
Mastering Heterogeneous Behavioural Models

J. Christian Attiogbé

LS2N - UMR CNRS 6004 - University of Nantes
Christian.Attiogbe@univ-nantes.fr

A detailed version of a paper accepted in the MEDI’2017 conference

Abstract. Heterogeneity is one important feature of complex systems,
leading to the complexity of their construction and analysis. Moving the
heterogeneity at model level helps in mastering the difficulty of compos-
ing heterogeneous models which constitute a large system. We propose a
method made of an algebra and structure morphisms to deal with the in-
teraction of behavioural models, provided that they are compatible. We
prove that heterogeneous models can interact in a safe way, and therefore
complex heterogeneous systems can be built and analysed incrementally.
The Uppaal tool is targeted for experimentations.

Keywords: Behavioural models, Heterogeneous systems, Interaction

1 Introduction

Mastering the composition of heterogeneous models contributes to settle the
challenge of building and analyzing large systems. The subsequent benefits are
the gain of flexibility and an easier evolution of systems construction.

Models are used at different abstraction levels and for different purposes.
Data models (also qualified as static models) capture the structure of manip-
ulated data; behavioural models (also called dynamic models) often based on
transition systems or event systems help to predict and reason about the be-
haviour of the software to be built. Other models such as timed models, security
models, functional models are required according to the needs. A combination
of these models is often necessary. In this article we focus on behavioural models
often used to capture the evolution and the interaction between parts (called
processes) of a more general heterogeneous system which can combine hardware
and various software components.

An example of an heterogeneous system is an assembly of pieces of soft-
ware and hardware communicating with a distributed architecture (using smart
objects, sensors, actuators, mechanical parts driven by software). This kind of
systems is spreading more and more as users adopt their provided services and
practical facilities. However mastering their design, proving their correctness and
maintaining these systems are a challenge of first importance for the security of
services and software, and especially for reducing time to market of smart ob-
jects.

ar
X

iv
:1

70
7.

06
85

8v
1

 [
cs

.S
E

]
 2

1
Ju

l 2
01

7

2

The integration of various formalisms inside a main one is often used as a
solution to master the difficulties of heterogeneous systems. This constitutes an
approach with a strong coupling of the formalisms; we dot not follow this trends,
since we consider that a weak coupling favours reuse and flexibility.

There are several works and proposals related to heterogeneous issues; they
embrace different abstraction levels and adopt various policies. Interface The-
ories are intensively studied [5]; they are based on reasoning on the contracts
that link components and the information provided in their interfaces. SysML
[7] adresses system engineering at modelling levels. SystemC [4] adopts a rather
low abstraction level by composing software or hardware modules which are
classes containing processes modelling functionalities. The core of SystemC con-
sists of an event-driven simulator working as a scheduler. The Ptolemy project
[9,6] proposes one of the most advanced framework, Ptolemy II [19] with which
we share some concerns. But these are general purpose and heavy weight ap-
proaches which, from our point of view, constraint a lot the used components;
they build a kind of a scheduler of the whole composition of components. We
rather target a specific framework with a very weak coupling of components that
can be composed (plugged) or unplugged at any time. For that, we consider the
behaviours of the interacting components described with different formalisms,
hence the heterogeneity. We especially focus on the communication channels that
they use. We address systems with evolving adhoc structures, for small aperture
net of components. With our approach the designer, before going further on de-
velopment or during system maintenance, can for instance check if plugging a
new component leads to a correct interaction or not.

This work is motivated by the necessity of light methods and tools to face
the construction and the analysis of heterogeneous systems; these methods and
tools should ensure flexibility, easy of use and evolution. The difficulties of het-
erogeneity arise not only at language level (data, property or behavioural), but
also at the semantic level. The latter being more challenging.

We propose a method to make it easier the composition and hence the in-
teraction between heterogeneous but compatible behavioural models. The idea
is that one can easily compose models described with different formalisms but
having the same compatibility domain, for instance their semantics are trans-
lated into transition systems. Currently we focus on such behavioural models.
We implement a prototype tool, namely aZiZa, to support the experimentations
with the method.

The article is organized as follows. Section 2 introduces the materials we
have used. Section 3 is devoted to the proposed method, an algebra to structure
the composition of models. Section 4 deals with a complete experimentation
supported by the developed tools. Section 5 concludes the article.

2 Materials: Models Compatibility and Composition

Two main features have to be distinguished in terms of modelling: description
formalisms and semantic models. First order logic, grammars, automata are

3

examples of description formalisms. Decision tables, labelled transition systems,
operational semantic rules, axiomatic systems are examples of semantic models.

Heterogeneity is mastered at both levels; but we focus on semantic models
which we consider as compatibility domains. Several categories of compatibility
domains can be considered, for instance labelled transition systems, event-based
models, predicate transformer à la Dijkstra.

We consider mainly the semantic models used by the modelling formalisms
and extend them to the mathematical foundations they use. Automata and pro-
cesses, as description formalisms, share the same semantic domain: Labelled
Transition Systems (LTS).

Labelled Transition Systems Given a set of states S, a set of labels L,

a labelled transition system is defined by the tuple 〈S,L, l→〉 where
l→ is a

transition relation:
l→: S × L→ S

Product of Transition Systems The parallel composition of processes, can
be built by the free product of the transition systems of the processes. Theoret-
ically, their free product results in a model where a global state1 is made of a
state of each of the processes, a global transition from a global state is made
of the transitions of each of the processes from its state involved in the global
state. However, practically, the global transitions can be constrained to avoid
inconsistency in the access or update of the state variables.

In general free product is appropriate to the composition of independent
(asynchronous) processes which may share communication channels. Besides,
the synchronous product is appropriate to highly synchronous processes.

In our work, the considered global systems are asynchronous and distributed;
their components can be concurrent and dynamic and the communication chan-
nels can be synchronous or asynchronous.

Compatible Models Two models M1 and M2 (or more) are said compatible or
not, with regards to at least three compatibility levels: syntactic compatibility,
semantic compatibility and formal-reasoning compatibility.

Syntactic compatibility can be solved at description formalisms level with
(syntactic) model transformations known as shallow embedding [10]; semantic
compatibility permits a deep embedding [10] of one model into the other pro-
vided that there are a compatibility domain: when the semantics of one model
can be expressed in terms of the semantics model underlining the other model;
the semantic compatibility is also used as the basis for formal reasoning.

From the formal point of view, first order logics and higher order logics
provide logical frameworks with powerful constructs to describe and reason on
heterogeneous objects, whatever their nature.
Transition Systems [2], Mealy Machines [18], with their various extensions, are

1 The term global state refers to the state of the process composition

4

widely used to handle complex dynamic systems and are at the heart of many
analysis methods and verification tools. The underlying theories are well-studied
and, in the current state of the art a lot of effective systems are compiled into
transition systems. Process Algebra (such as CCS [15], CSP[17,16], LOTOS[13],
π-calculus [14]) built on top of transition systems are recognized as powerful
behavioural description models; they are also representative of many behavioural
languages, hence their use as composition and interoperability basis.

Definition 1. (Compatibility Domain) A Compatibility Domain is defined as a
category of models characteristics in such a way that, any two models considered
within this domain, are comparable w.r.t. the considered characteristics. It is a
model integration basis.

Examples of semantic compatibility domains are: logics, labelled transition
systems, trace semantics, temporal logics, weakest preconditions, Kripke model,
algebra. For instance first order logic enables reasoning on several formalisms
which use logic for objects description; when object descriptions (from different
formalisms) have been translated as predicates in first order logic, the resulting
predicates can be combined by the operators of first order logic. Examples of
syntactic compatibility domains are grammars, set-theory, flowcharts.

Compatibility domains are the basic frameworks to compose or to integrate
models within a global system.

Proposition 1. Within a compatibility domain, it is always possible to trans-
late objects semantics (from one formalism and paradigm) into the domain, to
compose or integrate them, to reason within the basis, and to possibly translate
results in target formalisms.

The practical use in our work of compatibility domain is the definition of
bridges between models and their semantics. We need the definition of model
bridges between models in syntactical and semantic levels. Roughly, the principle
of a bridge is to embed the model underlying a description into a given semantic
model which will be used at model composition level.

Semantic Models and Semantic Embedding A direct application of the
notion of compatibility is the construction of semantic bridges between models
or the semantic embedding of one model into another one. We choose the LTS
as a reference behavioural model, because it is widely used and equipped with
various tools.

If two models M1 and M2 are in a compatible semantic domain (LTS in our
case), it exists structure morphisms ζ1 and ζ2 with related meaning matching
such that ζ1(M1) = LTS1 and ζ2(M2) = LTS2.

Accordingly, we are about to define some operators Φ which arguments are
different but compatible behavioural models; these operators form an algebra
that leads the interaction of behavioural models. The idea is that Φ(Mi,Mj) is

5

semantically unfolded as φ(ζi(Mj), ζj(Mj)) where φ is the domain-compatible
equivalent of Φ.

If we consider a behavioural model M as a term of a given algebra A, a sketch
of the semantic embedding of models is as follows; we consider Ai as the source
algebra to describe various but compatible models, then it exists a compatible
domain denoted here by (S, L,→) the LTS.

Φ level A1 . Ai · · · Aj . An

φ level (S, L,→)
�

ζn

�
ζ j

ζ
i
-

ζ
1

-

It follows that when models are compatible, a bridge can be used to re-
late them via the semantic structure induced by the compatibility domain (for
instance their LTS). Consequently, a multilevel bridge can be gradually built
between compatibility domains to link two or more models.

3 Interaction of Hererogeneous Models: an Algebra

Interaction between behavioural models, whatever their description formalisms,
is viewed as exchanges through common communicating channels. Typically the
interaction is denoted by a flow of emission and reception statements. Process
algebra models, as a compatibility domain, capture very well these interactions,
where the unit of specifications is a process expressing an elementary sequen-
tial behaviour; more complex behaviours are expressed with the composition
(sequential, parallel, etc) of other processes, elementary or not.

Handling the heterogeneity is as simpler as if the LTS is the known user
manual of each component. On the one hand, we extract the LTS from given
components to compose them; on the other hand the LTS can be given by the
component providers. Besides, an implementation can be built from a LTS used
to tune a composition.

Therefore an abstraction of the communicating processes can be considered
(see Fig.1) where the heterogeneity of the source models is tackled via the ab-
stract behaviours captured with transition systems. According to Fig.1, if a, b
and e are synchronous actions, then the interacting processes can for instance
perform the trace: c.a*.b.e. We only need the communication actions of each
process, not the entire behaviour. However, we must make precise the semantics
of this interaction, and generalize the communication hypothesis; typically the
relationship between synchronisation actions, and communication channels.
We define a set of operators that impact the behaviour of process composition:

– a process composition can be restructured through the renaming of channels;
– process communications can be broken through the modification of channels;
– the structure of a complete net of processes can evolve through channel

restructuring, etc

6

Communication channel

eb

a

b
a

ce

Fig. 1: Interaction between the processes: model level

3.1 The Core Operators for Model Interaction

We are about to elaborate an algebra A to structure and analyse the composi-
tion of heterogeneous processes. The operators of the algebra are related to the
two levels (Φ level and φ level) considered in Section 2, while the structure set
of the algebra is the set of processes P to be composed. Our target is an algebra
A = 〈P, OΦ, Oφ〉; therefore we introduce these sets of operators.

In the following, a process is denoted by the term:
Process procName [channel parameters](other parameters) {body}

where we consider its name, its channels and parameters, and a body. The
body is an LTS which describes the behaviour of the process. Several named
instances of a process can be defined using the process name as a type.

A system is made with the composition of at least two processes.

compose: abstract parallel composition of processes Let P1 and P2 be
two processes which use a shared communication channel nc.

Process Proc[nc]() P1,
Process Proc[nc]() P2.

The expression S = compose(P1, P2) is the system made of the parallel com-
position of the processes P1 and P2 which interact via their common nc channel.
Note that a channel can be hidden in a process by the renaming of the channel.
The arity of the compose operator is not a strong constraint; a set of n processes
can be composed either with the binary composition

compose(. . . (compose(compose(P1, P2), P3), · · ·), Pn)
or directly with the list of processes as arguments: compose(P1, P2, · · · , Pn).

The compose operator is an instance of the Φ operator. Typically, the em-
bedding functions ζi compute the transition systems from the processes used as
arguments of compose; then φ is the synchronous product [16] of the resulting
transition systems.

A component process of a system built by the compose operator may be
selected with the projection operator denoted by ↑. Consequently an operation
α can be applied to a process inside a composition by selecting it as follows:
α(compose(P1, P2, · · · , Pn) ↑ P3).

7

rename: renaming a channel in a process The expression (P rename c as nc)
denotes a process P where the channel c is renamed as nc.

Let P3 be a process using nc as a channel: Process Proc[nc]() P3. The expres-
sion S = compose(P1, P2 rename nc as c, P3) results in a system where only P1

and P3 interact through nc. The behaviour of P2 does not impact the behaviour
of S since P2 uses a local channel, thus the behaviour of P2 is ignored in S.

replace: substitution of processes Within a system, a given process is substi-
tuted by a given new one. The replace operator needs three arguments: a system
S, a process oP already in S, a new process nP not in S. The process oP should
share its channels with S. The process nP should have the same shared channels
(for the substitution) but it can have more channels.

The effect of the replacement is based on the shared channels; the shared
channel oP is cut and replaced by the common channel in nP . The expression
sys = replace(Sys, oP, nP) modifies Sys by replacing inside it, the behaviour of
oP by the new behaviour expressed by nP .

Formally the channels shared by Sys and oP are renamed in oP with a new
name unused in Sys and nP . Then Sys is composed with nP . Consequently if
nc is the channel shared by the three processes, c a fresh channel, then we have:

replace(Sys, oldP, newP) = compose(Sys, (Sys ↑ oP) rename nc as c, nP)

remove: removing a process from a composition A given process can be re-
moved from a system. The remove operator (symbolically denoted by ↓) requires
two arguments: a system S made at least with two processes, a process P already
part of S. The process P will be removed from S; this is symbolically denoted
by S ↓ P . For instance the expression sys = remove(compose(P1, P2, P3), P2)
results in a system composed of the processes P1 and P3.

extractChan: listing the channels of a process This operator, when applied
to a process, gives the list of channels used inside the process. The channels of
processes can then be compared, reused, renamed, hidden.

These operators constitute our target algebra and practically a core lan-
guage: 〈P, {compose, replace, select, remove}, {rename, extractChan}〉. It is ex-
pressive enough, to describe the composition and the interaction between be-
havioural models as illustrated in the next section.

3.2 Illustration: a Heterogeneous Control System

We consider the interaction between a net of processes modelling a control system
equipped with sensors, actuators and controlers. These devices come with their
different behaviours, from various vendors. From our heterogeneous modelling
point of view the interfaces of the models are defined textually as follows and can
be viewed as depicted in Fig. 2. Note that the precise behaviours of the devices
are not required at this stage. The communication channels at the interfaces are
enough to define the interaction.

8

Process Sensor[channel ic]() {...} S1,
Process Controler[channel ic, cc]() {...} C1,
Process Actuator[channel cc]() {...} A1.

Sensor
 S1

Controler
 C1

Actuator
 A1

ic cc

Sys

Fig. 2: Interaction net of processes

Sensor
 S1

Controler
 C1

Actuator
 A1

ic

cc

ActHUB
 AH

Actuator
 A2

Actuator
 A3

sc

cc

Fig. 3: Reshaped net of processes

Let a process controller C1 interacting by reading a channel ic and writ-
ing on a control channel cc. Let a process Sensor S1 interacting by sending
data on the same channel ic. At the modelling level, we could simply write
compose(C1, S1) so that C1 and S1 interact via ic. Considering A1 as the actu-
ator process interacting by reading the channel cc, then the description sys =
compose(compose(C1, S1), A1) builds a new system (see Fig. 2) where the three
processes interact together through the channels ic and cc. The controler C1 may
send orders to the actuator A1 depending on data read from S1. Now, we define
two actuator processes A2 and A3 and a hub of actuators HA which sends its
data to A1, A2 and A3:

Actuator A2
Actuator A3
HA = compose((A1 rename cc as sc), A2, A3)

The behaviour expressed by replace(sys, A1, (HA rename sc as cc)) results
in a new system (see Fig. 3) where the controler C1 is not anymore directly
connected to A1 but to HA via the channel cc, a renaming of the previous sc
channel of HA. In the same way we can easily add new sensors S2, S3 into an
existing pool of sensors with the compose operator: compose(sys1, S2, S3). The
three sensors will write on the channel ic.

3.3 Semantics of Interaction

The common interaction level considered here is related to the communications
between the composed processes. As introduced in Section 2, a compatibility
domain is required to ensure consistency. Moreover, to reach this compatibility
domain, from heterogeneous models, some filters could be applied. Typically
compatible models have various additional specific facets. For instance dealing
with the domain of transition systems, some models may be structured according

9

to multiple layers related to: communication channels, time properties, time
constraints, QoS, · · · .

Consequently, the models should be filtered according to these specific facets
(time, channels, properties, etc) in order to get the desired compatibility and
interaction level. At this stage we consider only the communication facet. There-
fore the interaction between composed models are based on their communication
through the used channels. The other facets will be consider latter in our work.

As far as the interaction between the behavioural models is considered, each
process evolves according to the channels it uses. Interaction is based on commu-
nication via shared channels using emission and reception mechanisms (message
passing). Synchronous channels involve handshake communications. A reception
takes place when a process applies the appropriate reception primitive relatively
to a channel and, there is a (abstract) data sent on the addressed channel by
the emission primitive applied by another process. In the case of asynchronous
channel, if there is nothing on the channel, the attempt of reception is aborted.

3.4 Extending the Core Operators

The previously defined core operators can be extended to compute other hetero-
geneous processes and systems. But more specifically, analysis operators should
be defined to manipulate the built systems.

Consider that we have a system made of sensors, actuators, controlers and
many other smart devices, making an adhoc network of communicating pro-
cesses. We would like to plug a new device in the system so that it can interact
with the existing processes; for instance a new plugged sensor detects the existing
controlers and sends data to them, or a new plugged actuator joins the system
and becomes ready to interact with the existing processes which send orders to
the actuators. But, it is not reasonably feasible to directly experiment with the
system prior to the consistency decision. Therefore reasoning at model level is
appropriate. The system builder may evaluate the forthcoming system, decide if
some components or operations are correct or not before performing them on the
real system. This is profitable if the used models and operations on models are
trustworthy. Consequently we would like to easily check the consistency of the
new composition of processes prior to implementing it. For instance, with the
aim of getting a diagnosis (at least True or False) of the envisaged composition,
we would like to write the following:

check(compose(sys, newSensor))
check(replace(sys, oldProcess, newProcess))

These scenario motivate the need to define the check operator which is not
a process composition operator but an analysis one. Typically this kind of op-
erators should implement at least the interaction compatibility, the absence of
deadlock, liveness property. In the current stage of the work we reuse for this
purpose, the existing tools of process algebra: Uppaal [3] which has its own

10

graphical input description formalism, SPIN [11] which has the Promela lan-
guage as input process description language and CADP [8] which uses Lotos as
input process description language.

4 Practical Analysis of Heterogeneous Models

We report on a case study dedicated to a distributed control system. The system
consists of a set of robots which supervise a geographically widespread area
and take actions with respect to events in the area: intruders or found unusual
objects. Sub-components of the system are responsible of patrolling in different
parts of the area and looking for preassigned objects; in case of detection of such
objects a signal is sent to a supervisor. Other sub-components follow a specific
object or a detected intruder and communicate its location to the supervisor.

This kind of system is representative of systems being designed or used to
assist people in hospitals, homes, remote care, restaurants, smart future factories,
etc. Indeed when constructing or maintaining large distributed systems, it is easy
to collect components everywhere and combined them to build the systems. But
when reliability should be tackled, we have to consider at least the models of
the various components. These models are merely built with the appropriate
description models instead of a common one for all the components. Hence an
heterogeneity of the models at concrete or abstract level.

As far as our case study is concerned, at the design level, if we focus on
the behavioural aspect related to the interaction between the system and its
components, the system can be modelled as the combination of several processes;
each one having specific features and a specific behaviour.

The target global system can be built incrementally with various components
provided that the requirements are known. It is what we have experimented
with. We consider the following components, which were built by considering
the requirements of the case study.

A component, routine patroller, modelled by a process (RPatrol) which,
after a connection to a supervisor, sends every δ seconds its collected data to the
supervisor. This component was modelled using Uppaal because we need time
feature provided by Uppaal.

A scrutineer component, modelled by a process (Scrutineer) which, after a
connection to a supervisor, gets from the supervisor its roadmap made of target
objects to look at, and then moves around and when one of the target object
is found, it sends a signal to the supervisor. We modelled this component using
Promela which provides high expressivity for handling data and control.

A data collector component (dataCollector) which, after a connection to
a supervisor, becomes ready and sends on demand its collected data to the
supervisor. This component is modelled as a simple transition system with the
DOT formalism, seen as a common language used by several transition system
formalisms. We give an excerpt in Fig. 4 for illustration purpose. Note the use
of the synchronisation actions connection and readState, which will be renamed
latter using the related operator of our kernel. As depicted in Fig. 5 (the process

11

named dtcltr1) we can see the process as systematically renamed and translated
into Uppaal by the tools we have built.

For experimentation purpose, we built several modules to implement the core
operators from the DOT format: channel renaming, process selection, process
removing and specific facet filtering (time, ...).

A follower component is dedicated to detect and follow intruder or assigned
object. This component first try a connection to the supervisor; on success it
scruts around and then follows the assigned object. The relative positions are
then sent to the supervisor until the followed object leaves or when the supervisor
orders to stop. We have specified this component as a LOTOS process.

digraph p_dataCollectorBot {
initSCRT -> S2 [label= connection!];

S2 -> initSCRT [label=KO?];

S2 -> S3 [label=OK?];

S3 -> S4 [label=ready!];

S4 -> initSCRT [label=stop?];

S4 -> S5 [label= readState!];

S5 -> S4 [label=getState?];

}

Fig. 4: A LTS model of the data collector in the DOT format

A supervisor or global controler, modelled as a process is written in Uppaal.

4.1 Combining the Heterogeneous Processes

We use the proposed operators to experiment with the composition of the pre-
vious processes. For instance Fig. 5 depicts the composition resulting from the
term: compose(dtctrl1 rename connection as connect, spv, rpt1) where:

– dtctrl1 is an instance of the process dataCollector after two renamings and a
translation into Uppaal:
((dataCollector rename connection as connect) rename readState as sendState)

– rpt1 is an instance of the patroller RPatrol,
– spv is an instance of supervisor.

Several ζi morphisms were used to embed the provided models into LTS. The
DOT formalism have been intensively used.

– ζdot2upa A translator from DOT to Uppaal using XML as the internal repre-
sentation of the Uppaal tool.

– ζpml2upa A translator from promela to Uppaal. We reuse the features of SPIN;
from Promela we generate a DOT format of a process using the features
provided by SPIN. Then we reuse our module that embed DOT into Uppaal.

12

Fig. 5: Interaction between composed processes of the system

– ζdot2lotos A transator from DOT to Lotos process.

The proposed algebra and method for composing heterogeneous processes
enable us to deal with several examples. In case of examples where the com-
munications actions do not bear data the basic structure morphisms are easily
implemented and work well. In case where we have a complex structuring of data
used as parameters of communication actions, the structure morphisms are not
straightforward, since specific interpretations can be given to the data; an action
such as chan!value may denote not simply the sending of value on the channel
but the sent value may also conveying a semantic such as a process identifier.

The various experiments also reveal that a more expressive formalism is
preferable to be used as the target of embedding in order to avoid loosing infor-
mation. For this purpose we target the Lotos language for further experiments.

4.2 Analysis of the Global System

Remind, one interest of gathering the various models is being able to perform
an analysis of the global system. In the current case of behavioural models, as
stated before, at least standard liveness properties should be analysed on the
basis of the global system. We have been able to perform such analysis on the
basis adopted for the composition.

Deadlock. The absence or presence of a deadlock is a standard property. It is
expressed in LTL logic provided by the Uppaal tool as follows:

A[] not deadlock

Progress. Specific progress or reachability properties can be stated using the
Uppaal model. For instance we check that both the data collector and the routine
patroller interact simultaneously with the controler and can reach some given
states of their behaviour. This is expressed as follows:

13

E<> dtctrl1.ready and rpt1.E2

Examples of other properties we have checked are depicted in Fig. 6

Fig. 6: Examples of checked properties

4.3 Tool Support: aZiZa

To experiment with examples, as shown in the previous section, we have devel-
oped the main modules of a prototype tool called aZiZa2, to support our method
proposal. This is necessary to validate the proposed concepts and to improve the
global composition method. The core modules are described bellow.

Dot to Uppaal A translator between an LTS formatted with DOT and the
XML repremsentation of Uppaal processes

Promela to Uppaal A translator from Promela to Uppaal. Here we reuse the
dot generator of the Spin tool. Then we combine with the
previous translator.

Label Filtering This module is a filter to extract a part of a dot LTS
Channel renaming This module is used to rename a channel of a process
Promela process splitting It splits a complete promela system into several processes.

This module is developed for the purpose to reuse a given
process.

Process selection This module achieves the selction of a target process from a
given composition.

Yet, all the steps are not automated. Some steps are still manual, for instance
the result of the translation of the process, is to be copy-paste in a Uppaal file,
or the graphical layout are not automated.

The architecture of the prototype tool is depicted in Fig. 7. Its is made of
interconnected modules (the blocks in the figure). As for now we intensively use
intermediate files to connect the blocks in oder to make easy the independent
development of the blocks.
2 aziza.ls2n.fr

aziza.ls2n.fr

14

.dot

.dot

dot2uppaaldot2uppaal

dot2uppaaldes2dot

dot2uppaalrenameChannel

dot2uppaalfilterLabel

dot2uppaalsplitProcess

<oldName>

<newName>

.xml

.xml

dot2uppaaldelProcess

dot2uppaaladdProcess

dot2uppaalextractProcess

.xml

<procName>

<procName>

.lotos.aut

Block stock

dot2uppaal dot2uppaalXtoY

Uppaal

Spin

CADP

.pmla

aZiZa Framework, @ls2n

b

a
c

Fig. 7: The architecture of the aZiZa tool

5 Conclusion

We have shown that under the hypothesis of semantic domain compatibility, the
composition of heterogeneous behavioural models can be overcomed. We have
used labelled transition systems as common semantics domain to found our
method of composition. The method is based on an algebra of operators that fo-
cuses on the manipulation of channels which are the communication mechanism
between the composed models. We have equipped the method with tools in order
to experiment with case studies. We illustrated the article with a case study of a
distributed control system where various processes cooperate to control objects
evolving within a given area. The case study reported here is a part of a series
of experiments that serve as a mean of assessment of the proposal and a testbed
to improve the tools under development.

One representative of the related works is Ptolemy II [12,19]. Ptolemy achieves
the interaction between different actor-oriented models using an abstract seman-
tics (namely the actor semantics). It also enables the use of finite state machines
in place of actor-oriented models, but the interaction works rather as a global
scheduler, controling a sequential execution flow of the FSM considered each as
a global state linked via a port to another one. Moreover Ptolemy II is a gen-
eral purpose heavy weight composition framework. Unlikely we target a specific,
flexible and extensible framework dedicated to the composition and analysis of
behavioural models dedicated to the growing small aperture nets of processes.

15

There are some aspects that are not yet considered at this stage of the work;
for example we have considered some components dealing locally with time con-
straints but dealing with time constraints at the global level is a challenge. As
future work, we have planned experimentations with the more expressive CADP
framework and especially its exp.open composition tool. We plan some improve-
ments among which the propagation of global properties inside local components
and vice versa. For this purpose we are investigating the Property Specification
Language [1], an IEEE standard, as a pivotal for property passing through the
components and through the various tools.

References

1. IEC 62531 Ed. 1 (2007-11) (IEEE Std 1850-2005): Standard for Property Specifi-
cation Language (PSL). IEC 62531:2007 (E), pages 1–152, Dec 2007.

2. André Arnold. Verification and Comparison of Transition Systems. In M-C. Gaudel
and J-P. Jouannaud, editors, TAPSOFT’93: Theory and Practice of Software De-
velopment, CAAP/FASE, volume 668 of LNCS, pages 121–135. Springer, 1993.

3. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal. In
M. Bernardo and F. Corradini, editors, 4th International School on Formal Meth-
ods for the Design of Computer, Communication, and Software Systems, SFM-RT
2004, number 3185 in LNCS, pages 200–236. Springer–Verlag, 2004.

4. D.C. Black, J. Donovan, and and A. Keist B. Bunton, editors. SystemC: From the
Ground Up, Second Edition. Springer, 2010.

5. Luca De Alfaro and Thomas Henzinger. Interface Theories for Component-based
Design. In Embedded Software, pages 148–165. Springer, 2001.

6. Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig,
Stephen Neuendorffer, S. Sachs, and Yuhong Xiong. Taming Heterogeneity - the
Ptolemy Approach. Proceedings of the IEEE, 91(1):127–144, 2003.

7. Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML.
The MK/OMG Press. Morgan Kaufmann, Boston, 2015.

8. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011:
a Toolbox for the Construction and Analysis of Distributed Processes. STTT,
15(2):89–107, 2013.

9. Antoon Goderis, Christopher X. Brooks, Ilkay Altintas, Edward A. Lee, and Ca-
role A. Goble. Heterogeneous Composition of Models of Computation. Future
Generation Comp. Syst., 25(5):552–560, 2009.

10. M.J.C. Gordon. Introduction to HOL: A Theorem Proving Environment. Cam-
bridge University Press, 1993.

11. G. J. Holzmann. The Spin Model Checker. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

12. Edward A. Lee. Disciplined Heterogeneous Modeling. In D. C. Petriu, N. Rou-
quette, and Ø. Haugen, editors, 13th International Conference, MODELS 2010,
Oslo, 2010, volume 6395 of LNCS, pages 273–287. Springer, 2010.

13. LOTOS. A Formal Description Technique Based on The Temporal Ordering of
Observational Behaviour. IOS - OSI, Geneva, 1988. International Standard 8807.

14. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Journal of
Information and Computation, 100, 1992.

15. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

16

16. A. W. Roscoe and J. Davies. CSP (Communicating Sequential Processes). In
David A. Padua, editor, Encycl. of Parallel Computing. Springer, 2011.

17. A.W. Roscoe. The Theory and Practice of concurrency. Prentice-Hall, 1998.
18. C. H. Roth and L. L. Kinney. Fundamentals of Logic Design. Thomson, 2004.
19. S. Tripakis, C. Stergiou, C. Shaver, and E. A. Lee. A Modular Formal Semantics

for Ptolemy. Mathematical Structures in Computer Science, 23(4):834–881, 2013.

	Mastering Heterogeneous Behavioural Models

