
Formal Specification and Analysis of

Accelerated Heartbeat Protocols

Muhammad Atif MohammadReza Mousavi
Department of Computer Science,

Eindhoven University of Technology
{ M.Atif, M.R.Mousavi}@tue.nl

Abstract

We present a formal analysis of all different variations of accelerated heartbeat protocols
presented in [M.G. Gouda and T.M. McGuire, Accelerated Heartbeat Protocols, Proc. of
ICDCS’98]. We formalize the specification of the protocols both in a process-algebraic and in
an automata-theoretic formalism. Then, we formulate some natural functional requirements
on the above-mentioned protocols and formalize these requirements. Using model-checking
techniques, we verify these requirement on each and every version. We report counter-
examples witnessing that the formulated requirements are not satisfied. We propose fixes
for different version of the protocol and model check the fixed versions; the model checking
results indicate that the fixed versions indeed satisfy the requirements.

1 Introduction

Heartbeat protocols are used as the underlying synchronization mechanism for many other dis-
tributed protocols [GM00, HSC95, TSLC02, Vog96, WGZC05]. The basic idea behind a heartbeat
protocol is that once a participating process or a communication channel crashes, other processes
become aware of this fact and become inactive within a certain interval. To this end, processes
periodically exchange simple messages, called heartbeats, to inform each other about their live-
ness. If an expected heartbeat is not received after a specific time, it is assumed that either the
respective process has failed or the communication medium is down. After a number of peri-
ods without any response, the expecting processes eventually become inactive, thus guaranteeing
timely inactivation of all participants after a process or channel crash.

In [GM98], several variations of heartbeat protocols are presented. These protocols aim at
achieving the above-mentioned goal while reducing the overhead, i.e., the rate of heartbeat trans-
missions. Moreover, they try to minimize the detection delay (the interval between the crash and
the deactivation of all processes) and maximize reliability (minimizing the probability of inactiva-
tion due to lost heartbeats).

We formally model and analyze all different versions of heartbeat protocols presented in
[GM98]. To this end, we give a formal specification of these protocols in two formalisms: the
process algebra mCRL2 [GMvWU06] and the timed-automata language of UPPAAL [BDL04].
Note that both process-algebraic and automata-theoretic models are complete models of the pro-
tocols and can be independently used to present the same results. Then, we specify basic properties
about the safety and liveness of the protocols, namely that upon a crash, all processes will even-
tually be deactivated within a certain period of time (to be specified precisely by the protocol
specification) and if no process crashes and no message is lost or delayed (beyond its allowed
limit), then no process will decide to deactivate (i.e., suspect any crash). We verify these, rather
basic, requirements on the protocols given in [GM98]. For the process algebraic specification, we
specify the requirements using a combination of monitor processes and modal µ-calculus formulae
and use the Caesar/Aldebaran tool-set [GMLS07] to model-check the specified properties on the

1

formal specification of the protocols. For the automata-theoretic specifications, we use a combi-
nation of monitor timed-automata and reachability properties and use UPPAAL to model-check
them. To our surprise, for each of the protocols we found situations where one or both of the
above properties are not satisfied. In [MG04], slightly modified versions of some of the protocols in
[GM98] are presented. We have also analyzed the modified versions and briefly discuss the results
in the remainder of this paper.
Structure of the paper. Heartbeat protocols are presented informally in Section 2. In Sections
3 and 4, respectively, we give an overview of the process-algebraic and the automata-theoretic
specification of the protocol. Section 5 is devoted to the specification of requirements and their
analysis. In Section 6, the discovered counter-examples are discussed and some fixes for the
protocols are proposed. The fixed versions of the protocol are then model-checked and shown to
be correct. The paper is concluded in Section 7.

2 Accelerated heartbeat protocols

In this section, we briefly present the following four different types of accelerated heartbeat pro-
tocols introduced in [GM98].

1. The binary heartbeat protocol.

2. The static heartbeat protocol.

3. The expanding heartbeat protocol.

4. The dynamic heartbeat protocol.

All the protocols, to be presented in the remainder of this section, have the following basic
assumptions in common.

1. Every process is active in the beginning.

2. Any active process can become inactive anytime (due to a crash) but cannot become active
again (recover) afterwards. (We call the crash of a process its voluntary inactivation, as
opposed to non-voluntary inactivation, which is caused by the protocol.)

3. Every sent message will be received provided that the communication medium is up. In
particular, messages sent to crashed processes will be received but will be given no reply. If
a message is to be delivered (the channel is up), it is delivered within a certain period of
time; the maximum round-trip delay of channels is bound by the constant tmin.

2.1 The binary heartbeat protocol

In this protocol, only two processes participate in exchanging their heartbeats in a round-based
fashion. Let p[0] and p[1] be the processes and tmax and tmin be the maximum and minimum
waiting time, respectively, for each round. Let t be the waiting time of p[0] for each round such
that tmin ≤ t ≤ tmax. (Note that tmin is the same constant as the upper bound on the round-trip
channel delays.) The process p[0] iteratively follows the steps given below to run the protocol:

1. It waits for a period of length t, where t is initially set to tmax.

2. It sends a heartbeat message to p[1].

3. For the next round, the value for t is tmax if p[0] has received the heartbeat from p[1] in
the current round, or otherwise t becomes t/2. However, if the new value of t is less than
tmin, p[0] itself becomes inactive (non-voluntarily).

To respond to p[0], p[1] performs the following three steps.

2

1. Receives a heartbeat from p[0].

2. Sends its heartbeat.

3. If it does not receive a heartbeat from p[0] for a period of length 3tmax − tmin, it becomes
inactive (non-voluntarily).

In [MG04], a slightly modified version of the binary (and static) heartbeat protocols are pre-
sented, in which p[0] does not wait initially but starts off by sending its heartbeat to p[1]. In the
remainder of this paper, we refer to this version as the revised binary heartbeat protocol.

Also, a modified version of binary heartbeat protocol, called two-phase heartbeat protocol, is
presented in [GM98]. In the two-phase heartbeat protocol the value of t is reduced immediately
to tmin if p[0] does not receive a heartbeat from p[1] in the previous round. Otherwise, the
specification of the two-phase heartbeat protocol is identical to its binary counterpart.

2.2 The static heartbeat protocol

The static heartbeat protocol extends the binary heartbeat protocol by allowing for a fixed number
of participating processes. In this protocol, p[0] broadcasts its heartbeat to n processes, where
the value of n is fixed and a priori known to p[0]. Process p[0] exchanges heartbeat messages
periodically by executing the binary heartbeat protocol with every p[i], where 1 ≤ i ≤ n. (Note
that all heartbeat exchanges are with p[0] and other processes do not exchange their heartbeats
among themselves.) All of the processes in the network commonly use the values of tmax and tmin
(introduced in Section 2.1). Process p[0] maintains a list of type Boolean to record the response of
every process with respect to its sent heartbeats. It assigns the value true, if it receives a heartbeat
within t time units, or otherwise false to the respective process. Process p[0] also maintains a list
of time periods tm (initialized with tmax as the value of all cells), indicating the waiting time
for each process. This list is changed after each round according to the received heartbeat from
respective process(es), using the same procedure described for t in Section 2.1, i.e., after each
round, if p[0] receives a heartbeat from p[i] within t time units, then the value of tm[i] is set
to tmax, otherwise, it is set to tm[i]/2. In each round, the waiting time t of p[0] is defined by
min(tm[1..n]).

2.3 The expanding heartbeat protocol

The expanding heartbeat protocol extends the static heartbeat protocol in that the participating
processes may join the protocol gradually in the course of protocol execution. At the start of this
protocol, p[0] is the only process and later any number of other processes can join by sending
their heartbeats. The new process recognizes that it has joined the protocol when it receives the
heartbeat from p[0]; otherwise, it continues sending its heartbeat every tmin time units until the
limit 3tmax − tmin is reached, upon which it decides that p[0] or the communication channel has
crashed and goes to the (non-voluntarily) inactivated state. Process p[0] maintains the list jnd
of joined processes and executes the static heartbeat protocol with them. The response time and
waiting time of each process and each round, respectively, are computed exactly as in the static
heartbeat protocol, discussed in Section 2.2.

2.4 The dynamic heartbeat protocol

This version is the most flexible one as compared to the other protocols introduced in [GM98].
Each process can join and then leave (permanently) at will. To encode join and leave messages in
this protocol, heartbeats are parameterized with a boolean parameter. For joining or remaining
in protocol, heartbeats carry true and for leaving, they carry false as the data parameter. If a
process p[i] decides to join the protocol, it keeps on sending its heartbeat with parameter true
every tmin units of time. Receiving a heartbeat with parameter true from p[0] indicates that
p[i] has actually joined the protocol. Again if p[i] does not receive a heartbeat with parameter

3

true within a period of 3tmax − tmin, p[i] will assume a crash in the nodes or channels and will
inactivate itself non-voluntarily. When joined the protocol, the specification of p[i] is identical to
the expanding version, except for the fact that it can leave the protocol by sending heartbeats with
parameter false. Again, p[0] acknowledges this by sending a heartbeat with the same parameter.
It is important to differentiate between leaving the protocol and crashing (voluntarily becoming
inactive). The former will not affect the other participants at all while the latter will cause the
inactivation of every process in the network.

3 Formal specification in mCRL2

3.1 Introduction

In this section, first we present a general overview of our formal specification in the process alge-
braic formalism mCRL2 and then the notational aspects of the formalism used in our specification
of the accelerated heartbeat protocols. Our formal specification in mCRL2 comprises the following
aspects.

Data types. The first part of our formal specification is dedicated to formalizing the data types
used in the specification of the protocol. This part involves no novelty, as data types such as
booleans, integers and lists are already built in the mCRL2 syntax and we only need to compose
them in order to obtain more complex data structures. Also, we defined straightforward operations
on these data types to check and update data values in different data structures.

Main processes. The participants of the protocols are modelled as a choice among a number of
sequential processes, each of which are triggered by a certain event. For example, the specification
of process p[0] in the binary heartbeat protocol comprises the following choices:

1. crashing,

2. receiving a heartbeat from p[1],

3. receiving a time-out (t time units after sending the heartbeat), checking whether a heartbeat
is received from from p[1], and either becoming inactivated non-voluntarily or adjusting the
next waiting time accordingly,

4. passing one time unit.

The structure of p[1] is very similar to that of p[0]; it only replies to the heartbeat received
from p[0] right away and has a time-out on 3tmax − tmin resulting in immediate non-voluntary
inactivation.

The structure of the main processes in the other three versions are quite similar, except that
more choices are added to the specification (e.g., for joining and leaving the protocol) and more
details are added to each sequential process (e.g., calculating the minimum of the list of waiting
times).

Channels. Channels are simple processes, which receive a message from one side and non-
deterministically decide to lose it or deliver it to the other side. We explain below how the
upper-bound on the round-trip delay of channels is enforced.

Timing. Timing constraints play a crucial role in the heartbeat protocols; they are both present
in the protocol specification as well as in the correctness requirements. In the current version of
the mCRL2 toolset, there is limited support for the analysis of timed specification. Hence, we have
set up auxiliary processes which act as clocks and watchdogs for the actual processes participating
in the protocols. There is an underlying clock synchronization mechanism, which enforces different
clocks to proceed at the same speed. This is achieved by a multi-party synchronization among

4

clocks (using the so called multi-actions in mCRL2). Moreover, timeouts are implemented as
watchdog processes that start ticking when they receive a message corresponding to their triggering
event (e.g., sending a heartbeat by p[0] for the watchdog taking care of timeout at t in p[0]) and
sending an un-delayable message to the process to be triggered after a certain amount of time (e.g.,
issuing a timeout message for p[0] after passing t time units from sending its heartbeat). A similar
watchdog mechanism is used to enforce a maximum round-trip delay on channels; the heartbeats
are time-stamped with their delay when delivered from p[0] to each p[i] and the corresponding
watchdog will resume counting down from the point it has left when the replying heartbeat is set
on the channel in the reverse direction. For broadcast messages delays are controlled by a separate
watchdog for each process.

We give next an overview of the formal specification of main processes in our formalization
of the binary heartbeat protocol and point out the changes that are made in order to obtain the
other versions of the protocol.

3.2 The binary heartbeat protocol in mCRL2

Process p[0]

We define process p[0] by means of following five parameters. Here “Bool” and “Nat” are sorts
(types) [GMvWU06] for boolean and natural numbers respectively.

• active : Bool. A flag that shows the state of process, i.e., true if active otherwise false. The
initial value for this parameter is true.

• rcvd : Bool. A flag that denotes the receiving a reply from p[1], i.e., true if received, or
otherwise false. The initial value for this parameter is true.

• t : Nat. Length of the time period to exchange the beat messages, of which the initial value
is tmax.

• tmin : Nat. Lower bound for waiting time of each round.

• tmax : Nat. Upper bound for waiting time of each round.

1: P0(t : Nat, active, rcvd : Bool, tmin, tmax : Pos) =
2: tick p0.P0(t, active, true, tmin, tmax)
3: +
4: active → inactivate v p0.P0(t, false, rcvd, tmin, tmax)
5: +
6: from p1(hb1).(active → P0(tmax, active, true, tmin, tmax)
7: �
8: P0(tmax, active, false, tmin, tmax))
9: +

10: active → (timeout at P0.
11: (rcvd → for p1(hb0).send ticking time(tmax).
12: P0(tmax, active, false, tmin, tmax)
13: �
14: t div 2 ≥ tmin → for p1(hb0).
15: send ticking time(t div 2).
16: P0(t div 2, active, false, tmin, tmax)
17: �
18: inactivate nv p0.P0(tmax, false, rcvd, tmin, tmax)
19:)
20:);

5

Process p[0] comprises four summands separated by nondeterministic choice (denoted by +).
In line 2 of the above specification for p[0], tick p0 denotes the clock tick, which allows for time
to pass and in line 4, an active process may non-deterministically voluntarily decide to become
inactivated. (Notation c → p0 � p1 stands for “if c, then p0 else p1; when the else part is not
mentioned, it is assumed to be deadlock. In case of mCRL2 processes without timed actions,
deadlock is the unit element for non-deterministic choice.) Line 6 shows that, the process can
receive the heartbeat of p[1] without any precondition. Line 10 presents the behavior of p[0] after
the timeout; the timeout message is synchronized with a watchdog (described below). Namely, first
it checks the reply from p[1] and if the reply is there within the given time t, then the waiting time
is set to tmax, or otherwise it is decreased to its half. For readability, we have annotated each send
and receive action in p[0] and p[1] with the type of heartbeat being sent and received: heartbeats
of p[0] and p[1] are denoted by hb0 and hb1 , respectively. In the same step, the new value of
waiting time is also compared with tmin to decide wether to go for non-voluntarily inactivation or
to continue running the protocol. The reduced transition system of this process (for tmax = 2 and
tmin = 1, after hiding the action send ticking time and reducing modulo weak-trace equivalence)
is depicted in Figure 1.

tick p0 from p1 (hb1)

from p1 (hb1)

tick p0

inactivate v p0

timeout at P0

for p1 (hb0)

from p1 (hb1)

timeout at P0

for p1 (hb0)

from p1 (hb1)

inactivate v p0

inactivate nv p0timeout at P0

inactivate v p0

tick p0

tick p0

Figure 1: Reduced transition system for process p[0] with tmax=2 and tmin=1

Timeout stopwatch for p[0]

: The following stopwatch starts ticking by synchronizing on rcv ticking time(i); this action syn-
chronizes with send ticking time(tmax) in the specification of p[0]. Notation

∑
i:Nat is a gen-

eralization of nondeterministic choice, which allows for making a choice from a possibly infinite
domain. The choice in this process represents the possibility of receiving any natural number as
the time limit for the watchdog. The stopwatch subsequently counts up at each clock tick, until it
either reaches the received time (i), in which case it sends a time-out message to p[0]. Initially this
stopwatch receives tmax from p[0] and it receives a value for i, every time p[0] sends a heartbeat
to p[1].

6

1: Stop Watch p0 =
2: tick sw p0.Stop Watch p0+
3:

∑
i:Nat

rcv ticking time(i).Start T icking p0(0, i);

4:

5: Start T icking p0(t, time : Nat) =
6: (t ≈ time) → send timeout P0.Stop Watch p0
7: �
8: tick 2.Start T icking p0(t + 1, time);

Process for p[1]

The structure of p[1] is very similar to that of p[0]; it only replies to the heartbeat received from
p[0] right away and has a timeout on 3tmax − tmin, resulting in immediate non-voluntary inac-
tivation. Process for p[1] is defined by means of three parameters; tmin, tmax and active, which
stand for the same intuition as in process p[0]. The transition system of this process (for tmax =
2 and tmin = 1) is depicted in Figure 2.

1: P1(tmin, tmax : Pos, active : Bool) =
2: tick p1.P1(tmin, tmax, active)
3: +
4: active → inactivate v p1.P1(tmin, tmax, false)
5: +
6: from p0(hb0).(active → for p0(hb1).snd reset sw p1.P1(tmin, tmax, active)
7: �
8: P1(tmin, tmax, active))
9: +

10: (active) → timeout at P1.inactivate nv p1.P1(tmin, tmax, false);

First four lines have the same purpose as in process for p[0] while in line 6, p[1] receives the
beat from p[0] and if active then it sends an immediate reply. Line 10 shows the non-voluntarily
inactivation of p[0] due to timeout, i.e., 3tmax− tmin units of time have passed without receiving
message from p[0]. This timeout message is synchronized with the stopwatch given below.

tick p1

inactivate nv p1

timeout at P1

from p0 (hb0)

for p0 (hb1)

inactivate v p1

tick p1 from p0 (hb0)

snd reset sw p1

Figure 2: Transition system for process p[1] with tmax = 2 and tmin = 1

Stopwatch for p[1]

This stopwatch works as a monitor and sends timeout messages to p[1]. The timeout occurs at
p[1] when it is active and doesn’t receive any beat message during a period of 3tmax − tmin
time units [GM98].

7

1: Stop Watch p1(t, tmax, tmin : Nat) =
2: reset sw p1.tick sw p1.Stop Watch p1(0, tmax, tmin)
3: +
4: rcv inactivate v p1.Idle T icking
5: +
6: (t ≈ 3× tmax− tmin) → for p1 timeout.Stop Watch p1(0, tmax, tmin)
7: �
8: tick sw p1.Stop Watch p1(t + 1, tmax, tmin);
9: Idle T icking = tick sw p1.IdleT icking;

The stopwatch gets reset by receiving reset sw p1 , which synchronizes with the message from
p[1] after it receives a heartbeat from p[0] (and replies to it). It also gets inactivated by receiving
a message indicating that p[1] has been inactivated voluntarily. Otherwise, it ticks and counts up
to its limit 3× tmax− tmin after which it sends a timeout message to p[1].

Communication channels

We define the following two processes, one for channel from p[0] to p[1] and other from p[1] to
p[0] as shown below. Both processes synchronize on the clock ticks. The first process receives
a heartbeat from p[0] and then non-deterministically either loses it or delivers it to p[1]. Losing
a message is indicated by an action “lose message”. The functionality of the other process is
identical but in the reverse direction. Both processes synchronize with a stopwatch in order to
ensure the timely delivery of messages w.r.t. the round-trip maximum delay specified by tmin.

1: Channel p0 to p1 =
2: tickp0p1.Channel p0 to p1
3: +
4: rcv from p0(hb0).(start sw ch(hb0) + lose message).Channel p0 to p1;
5:

6: Channel p1 to p0 =
7: tickp1p0.Channel p1 to p0
8: +
9: rcv from p1(hb1).(update sw ch(hb1) + lose message).Channel p1 to p0;

Stopwatch for channel delay

This stopwatch measures the total delay in communication channels and ensures that the round
trip between p[0] and p[1] will be completed within tmin units of time. According to [GM98],
“tmin is upper bound on the round-trip delay between p[0] and p[1]”. So this stopwatch starts
counting the number of ticks when the heartbeat of p[0] is received at communication channel,
i.e., Channel p0 to p1, and it gets reset when the heartbeat from p[1] is delivered to p[0] by the
channel in the reverse direction.

8

1: Stop Watch Ch(t, tmin : Nat) =
2: tick ch.Stop Watch Ch(t, tmin)
3: +
4: rcv start sw ch(hb0).Start T icking p0 to p1(0, tmin)
5: +
6: rcv update sw ch(hb1).Start T icking p1 to p0(t, tmin);
7:

8: Start T icking p0 to p1(t, tmin : Nat) =
9: (t < tmin− 1) → (tick ch.Start T icking p0 to p1(t + 1, tmin)

10: +
11: send to p1(hb0).Stop Watch4(t, tmin)
12: �
13: send to p1(hb0).Stop Watch4(t, tmin);
14:

15: Start T icking p1 to p0(t, tmin : Nat) =
16: (t < tmin− 1) → (tick ch.Start T icking p1 to p0(t + 1, tmin)
17: +
18: send to p0(hb1).Stop Watch Ch(0, tmin))
19: �
20: send to p0(hb1).Stop Watch Ch(0, tmin);

Line 2 contains the tick for synchronization and line 4 shows that this stopwatch starts counting
when the channel from p[0] to p[1] receives the message. The other way round, when p[1] sends
a reply, stopwatch 4 is updated with the already spent time so that the respective round may
be completed within tmin time units. Process shown on line 8 and 15 are for counting the ticks
when message travels from p[0] to p[1] and then back from p[1] to p[0], respectively. Both of these
processes also ensure that the round-trip delay is at most tmin.

3.3 The static heartbeat protocol in mCRL2

As discussed in Section 2.2, there are a number of participants running the static heartbeat protocol
with p[0]. Hence, the heartbeat of p[0] is broadcasted for all the participants. In our specification
settings, the communication channel performs this function through a separate process, called
“Broadcaster”. We define these processes as:

1: Channel p0 to p(n : Nat) = tick p0p1.Channel p0 to p(n)
2: +
3: rcv from p0(hb0).Broadcaster(hb0, 0, n);
4:

5: Broadcaster(msg : p0 to p, np, n : Nat) =
6: (np < n) → (start sw4(msg, np) + lose message).
7: Broadcaster(msg, np + 1, n)
8: �
9: Channel p0 to p(n);

10:

11: Channel p to p0 = tick p1p0.Channel p to p0
12: +
13:

∑
message:p to p0

.
∑

i:Nat

.rcv from p(message, i).

14: (update sw4(message, i) + lose message).Channel p to p0;

The parameter ‘n’ denotes the number of participants. In line 3 the channel receives the
heartbeat from p[0] and initiates the process of broadcasting, i.e., “Broadcaster”. Line 6 presents

9

the non-deterministic choice between losing a message and delivering it (along-with starting the
respective stopwatch to ensure the maximum round-trip delay). In lines 11-14, we present the
channels that lose or deliver the message in the reverse direction.

Other processes are similar to their counterparts in the binary heartbeat protocol except that
the heartbeat of p[0] also contains the identifier of the recipient. In this version we have also
defined new functions for calculating with manipulating lists of time periods and boolean variables
(indicating the receipt of a heartbeat). These functions are used in definition of process for p[0]
in static heartbeat protocol as shown below:

1: P0(t : Nat, active : Bool, rcvd : List(Bool), tmin, tmax : Nat, tm : List(Nat)) =
2: tick p0.P0(t, active, rcvd, tmin, tmax, tm)
3: +
4: (active) → (active)− > inactivate v p0.P0(t, false, rcvd, tmin, tmax, tm)
5: +
6:

∑
i:Nat

from p(hb1, i).resetsw1.)

7: ((active) → P0(tmax, active, update(i, true, rcvd), tmin, tmax, tm)
8: �
9: P0(tmax, active, rcvd, tmin, tmax, tm))

10: +
11: active → (timeout at P0.
12: (minimum(updateTM(rcvd, tm, tmax)) ≥ tmin)
13: →
14: send ticking time(minimum(updateTM(rcvd, tm, tmax))).
15: broadcast(hb0).
16: P0(minimum(updateTM(rcvd, tm, tmax)), active, assignFalse(rcvd), tmin,
17: tmax, updateTM(rcvd, tm, tmax))
18: �
19: inactivate nv p0.P0(tmax, false, rcvd, tmin, tmax, tm)
20:);

There are two changes in parameters if we compare it with the binary heartbeat protocol.
First, rcvd is a list instead of single value and secondly tm is list of time periods of all processes;
functions update, updateTM , assignFalse and minimum operate on the aforementioned lists.

3.4 The expanding heartbeat protocol in mCRL2

In this version of the protocol, p[0] maintains one more list than the static heartbeat protocol,
namely, the list of participants which have joined the protocol. Each participating process sends
its heartbeat to join, waits for tmin units of time and continue sending till the response from p[0].
So we have introduced another stopwatch that is instantiated with each participating process.
This stopwatch sends a timeout to its respective process, so that it it starts sending its heartbeat
before tmin units of time.

3.5 The dynamic heartbeat protocol in mCRL2

As discussed in Section 2.4, the beat messages in this protocol carry a boolean parameter indicating
the intention to join or to leave the protocol (denoted by true or false, respectively). So the
process for p[0] is almost same as its counterpart in the expanding heartbeat protocol except for
the arguments of the heartbeats and updating the joined list accordingly. However the process for
p[i] has more choices in each iteration as described below:

1. Become inactive

10

2. If not joined then send a heartbeat with parameter true after every tmin units of time as a
joining request.

3. If joined and active then send heartbeat with parameter false for leaving or heartbeat with
parameter true for remaining in the protocol.

4. Become non-voluntarily inactive, if there is no response from p[0] within 3tmax− tmin.

5. Receive a beat from p[0] and send an immediate reply if active.

We modified process for p[i] to address these choices as specified below.

1: P (n, tmin, tmax : Nat, active, join : Bool) =
2: tick p.P (n, tmin, tmax, active, join)
3: +
4: active → inactivate v p(n).P (n, tmin, tmax, false, join)
5: +
6: from p0(hb0, n).resetSW3(n).
7: (active → (for p0(hb1, n, true).P (n, tmin, tmax, active, true)
8: +
9: for p0(hb1, n, false).P (n, tmin, tmax, active, false))

10: �
11: P (n, tmin, tmax, active, true))
12: +
13: active → timeout at P (n).inactivate nv p(n).
14: P (n, tmin, tmax, false, join)
15: +
16: active ∧ join → timeoutX(n).for p0 2join(n).
17: tick p.P (n, tmin, tmax, active, join);

4 Formal specification in UPPAAL

4.1 Introduction to UPPAAL

UPPAAL [KPW97] is a tool-suit used for modeling, simulating and verification of real-time sys-
tems. The input language of UPPAAL allows for networks of timed-automata communicating via
(handshaking or broadcast) communication channels. In UPPAAL one can define and exploit a
number of clocks in order to specify timing constraints in the specification. All clocks increase at
the same rate, can be reset when taking a transition and may guard transitions by checking their
value (or the difference between two clocks) against constants. Moreover, one may specify state
invariants in terms of clock values. Finite data types such as Booleans and bounded integers can
also be used to define state variables and transition guards and effects in timed automata.

In this section, we briefly describe our formalization of accelerated heartbeat protocols in the
timed-automata formalism of UPPAAL. We start with a brief description of the binary protocol
and then explain incremental additions leading to each new version.

4.2 The binary heartbeat protocol in UPPAAL

Timed automaton for p[0]

The timed-automaton for process p[0] is depicted in Figure 3. The initial state is named Alive
and is denoted by a double-circle. The only clock in this specification is waiting, which is initially
reset to 0. Variable t, denoting the current waiting time is initially set to 0. Once a process is
alive, its waiting period should be at least tmin, and its waiting time can grow to the time bound
specified by variable t (initially set to tmax. Afterwards, a time-out is issued and the transition to

11

the state called time-out has to be taken. Alternatively, and at any moment of time, the process
can move to the state V Inactivated and as a result, become inactivated voluntarily.

Time_Out

NV_Inactivated V_Inactivatedactive[0] = false

rcvd = true

active[0] = false

rcvbeatby0?

rcvbeatby0?

Alive

sndbeatto1!

rcvbeatby0?

(waiting <= t) and
(t >= tmin)

t >= tmin

waiting = 0,
updateT(rcvd,t),
rcvd=false

t < tmin

waiting == t

t >= tmin

active[0]=false
t < tmin

Figure 3: Timed-automaton for p[0] in the binary heartbeat protocol

Time Out state is a committed state, denoted by an encircled C, meaning that when the
network of timed-automata reaches a combination containing one such state, time cannot pass,
and an outgoing transition of a committed state must be taken immediately. This ensures that p[0]
resets the waiting time and immediately computes the new waiting period, and makes a decision
as to become non-voluntarily inactivated (move to the state NV Inactivated or continue running
the protocol instantaneously.

Note that p[0] can receive messages from p[1] regardless of being alive or inactive.

Timed-automaton for p[1]

The timed-automaton for process p[1] is depicted in Figure 4. The initial state of p[1] is denoted
by Alive. The only clock used in the timed-automaton for p[1] is waitingforbeat which measures
the amount of time since the last received heartbeat. Upon receiving a heartbeat, the automaton
moves to the committed state Rcvd from which it should instantaneously move to the alive state
by resetting the clock and sending its heartbeat to p[0].

Depending on the total waiting time, the process may be forced to become inactivated non-
voluntarily, or choose to become inactivated voluntarily.

Timed-automaton for communication channels

The timed-automaton for the communication channels in the binary heartbeat protocol is depicted
in Figure 5. It simply receives the first message from p[0], either decides to communicate it or
loses it. Upon losing a message a boolean variable will be set to true which will be later used for
verifying correctness properties. Moreover, the total round-trip delay is enforced by means of the
clock delay, which is checked against the constant tmin. In case a process is inactivated then the
communication channel will stop waiting for heartbeats from that process.

12

V_Inactivated

Alive

Rcvd

NV_Inactivated

rcvbeatby1?rcvbeatby1?

sndbeatto0!rcvbeatby1?

(waitingforbeat <= (3*tmax − tmin))
waitingforbeat = 0

(waitingforbeat == 3*tmax − tmin)

(waitingforbeat < 3*tmax −tmin)
active[1]=false

active[1]=false

Figure 4: Timed-automaton for p[1] in the binary heartbeat protocol

rcvbeatby0!

sndbeatto0?

delay=0

delay=0

delay <= tmin

rcvbeatby1!

delay <= tmin

sndbeatto1? delay <= tmin

active[0]==true

active[1] == false

lostMsg = truelostMsg = true

Figure 5: Timed-automaton for communication channels in the binary heartbeat protocol

4.3 The static heartbeat protocol in UPPAAL

Process p[0] in the static version of the protocol is very similar to the one given in Figure 3.
The only differences are that firstly, broadcast channels, which are built-in primitives in UPPAAL
are used to sent the heartbeat of p[0] to the communication channels between p[0] and the other
participant and secondly, lists and operations thereon replace the single variables storing the
waiting times and the receipt of heartbeats. We decided to a separate communication channels
between p[0] (rather than a single channel broadcasting the heartbeat of p[0] simultaneously to
all participants and vice versa) and each participant in order to allow for different communication
delays in each direction.

The structure of each p[i] process is identical to the process p[1] depicted in Figure 4.
Finally, several instances of a communication channel, identical to the specification given in

Figure 5, communicate the messages from p[0] to p[i] and vice versa.

4.4 The expanding heartbeat protocol in UPPAAL

There are a few changes in the specification of expanding heartbeat protocol, when compared to
the static version.

Firstly, process p[0] takes note of processes that have joined the protocol (by sending a heart-

13

beat) and only takes them into account when calculating the new waiting time. Otherwise, the
structure of p[0] is identical to its counterpart in the static version.

Secondly, each process p[i] starts off by sending out its join request (by sending a heartbeat)
and then keeps on sending this request until it receives a heartbeat with parameter true from p[0]
or becomes inactivated. Sending the first join request cannot happen later than tmin units of
time. This is guaranteed by using a new clock called waitingtojoin. The specification of process
p[i] in this protocol is given in Figure 6. In this figure, the initial state of the timed-automaton is
an urgent state, meaning that time cannot pass before leaving this state. Intuitively, this means
that the process can not abstain from running the protocol by remaining in the initial state.

(waitingforbeat = 0), (waitingtojoin = 0)

active[i] = false

NV_Inactivated

waitingtojoin = 0,
waiting[i−1] = true

waitingtojoin = 0

join[i−1] = true
rcvbeat[0]?

sndbeat[i]!

V_Inactivated

sndbeat[i]!
Alive(waitingtojoin <= tmin) and

(waitingforbeat <= (3*tmax − tmin)) join[i−1] = true, waitingforbeat = 0

(waitingforbeat < 3*tmax − tmin)

(waitingtojoin==tmin) and (not join[i−1]) and active[i]

active[i]=false
(waitingforbeat==3*tmax − tmin)

(waitingtojoin==tmin) and join[i−1]

active[i] and
waiting[i−1]

Figure 6: Timed-automaton for p[i] in the expanding heartbeat protocol

Finally, p[i] processes initiate the protocol and thus, the communication channel should allow
for the delivery of joint requests. We model this by adding an extra channel per participating
process which is only active before that the process has joined the protocol. Afterwards, the same
communication channel as in the static protocol will take care of communicating messages.

4.5 The dynamic heartbeat protocol in UPPAAL

Process p[0] in the dynamic version has the extra possibility of receiving leave requests. We denote
receiving join and leave requests from process p[i] by messages rcvfalsebeat[i] and rcvtrueebeat[i],
respectively. The rest of the structure and the logic behind p[0] is identical to its expanding
counterpart. For sake of completeness, the timed-automaton for p[0] is given in Figure 7.

Similarly, process p[1] has the extra option of leaving the protocol by replying sndfalsebeat[i]
to the heartbeat of p[0]. The timed-automaton for p[i] is depicted in Figure 8.

5 Verifying protocol requirements

5.1 General requirements

In [GM98, p. 2], we read the following requirement:

... if one or more processes ever choose to become inactive, then all processes in the
network eventually become inactive.

This progress (eventuality) requirement has been further specified in [GM98, p. 3] and [MG04, p.
97] as follows:

14

NV_Inactivated

V_Inactivated

Alive

active[0] = false

rcvd[i−1] = true,
jnd[i−1] = true

rcvd[i−1] = false,
jnd[i−1] = false

i : int[1,MaxProc]

i : int[1,MaxProc]

sndtruebeat[0]!rcvtruebeat[i]?

rcvfalsebeat[i]?

(waiting <= t) and
(t >= tmin)

waiting = 0,
updateTM(jnd,rcvd,tm)

waiting == t

t >= TMin

t < TMin
active[0] = false

fillFalse(rcvd),
t = minList(tm)

Figure 7: Timed-automaton for p[0] in the dynamic heartbeat protocol

... if p[0] does not receive any beat message for a period of 2tmax, then p[0] becomes
inactive. 1

We thus define our first requirement as follows:

(R1) For each i > 0, if p[0] does not receive a heartbeat from p[i] for a period of
2tmax , then p[0] becomes inactive non-voluntarily.

The following symmetric requirement is given in [GM98] about the inactivation of p[0] and its
effect on the other participants:

If process p[0] becomes inactive voluntarily, then all p[i] will become inactive non-
voluntarily after at most 3tmax time units.

However, this requirement is enforced trivially by accommodating a time-out mechanism in all
p[i] processes which forces each p[i] to be inactivated if it does not receive a heartbeat from p[0]
within 3tmax − tmin units of time. Hence, we do not discuss this requirement in the remainder
of this paper.
In [GM98, p. 2], it is stated that:

If every process in the network, continues to choose to remain active [and no message
is lost or delayed beyond the limit], then all processes remain active indefinitely.

We added to the premises of the above requirement that no heartbeat message is lost or delayed
beyond the specified limit on the delays; otherwise, the above requirement is vacuously violated
by all heartbeat protocols.

(R2,R3) For each i≥ 0, if there has been no voluntary inactivation of any p[j] (for each
i 6= j) and no message is lost or delayed beyond its limit, then p[i] is not inactivated
non-voluntarily.

1This requirement is stated for the binary heartbeat protocol in [GM98]. But the same constants are used for
the other versions of the protocol and there is no further mention of a different upper bound for the other versions.
Thus, we assume that the same upper bound should hold for the other versions, as well.

15

(waitingforbeat = 0), (waitingtojoin = 0)

waitingtojoin = 0,
waiting[i−1] = true

active[i] = false

NV_Inactivated

join[i−1] = true

waitingtojoin = 0

leave[i−1] = true

join[i−1] = true, waitingforbeat = 0

rcvtruebeat[0]?

sndtruebeat[i]!

sndtruebeat[i]!

V_Inactivated

Alive

rcvtruebeat[0]?

sndfalsebeat[i]!

(waitingtojoin <= tmin) and
(waitingforbeat <= (3*tmax − tmin))

(waitingforbeat==3*tmax − tmin) and
(not leave[i−1])

waitingtojoin = 0, waitingforbeat = 0

(waitingtojoin==tmin) and (not join[i−1]) and active[i]

(waitingtojoin==tmin) and join[i−1]

active[i] and join[i−1] and (not leave[i−1])

(waitingforbeat < 3*tmax − tmin)

active[i]=false

active[i] and leave[i−1]

active[i] and
waiting[i−1] and
(not leave[i−1])

Figure 8: Timed-automaton for p[i] in the dynamic heartbeat protocol

We split the above statement into two requirement (R2) and (R3). For each i > 0, (R2)
requires that as long as p[0] and all p[j], where j ≥ 0 and j 6= i, are active, and all channels are up,
the protocol should not inactivate p[i] non-voluntarily. Requirement (R3) specifies that if all p[j]
processes, where j > 0, are active and all channels are up, then the protocol should not inactivate
p[0] non-voluntarily.

5.2 Formalizing the requirements in the modal µ-calculus

R1. To formalize the progress requirement (R1), we devised a watchdog for each process p[i],
which starts counting down from 2tmax and is reset by each heartbeat of p[i] received at
p[0]. All watchdogs are inactivated when p[0] is non-voluntarily inactivated. If a watchdog
reaches 0 and does not receive an inactivation message from p[0] before the next time unit,
it will issue a special message called “error”. (In case of expanding and dynamic protocols,
the watchdog of p[i] is only active after that the first joining request, i.e., a heartbeat with
parameter true, is sent by p[i] and in the dynamic protocol, it remains active until a leave
request is sent by p[i].) Then, we use the following simple formula in the modal µ-calculus,
for checking the reachability of a trace containing an action error .

[true∗.error]false

The notation [r]φ, where r is a regular expression over actions and φ is a formula, specifies
that after all traces satisfying r, φ should hold. Particularly, [r]false specifies that no trace
satisfying r is reachable (since otherwise false should be satisfied, which is impossible).

R2. For the binary and static versions of this protocol, the formalization of this requirement is
straightforward. Namely, for each i > 0, the following formula formalizes requirement (R2).

16

[(
∧

j≥0,i 6=j

inactivate v pj ∧ lose msg)∗.inactivate nv pi]false

The above formula states that non-voluntary inactivation of p[i], denoted by action inactivate nv pi,
is always preceded by a voluntary inactivation of another process p[j], denoted by action
inactivate v pj, or a message loss, denoted by action lose msg.

However, for the expanding and dynamic protocols, the above formula is too weak. It
disregards joining and leaving requests and for example, allows for a process which has not
joined, or joined but then left the protocol to become non-voluntarily inactive. Next, we
give the formalization of this requirement in modal µ-calculus for the dynamic protocol and
for three participants:

[p joined(1)
∗
.inactivate nv p(1)]false∧

[nofault({0})∗.p left(2).nofault({0})∗.inactivate nv p(1)]false∧
[nofault({0 , 2})∗.inactivate nv p(1)]false,

where nofault(I) stands for lose msg∧
∧

i∈I(inactivate v p0∧ inactivate nv p0) and p left(2)
stands for sent by p[2](false). true∗. rcv from p[0](true). This formula states that p[1] is
not allowed to be non-voluntarily inactivated, if it has not joined the protocol, or if it has
joined, no other process has joined and no fault has occurred in p[0] or the channel, or if no
fault has occurred in p[0], the participants and the channel.

R3. The following formula formalizes requirement (R3), which states that non-voluntary inacti-
vation of p[0] must be preceded with the voluntary inactivation of some p[i] (for some i > 0)
or a message loss.

[(
∧
i>0

inactivate v pi ∧ lose msg)∗.inactivate nv p0]false

As in requirement R2, the formalizations of R3 for the expanding and the dynamic protocols
are more involved.

[(
∧

i>0 p joined(i))
∗
.inactivate nv p0]false∧

[noinact({1})∗.p left(2).noinact({1})∗.inactivate nv p(1)]false∧
[noinact({0 , 1})∗.inactivate nv p(1)]false,

where noinact(I) stands for lose msg ∧
∧

i∈I inactivate v p0.

5.3 Formalizing the requirements in UPPAAL

R1. To formalize requirement R1, we devise a timed-automaton that runs in parallel with the
protocol and observes the receipt of heartbeats and the the corresponding inactivation. If it
observes that despite not receiving a heartbeat for 2 ∗ tmax , the monitor processes for the
binary and dynamic protocols are given, respectively, in Figures 9.(a) and 9.(b).

Subsequently, requirement R1 for the binary protocol is formalized in UPPAAL in terms of
(the negation of) the following reachability property:

E♦ M1 .ErrorR1

For the static, expanding and dynamic protocols, for each participant, one monitor automa-
ton is instantiated and requirement R1 has the following form:

E♦ (M1 .ErrorR1orM2 .ErrorR1)

Here M1 and M2 are instances of type Monitor, given in Figure 9.(b).

17

ErrorR1

active[0] and
delay > 2 * TMax

rcvbeatby0?
delay=0

ErrorR1

active[0] and
(delay > 2 * TMax)

rcvtruebeat[i]?

delay=0

rcvfalsebeat[i]?

rcvtruebeat[i]?
delay = 0

(a) (b)

Figure 9: Monitor timed-automaton for R1 in (a) the binary and (b) the dynamic heartbeat
protocol

R2. Requirement R2 for the binary protocol is formalized by the following reachability formula:

E♦((notCh.lostMsg)andP0.NVInactivatedandP1.Alive)

For the dynamic protocols, the following property captures R2:

E♦ ((not C11 .lostMsg) and (not C12 .lostMsg) and Process0 .NV Inactivated and
((P1 .Alive or (not jnd [0]) or leave[1]) and (P2 .Alive or (not jnd [1]) or leave[1])))

R3. Symmetrically, requirement R3 is captured in the specification of binary protocol by the
following formula:

E♦((not Ch.lostMsg) and P1 .NV Inactivated and P0 .Alive)

For the dynamic protocol, the requirement is specified in terms of the following formula:

E♦ ((not C11 .lostMsg) and (not C12 .lostMsg) and P1 .NV Inactivated and
(Process0 .Alive and (P2 .Alive or (not jnd [1]))))

5.4 Verification techniques

We applied model checking techniques for the verification of R1, R2 and R3 (discussed in Section
5.2) with respect to the different versions of accelerated heartbeat protocols. We used the pro-
cess algebra mCRL2 [GMvWU06] for modeling and evaluated the formulae with model checker
CADP [GMLS07]. In the process algebraic approach, a number of steps should be taken between
modeling (with mCRL2) and model checking (with CADP). Namely, we translated the models to
the respective linear process specifications (LPS) [GPU01] (a simple format used for storing and
manipulating recursive process definitions). From the LPS, we generated the state space after
applying different state space reduction techniques, such as minimizing modulo strong bisimilarity
and eliminating constants, superfluous summands and inconsequential parameters. We also mod-
eled the same protocols in timed-automata and used UPPAAL [KPW97] to verify the properties
specified in Section 5.3. Both model checkers produced similar results.

18

5.5 Verification results

We used different data sets for tmin and tmax for each protocol presented in [GM98] and [MG04].
(Note that the only constraint on tmin and tmax according to [GM98] is that 0 < tmin ≤ tmax .)
Since the counter-examples reported for the (revised) binary, two-phase and static heartbeat pro-
tocols are identical, we report about them once.2

5.5.1 The (revised) binary, two-phase and static heartbeat protocols

tmin 1 4 5 9 10
tmax 10 10 10 10 10
R1 F F F T T
R2 T T T T F
R3 T T T T F

Table 1: Verification results for (revised) binary, and static protocols

• R1: This property is violated in the (revised) binary and static protocols provided that tmin
is relatively small compared to tmax . A counter-example for this property is depicted by the
sequence diagram in Figure 10. In this trace p[0] sends a heartbeat to p[1], p[1] receives it
and replies to it and is voluntarily inactivated right away. Then, p[0] receives the heartbeat
of p[1] and after a period of at most tmax time units, it receives a time-out. At this point,
p[0] observes that a reply has been received from p[1] and hence, it sets the waiting time t
to tmax . From that point on, the total time to non-voluntary inactivation of p[0] takes at
most 2tmax − tmin time units. Thus, the total time to inactivation of p[0] can grow up to
3tmax − tmin, which is greater than 2tmax + tmin, if tmax > 2tmin. This was illustrated
by the counter-examples generated for tmin = 1 and tmin = 4 by the model-checker. (Note
that [GM98] considers tmax > 2tmin to be the “usual situation”; the authors write in p. 4
that tmax + tmin is usually less than tmax + tmax/2 . Also in [MG04], the authors choose
1000 and 10000 as typical values for tmin and tmax , respectively.)

For the case where 2tmin = tmax, we found a different, yet very simple, counter-example,
depicted in Figure 10.(b). (This counter-example also holds for the same protocols in case
2tmin < tmax and represents a different phenomenon in the protocols.)

• R2: Requirement R2 is violated in the (revised) binary, two-phase and static protocols,
when tmin and tmax have the same value, e.g., 10. The counter-example is illustrated in
Figure 11, which represents the following scenario. Consider a trace, where p[0] sends its
first heartbeat after its first timeout (after that t = tmax units of time pass) and round-
trip delay is equal to its upper-bound, i.e., tmin. The total time spent at the delivery of
p[0]’s heartbeat will thus be tmax + tmin, which is equal to 3tmax − tmin, if tmax = tmin
and the allowed delay limit is consumed in the channel from p[0] to p[1]. According to
specification, a timeout occurs at p[1] when 3tmax − tmin time is reached without receiving
a beat message. Hence, the timeout and receiving the heartbeat occur simultaneously at p[1]
and if the former is processed first, it causes non-voluntarily inactivation of p[1], whereas
p[0] has not been voluntarily inactivated and the communication channel is also up. For the
revised binary protocol, only the initial delay of tmax is not present, but the essence of the
counter-example remains the same.

• R3: This property is also violated in the (revised) binary, two-phase and static protocols,
when the values of tmin and tmax are equal. The same counter-example, depicted in Figure

2For the two-phase heartbeat protocol the condition for non-voluntary inactivation of p[0] is not specified in
[GM98]. Hence, we could not verify properties (R1) and (R3) for this version of the protocol.

19

p[0]

timeout

p[1]

tmax

tmax

p1 inactive v

tmax − tmin

timeout

timeout

timeout
inactive nv p0

beat

beat

beat

beat

beat

p[0]

timeout

p[1]

tmax

tmax

beat

timeout

p1 inactive nv

tmax/2

timeout

beat

inactive nv p0

(a) 2tmin < tmax (b) 2tmin ≤ tmax

Figure 10: Counter-examples for (R1) when 2tmin ≤ tmax

p[0]

timeout

p[1]

tmax

tmax

inactive nv p(1)inactive nv p0

beat

Figure 11: Counter-example for (R2) when tmin = tmax

11, illustrates this fact. In the same trace, p[0] is inactivated non-voluntarily without a
voluntary inactivation of p[1]. In another counter-example, depicted in Figure 12, p[1] may
remain alive and respond to the heartbeat of p[0] but its hearbeat is received at p[0] exactly
after tmin = tmax units of time. Then, both timeout and heartbeat arrive simultaneously
at p[0] and if the former is processed first, p[0] will non-voluntarily be inactivated while p[1]
is still active.

5.5.2 The expanding and dynamic heartbeat protocols

In cases where we could find a counter-example for the revised binary protocol, an almost iden-
tical counter-example is also reported for the expanding and dynamic protocols. (Namely, the
expanding and dynamic protocol with one participant behave exactly the same as the revised bi-
nary protocol after the participant has sent a joining request at time 0 and the request is received
at p[0] immediately.) However, expanding and dynamic heartbeat protocols contain many new
traces, which result in more counter-examples. Next, we only give discovered counter-examples
regarding the requirement (R2) that are not in common with the aforementioned protocol.

20

p[0]

timeout

p[1]

tmax

tmax

inactive nv p0

beat

beat

Figure 12: Counter-example for (R3) when tmin = tmax

tmin 1 4 5 9 10
tmax 10 10 10 10 10
R1 F F F T T
R2 T T F F F
R3 T T T T F

Table 2: Verification results for expanding and dynamic protocols

In addition to the counter-examples reported before, this property is violated in the expanding
and dynamic protocols when 2tmin ≥ tmax . That is why in case tmin = 5, 9 or 10, this property
is not satisfied. The counter-example for this case is depicted in Figure 13. In this trace, p[1]
sends its hearbeat to join the protocol, but its heartbeat is received at p[0] right after the first
time-out at p[0], and thus, p[0] does not send its heartbeat to p[1] before its next time-out. The
heartbeat of p[0] may take at most tmin units of time before it reaches p[1]. Hence, p[1] only
receives a beat from p[1] after 2tmax + tmin which is too late if 3tmax − tmin ≤ 2tmax + tmin,
or in other words, 2tmin ≥ tmax .

6 Correcting the protocols

As observed in Section 5.5, all requirements of the protocols are violated under certain circum-
stances. These violations can be traced back to two main causes: inappropriate handling of
simultaneous events and incorrect time-bounds for the inactivation of processes. In the remainder
of this section, we explain the nature of these causes and propose fixes that can fix the discovered
problems and even improve the performance of accelerated heartbeat protocols.

6.1 Simultaneous events

One clear source of problem in all heartbeat protocols is the possibility of simultaneous events
and lack of appropriate treatment thereof. Particularly, if a heartbeat is received simultaneously
with the occurrence of a timeout, the timeout may get precedence and thus, the receiving process
may become non-voluntarily inactive while the sending process is still alive and in fact has sent
its heartbeat on time. This results in a violation of properties R2 and R3 (see Figures 11 and
12). To solve this problem, receive operations must be given precedence over timeouts, i.e., before
processing timeouts, it has to be checked whether the communication channels offer messages that

21

p[0]

timeout

p[1]

tmax

tmax

beat(>)

timeout

inactive nv p(1)

tmax

tminbeat(>)

tmax

beat(>)

beat(>)

Figure 13: Counter-example for (R2) when 2tmin ≥ tmax

have to be delivered or not. In the former case, the pending messages are first processed and then
timeouts are issued.

Adopting the priorities specified above removes all the counter-examples reported for R2 and
R3 for binary and static heartbeat protocols. This fix is essential for solving the problems regarding
the same properties for the expanding and dynamic protocols, but it is not sufficient as explained
below.

6.2 Incorrect time-bounds

All heartbeat protocols assume a total waiting time of 2 ∗ tmax for p[0] and 3 ∗ tmax − tmin for
p[i] process(es), respectively. We argue below that both of the above-mentioned time-bounds are
either incorrect or imprecise (depending on the type of the protocol). Incorrectness of time-bounds
leads to violation of properties R1 and R2 and imprecision leads to inefficiency of the protocol
(i.e., unnecessarily long delays before detecting a process or channel failure).

Time bounds for the binary and static heartbeat protocols

As for the total waiting time for p[0], the maximum time between between receiving the last
heartbeat from p[1] to the non-voluntary inactivation of p[0] is achieved when p[1] crashes at the
beginning of the first round right after sending its heartbeat to p[0]. To maximize the total waiting
time, assume that the heartbeat of p[1] is received at p[0] instantaneously. We distinguish the
following two cases:

• 2 ∗ tmin > tmax: In this case, the maximal waiting time of p[0] is indeed 2 ∗ tmax since
after the second round, the waiting time is reduced to tmax/2 and since it holds that
tmax/2 < tmin, p[0] will be non-voluntarily inactivated.

• 2∗ tmin ≤ tmax: In this case, the maximal waiting time of p[0] is 3∗ tmax − tmin according
to the calculation given below.

22

2 ∗ tmax +
∑j

i=1 tmax/2i = for a j s.t. tmax/2j+1 < tmin ≤ tmax/2j

2 ∗ tmax +
∑∞

i=1 tmax/2i −
∑∞

i=j+1 tmax/2i =
2 ∗ tmax + tmax − 2 ∗ tmax/2j+1 =
2 ∗ tmax + tmax − tmax/2j ≤ (since tmin ≤ tmax/2j)
3 ∗ tmax − tmin

Fixing the maximal waiting time for p[0] to the one given above removes all the counter-examples
concerning the requirement R1 as reported in Table 1 (and does not introduce any new counter-
examples).

Concerning the time bound for p[1], the maximal waiting time for p[1] is achieved when in the
previous round, the heartbeat of p[0] was received at the beginning of the round, and the receipt
of the heartbeat of p[0] in the current round is delayed till the end of the round(see Figure 12).
Thus, the maximal waiting time in the binary and static heartbeat protocol is 2 ∗ tmax, which is
a tighter bound than 3 ∗ tmax− tmin. This lower bound does not solve any correctness problem
but adds to the efficiency of the protocol in that channel failures and process crashes are detected
earlier by the participating processes.

We have implemented all the proposed fixes and model-checked the changed protocols; the
model-checking shows that all the reported problems for the binary and static protocols are re-
moved.

Time bounds for the expanding and dynamic heartbeat protocols

In the expanding and dynamic protocols, the time-bound for p[0] is identical to the binary and
static protocols. However, the time-bound for p[i] processes is different due to the initial phase
before joining the protocol. The maximal time-bound for p[i] is achieved when p[i]’s join request
is received right after starting a new round and moreover, the reply from p[0] at the beginning of
the next round takes tmin units of time before it reaches p[i]. This way, the delay between the
start-up of p[i] and the first heartbeat from p[0] goes up to 2 ∗ tmax + tmin (see Figure 13). Note
that the time-bound proposed in [GM98], i.e., 3∗tmax−tmin, is incorrect in case 2∗ tmin ≥ tmax
and is inefficient otherwise.

Fixing the time-bounds as given above and adopting the fix proposed in Section 6.1 removes all
of the counter-examples reported in Table 6.1. We have applied the fixes to our automata-theoretic
models and model-checked the corrected versions (with all the different data-sets) of the protocols;
model-checking these fixed models does not result in any counter-example for any requirement.

7 Conclusions

We formalized different versions of heartbeat protocols as specified in [GM98, MG04] in the process
algebra mCRL2 and timed-automata-theoretic formalism of UPPAAL. We then formalized some
natural properties on these protocols and verified them using the CADP tool-set and UPPAAL. We
reported several counter-examples that were discovered during our formal analysis. The properties
that are not satisfied by the accelerated heartbeat protocols are quite natural and essential. Hence,
we proposed subsequent improvements on the protocols in order to meet these requirements seem
inevitable. We model-checked the improved versions of the protocols and showed that they indeed
satisfy our requirements.

We believe that the specifications developed in the course of researching heartbeat protocol
can be readily used to verify similar protocols and protocols that build upon them, e.g., protocols
for failure detectors. We are currently following this line and are applying our method to verify
the correctness of failure detector protocols. Moreover, in the present version of the dynamic
heartbeat protocol, an upper bound on the number of processes should be a priori known and
additionally, a process can never join the protocol once it has left it. An improved version of the

23

dynamic heartbeat protocol allowing for an unbounded number of processes, which can join and
leave at any time and proving the correctness of the extended protocol is also a future research
goal.

Acknowledgments.

Jan Friso Groote and Michel Reniers provided valuable comments on the earlier versions of this
report.

References

[BDL04] Gerd Behrmann, Alexandre David and Kim G. Larsen. A Tutorial on Uppaal. In
Proc. of SFM-RT’04, vol. 3185 of LNCS, pp. 200–236, Springer, 2004.

[GMLS07] Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe. CADP 2006:
A toolbox for the construction and analysis of distributed processes. In Proc. of
CAV’07, vol. 4590 of LNCS, pp. 158–163. Springer, 2007.

[GM98] Mohamed G. Gouda and Tommy M. McGuire. Accelerated heartbeat protocols. In
Proc. of ICDCS’98, pp. 202–209, IEEE, 1998.

[GM00] Mohamed G. Gouda and Tommy M. McGuire. Alert communication primitives
above TCP. J. High Speed Netw., 9(2):139–150, 2000.

[GMvWU06] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers, Yaroslav S. Usenko, and
Muck van Weerdenburg Analysis of Distributed Systems with mCRL2. Chapter 4
of Michael Alexander and William Gardner Eds., Process Algebra for Parallel and
Distributed Processing, pp. 99–128, CRC Press, 2009.

[HSC95] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton. Log-based receiver-
reliable multicast for distributed interactive simulation. SIGCOMM Comput. Com-
mun. Rev., 25(4):328–341, 1995.

[MG04] Tommy M. McGuire and Mohamed G. Gouda. The Austin Protocol Compiler.
Springer, 2004.

[TSLC02] Y. Ting, F. M. Shan, W. B. Lu, and C. H. Chen. Implementation and evaluation of
failsafe computer-controlled systems. Comput. Ind. Eng., 42(2-4):401–415, 2002.

[Vog96] Werner Vogels. World wide failures. In Proc of ACM SIGOPS European Workshop,
pp. 115–120. ACM, 1996.

[WGZC05] Guojun Wang, Zhongshan Gao, Lifan Zhang, and Jiannong Cao. Prediction-based
multicast mobility management in mobile internet. In Proc. of ISPA’05, vol. 3758
of LNCS, pp. 1024–1035. Springer, 2005.

[KPW97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. J.
International Journal on Software Tools for Technology Transfer, 1:134–152, 1997.

[GPU01] Jan Friso Groote, Alban Ponse and Yaroslav S. Usenko Linearization in parallel
pCRL. J. Log. Algebr. Program., 48(1-2):39–70, 2001.

24

	Introduction
	Accelerated heartbeat protocols
	The binary heartbeat protocol
	The static heartbeat protocol
	The expanding heartbeat protocol
	The dynamic heartbeat protocol

	Formal specification in mCRL2
	Introduction
	The binary heartbeat protocol in mCRL2
	The static heartbeat protocol in mCRL2
	The expanding heartbeat protocol in mCRL2
	The dynamic heartbeat protocol in mCRL2

	Formal specification in UPPAAL
	Introduction to UPPAAL
	The binary heartbeat protocol in UPPAAL
	The static heartbeat protocol in UPPAAL
	The expanding heartbeat protocol in UPPAAL
	The dynamic heartbeat protocol in UPPAAL

	Verifying protocol requirements
	General requirements
	Formalizing the requirements in the modal -calculus
	Formalizing the requirements in UPPAAL
	Verification techniques
	Verification results
	The (revised) binary, two-phase and static heartbeat protocols
	The expanding and dynamic heartbeat protocols

	Correcting the protocols
	Simultaneous events
	Incorrect time-bounds

	Conclusions

