
As a case study we focus on a simplified resource man-

agermodelled on a real implementation in the control soft-
ware of the AXD 301 ATM switch. Some of the key prop-
erties we verified for the programaremutual exclusion and
non-starvation. Since the toolset supports only the regu-
lar alternation-free µ-calculus, some ingenuity is needed
for checking the liveness property “non-starvation”. The
case study has been refined step by step to provide more
functionality,with each stepmotivatedby a corresponding
formal verification usingmodel checking.

Keywords: Formal methods – Software verification –
Model checking – Functional programming – Erlang

1 Introduction

In this paper, we describe an approach to the verification
of Erlang code which involves model checking an abstrac-
tion of the code by translating it into a process algebra.

The telecommunications company Ericsson is using
the functional programming language Erlang [1, 13] for
the development of concurrent/distributed software for
telecommunications equipment. One of the larger exam-
ples of such a system is the AXD 301 high-capacity ATM
switch [7], used to implement, for example, the backbone
network in the UK. The software of this switch consists of
about half a million lines of Erlang code.
This code is written in a development process which is

rather similar to theExtremeProgramming approach [23]:
designers write and test itthemselves and in small iter-
ations, and features are added to the code until a final
release stage is reached.
At Ericsson, the software for large projects like the

AXD 301 switch is written according to rather strict de-
sign principles. For the AXD software, a number of soft-
ware components are used which have been specified for
use in a number of Ericsson projects. These components
can be seen as higher-order functions for which certain
functions have to be given to determine the specific func-
tionality of the component. About 80% of the software
implements code for this specific functionality of one of
these components, the majority for the generic server
component. The generic server is a component which im-
plements a process with a simple state parameter and
mechanism to handle messages in a fifo message queue.
Both the development process and the use of these li-

brary components ensure that the code is tested many
times before the final implementation. For example, dur-
ing development the software is often written during the
day and tested overnight. The test cases are written by
the designers in parallel with the code, and a test server
automatically runs these test cases.
However, despite this extensive testing, for critical de-

vices such as telecommunications switches, it is clearly
preferable to have even higher levels of assurance that the
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code is correct. Our aim, therefore, is to build a formal
verification tool that fits into this development process.
The tool supports (overnight) verification of proper-

ties, the purpose of which is to check aspects similar to
the testing process. This paper describes the tool that we
developed, and the use of the tool is illustrated by a case
study taken from the AXD 301. The tool and approach
are based on model checking a process algebraic repre-
sentation of the Erlang code and therefore involve issues
such as abstraction of code to specification, state space
generation and model checking. The advantage of our ap-
proach and tool over testing should be clear: they cover
a larger portion of the state space of the system; indeed,
when the state space is finite, the whole state space can
be verified.
The case study we describe in this paper is a dis-

tributed resource manager which was re-designed in the
same way as real production code would be re-designed.
In small iterations, the complexity of software was in-
creased and properties were checked against these itera-
tions in turn. Clearly our re-design is based on the same
Ericsson design principles as the AXD 301 switch. Fol-
lowing these design principles and using real software
components make the verification approachmore realistic
and easier; the message buffers of arbitrary Erlang pro-
cesses are more complicated than the constrained mes-
sage buffer in a generic server. Thus by using the se-
mantics of the generic server, we obtain smaller state
spaces.
Another requirement of our verification tool is that it

should be accessible to Erlang programmers without forc-
ing them to learn a specification language. Clearly, they
will receive help when formulating the properties they
want to prove, but in fact these need not change much
during the iterations in the development. A special team
provides proof scripts in which the properties are embed-
ded, and these can be run against the Erlang code. The
feedback of these scripts is in terms of traces in Erlang
syntax, so that programmers can understand the counter-
examples that the model checker has produced.
In one sense, this work is not new: using model check-

ing for the formal verification of software is by now a well-
known field of research. It is in the details that we offer
some novelty. There are essentially two approaches to the
overall problem – either one uses a specification language
in combination with a model checker to obtain a correct
specification used to write an implementation in a pro-
gramming language, or one takes the program code as
a starting point and abstracts that into a model which
can be checked by a model checker. Either way, the imple-
mentation is not proved correct by these approaches, but
when an error is encountered, this may indicate an error
in the implementation. As such, model checking can be
seen as a very accurate testing method.
For the first approach, one of the most successful of

the many examples is the combination of the specification
language Promela and model checker SPIN [18]. The at-

tractive merit of Promela is that this language is so close
to the implementation language C that it becomes rather
easy to derive the implementation from the specification
in a direct, fault-free way. If one uses UML as the spe-
cification language and Java or C as the implementation
language, one might require more effort (apart from the
fact that model checking UML specifications is still an un-
resolved topic).
The work we describe here is part of the second ap-

proach, other examples of which include PathFinder [17]
and Bandera [10], which consider the problem of veri-
fying code written in Java. Our work has similar con-
cerns and follows a similar approach except that we use
the knowledge of the occurring design patterns used in
the Erlang code to obtain smaller state spaces. We fol-
low a similar approach to the translation of Java into
Promela, checked by SPIN [17]; however, we translate Er-
lang into µCRL [16] and model check properties by using
Cæsar/Aldébaran [15].
An earlier attempt for model checking Erlang code

by Huch [19] differs in many ways from our approach.
In contrast to Huch’s approach, we consider data aspects
which are crucial for the properties we wish to check in
the Erlang code. In particular, Huch abstracts case state-
ments by non-deterministic choices, which loses all refer-
ence to the data, whereas our model checking takes the
data values into account.
This allows us to check for mutual exclusion and the

absence of deadlock for the resource manager which will
be the leading example of this paper. If one abstracts from
the data in this program in such a way that case state-
ments are translated into non-deterministic choices, then
mutual exclusion is no longer guaranteed and can hence
not be shown.
The paper is organised as follows: we start with a brief

explanation of the AXD 301 switch in Sect. 2. Then we
explain the software components we focused on, namely,
the generic server and supervisors in Sect. 3. The actual
Erlang code, given in Sect. 4, is built using those com-
ponents, and along with the code we describe the imple-
mented algorithm.
The main part of our tool, the translation of Erlang

code into a process algebra model, is presented in Sect. 5.
This model is used to generate the labelled transition
system in which the labels correspond to communication
events between Erlang processes. We used additional ex-
ternal tools to generate the state space, reduce the state
space with respect to bisimulation relations and model
check several properties.
In Sect. 6, we focus on the mutual exclusion and non-

starvation property which have been verified for the code
using model checking in combination with bisimulation
reduction. In Sect. 7, we show how we use scripts to au-
tomate the actual verification in the development pro-
cess. We conclude in Sect. 8 with some remarks on per-
formance and feasibility and a comparison with other
approaches.
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2 Ericsson’s AXD 301 switch

Ericsson’s AXD 301 is a high-capacity ATM switch, scal-
able from 10 to 160Gbits/s [7]. The switch is used, for
example, in the core network to connect city telephone
exchanges with each other.
From a hardware point of view, the switch consists of

a switch core connected on one side to several device pro-
cessors (that in their turn are connected to devices) and
on the other side to an even number of control proces-
sors (workstations). The actual number of these control
processors depends on the configuration and demanded
capacity and ranges from 2 to 32 (Fig. 1).
The workstations (control processors) operate in pairs

for reasons of fault tolerance; one workstation is assigned
to be the call control (cc) node and the other the oper-
ation and maintenance (o&m) node. Basically, call con-
trol deals with establishing connections, and operation
and maintenance deals with configuration management,
billing and such. Both the cc and o&m software consist of
several applications which implement many concurrently
operating processes.
Every workstation runs one Erlang node, i.e., a pro-

gram to execute Erlang byte code implementing several
thousand concurrent Erlang processes. The critical data
of these processes are replicated and present on at least
two nodes in the system. If a workstation breaks down,
a new Erlang node is started on the workstation it is
paired with and, depending on the functionality of the
broken node, either the cc or the o&m applications are
started.
A distributed resource locker is used when the bro-

ken workstation is restarted (or replaced) and available
again for operation. A new Erlang node is started at the
workstation, and the pairing workstation can leave one
of its tasks to the restarted workstation. Typically o&m
will be moved since it is easiest to move, although this is

Fig. 1. AXD 301 hardware architecture

not without consequences. Every o&m application may
access several critical resources, and while this is done
it might be hazardous to move the application. For that
reason, the designers of the switch have introduced a clas-
sical resource manager, here called a locker . Whenever
any of the processes in any application need to perform
an operation during which that application cannot be
moved, it will request a lock on the application. The lock
can be shared by many processes since they all indicate
that the application is to remain at its node. The process
that wants to move an application will also request a lock
on that application, but this time an exclusive one. The
purpose of this lock, therefore, is to enable guarantees to
be given to processes about when they can safely move
applications.

3 Erlang software components

In Ericsson’s large software projects, the architecture of
the software is described by means of software compo-
nents, i.e., the implementation is specified by means of
communicating servers, finite state machines, supervisors
and such. In the control software for the AXD, about 80%
of the software is specified in terms of such components,
the majority of it as processes that behave like servers.

3.1 Generic server component

A server is a process that waits for a message from an-
other process, computes a certain response message and
sends that message back to the original process. Normally
the server will have an internal state, which is initialised
when starting the server and updated whenever a mes-
sage has been received.
In Erlang, one implements a server by creating a pro-

cess that evaluates a (non-terminating) recursive function
consisting of a receive statement in which every incoming
message has a response as the result.

serverloop(State) ->

receive

{call,Pid,Message} ->

Pid ! compute_answer(Message,State),

serverloop(compute_new_state(Message,State))

end.

Erlang has an asynchronous communication mechan-
ism which allows any process to send (using the ! opera-
tor) a message to any other process of which it happens
to know the process identifier (the variable Pid in the
example above). Sending is non-blocking and always pos-
sible; the message arrives in the unbounded mailbox of
the specified process. The latter process can inspect its
mailbox by the receive statement. A sequence of pat-
terns can be specified to read specific messages from the
mailbox. In the example above, the first message in the
mailbox which has the form of a tuple is read, where the
first argument of the tuple should be the atom call, the
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variable Pid is then bound to the second argument of this
tuple, and Message is bound to its last argument.
Of course, this simple server concept gets decorated

with many features in a real implementation. There is
a mechanism to delay the response to a message, and
some messages simply never expect a reply. Certain spe-
cial messages for stopping the server, logging events,
changing code in a running system and so on are added
as patterns in the receive loop. Debugging information
is provided and used during development and testing.
Altogether this makes a server a rather large piece of soft-
ware, and since all these servers have the same structure,
there are considerable advantages in providing a generic
server implementation. This generic server has all the
features of the server, apart from the specific compu-
tation of reply message and new state. Simply put, by
providing the above functions (compute_answer and
compute_new_state), a fully functional server is speci-
fied with all the necessary features for production code.
Reality is a bit more complicated, but not much more:

when starting a server one provides the name of the mod-
ule in which the functions for initialisation and call hand-
ling are specified. One could see this as the generic server
being a higher-order function which takes these specific
functions, called callback functions, as arguments. The
interface of these functions is determined by the generic
server implementation. The initialisation function returns
the initial state. A handle_call function is called with
an incoming message, the client process identifier, and
state of the server. It returns a tuple either of the form
{reply,Message,State},where the server takes care that
this message is passed on to the client and that the state is
updated, or {noreply,State}, where only a state update
takes place. The locker algorithm that we present in this
paper is implemented as a callback module of the generic
server; thus the locker module implements the above-
mentioned functions for initialisation and call handling.
Client processes use a uniform way of communicating

with the server, enforced by embedding the communica-
tion in a gen_server:call function call. This call causes
the client to be suspended as long as the server has not
replied to the message. The specific function call adds
a unique tag to the message to ensure that clients stay
suspended even if other processes send messages to their
mailbox.

3.2 Supervisor component

The assumption made when implementing the switch
software is that any Erlang process may unexpectedly die,
either because of a hardware failure or due to a software
error in the code evaluated in the process. The runtime
system provides a mechanism to notify selected processes
of the fact that a certain other process has vanished; this
is realised by a special message that arrives in the mailbox
of processes that are specified to monitor the vanished
process.

On top of the Erlang primitives to ensure that pro-
cesses are aware of the existence of other processes, a su-
pervisor process is implemented. This process evaluates
a function that creates processes which it will moni-
tor, referred to here as its children. After creating these
processes, it enters a receive loop and waits for a pro-
cess to die. If that happens, it might either restart the
child or use another predefined strategy to recover from
the problem.

4 The resource locker algorithm

The above sections have described the AXD 301 locker
and the Erlang software components. We were interested
in using this as a case study to validate our approach to
verification of Erlang code. However, the actual imple-
mentation is overly complex for this purpose and there-
fore we re-implemented a small portion of the code, mak-
ing appropriate simplifications where necessary.
Several prototypes have been developed and verified.

In these prototypes, the resource locking process is im-
plemented as a server process (called the “locker” in this
paper). An arbitrary number of client processes can re-
quest and release resources by communicating with this
server process.
In the first prototype, the locker provides access to one

resource for an arbitrary number of clients. A second pro-
totype [2] includes an arbitrary number of resources with
exclusive access to them, i.e., two clients cannot get ac-
cess to the same resource at the same time. In this section,
we show code fragments of the third prototype [3], which
supports exclusive and shared access to the resources.
Some remarks about the first and second prototypes are
made where they might be of interest.
All the processes in the AXD 301 software are chil-

dren in a big tree of supervisor processes. Thus the locker
and the clients of the locker also exist somewhere in this
tree. In our case study, we implemented a small super-
vision tree for only the locker and a number of clients
(Fig. 2).

Fig. 2. Supervision tree for locker and clients
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The root of the tree has two children: the locker and
another supervisor, which has as children all the client
processes. As in the real software, the whole locker ap-
plication is started by evaluating one expression, which
starts building the supervision tree and makes all pro-
cesses run.
It is important to realise that we use this supervision

tree to start the locker in different configurations. As an
argument of the start function for the supervisor we pro-
vide the set of resources that the specific clients want to
access.
The expression locker_sup:start([{[a],shared},

{[a,b],exclusive}]), for example, would start a super-
vision tree with a locker and two clients, one client re-
peatedly requesting shared access to resource a, the other
repeatedly requesting exclusive access to resources a
and b.
The locker is implemented as a callbackmodule for the

generic server. In the following subsections, we present
parts of the actual implementation of the client and locker
and explain the underlying algorithm.
We present a significant part of the actual Erlang code

in order to stress that we verify Erlang code and to illus-
trate the complexity of the kind of code we can deal with.
The full case study contains about 250 lines of code in
which many advanced features of Erlang are used.1

4.1 Implementing the client

The client process is implemented in a simple module. We
can do this since we have abstracted away from all evalua-
tions in clients which do not directly relate to requesting,
obtaining and releasing the resources. The generic server
call mechanism is used to communicate with the locker. It
is a synchronous communication implemented by means
of Erlang’s asynchronous primitives.

-module(client).

start(Locker,Resources,Type) ->

{ok,spawn_link(client,loop,

[Locker,Resources,Type])}.

loop(Locker,Resources,Type) ->

gen_server:call(Locker,

{request,Resources,Type}),

gen_server:call(Locker,release),

loop(Locker,Resources,Type).

Between the two synchronous calls for request and release
is the so-called critical section. In the real implementa-
tion, some critical code is placed in this critical section,
but we have (manually) abstracted away from that. The
variable Type represents the type of access a client is
requesting on the list of resources. This can be either
shared or exclusive, and Resources is bound to a list of
resources which the client wants access to.

1 The code is available at http://www.cs.kent.ac.uk/~cb47/

4.2 Implementing the locker

The code of the locker algorithm is given as a generic
server callback module. The state of this server contains
a record of type lock for every resource that the locker
controls.

-module(locker).

-behaviour(gen_server).

-record(lock,

{resource,exclusive,shared,pending}).

The lock record has four fields: resource for putting
the identifier of the resource, exclusive containing the
process that is having exclusive access to the resource
(or none otherwise), shared containing a list of all pro-
cesses having shared access to the resource, and pending
containing a list of pending processes waiting for either
shared or exclusive access.
The supervisor process constructs a list of all re-

sources involved from the starting configuration and
passes it to the initialisation of the locker. The locker ini-
tialisation function then initialises a lock record for every
resource in that list. The state of the server is built by
taking this list and constructing a tuple together with
the lists for all exclusive requests and all shared requests
which have not been handled so far.

init(Resources) ->

{ok,{map(fun(Name) ->

#lock{resource = Name,

exclusive = none,

shared = [],

pending = []}

end,Resources),[],[]}}.

The latter two (initially empty) lists in the state of the
server are used by the algorithm to optimise the com-
putations performed when deciding which pending client
is the next one that gets access. The first client in the
pending list of the lock record is not necessarily granted
permission to obtain the resource. It may be the case that
the same client also waits for another resource for which
another client has higher priority. The priority could be
reconstructed by building a graph of dependencies be-
tween the clients, but it is much easier to store the order
in which the requests arrive.
The server process continuously accesses its message

queue, and whenever a call to the server has been made,
the corresponding message will eventually arrive at the
head of the queue. Then the handle_call function in the
locker module is called. For a request message, this func-
tion first checks whether all requested resources are avail-
able. If so, it claims the resources by updating the lock
records. The client receives an acknowledgement, and the
state of the server is updated accordingly. If the resources
are not available, the lock records are updated by putting
the client in the pending lists of the requested resources.
The priority lists are changed, resulting in a new state for
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the server. No message is sent to the client, which causes
the client to be suspended.

handle_call({request,Resources,Type},

Client,{Locks,Excls,Shared}) ->

case check_availables(Resources,Type,Locks) of

true ->

NewLocks =

map(fun(Lock) ->

claim_lock(Lock,Resources,Type,

Client)

end,Locks),

{reply, ok, {NewLocks,Excls,Shared}};

false ->

NewLocks =

map(fun(Lock) ->

add_pending(Lock,Resources,Type,

Client)

end,Locks),

case Type of

exclusive ->

{noreply,

{NewLocks,Excls++[Client],Shared}};

shared ->

{noreply,

{NewLocks,Excls,Shared++[Client]}}

end

end;

A client can release all its obtained resources by a sim-
ple release message since the identity of the client is
sufficient to find out which resources it requested. After
removing the client from the fields in the lock record, it
is checked whether pending processes now have the pos-
sibility to access the requested resources. This happens
with higher priority for the clients requesting exclusive
access than for the clients requesting shared access. The
algorithm prescribes that clients which requested shared
access to a resource but are waiting for access should be
by-passed by a client which requests exclusive access.

handle_call(release,

Client,{Locks,Exclusives,Shared}) ->

Locks1 =

map(fun(Lock) ->

release_lock(Lock,Client)

end,Locks),

{Locks2,NewExclusives} =

send_reply(exclusive,Locks1,Exclusives,[]),

{Locks3,NewShared} =

send_reply(shared,Locks2,Shared,[]),

{reply,done,{Locks3,NewExclusives,NewShared}}.

The send_reply function checks whether a list of
pending clients (either requesting exclusive or shared ac-
cess) can be granted access. If so, the client receives the
acknowledgement it was waiting for, and the state of the
server is updated.

send_reply(Type,Locks,[],NewPendings) ->

{Locks,NewPendings};

send_reply(Type,Locks,[Pending|Pendings],

NewPendings) ->

case all_obtainable(Locks,Type,Pending) of

true ->

gen_server:reply(Pending,ok),

send_reply(

Type,

map(fun(Lock) ->

promote_pending(Lock,Type,

Pending)

end,Locks),Pendings,NewPendings);

false ->

send_reply(Type,Locks,Pendings,

NewPendings++[Pending])

end.

The above-mentioned Erlang functions in the locker com-
bine message passing and computation. The rest of the
function is purely computational and rather straightfor-
ward to implement. Therefore, here we only illustrate the
more interesting aspects.
The check_availables function is used to deter-

mine whether a new requesting client can immediately be
served. A resource is available for exclusive access if no
client holds the resource and no other client is waiting
for exclusive access to it. Note that it is not sufficient to
only check whether no client accesses the resource at the
time since this could cause starvation. To illustrate this,
imagine two resources and three clients such that client
1 requests resource A, client 2 requests resource B, and
client 3 requests both resources. Client 1 releases and re-
quests resource A again, client 2 releases and requests B
again. If this continues repeatedly, client 3 will wait for-
ever to get access, i.e., client 3 will starve.

A B
access 1 client 1 requests and gets access
pending to A

access 1 2 client 2 requests and gets access
pending to B

access 1 2 client 3 requests access to A and
pending 3 3 B and is put in the pending list

access 2 client 1 releases
pending 3 3

access 1 2 client 1 requests and gets access
pending 3 3 to A again

access 1 client 2 releases
pending 3 3

access 1 2 client 2 requests and gets access
pending 3 3 to B again

...

This scenario indicates that in general one has to pay
a price for optimal resource usage, namely, a possible star-
vation. Therefore, the implementation checks whether
a client is waiting for a certain resource. Thus in our ex-
ample, clients 1 and 2 are both appended to the list of
pending processes (waiting for client 3). Like the exclu-
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sive case, for shared access the resource is available if
no process holds the resource exclusively and no client is
waiting for access to it. Therefore, the same conclusion
holds, i.e., potential starvation is a consequence of opti-
mal resource usage.
The add_pending function simply inserts the client in

the pending lists of the resources it is requesting. An opti-
misation is applied when inserting clients in the pending
list: clients requesting exclusive access are mentioned be-
fore the ones requesting shared access. This allows a quick
check to see if there is a client exclusively waiting for a re-
source, since such a client should be at the head of the
pending list.
The difference between the check_available and

all_obtainable functions is that in the latter the clients
have already been added to the pending lists of the re-
quested resources and therefore it should be verified that
they are at the head of these lists instead of verifying that
these lists are empty. Moreover, there might be several
clients able to get access to their resources after only one
release, e.g., resources that were taken exclusively can be
shared by several clients and a client that occupied sev-
eral resources can free those resources for a number of
different clients.

5 Translating Erlang into a process algebra

To check that certain properties hold for all possible runs
of a program, we automatically translate the Erlangmod-
ules into a process algebraic specification. This approach
allows us to use tools developed for analysing process al-
gebras rather than implementing tools that work directly
on Erlang code ourselves. This has a number of benefits.
For example, the use of a process algebra allows us to
distinguish in a formal way communication actions and
computation. It also means that complex issues such as
efficient state space generation are dealt with by reusing
existing toolsets which have been developed and refined
over a number of years.
The process algebra we used to translate Erlang to is

µCRL [16]. This process algebra is particularly suited to
our requirements because we can express both communi-
cation and data in it.
Several tools have been developed to support verifica-

tion of µCRL specifications [11, 24]. Our approach to ver-
ification uses a model checker from the Cæsar/Aldéb-
aran toolset [15]. In order to input the µCRL specifica-
tions into the model checker, we need to convert the spe-
cification to an appropriate input format using the state
space generation tool of the µCRL toolset. We have also
experimented with static analysis tools to obtain specifi-
cations that resulted in smaller state spaces after gener-
ation, for example, the confcheck [22] tool from the µCRL
toolset, which analyses particular (confluent) internal ac-
tions in order to eliminate them. However, this did not
have as big an impact as we had hoped for. We have not

yet investigated how to best fine-tune the translation for
optimal use of these tools.
The translation from Erlang to µCRL is performed in

two steps. First, we apply a source-to-source transform-
ation on the level of Erlang, resulting in Erlang code that
exhibits the same execution behaviour to an observer as
the original code, but optimised for verification. Second,
we translate the collection of Erlangmodules into a µCRL
specification.The advantage of having an intermediateEr-
lang format is that programmers can easily understand
the more involved code transformations and therefore are
better able to understand the smaller translation step to
µCRL notation, and when some syntactic sugar is trans-
lated tomore primitive operators, the step to µCRL is eas-
ier to implement. Moreover, the intermediate code can be
input for other verification tools for Erlang (e.g., [4]).

5.1 Erlang-to-Erlang transformation

The source-to-source transformation of the Erlang mod-
ules contains many steps, and we mention only the more
relevant ones, skipping trivial steps like removing the de-
bug statements in the code.
Erlang supports higher-order functions, but µCRL

does not. Luckily, most of the Erlang code in the switch
uses only a few predefined higher-order functions, like
map, foldl, foldr, etc. Thus we wrote a source-to-source
translator to replace function call occurrences like

map(fun(X) -> f(X,Y1,...,Yn) end, Xs)

by a call to a new Erlang function map_f(Xs,Y1,...,Yn),
which is defined and added to the code as

map_f([],Y1,...,Yn) ->

[];

map_f([X|Xs],Y1,...,Yn) ->

[f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)]

By using this transformation we can remove all calls to
the map function from the Erlang code. Other higher-
order functions are dealt with in a similar manner.
Because of a possible infinite state space, we avoid

dynamic process creation in µCRL. Therefore, we gener-
ate the µCRL specification for a certain configuration in
which the processes are fixed from the beginning. From
the Erlang code in which the processes are generated
dynamically, we obtain our specification by evaluating
the supervision tree structure for the given configuration
parameters.
In Sect. 4, we explained how to start the locker pro-

cess. Evaluating the same expression, e.g., locker_sup:
start([{[a],shared},{[a,b],exclusive}]), in our tool
instead of in the Erlang runtime system results in one
initial Erlang process in which all leaves in the supervi-
sion tree are started sequentially. This special process is
later translated in the initialisation clause of the µCRL
specification.
With some minor tricks the purely functional part of

the Erlang code is rather easily translated into a term
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rewriting system on data, as is necessary in a µCRL
model. Communication in Erlang is translated into com-
municating actions in µCRL, as described in the next
section.

5.2 Erlang-to-µCRL transformation

Given the Erlang modules which are transformed as de-
scribed above, the next step is to automatically gener-
ate a µCRL specification. Erlang is dynamically typed,
whereas µCRL is strongly typed. Since we try to keep
the specification in µCRL as close to the Erlang code
as possible, we construct in µCRL an ErlangTerm data
type in which all Erlang data types are embedded. All
side-effect-free functions are added as a term rewrit-
ing system over this ErlangTerm data type. A standard
transformation is used to translate Erlang statements
into the term rewriting formalism. In addition, we have
to define an equivalence relation on data types, which
is rather involved. For instance, with only 14 different
atoms and 7 data constructors, 440 equations are reserved
for comparing data types, roughly two thirds of the whole
specification.
With respect to the non-computation part, we benefit

from the fact that the Erlang-to-Erlang transformation
was generated for a specific configuration and contains
all information on which processes are started. This al-
lows us to define the initial configuration in the µCRL
specification.
Manipulation of data in this process algebra is per-

formed in a purely functional fashion, i.e., there are func-
tions defined on the data that result in manipulated
data but no communication can be incorporated in this
computation part. Processes describe the communication
pattern and the computations on the data; unlike with
Erlang, these two parts are clearly separated, in the sense
that no communication takes place in a computation. As
a consequence, some code needs to be rewritten to be
translated. To clarify the latter, in Erlang one can write
a call to the send_reply function (see page 210 of this
article), which results in a tuple. Part of that tuple is
used in the next call to send_reply. Here we have to lift
the communication to the same level of the handle_call
function which is calling send_reply, i.e., not nested in-
side a computation. From an Erlang point of view, it
would look like adding extra communication, where the
last thing the send_reply function does is send a value to
the process that has called this function.2

handle_call(release,

Client, {Locks,Exclusives,Shared}) ->

Locks1 =

map(fun(Lock) ->

release_lock(Lock,Client)

end,Locks),

2 Assume a special tag for the Erlang receive to make sure the
right message is read from the queue.

send_reply(exclusive,Locks1,Exclusives,[]),

receive

{Locks2,NewExclusives} ->

send_reply(shared,Locks2,Shared,[]),

receive

{Locks3,NewShared} ->

{reply,

done,{Locks3,NewExclusives,NewShared}}.

end

end

In our tool, this translation of function with nested
communication is performed directly from Erlang to
µCRL without the above intermediate Erlang code,
which is only given to explain the translation. One could
say that we implemented the well-known notion of a call
stack by means of communication.
All functions which contain communication coincide

with the notion of a process in µCRL. Certain restrictions
with respect to these µCRL processes have to be taken
into account; there is no pattern matching on data param-
eters of a process. Thus several clauses of the same Erlang
function have to be translated in one µCRL process by ex-
plicit encoding of pattern matching by using the µCRL
if-then-else construct (denoted by ‘then <| if |> else’)
and by calls to newly introduced processes.
The synchronous calls of the generic server can be

translated directly in a synchronising pair of actions in
µCRL. This results in comfortably small state spaces,
much smaller than when we implement a buffer for
a server and use both synchronisation between another
process and the buffer of the server and synchronisation
between buffer and server. The latter is, however, ne-
cessary if we use the more extended functionality of the
generic server, where we also have an asynchronous way
of calling the server. Moreover, the synchronous calls of
the generic server are implemented in Erlang by means
of asynchronous primitives. Therefore, for every generic
server process, we implement a buffer process in µCRL
for both synchronous and asynchronous communication.
We use the knowledge about the generic server compon-
ent to implement this buffer: the generic server uses a fifo
buffer structure. This is in contrast to an arbitrary Erlang
process, where a message can be read from the buffer in
any order. For illustration purposes, a simplified version
of this buffer in µCRL is given below.

comm

gen_server_call | gscall = buffercall

gshcall | handle_call = call

gen_server_reply | gen_server_replied = reply

proc

Server_Buffer(Self: ErlangTerm,

Messages: GSBuffer) =

(bufferfull(Self).

gshcall(Self,call_term(Messages),

call_pid(Messages)).



T. Arts et al.: Development of a verified Erlang program for resource locking 213

Server_Buffer(Self,rmhead(Messages)))

<| maxbuffer(Messages) |>

(sum(Msg: ErlangTerm,

sum(From: ErlangTerm,

gscall(Self, Msg, From).

Server_Buffer(Self,

addcall(Msg,From,Messages))))+

(gshcall(Self,call_term(Messages),

call_pid(Messages)).

Server_Buffer(Self,rmhead(Messages))))

The buffer associated with each process is parame-
terised by its size and by default unbounded; during the
verification process, the buffer is bound to a certain size
to allow the verifier to experiment with the size. The lat-
ter is important since some errors cause a buffer overflow,
which induces a non-terminating generation of the state
space. However, if the message queue is bound to a low
enough value, the buffer overflow is visible as an action in
the state space.
The different clauses of the server’s handle_call

function are combined in one µCRL loop, using the state
mentioned in the arguments of handle_call as the state
of the loop. The unique process identifiers used in Erlang
are integrated as an argument (Self) of all process calls
and instantiated by the first call in the initial part.
For example, the Erlang code presented in Sect. 4.2 for

the handling of a request message by the locker process
is translated to µCRL as shown below.3

The locker_serverloop process synchronises with
the buffer in the handle_call action, which has as argu-
ments the identifier of the process, the message sent by
the client process and the process identifier of the client.
Then the availability of the resources is checked in the
locker_check_availables function, which is the trans-
lation of check_availables(Resources,Type,Locks)
in Erlang. Note that the pattern matching in Erlang is
translated by means of selection functions that extract
the first, second, etc. element of a tuple. If the re-
sources are available, the client receives an ok, and the
locker_serverloop is called with an update of the state
which reflects that the resources are now being used by
the client (function locker_map_claim_lock).
Otherwise, the locker_serverloop is called with

a different update of the state to reflect that the client
is waiting for the resources to be released. This is done
slightly differently for shared access than for exclusive ac-
cess, as explained in Sect. 4.2. Note that no message is
sent to the client in this case.

locker_serverloop(Self: ErlangTerm,

State: ErlangTerm) =

sum(Client: ErlangTerm,

sum(Resources: ErlangTerm,

sum(Type: ErlangTerm,

handle_call(Self,

3 For completeness, one of these automatically generated µCRL
specifications is available at http://www.cs.kent.ac.uk/~cb47/

tuple(request,tuple(Resources,tuplenil(Type),

Client))).

(gen_server_reply(Client,ok,Self).

locker_serverloop(Self,

tuple(locker_map_claim_lock(

first(State),Resources,Client,Type),

tuple(second(State),tuplenil(third(State)))))

<| eq(equal(locker_check_availables(Resources,

Type,first(State)),true),true) |>

(locker_serverloop(Self,

tuple(locker_map_add_pending(first(State),

Resources,Client,Type),

tuple(append(second(State),cons(Client,nil),

tuplenil(third(State))))))

<| eq(equal(Type,exclusive),true) |>

(locker_serverloop(Self,

tuple(locker_map_add_pending(first(State),

Resources,Client,Type),

tuple(second(State),

tuplenil(append(third(State),

cons(Client,nil))))))

<| eq(equal(Type,shared),true) |>

delta)

<| eq(equal(locker_check_availables(Resources,

Type,first(State)),false),true) |>

delta))

The delta mentioned in the specification is a special
symbol for deadlock. These possible deadlocks are intro-
duced by the automatic translation due to the difference
between Erlang and µCRL. If the Erlang program is type
safe, i.e., no runtime-type error occurs, then these deltas
will never cause a deadlock in theµCRLprocess. However,
a runtime-type error, and hence a crash of the Erlang pro-
cess, would result in a deadlock of theµCRLprocess.
Some matching constructs are part of a pure compu-

tation part in Erlang. In a translation of such a match,
we cannot simply include a delta. In those cases, we
add before the computation an assertion that evaluates
to assertion(true) or assertion(false). If the latter
appears in the state space, this corresponds to a situ-
ation in which the Erlang programwould have crashed on
an impossible pattern matching, and we obtain for free
a path from the initial state to the location where this
happens. We also provide the possibility of adding user-
defined actions. By annotating the code with dummy
function calls, we may add extra actions to the model to
allow us to explicitly visualize a certain event.
In this way, the Erlang modules are translated into

a µCRL specification. By using the state space generation
tool for µCRL, we obtain the full state space, in the form
of a labelled transition system (LTS), for the possible runs
of the Erlang program. The labels in this state space are
syntactically equal to function calls in Erlang that ac-
complish communication, e.g., gen_server:call. This
makes debugging the Erlang program easy when a se-
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Fig. 3. Example of a small LTS

quence in the state space is presented as counter-example
to a certain property. For that reason, the syntactically
slightly different data structures in µCRL are translated
back to Erlang data structures in the LTS.
Figure 3 displays an LTS for the scenario mentioned in

Sect. 4, where a supervision tree was started with a locker
and two clients, one client repeatedly requesting shared
access to resource A, the other repeatedly requesting ex-
clusive access to the resources A and B. In order to be able
to show it here, all the communication with the buffer has
been hidden and the LTS reduced by using suitable tools
from the Cæsar/Aldébaran toolset.
Once we have obtained the state space, this toolset

is used for verifying properties, as described in the next
section.

6 Checking properties with a model checker

We have used the Cæsar/Aldébaran toolset to verify
properties. This toolset provides a number of tools includ-
ing an interactive graphical simulator, a tool for visual-
ization of labelled transition systems (LTSs), several tools
for computing bisimulations (minimisations and compar-
isons) and a model checker. Many aspects of the toolset
were found useful for exploring the behaviour of the algo-
rithm, but here we concentrate on the model checker.
Model checking [9] is a formal verification technique

which performs automatic checking of properties against
finite state specifications. The major advantages of model
checking are that it is an automatic technique and when
the model of the system fails to satisfy a desired property,
the model checker always produces a counter-example.
These faulty traces provide priceless insight into under-
standing the real reason for the failure as well as import-
ant clues for fixing the problem.

The properties one wishes to check are formalised in
an appropriate logic, and the specification is written here
as an LTS. As mentioned previously, our specifications
in µCRL are translated into LTSs, which are used as the
model against which properties are checked.
The logic used to formalise properties is the regular

alternation-free µ-calculus, which is a fragment of the
modal µ-calculus [12, 20], a first-order logic with modal-
ities and least and greatest fixed point operators. Log-
ics like CTL or ACTL allow a direct encoding in the
alternation-free µ-calculus.
Several safety and liveness properties have success-

fully been verified on the three prototypes of the locker.
Here we explain in detail howmutual exclusion (Sect. 6.1)
and non-starvation (Sect. 6.2) are proved. The liveness
property, non-starvation, is the more difficult of the two
to prove.
The use of regular alternation-free µ-calculus to ex-

press these properties allowed a sufficiently high level of
abstraction, which meant we could reuse the expression
of the properties in each of the different prototypes with
minimal changes. As previously, we illustrate the process
for the third prototype.

6.1 Mutual exclusion

To prove mutual exclusion, we formulate a property ex-
pressing that when a client gets exclusive access to a re-
source, then no other client can access it before this
client releases the resource. This property is crucial in the
AXD 301 locker since otherwise when the process that
wants to move an application has exclusive access to it,
another process may get access to the application and
perform critical operations at the same time.
To simplify checking this, we add two actions, use and

free, to the Erlang code which are automatically trans-



T. Arts et al.: Development of a verified Erlang program for resource locking 215

lated into theµCRL specification.4 As soon as a client pro-
cess enters its critical section, the use action is applied to
the list of resources the client is requesting as an argument.
Before the client sends a release message to the locker

process, it performs a free action.5 In the logic, we spec-
ify the action in plain text or with regular expressions.
However, the formalism does not permit binding a regular
expression in one action and using it in another. There-
fore, we have to specify mutual exclusion for every re-
source in our system. We defined a macro to help us im-
prove readability:

BETWEEN (a1, a2, a3) = [-
∗ . a1 . (¬a2)∗ . a3]false

stating that “on all possible paths, after an (a1) action,
any (a3) action must be preceded by an (a2) action”.
The mutual exclusion property depends on the num-

ber of resources. For a systemwith two resources,A andB,
the mutual exclusion property for the third prototype is
formalised by

MUTEX (A, B) =
BETWEEN (′use(.∗A.∗, exclusive)′, ′free(.∗A.∗)′,

′use(.∗A.∗,.∗)′)
∧ BETWEEN (′use(.∗B.∗, exclusive)′, ′free(.∗B.∗)′,

′use(.∗B.∗,.∗)′)

Informally the property states that when a client ob-
tains exclusive access to resource A, no other client can
access it until the first client frees the resource, and the
same for resource B. Note that the Cæsar/Aldébaran
toolset allows us to use regular expressions over strings
together with standard µ-calculus formulas.
The mutual exclusion property has been successfully

checked for various configurations up to three resources
and five clients requesting exclusive or shared access to
the resources.
For example, a scenario with five clients requesting ex-

clusive access to three resources, where client 1 requests
A, client 2 requests B, client 3 requests A, B and C, client
4 requests A and B, and client 5 requests C, contains

4 The tools allow renaming of labels in the LTS, which could have
been used as well.
5 This free action is non-synchronizing and therefore can assume
the role of the release message, but it also contains the resources
which are released.

Fig. 4. Mutex counter-example

about 30,000 states. Building an LTS for this example
takes roughly 13min, while checking the mutual exclu-
sion property takes only 9 s. A bigger state space of 1 mil-
lion states requires 1 h to be built and 4min to be checked
for mutual exclusion. Part of the reason that building the
LTS takes much more time than checking a property is
that we are dealing with data, and a lot of computation
is done in between the visible actions (only visible actions
correspond to states in the LTS).
As stated in the previous section, model checking is

a powerful debugging tool. Imagine that the code of the
locker contains the following error: the check_available
function is wrongly implemented such that when a client
requests a resource, there is no check on whether the re-
source is being used by another client. Now consider a sce-
nario with two clients, client 1 and client 2, requesting the
same resource A. Given the LTS for this scenario and the
property MUTEX (A), the model checker returns false
and the counter-example as shown in Fig. 4.
The counter-example generated depicts an execution

trace of client 1 requesting and obtaining resource A and
client 2 requesting and obtaining resource A, that is, both
processes enter the critical section, and therefore mutual
exclusion is not preserved.Thenumbers that appear inside
the circles correspond to the numbers of the states as they
appear in the complete LTS. By keeping the Erlang code
and our µCRL specification as close as possible, this trace
helps us easily identify the run in the Erlang program.
Although we use only a small number of clients and

resources, this already illustrates the substantive be-
haviour. As with testing software, we choose our con-
figurations in such a way that we cover many unique
situations; however, in contrast to testing, we explore all
possible runs of a certain configuration. In our case study,
there are at most 32 Erlang nodes and at most 16 lockers,
all of which have only a small number of resources (appli-
cations) to manage. We have checked the properties for
scenarios with at most five clients to develop our method-
ology. Later we plan to scale up this approach once we
have determined the optimal strategies.

6.2 Non-starvation

Starvation occurs when a client that has requested access
to resources never receives permission from the locker to
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access them. Because exclusive access has priority over
shared access, the algorithm contains potential starva-
tion for clients requesting shared access to resources that
are also exclusively requested. More precisely, the clients
requesting exclusive access have priority over all clients
waiting for shared access; therefore, the ones requesting
shared access can be withheld from their resources.
Within the use of the software in the AXD at most one

client is requesting exclusive access to the resources (the
takeover process). In that setting, the starvation of clients
requesting shared access cannot occur, as we prove below.
The reason is the synchronised communication for the re-
lease. As soon as the client requesting exclusive access
sends a release to the locker, all waiting shared clients get
access to the resources they requested (they share them).
Only then is an acknowledgement sent to the releasing
client.
Here we look at more general cases where more than

one client is requesting exclusive access to the resources
(since this type of scenario may occur in a more general
setting).
Because the algorithm contains a certain form of

starvation, the property one wants to check for non-
starvation must be specified with care. The following
cases have been verified: non-starvation of clients re-
questing exclusive access and non-starvation of clients
requesting shared access in the presence of at most one
exclusive request.

6.2.1 Non-starvation for exclusive access

Proving that there is no starvation for the clients request-
ing exclusive access to the resources turns out to be tricky.
This is because there are traces in the LTS which do not
correspond to a fair run of the Erlang program.
The Erlang runtime system guarantees that each pro-

cess obtains a slot of time to execute its code. However,
in the LTS, there are traces where certain processes do
not get any execution time, even though they are enabled
along the path. To clarify this, let us consider a scenario
with two resources and three clients.
Client 1 requests resource A and obtains access to it;

client 2 request resource A and has to wait. Then client

Fig. 5. Unreal starvation of client 2

3 requests B, obtains access to it, releases the resource
and requests it again. Figure 5 shows a part of the LTS
where there is a clear starvation situation for client 2, viz.,
infinitely often traversing the cycle that client 3 is respon-
sible for (4→ 23→ 10→ 24→ 4→ . . . ).
The above scenario, however, does not reflect the real

execution of the program since the Erlang runtime system
will eventually schedule client 1 to execute its code. Client
1 will sooner or later release resource A, which causes
client 2 to get access to the resource. In the LTS, it is evi-
dent that client 2 has the possibility of accessing resource
A, but the unfair cycle of client 3 hides the fact that this
will happen. Note, though, that we cannot simply forget
about every cycle. If the cycle were shown with resource
A instead of B mentioned, then this would indicate a real
starvation.
One could think of a number of solutions to the prob-

lem of cycles in the LTS which do not correspond to
fair infinite computations in the Erlang program. For ex-
ample, one could explicitly model the Erlang runtime
scheduler. However, modelling the scheduler is a rather
complex solution which would significantly increase the
size of the LTS. Besides, we would be scheduling the ac-
tions in the µCRL code, not in the real Erlang code. Thus
we would not be sure that starvation really occurred in
the Erlang implementation.
Another possible solution is to encode the unrealistic

cycles, i.e., the ones that the real scheduler would exclude,
in the property so that they are ignored. To do that, we
need to characterise the unrealistic cycles. An unrealis-
tic cycle corresponds to unfair execution of a number of
clients which are independent of the client one wants to
prove non-starvation for.
In our specific case, a client depends on another client

when the intersection of the sets of resources they request
is non-empty. Given that one is interested in proving non-
starvation of a certain client, computing the clients which
are independent of this client is done by taking the com-
plement of the reflexive, transitive closure of this depen-
dency relation. If we now consider all actions of indepen-
dent clients to be internal actions (τ actions in process
algebra terminology), then non-starvation of the client C
we are interested in could be expressed by the guaran-
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teed occurrence of ′reply(ok ,C)′ in any path starting from
′gen_server :call(.∗request .∗, C)′ modulo possible cycles
with only τ steps. This can be expressed by the follow-
ing formula in the µ-calculus, where we allow only finite
cycles of actions which are neither τ nor ′reply(ok ,C)′ ac-
tions. Infinite sequences of only τ actions are, however,
permitted:

[-∗ . ′gen_server :call(.∗request .∗, C)′]
µX.(νY.(〈-〉true ∧ [¬τ ∧ ¬′reply(ok ,C)′]X ∧ [τ ]Y ))

The disadvantage of the above formula is that it has alter-
nating fixed point operators, and hence the model checker
cannot verify this property.
The solution is to reduce the state space by use of

observational equivalence [21], and a facility to do this
is provided by the Cæsar/Aldébaran toolset. By ap-
plying this reduction, we replaced actions of independent
processes by internal actions and obtained a model in
which pure τ cycles no longer occur. Thus we removed all
unfair cycles.
With respect to observational equivalence, the for-

mula to prove non-starvation becomes much simpler and,
in particular, is alternation free:

NONSTARVATION (C) =
[-∗ . ′gen_server :call(.∗request .∗, C)′]
µX.(〈-〉true ∧ [¬′reply(ok ,C)′]X)

Verification of non-starvation for a configuration of
clients and resources is now performed by consecutively
selecting a process that requests exclusive access to a set
of resources. We manually determine the set of pro-
cesses which is independent of this process and then hide
the labels of the independent processes. The LTS ob-
tained is reduced modulo observational bisimulation, and
we can then verify the above given property on the re-
duced LTS.
In this way, we successfully verified non-starvation of

the clients requesting exclusive access to resources in sev-
eral configurations. We also found a counter-example by
checking this property for a process that requests shared
access to resources in a configuration where two clients re-
quest exclusive access to resource A and a third requests
shared access toA. In this case, we see that the third client
is starving. This is exactly as we expect since clients de-
manding exclusive access have priority over clients asking
for shared access.

6.2.2 Non-starvation for shared access

Even though clients that request shared access to a re-
source may potentially starve, as explained above, we can
still prove non-starvation of all the clients in the sys-
tem, provided that at most one client demands exclu-
sive access. In analogy to the procedure described above,
we hide the actions of independent processes and ver-
ify NON −STARVATION(C) for every client C in the

configuration. As such, the verification is performed suc-
cessfully.

7 Automation of verification

In the previous sections, we described the automatic
translation of Erlang to µCRL and showed how the prop-
erties of mutual exclusion and non-starvation are verified.
In this section, we explain how the verification of proper-
ties can be automated.
Automation is achieved by using the Script Verifi-

cation Language (SVL) from the Cæsar/Aldébaran
toolset. SVL allows us to simplify and automate the veri-
fication by means of high-level operators on the LTSs, for
instance, minimisation, label-hiding, label-renaming and
model-checking operators, and several methods of verifi-
cation. Moreover, Bourne shell commands can be invoked
within an SVL description; thus the tool to translate Er-
lang to µCRL, etomcrl , and the µCRL tools to build the
LTS can be called within the script.
This script is called with the Erlang termwhich should

start the application in a certain configuration. The su-
pervision design contains all information for the Erlang
loading system to automatically locate the necessary

%echo no starvation process 0

verify "properties/non_starvation.mcl" in

observational reduction with aldebaran of

rename ".*ok.*" -> "ok",

".*request.*" -> "request",

".*release.*" -> "release" in

hide ".*pid(2).*", ".*pid(1).*" in

"locker.bcg";

%echo no starvation process 1

verify "properties/non_starvation.mcl" in

observational reduction with aldebaran of

rename ".*ok.*" -> "ok",

".*request.*" -> "request",

".*release.*" -> "release" in

rename ".*pid(2).*" -> "other" in

hide ".*pid(0).*" in

"locker.bcg";

%echo no starvation process 2

verify "properties/non_starvation.mcl" in

observational reduction with aldebaran of

rename ".*ok.*" -> "ok",

".*request.*" -> "request",

".*release.*" -> "release" in

rename ".*pid(1).*" -> "other" in

hide ".*pid(0).*" in

"locker.bcg";

Fig. 6. SVL script for verification of non-starvation
for certain configurations
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modules. Thus this one Erlang term suffices for auto-
matically generating a µCRL specification. The script
contains further instructions to use the state space gen-
eration tool in order to build the LTS from the µCRL
specification. The same script is used to verify the prop-
erties for this LTS with the model-checking tool. The
outcome of the model checker is either true or false,
and in the latter case a counter-example is saved. The
script ensures that this counter-example is stored for
later inspection. In this way, given the simple scripts,
our tool automatically verifies properties of real Erlang
applications.
However, when verifying the non-starvation property,

we perform several manipulations of the LTS, reduce the
LTS with respect to observational bi-simulation and only
then verify the property. This is expressible in a script,
but at present our tool cannot generate such a script au-
tomatically (see Fig. 6).
We accept that a certain ingenuity is necessary to cre-

ate both property and script, but given the fact that we
want to use our tool in an iterative development process,
we want to minimise the number of times that these prop-
erties have to be updated because of a small change in the
configuration or application.
In the following two subsections, we show that ver-

ification is parametric with respect to a given configu-
ration and with respect to the application with certain
restrictions.

7.1 Independence of configuration

The properties given in Sect. 6 depend on the actual
names of the resources.
For example, for the mutual exclusive property a

BETWEEN clause is added for every resource available
in the system. We solved this by using only one property,
specifically,

MUTEX =
[-∗ . ′use(exclusive)′ . (¬′free(exclusive)′)∗ .
′use(.∗)′]false

and rename the appropriate actions in the state space.
Thus, given that r is a resource in the system, we re-
name the labels “use(r, exclusive)” to “use(exclusive)”,
etc. After this renaming, it suffices to check the above
property to prove mutual exclusion for resource r. This
is repeated for all resources. The script that performs
the renaming and checking is generated from the config-
uration. Of course, renaming and model checking several
times are in general more expensive than only perform-
ing the model checking with a more complicated property.
We could also automatically generate this more compli-
cated property from the configuration, but we would then
need to describe the property as a kind of template with
an unbounded number of these BETWEEN clauses. The
motivation for our approach is that the properties should
be easy to read and understand and that we want to stick

to a standard logic. We sacrifice efficiency of verification
for understandability of the property.
For verification of non-starvation, we go one step fur-

ther. Here the property depends on the client’s process
identifier. We limit ourselves to one property here as well,
namely,

NONSTARVATION =
[-∗ . ′request ′]µX.(〈-〉true ∧ [¬′ok ′]X)

We have to build a graph of processes that depend on
a common resource. From the configuration we obtain in-
formation on which resources a client needs. By storing
the process identifier of the client together with the re-
sources this client requests in the vertex of a graph and
by adding an edge whenever two nodes have a resource
in common, it is easy to obtain all processes that depend
on a certain client, i.e., all those in the same closely con-
nected component. This is straightforward to implement,
but realising that this algorithm is what we need for veri-
fication of non-starvation is not part of the automation.
For every client we repeat the same steps in a script.

We hide all processes (i.e., rename to τ) that are not
dependent on this process and rename all actions of de-
pendent processes to a constant other . In this way, only
the request , ok , and release messages of the process for
which we want to verify non-starvation remain as labels in
the LTS. The above property can therefore be used for our
verification purposes. In Fig. 6, such a script is presented
for a configuration with three clients of which two depend
on each other, in particular, the client process with pro-
cess identifier 0 requests exclusive access to resource A,
the client process with process identifier 1 requests ex-
clusive access to resource B, and the client process with
process identifier 2 also requests exclusive access to re-
source B.
Since non-starvation has to be checked for all clients

separately, there is not the same decrease in performance
as for the mutual exclusion property. In the most opti-
mal case, one renaming per group of dependent processes
could suffice. Again we motivate our choice by claiming
that the property in combination with the script is easier
to understand than the more involved properties that we
would get if we considered a whole group at once.

7.2 Independence of development iteration

Using the technique of creating scripts as described
above, we obtain a situation in which the mechanical
steps of performing a verification are independent of the
configuration. This is useful when an application has
reached a certain point in its development and is verified
for a number of configurations.
However, the application will be modified and features

added. As long as those modifications do not influence
the syntax of the messages that are communicated, the
verification approach is not affected. Changes in the com-
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munication, though, normally require investigation into
whether the properties and scripts have to be changed.
In our case study, the syntax of the messages is only

slightly modified through the iterations on the code. Let
us consider the mutual exclusion property. In the first it-
eration of the locker algorithm, there is only one resource
in the system; therefore, the mutual exclusion property in
this case was defined as:

MUTEX = [-∗ . ′use′ . (¬′free′)∗ . ′use′]false

The same property holds for the second iteration of the
code where there are several resources but with only ex-
clusive access to them. For every resource r, the actions
use(r) are renamed to use.
However, in the case of the third iteration, where re-

sources may also be shared by different clients, the above
property is not sufficient. Here we only want to prove
mutual exclusion for exclusive access, but we need to
take into account that the resources may also be ob-
tained for shared access. Thus the mutual exclusion prop-
erty is the one shown in the previous subsection. Note
that the property is a slight modification of the property
presented here, where instead of the first use we write
use(exclusive), instead of free we write free(exclusive)
and instead of the second use we write use(.∗), which
stands for both exclusive and shared access to the re-
source. In other words, not much need be changed in the
properties to employ the automatic verification from one
iteration of the code to the next.

8 Conclusions

In this paper, we discuss an approach to developing veri-
fied Erlang code. This paper is an extended version of the
contribution to FMICS [2], where an earlier iteration of
the resource manager is described. In this paper, we fo-
cus on the iteration of the resource manager as described
by us for FME [3], with two types of access to resources.
Compared to the FME contribution, we describe the con-
struction of the tool in greater detail and focus on the
support for the development process.
As noted earlier, there are a number of approaches to

verifying code. For example, a formal development pro-
cess might start with a formal specification and use ver-
ified refinement steps to produce code compliant with
the original specification. The development process our
work fits into is different on a number of fronts. First, we
are working in a context of an established process which
makes full use of software libraries which have been ex-
tensively tested. Second, we wish our verification to sit
alongside the standard coding and testing of the Erlang
components and to use verification to check key proper-
ties of the code.
To this extent, our approach consists of the following

steps. The Erlang code for a component is automatically

translated to a process algebraic specification written in
µCRL. We then generate a labelled transition system
(LTS) from this µCRL specification by using components
of the µCRL toolset. The properties of interest are then
written in the logic of the model checker we use; here
we use the regular alternation-free µ-calculus to express
non-starvation and mutual exclusion. The labelled tran-
sition system is then checked against this property using
the Cæsar/Aldébaran toolset. For some properties it
is necessary to transform the LTS (e.g., using hiding for
non-starvation) so that we can model check with a sim-
pler formulation of the property of interest (e.g., one
without alternating fixed points).
The case study we discussed in this paper was drawn

from a critical part of the AXD 301 software consist-
ing of about 250 lines of Erlang code, which implements
a resource-locking problem for which we prove properties
such as mutual exclusion and non-starvation. Although
we re-implemented the software to substantially simplify
the code, the principles underlying the code we used are
exactly the same as those in the actual switch code. In
the code of the resource manager in the AXD 301, both
the resource manager and a leader election protocol are
combined. We separated these two concepts and concen-
trated on a clean implementation of both. In this paper,
we have described the resource locker code. We used the
same design principles, coding style and libraries as were
used in the production code. Even the names of variables
and functions are the same in our implementation as in
the original software.
Our approach has advantages and disadvantages. The

ability to automate many aspects of the process is one
of the key advantages; however, we currently have to fix
the number of clients and resources per verification. Tack-
ling this issue, and determining how to verify properties
for arbitrary numbers of clients and resources without
a crippling performance overload, is part of our ongoing
work. Relevant to this might be the use of theorem prov-
ing since the Erlang theorem prover [14] can be used to
prove similar properties, in particular if one uses the extra
layer of semantics for software components added to the
proof rules [5]. However, such a proof has to be provided
manually, and this contrasts with the ability to automate,
which is an advantage of model checking. However, with
a theorem prover one can reason about sets of config-
urations at once and not fix the number of clients and
resources per attempt. Integrating the two approaches
might offer some combined benefits.
The translation of Erlang into µCRL which we dis-

cussed above is performed automatically and is suffi-
ciently robust to deal with a large enough part of the
language to make it applicable to serious examples. Al-
though the tool which calculates the state spaces for
µCRL models [11] is advanced and stable, it still takes on
the order of a few minutes up to several hours to generate
a state space. Once the model is generated, model check-
ing is relatively quick: with the Cæsar/Aldébaran



220 T. Arts et al.: Development of a verified Erlang program for resource locking

toolset it takes only a few seconds up to a few min-
utes. This comparative difference is partly due to the
computation on the complex data structures we have in
our algorithm.
Some further optimisations could be envisaged. In

some cases, it is unnecessary to generate the whole state
space, for example when the property of interest does
not hold. A collaboration between both providers of the
external tools recently resulted in an on-the-fly model
checker to overcome this inconvenience. At the same
time a distributed state space generation and model-
checking tool are being built as a collaborative effort be-
tween CWI and Aachen University [8]. With such a tool,
a cluster of machines can be used to quickly analyse
rather large state spaces. Experiments have shown that
an LTS with 20 million states would be generated in a few
hours.
All of this work points to a situation where the for-

mal verification of Erlang programs is slowly becoming
practically possible, particularly for the development of
new programs [2]. An experiment involving using the tool
to develop the scheduler software for a video-on-demand
server underwrites this [6]. Our ongoing work includes the
extension of our translation tool to cover more compo-
nents and to deal with fault tolerance. At the moment,
crashing and restarting of processes is not considered in-
side the µCRL model, so that properties of the fault tol-
erance behaviour cannot be expressed. In the near future,
we plan to verify more software and construct a library of
verified Erlang programs that can be used within Erics-
son products.
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