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Abstract—Model checking is an established technique for automatically verifying that a model satisfies a given temporal property.
When the model violates the property, the model checker returns a counterexample, which is a sequence of actions leading to a state
where the property is not satisfied. Understanding this counterexample for debugging the specification is a complicated task for several
reasons: (i) the counterexample can contain a large number of actions, (ii) the debugging task is mostly achieved manually, and (iii) the
counterexample does not explicitly highlight the source of the bug that is hidden in the model. This article presents a new approach that
improves the usability of model checking by simplifying the comprehension of counterexamples. To do so, we first extract in the model
all the counterexamples. Second, we define an analysis algorithm that identifies actions that make the model skip from incorrect to
correct behaviours, making these actions relevant from a debugging perspective. Third, we develop a set of abstraction techniques to
extract these actions from counterexamples. Our approach is fully automated by a tool we implemented and was applied on real-world
case studies from various application areas for evaluation purposes.

Index Terms—Behavioural Models, Model Checking, Counterexample, Abstraction.
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1 INTRODUCTION

Recent computing trends promote the development of
software applications that are intrinsically parallel, dis-
tributed, and concurrent. Designing and developing such
systems has always been a tedious and error-prone task,
and the ever increasing system complexity is making mat-
ters even worse. Although we are still far from proposing
techniques and tools avoiding the existence of bugs in a
system under development, we know how to automatically
chase and find bugs that would be very difficult, if not
impossible, to detect manually. The process of finding and
resolving bugs is commonly called debugging. This process
is still a challenging task for a developer, since it is difficult
for a human being to understand the behaviour of all the
possible executions of this kind of systems, and bugs can
be hidden inside parallel behaviours. Thus, there is a need
for automatic techniques that can help the developer in
detecting and understanding those bugs.

Model checking [1] is an established technique for ver-
ifying concurrent systems. It takes as input a model and a
property. A model describes all the possible behaviours of
a concurrent program and is produced from a specification
of the system. In this article, we adopt Labelled Transition
Systems (LTS) as model description language. A property
represents the requirements of the system and is usually
expressed with a temporal logic. Given a model and a prop-
erty, a model checker verifies whether the model satisfies the
property. When the model violates the property, the model
checker returns a counterexample, which is a sequence of
actions leading to a state where the property is not satisfied.

Although model checking techniques automatically find
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bugs in concurrent systems, it is still difficult to interpret
the returned counterexamples for several reasons: (i) the
counterexample can contain hundreds (even thousands) of
actions, (ii) the debugging task is mostly achieved manu-
ally (satisfactory automatic debugging techniques do not
yet exist), and (iii) the counterexample does not explicitly
highlight the source of the bug that is hidden in the model.

This work aims at developing a new approach for sim-
plifying the comprehension of counterexamples and thus
favouring usability of model checking techniques. To do
this, we propose a method to produce all the counterex-
amples from a given model and to compare them with
the correct behaviours of the model to identify actions that
caused the bug. The goal of our approach is to provide
techniques for analysing LTS models and assist the user in
understanding the cause of the bug by using several defined
abstraction techniques.

More precisely, we define a method that first extracts all
the counterexamples from the original model containing all
the executions. This procedure is able to collect all the coun-
terexamples in a new LTS, maintaining a correspondence
with the original model. To do this, we first create an LTS of
the formula that represents the property. We then perform
the synchronous product between the original LTS and the
LTS of the formula. We finally obtain an LTS whose states
are simulated by the ones in the original LTS and which
contains only traces that violates the property. We call the
resulting LTS counterexample LTS.

Second, we define an analysis method that identifies
actions in the area where counterexamples and correct
behaviours, that share a common prefix, split in different
paths. We compare the states of the two LTS that belong to
this area and we extract the differences in terms of outgo-
ing transitions between these states. The original LTS can
contain outgoing transitions from a state that do not appear
in the corresponding state of the counterexample LTS. This
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means that they belong to correct paths of the original LTS,
which represent behaviours that do not violate the given
property. We call these transitions correct transitions. States
where a correct transition exists are relevant for debugging
purposes, since they highlight actions that are responsible
for the choice between a correct and a possibly erroneous
behaviour. We collect the set of incoming and outgoing
transitions of these states and we call this set a neighbourhood.

By searching for paths in the counterexample LTS that
do not contain any correct transitions we are also able to
identify neighbourhoods that correspond to incorrect transi-
tions, which consist of transitions that only lead to incorrect
behaviours of the LTS. For completeness, we define as
neutral transitions the transitions which are not correct nor
incorrect. The distinction of outgoing transitions allows us
to classify neighbourhoods in different types.

We can finally exploit the counterexample LTS, enriched
with neighbourhoods, to extract precise information related
to the bug, through the use of abstraction techniques. An
example of these techniques is the counterexample abstrac-
tion, which consists of simplifying a given counterexample
by keeping only actions which belongs to neighbourhoods,
thus making the debugging process easier by reducing the
size of the counterexample. We also build abstraction tech-
niques that exploit a user input. An example is the search for
the shortest path from the initial node to a neighbourhood
matching a pattern of actions provided by the user. This
abstraction technique is useful to focus on specific actions of
the model and to check whether they are relevant (or not)
from a debugging perspective.

We have implemented our approach in the CLEAR tool
(available online [2]) and validated it on a set of real-world
case studies from various application areas. We also build
an empirical evaluation in order to test our techniques with
real developers. The experiments show that our approach,
by exploiting the notion of neighbourhood together with
the set of provided abstraction techniques, simplifies the
comprehension of the bug.

The work presented in this article is an extension of the
paper published in [3]. A precise comparison with our early
work is presented in Section 7. The rest of this article is
organised as follows. Section 2 introduces LTS models and
model checking notions. Section 3 presents the technique
for generating the counterexample LTS containing all the
counterexamples. Section 4 defines the notion of neighbour-
hood, presents the process for identifying neighbourhoods
in the counterexample LTS and describes the abstraction
techniques. In Section 5 we describe our implementation. In
Section 6 we apply our tool on real-word examples and we
evaluate our approach using an empirical study. Section 7
presents related work while Section 8 concludes this article.

2 PRELIMINARIES

In this work, we adopt Labelled Transition System (LTS) as
behavioural model of concurrent programs. An LTS consists
of states and labelled transitions connecting these states.
Definition 1. (LTS) An LTS is a tuple M = (S, s0,Σ, T )

where S is a finite set of states; s0 ∈ S is the initial
state; Σ is a finite set of labels; T ⊆ S × Σ× S is a finite
set of transitions.

A transition is represented as s
l−→ s� ∈ T , where l ∈ Σ.

An LTS is produced from a higher-level specification of
the system described with a process algebra for instance.
Specifications can be compiled into an LTS using specific
compilers. In this work, we use LNT as specification lan-
guage [4] and compilers from the CADP toolbox [5] for
obtaining LTSs from LNT specifications (see Section 5 for
more details). However, our approach is generic in the sense
that it applies on LTSs produced from any specification
language and any compiler/verification tool. An LTS can be
viewed as all possible executions of a system. One specific
execution is called a trace.
Definition 2. (Trace) Given an LTS M = (S, s0,Σ, T ), a trace

of size n ∈ N is a sequence of labels l1, l2, . . . , ln ∈ Σ

such that s0
l1−→ s1 ∈ T, s1

l2−→ s2 ∈ T, . . . , sn−1
ln−→

sn ∈ T . The set of all traces of M is written as t(M).

Note that t(M) is prefix closed. One may not be inter-
ested in all traces of an LTS, but only in a subset of them.
To this aim, we introduce a particular label δ, called final
label, which marks the end of a trace, similarly to the notion
of accepting state in language automata. This leads to the
concept of final trace.
Definition 3. (Final Trace) Given an LTS M = (S, s0,Σ, T ),

and a label δ, called final label, a final trace is a trace
l1, l2, . . . , ln ∈ Σ such that s0

l1−→ s1 ∈ T, s1
l2−→

s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T , l1, l2, . . . , ln �= δ and

there exists a final transition sn
δ−→ sn+1. The set of final

traces of M is written as tδ(M).

Note that the final transition characterised by δ does not
occur in the final traces and that tδ(M) ⊆ t(M). Moreover,
if M has no final label then tδ(M) = ∅.

Model checking consists in verifying that an LTS model
satisfies a given temporal property ϕ, which specifies some
expected requirement of the system. Temporal properties
are usually divided into two main families: safety and
liveness properties [6]. In this work, we focus on safety
properties, which are widely used in the verification of real-
world systems. Safety properties state that “something bad
never happens”. A safety property is usually formalised using
a temporal logic (we use MCL [7] in Section 6). It can be
semantically characterised by an infinite set of traces tϕ,
corresponding to the traces that violate the property ϕ in
an LTS. If the LTS model does not satisfy the property, the
model checker returns a counterexample, which is one of the
traces characterised by tϕ.
Definition 4. (Counterexample) Given an LTS M =

(S, s0,Σ, T ) and a property ϕ, a counterexample is any
trace which belongs to t(M) ∩ tϕ.

Our solution for counterexample analysis presented in
the next section relies on a state matching technique, which
takes its foundation into the notion of preorder simulation
between two LTSs [8].
Definition 5. (Simulation Relation) Given two LTSs M1 =

(S1, s
0
1,Σ1, T1) and M2 = (S2, s

0
2,Σ2, T2), the simulation

relation � between M1 and M2 is the largest relation in
S1 × S2 such that s1 � s2 iff ∀s1 l−→ s�1 ∈ T1 there exists
s2

l−→ s�2 ∈ T2 such that s�1 � s�2. M1 is simulated by M2

iff s01 � s02.
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3 COUNTEREXAMPLE LTS
In this section, we first introduce the procedure to build
an LTS containing all counterexamples (counterexample LTS),
given a model of the system (full LTS) and a temporal prop-
erty. We then present a technique to generate the matching
information between states of the counterexample LTS and
states of the full LTS, that we will use in the next section.

3.1 Counterexample LTS Generation
The full LTS (MF ) is given as input in our approach and
is a model representing all possible executions of a system.
Given such an LTS and a safety property, our goal in this
subsection is to generate the LTS containing all counterex-
amples (MC ).
Definition 6. (Counterexample LTS) Given a full LTS MF =

(SF , s
0
F ,ΣF , TF ), where δ /∈ ΣF , and a safety prop-

erty ϕ, a counterexample LTS MC is an LTS such that
tδ(MC) = t(MF ) ∩ tϕ, i.e., a counterexample LTS is a
finite representation of the set of all traces of the full LTS
that violate the property ϕ.

We use the set of final traces tδ(MC) instead of t(MC)
since t(MC) is prefix closed, but prefixes of counterexam-
ples that belong to t(MC) are not counterexamples. More-
over, traces in the counterexample LTS share prefixes with
correct traces in the full LTS.

Let us illustrate the idea of counterexample LTS on the
example given in Figure 1. The full LTS on the left hand side
represents a model of a simple protocol that performs Send
and Receive actions in a loop. The counterexample LTS on
the right hand side is generated with a property ϕ stating
that ”no more than one Send action is allowed”. Note that final
transitions characterised by the δ label are not made explicit
in this example.

Fig. 1: Simple protocol example: full LTS and counterexam-
ple LTS.

Given a full LTS MF and a safety property ϕ, the
procedure for the generation of the counterexample LTS
consists of the following steps:

Step a) Conversion of the ϕ formula describing the
property into an LTS called Mϕ, using the technique that
allows the encoding of a formula into a graph described
in [9]. Given an action formula that represents a logical
formula built from basic action predicates and boolean
operators, this technique builds the LTS by replacing
action formulas with finite sets of transitions that can
potentially occur in the process composition. Mϕ is a

(a) (b) (c)

Fig. 2: Simple protocol example: counterexample LTS gener-
ation steps.

finite representation of tϕ, using final transitions, such that
tδ(Mϕ) = tϕ ∩ Σ∗

F , where ΣF is the set of labels occurring
in MF . In this step, we also apply the subset construction
algorithm defined in [10] in order to determinise Mϕ.
We finally reduce the size of Mϕ without changing its
behaviour, performing a minimisation based on strong
bisimulation [11]. Those two transformations keep the set of
final traces of Mϕ unchanged. The LTS Mϕ obtained in this
way is the minimal one that is deterministic and accepts
all the execution sequences that violates ϕ. Let us consider
again the previous example. The property ϕ that states that
no more than one Send action is allowed is translated in the
LTS depicted in Figure 2a. The asterisk symbol ∗ is used
here for simplicity to summarise all the transitions that are
represented by the labels which are not contained in the
property, while the δ symbol points out the final transitions.

Step b) Synchronous product between MF and Mϕ

with synchronisation on all the labels of ΣF (thus excluding
the final label δ). The result of this product is an LTS whose
final traces belong to t(MF ) ∩ tδ(Mϕ), thus it contains all
the traces of the LTS MF that violate the formula ϕ. Note
that t(MF ) ∩ tδ(Mϕ) = t(MF ) ∩ tϕ, because t(MF ) ⊆ Σ∗

F

and tδ(Mϕ) = tϕ ∩ Σ∗
F . Figure 2b shows the result of

the product of the full LTS depicted in Figure 1 and the
property ϕ in the form of an LTS depicted in Figure 2a.

Step c) Pruning of the useless transitions generated
during the previous step. In particular, we use the pruning
algorithm proposed in [12] to remove the traces produced
by the synchronous product that are not the prefix of any
final trace. As we can see in Figure 2b, final traces end with
the δ transitions (that have been introduced by the final δ
transition in Mϕ produced in the first step). We first remove
all the transitions that do not belong to final traces. In the
example, these consist of the Exit transition after the Init
transition and the Exit transition after the first Send and
Recv transitions. At the end of this process the δ transitions
are not needed any more, thus they are removed. The result
of this step is depicted in Figure 2c.

Proposition: The LTS MC obtained by this procedure is a
counterexample LTS for MF and ϕ.
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Fig. 3: Simple protocol example: states matching.

3.2 States Matching

We now need to match each state belonging to the coun-
terexample LTS with the corresponding one in the full LTS.
To do this, we define a matching relation between states
of the two LTSs, by relying on the simulation relation
introduced in Section 2. In our context, we want to build
such a relation between MC and MF , where a state x ∈ SC

matches a state y ∈ SF when the first is simulated by the
latter, that is, when x � y. Since the LTS that contains the
incorrect behaviours is extracted from the full LTS, the full
LTS always simulates the counterexample LTS. Note that
the correspondence of states between the counterexample
LTS and the full LTS is n-to-1. Indeed multiple states of the
counterexample LTS may correspond to a single state of the
full LTS. For instance this is the case when a loop is partially
rolled out.

To build the simulation relation between MC and MF we
exploit information generated by the synchronous product
used in step b) of Section 3.1. Indeed, the product also
generates a list of couples of states of MF and Mϕ where
each couple is associated to the resulting state of MC ,
representing the matching between each state of MC with
the corresponding one in MF . Let us consider again the
example described in Figure 1. Each state of the counterex-
ample LTS on the right hand side of the picture matches
a state of the full LTS on the left hand side as shown in
Figure 3.

4 COUNTEREXAMPLE LTS ANALYSIS

In this section we analyse the counterexample LTS produced
in the previous section. We first compare the counterexam-
ple LTS to the full LTS to identify transitions in locations
where traces, that share a common prefix in both LTSs, split
in different paths. We call these transitions correct transitions.
Secondly, we extract the transitions that do not have correct
transitions among their successors and we define these tran-
sitions as incorrect transitions. The correct and incorrect tran-
sitions identify relevant portions of the counterexample LTS,
described by the notion of neighbourhood. Neighbourhoods
highlight choices in the model that can lead to behaviours
that always satisfy the property, behaviours that always
violate the property, or both cases. At the end of the section
we present some abstraction techniques, which exploit the
notion of neighbourhood to extract precise information from
the counterexample LTS to highlight the cause of the bug,
and we propose a methodology to use such techniques.

4.1 Neighbourhood Computation

The state matching information, retrieved in Section 3.2,
is here exploited as input to compare transitions outgoing
from similar states in both LTSs. This comparison aims at
identifying transitions that originate from matched states,
and that appear in the full LTS but not in the counterexam-
ple LTS. We call this kind of transition a correct transition.

Definition 7. (Correct Transition) Given an LTS MF =
(SF , s

0
F ,ΣF , TF ), a property ϕ, the counterexample LTS

MC = (SC , s
0
C ,ΣC , TC) obtained from MF and ϕ, and

given two states s ∈ SF and s� ∈ SC , such that s� � s,
we call a transition s

l−→ s�� ∈ TF a correct transition if
there is no transition s�

l−→ s��� ∈ TC such that s��� � s��.

A correct transition is preceded by incoming transitions
that are common to the correct and incorrect behaviours,
meaning that they appear in both the full and the counterex-
ample LTS. We call these transitions relevant predecessors.

Let us illustrate the notion of correct transition on an
example. Figure 4 shows a piece of a full LTS and the
corresponding counterexample LTS. The full LTS on the
left hand side of the figure represents a state that has been
matched by a state of the counterexample LTS on the right
hand side and it has correct transitions outgoing from it.

Fig. 4: Example of correct transitions.

We then add all the correct transitions detected in the full
LTS to the counterexample LTS. Note that correct transitions
added to the counterexample LTS are all directed to a
new dedicated sink state (sk). In this way the behaviour
described by the counterexample LTS is not altered. The
counterexample LTS, with the added correct transitions, is
called enriched counterexample LTS.

Definition 8. (Enriched Counterexample LTS) Given the
counterexample LTS MC = (SC , s

0
C ,ΣC , TC) obtained

from a full LTS MF and a property ϕ, the set of correct
transitions Tct detected in MF and the set of labels
Σct in Tct, the enriched counterexample LTS is a tuple
MEC = (SEC , s

0
EC ,ΣEC , TEC) where SEC = SC ∪ sk,

s0EC = s0C , ΣEC = ΣC ∪ Σct, and TEC = TC ∪ Tct.

All the information we need to perform the following
steps is thus contained in the sole enriched counterexam-
ple LTS. We now focus on transitions that lead only to
behaviours that do not satisfy the property. To detect this
kind of transitions we check each transition in the enriched
counterexample LTS searching for correct transitions among
its subsequent transitions. If this is not the case, we classify
the transition as incorrect transition.
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Definition 9. (Incorrect Transition) Given an enriched coun-
terexample LTS MEC = (SEC , s

0
EC ,ΣEC , TEC), a state

s ∈ SEC , the set Ssucc that contains s and its successors
states, we call a transition t = s

l−→ s� ∈ TC an
incorrect transition if there is no state s� ∈ Ssucc such
that ∃t� = s�

l−→ s�� ∈ TC and t� is a correct transition.

Definition 9 produces sequences of incorrect transitions,
since successors of incorrect transitions are also incorrect.
Note that this is not the case for correct transitions. Since
correct transitions are all directed to the sink state, they do
not have successors and consequently they do not produce
any sequences of actions.

The transitions that are not correct nor incorrect are the
ones that have both correct and incorrect transitions among
their successors. We call these transitions neutral transitions.

We now add the information concerning the detected
transitions (correct, incorrect and neutral transitions) to the
LTS in the form of tags. We define the set of transition tags
as Γ = {correct, incorrect, neutral}. We represent a tagged

transition as s
(l,γ)−−−→ s�, where s, s� ∈ SEC , l ∈ ΣEC and γ ∈

Γ. The enriched counterexample LTS where each transition
has been tagged is called tagged LTS:

Definition 10. (Tagged LTS) Given the enriched coun-
terexample LTS MEC = (SEC , s

0
EC ,ΣEC , TEC), ob-

tained from a full LTS MF and a property ϕ, and
the set of transition tags Γ, the tagged LTS is a tuple
MT = (ST , s

0
T ,ΣT , TT ) where ST = SEC , s0T = s0EC ,

ΣT = ΣEC , and TT ⊆ ST × ΣT × Γ× ST .

States where a correct transition exists, or where a se-
quence of incorrect transitions begins, allow us in a second
step to identify a neighbourhood in the tagged LTS MT , which
consists of all incoming and outgoing transitions of that
state. A neighbourhood represents a choice in the model
between two (or more) different behaviours. Behaviours can
be correct, incorrect or neutral. Hence, neighbourhoods are
branches in the model that directly affect its compliance
with the property.

Definition 11. (Neighbourhood) Given the tagged LTS
MT = (ST , s

0
T ,ΣT , TT ), a state s ∈ ST , such that

∀t = s�
(l,γ)−−−→ s ∈ TT , t is a neutral transition, and

∃t� = s
(l,γ)−−−→ s�� ∈ TT , t� is a correct or an incorrect

transition, the neighbourhood of state s is the set of
transitions Tnb ⊆ TT such that for each t�� ∈ Tnb , either
t�� = s�

(l,γ)−−−→ s ∈ TT or t�� = s
(l,γ)−−−→ s��� ∈ TT .

Fig. 5: Example of neighbourhood with correct transitions.

Figure 5 shows the state in the tagged LTS that corre-
sponds to the state in the counterexample LTS depicted in
Figure 4. The incoming and outgoing transitions for this
state in the tagged LTS correspond to the neighbourhood.

Note that a neighbourhood also contains the so-called
relevant predecessor transitions. Relevant predecessors
highlight actions performed just before the ones described
by the correct (or incorrect) transitions. Since they represent
common prefixes for correct and incorrect transitions in
neighbourhoods, relevant predecessors are always neutral
transitions.

Fig. 6: The four types of neighbourhoods.

4.2 Neighbourhood Taxonomy
We can categorise neighbourhoods in four types by looking
at their outgoing transitions (see Figure 6 from left to right
and from top to bottom); note that correct transitions are
depicted with black lines, incorrect ones are depicted with
grey dotted lines and neutral ones are depicted with black
dotted lines:

1) with at least one correct transition (and no incorrect tran-
sition). The transitions contained in this type of neighbour-
hood highlight a choice that can lead to behaviours that
always satisfy the property. Note that neighbourhoods with
only correct outgoing transitions are not possible, since they
would not highlight such a choice. Consequently, this type
of neighbourhood always presents at least one outgoing
neutral transition.
2) with at least one incorrect transition (and no correct tran-
sition). The transitions contained in this type of neighbour-
hood highlight a choice that can lead to behaviours that al-
ways violate the property. Figure 7 shows a piece of a tagged
LTS where the state in the centre of the figure represents the
origin of sequences of incorrect transitions. Note that while
a neutral outgoing transition is usually present to highlight
the choice, a particular case where only incorrect outgoing
transitions are exposed exists. This is the case in which the
property is always false and the neighbourhood is located
at the initial state of the tagged LTS.
3) with at least one correct transition and at least one incorrect
transition, but no neutral transition.
4) with at least one correct transition, at least one incorrect
transition and at least one neutral transition.

Let us illustrate the neighbourhood taxonomy on the ex-
ample depicted in Figure 8. The sink state with correct tran-
sitions has been added to the counterexample LTS generated
in Figure 2. Correct transitions, all representing the Exit
transition, highlight a neighbourhood in the corresponding
source state. In this example, the first two neighbourhoods
belong to type 1. The third neighbourhood has both a correct
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Fig. 7: Example of neighbourhood with an incorrect transi-
tion.

and an incorrect transition, corresponding to the second
Send transition. Consequently, this neighbourhood belongs
to type 3.

Fig. 8: Simple protocol example: neighbourhood detection.

4.3 Abstraction Techniques
We now define a set of abstraction techniques to provide
hints to the developer to discover the source of the bug and
thus favour the comprehension of its cause, by exploiting
the notion of neighbourhood. We present here in detail two
abstraction techniques as well as some alternative versions
derived from them. It is worth noting that the abstraction
techniques we propose preserve the actions involved in the
choices that caused the bug, while they remove actions
that are not involved in such choices and thus are less
important from a debugging perspective. We will comment
on the relevance and benefit of the described abstraction
techniques on real-world examples in Section 6.

Abstracted counterexample. We are able to provide an
abstraction of a given counterexample by keeping only
transitions that belong to neighbourhoods. The aim of this
abstraction technique is to enhance the information usually
contained in a counterexample by pointing out actions
involved in the cause of the bug. Given the tagged LTS
MT , produced from a model MF and a property ϕ, the
set of states SN ⊂ ST where neighbourhoods have been
identified, and a counterexample ce, produced from MF and
ϕ, the procedure for the counterexample abstraction consists
of the following steps:

1) Matching between states of ce with states of MT .
2) Identification of states in ce that match states in SN .
3) Suppression of actions in ce, which do not represent

incoming or outgoing transitions of a neighbour-
hood.

For illustration purposes, let us consider the counterex-
ample, produced by a model checker from a model M
and a property ϕ, given in the top part of Figure 9. Once
the set of neighbourhoods in the tagged LTS is computed
using M and ϕ, we are able to locate sub-sequences of
actions corresponding to transitions in the neighbourhoods.
We finally remove all the remaining actions to obtain the
abstracted counterexample shown in the bottom part of the
figure.

Fig. 9: Example of counterexample abstraction.

Some alternative versions can be derived from this
abstraction technique. A first alternative allows to refine
the result of the technique by returning only actions that
belong to a given kind of neighbourhood. For instance, we
can abstract the counterexample by showing only actions
that belong to neighbourhoods with incorrect transitions.
A second alternative exploits an input given by the user,
in the form of a pattern representing a sequence of non-
contiguous actions, to help the developer to focus on a
specific part of the analysed system. This variation of the
abstracted counterexample can help to check whether the
given pattern is involved in the cause of the bug.

Shortest path to a neighbourhood. The aim of this
abstraction technique is to provide a starting point to debug
models that contain an high number of neighbourhoods.
The shortest path to a neighbourhood indeed shows the
simplest way to reach the first choice that may cause the
bug. Given the tagged LTS MT , produced from a model MF

and a property ϕ, the set of states with a neighbourhood
SN ⊂ ST , and the set of all traces t(SN ) ⊂ tδ(MT ) between
s0T and each s ∈ SN , we extract the trace of size n ∈ N
where n is minimal w.r.t. the size of all other traces in t(SN ).
Let us consider a portion of a tagged LTS MT depicted in
Figure 10. States in grey highlight the set of neighbourhoods
identified in MT . We search for the neighbourhood that is
the closest one to the initial state. Transitions highlighted
in grey show the shortest path from the initial state to the
closest neighbourhood.

Fig. 10: Example of shortest path between the initial state
and a neighbourhood.

Similarly to the abstracted counterexample technique,
we developed alternative versions, by refining the searched
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type of neighbourhood or by forcing the path to match a
pattern of non-contiguous actions.

4.4 Methodology

As far as usability is concerned, here is what we advocate
for using our approach from a methodological perspective.
First, our method automatically computes all the neighbour-
hoods in the tagged LTS. In this preliminary step, if the
number of detected neighbourhoods is small, the developer
can detect particular cases of bugs. For instance, in this step
the developer can immediately detect cases in which only a
neighbourhood is present and the property is always false.

In a second time, the developer can investigate in detail
the bug behaviour by focusing on single counterexamples.
To do this, the developer can first use the abstract coun-
terexample technique to obtain a first intuition about the
bug cause. Then, she can use the shortest path technique
and pattern-based techniques when she needs to refine
the results or in particular cases in which the abstracted
counterexample technique is not useful.

5 TOOL SUPPORT

In this section we present the implementation of our ap-
proach in the CLEAR tool, which is available online [2].
The CLEAR tool architecture is depicted in Figure 11 and
consists of two main modules: the neighbourhood calcula-
tion module and the analysis module. The former one has
been implemented in Java (about 3,500 lines of code) and is
divided into two components. The first component imple-
ments the counterexample LTS generation step described in
Section 3.1. It relies on the CADP toolbox [5], which enables
one to specify and analyse concurrent systems using model
and equivalence checking techniques. The computation of
the counterexample LTS is achieved by a script we wrote
using SVL [13], a scripting language that allows one to
interface with tools provided in the CADP toolbox. This
script takes as input a specification written in the LNT [4]
process algebra and an MCL [7] property. After the gen-
eration of the counterexample LTS (in the form of AUT
file) through the SVL script, the tool takes as input such
model and stores it in memory using a Java graph modelling
library. The matching relation between states of the full and
counterexample LTSs (obtained by the SVL script during
the counterexample LTS generation) is then exploited to
compare states of the two LTSs in order to extract correct
transitions. Correct transitions are later used to discover the
neutral and incorrect ones in the enriched counterexample
LTS, thus producing the tagged LTS.

Neighbourhoods are detected in the second component
by analysing incoming and outgoing transitions of every
state in the tagged LTS. The transition type (correct, incor-
rect or neutral) is assigned to the corresponding transition
object instance through the graph modelling library. When
a neighbourhood is detected, a specific identifier is added
to the corresponding state object in the Java model of the
tagged LTS.

Finally, the analysis module provides the implementa-
tion of the abstraction techniques described in Section 4.3.
We use the Neo4j [14] graph database to store the tagged LTS

Fig. 11: Overview of the tool support.

and we built abstraction techniques as Neo4j queries. The
graph database is structured as follows. Nodes represent
states and tags are used to classify the initial state, the sink
state, final states and neighbourhoods. Neo4j relationships
are used to represent transitions while properties are used to
characterise the transition type (correct, incorrect and neutral)
and the neighbourhood type (following the taxonomy made
in Section 4.2). Queries are built using the Cypher language,
a graph query language developed for the Neo4j graph
database. For instance, the shortest path from the initial
node to a neighbourhood is retrieved with the following
Cypher query:

MATCH (init:INITIALSTATE), (nb:NEIGHBOURHOOD),

path = shortestpath((init)-[*]->(nb))

RETURN path ORDER BY length(path) LIMIT 1

Visual rendering of the tagged LTS is also provided
through the Neo4j GUI.

6 EVALUATION

In this section, we apply our approach to several case
studies found in the literature and we describe an empirical
study we built to evaluate our approach with some develop-
ers. In the evaluation of our experimental results we address
the following research questions:

RQ1: Is our approach able to reduce the counterexample size?
RQ2: Does our approach provide an automatic debugging method
which makes easier the work usually performed by the developer?
RQ3: Can our approach highlight all the sources of the bug that
are hidden in the model?

At the end of this section we will answer to these ques-
tions and we will discuss about potential threats to validity
of our evaluation results. The three case studies detailed
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in Section 6.1 and the empirical case studies described in
Section 6.2 are available online [2].

6.1 Experimental Results

We carried out experiments on about 100 real-world exam-
ples. For each one, we use as input an LNT specification
(following the original specification) or an LTS model, and
a safety property. Table 1 summarises the results for some
of these experiments. The first column contains the name of
the model. The second and third columns show the size of
the full and the counterexample LTSs, respectively, in terms
of number of states, transitions and labels. The following
columns give the number of neighbourhoods for each neigh-
bourhood type (cn: with only correct transitions, in: with
only incorrect transitions, ci: with correct and incorrect tran-
sitions, cni: with correct, incorrect and neutral transitions),
and the percentage of neighbourhoods over the number
of states in the tagged LTS. We also present in the table
the results of the counterexample abstraction technique, in
terms of size of the shortest and of the abstracted counterex-
ample, respectively. Finally, the last column details the total
computation time (in seconds) for each test, which takes into
account the counterexample LTS production, the transition
types computation and the neighbourhood computation.

First of all, as far as computation time is concerned, the
table shows that the time is quite low for small examples,
while it tends to increase w.r.t. the size of the LTS when
we deal with examples with hundreds of thousands of
transitions and states. Note that an important part of the
total time in examples with large LTSs is spent in loading
LTSs on the system memory in the Java part of our tool. The
loading time takes about 30% of the total time for examples
with about a million of states, while it remains negligible
for small examples (about 1% of the computation time when
dealing with LTSs with hundred of states).

Second, we can see a clear gain in length between
the original counterexample and the abstracted one, which
keeps only relevant actions using our approach and thus
facilitates the debugging task for the user. For instance, cases
in which the abstracted counterexample contains only two
actions, like the train station case study (line 9 in Table 1),
mean that we identified only one neighbourhood in the
shortest counterexample.

There exist some particular cases in which the abstracted
counterexample contains only one action. This happens
when the analysed property is always false. In these partic-
ular cases, we identify the initial state as a neighbourhood
with only incorrect outgoing transitions. An example is
represented by the Peterson algorithm case study (lines 19-
20 in Table 1), in which we have introduced a bug, and that
we have verified with a property that guarantees mutual
exclusion. The tagged LTS with the initial neighbourhood
allows us to understand that the bug is present in all the
executions of the systems, meaning that all the possible
executions are not correct, and to avoid an useless analysis
of relevant actions. On the contrary, when the property is
always verified in all executions (thus no counterexample is
produced), the counterexample LTS is not generated and no
neighbourhood is found (see the restaurant booking case at
line 21 in Table 1).

Finally, note that in the case of the TFTP/UDP protocol
(lines 33-36 in Table 1) , the abstracted counterexample
technique has not reduced the size of the shortest coun-
terexample. This occurs because the counterexample does
not contain any neighbourhood. The last state reached in
the tagged LTS contains a final transition, and it is this final
transition itself which is incorrect. In this specific case where
the abstracted counterexample technique is not helpful, the
developer can use other techniques (for instance the shortest
path to a neighbourhood) to retrieve useful information
about the bug source.

We now present three case studies from Table 1.

6.1.1 Case Study: Shifumi Tournament
The shifumi case study models in LNT a tournament of
rock-paper-scissors games. In a typical game between two
players each player forms one of the three possible shapes
(rock, paper or scissors). Each shape allows to defeat one of
the two others, but is defeated by the remaining one (e.g.
the rock defeats the scissors but is defeated by the paper).
When a shape is used against the same shape the game ends
in a draw, and it is repeated. The tournament allows more
than two players to compete. When a player wins a game,
she continues playing with the next player. On the contrary,
the player who loses the game has to stop playing. The
tournament continues until there is only a winner. Figure 12
shows the LNT process for a player. LNT processes are
built from correct termination (null), actions, sequential
composition (;), conditional construct (if), assignment (:=),
nondeterministic choice (select), parallel composition (par),
and looping behaviour (loop). The reader interested in more
details about LNT should refer to [4]. We discuss here one
of the shifumi tournaments case studies described in Table 1
(line 16), which represents a tournament between three
players. A property is provided to guarantee no cheating
by any player. More precisely, it avoids that a player that
has previously lost can play again in the tournament.

process p layer [GETWEAPON: getweapon , GAME: game,
LOOSER: nat ] ( s e l f : nat , honest : bool ) is

var opponent : nat , mine , hers : weapon in
loop

GETWEAPON ( s e l f , ?mine ) ;
select

GAME ( s e l f , ?opponent , mine , ?hers )
[ ]

GAME (?opponent , s e l f , ?hers , mine )
end select ;
i f wins over ( mine , hers ) then

LOOSER ( opponent )
e l s i f wins over ( hers , mine ) then

i f ( not ( honest ) ) and ( mine == rock ) then nul l
else stop
end i f

end i f
end loop

end var
end process

Fig. 12: Shifumi tournament: LNT code for a Shifumi player.

The analysed tournament contains a bug, since a dishon-
est player is able to play again after having lost a game. We
have generated the tagged LTS and applied two abstraction
techniques: the abstracted counterexample technique (to a
randomly produced counterexample), and the shortest path
to a neighbourhood technique. The abstracted counterex-
ample reduces the number of actions from 14 to 9, since it
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Example LF (s/t/l) LC (s/t/l) cn/in/ci/cin nb.% |Ce| |Cer| time

1. sanitary agency (v.1) 227 / 492 / 31 226 / 485 / 31 6 / 10 / 0 / 0 7.08 % 14 2 7.6s
2. sanitary agency (v.2) 142 / 291 / 31 526 / 1064 / 31 12 / 10 / 4 / 2 5.32 % 64 7 7.7s
3. sanitary agency (v.3) 91 / 172 / 31 55 / 95 / 23 5 / 5 / 2 / 0 21.82 % 19 6 7.9s
4. SSH protocol (v.1) 23 / 25 / 23 24 / 24 / 19 1 / 0 / 1 / 0 8.33 % 14 3 7.6s
5. SSH protocol (v.2) 23 / 25 / 23 40 / 40 / 19 3 / 0 / 1 / 0 10.00 % 30 7 7.7s
6. client supplier (v.1) 35 / 45 / 26 29 / 33 / 24 2 / 0 / 1 / 0 10.34 % 18 5 7.6s
7. client supplier (v.2) 35 / 45 / 26 25 / 25 / 24 3 / 0 / 1 / 0 16.00 % 19 6 7.7s
8. client supplier (v.3) 35 / 46 / 26 33 / 41 / 24 1 / 2 / 1 / 0 12.12 % 16 4 7.9s
9. train station 39 / 66 / 18 26 / 34 / 18 0 / 2 / 1 / 0 11.54 % 6 2 7.9s
10. selfconfig 314 / 810 / 27 159 / 355 / 27 24 / 15 / 1 / 5 28.30 % 14 2 7.8s
11. CFSM 1321 / 2563 / 7 3655 / 7246 / 7 12 / 205 / 2 / 0 5.99 % 7 2 7.8s
12. online stock broker 1331 / 2770 / 13 3516 / 7326 / 13 44 / 145 / 17 / 0 5.86 % 23 2 7.9s
13. multiway rendezvous (simple) 2171 / 5098 / 53 171 / 283 / 36 89 / 2 / 1 / 1 54.39 % 47 38 8.2s
14. multiway rendezvous 1318 / 3217 / 53 539 / 1186 / 41 143 / 8 / 4 / 4 29.50 % 47 22 7.7s
15. shifumi (2 players) 25 / 57 / 27 60 / 130 / 27 6 / 4 / 5 / 0 25.00 % 7 4 7.7s
16. shifumi (3 players) 193 / 690 / 67 499 / 1814 / 67 30 / 53 / 10 / 18 22.24 % 7 2 7.9s
17. shifumi (4 players) 1362 / 7209 / 125 3577 / 19233 / 125 206 / 418 / 15 / 188 23.12 % 7 2 10.6s
18. shifumi (5 players) 9693 / 70596 / 201 25593 / 188466 / 201 1622 / 2999 / 20 / 1598 24.38 % 7 2 12.2s
19. Peterson algorithm (v.1) 352112 / 552848 / 85 673569 / 1058113 / 85 0 / 1 / 0 / 0 0.00 % 35 1 24.2s
20. Peterson algorithm (v.2) 352112 / 552848 / 85 683958 / 1074948 / 85 0 / 1 / 0 / 0 0.00 % 35 1 24.1s
21. restaurant booking 55 / 78 / 31 - 0 / 0 / 0 / 0 0.00 % 0 0 7.2s
22. travel agency 60 / 99 / 26 60 / 99 / 26 0 / 1 / 0 / 0 1.67 % 22 1 7.6s
23. FTP transfer 49 / 86 / 18 45 / 76 / 18 0 / 7 / 1 / 2 22.22 % 10 2 7.6s
24. news server 21 / 34 / 8 14 / 18 / 6 0 / 1 / 1 / 2 28.57 % 4 2 7.7s
25. mars explorer 52 / 74 / 34 45 / 66 / 26 0 / 0 / 1 / 0 2.22 % 23 2 7.6s
26. factory job manager 30 / 45 / 14 18 / 21 / 14 2 / 0 / 1 / 0 16.67 % 6 4 7.9s
27. vending machine 17 / 19 / 16 13 / 13 / 12 0 / 0 / 1 / 1 15.38 % 9 3 7.5s
28. restaurant service 25 / 37 / 12 23 / 33 / 12 0 / 1 / 1 / 0 8.70 % 9 2 7.4s
29. CFSM (estelle) 4058 / 8219 / 9 24171 / 50830 / 9 1344 / 973 / 16 / 9 9.69 % 18 2 8.5s
30. reactive system 266 / 720 / 5 296 / 786 / 5 0 / 1 / 0 / 0 0.34 % 3 1 7.8s
31. bug repository report 80 / 158 / 13 108 / 203 / 13 0 / 1 / 0 / 0 0.93 % 15 1 7.6s
32. message exchange 666 / 2281 / 20 1166 / 3857 / 20 0 / 74 / 0 / 74 12.69 % 17 2 7.9s
33. TFTP/UDP protocol (v.1) 4 / 7 / 2 5 / 11 / 2 0 / 1 / 0 / 0 20.00 % 1 1 7.7s
34. TFTP/UDP protocol (v.2) 98205 / 9018043 / 11 214217 / 19852120 / 11 2957 / 2444 / 1 / 16 2.53 % 3 3 558.3s
35. TFTP/UDP protocol (v.3) 61008 / 6328658 / 11 123983 / 12318353 / 11 6323 / 5758 / 0 / 1556 11.00 % 8 8 301.5s
36. TFTP/UDP protocol (v.4) 98205 / 9018043 / 11 214217 / 19852616 / 11 2955 / 2444 / 1 / 16 2.53 % 3 3 571.5s

TABLE 1: Experimental results.

involves 5 neighbourhoods in the tagged LTS. The detected
neighbourhoods precisely identify how the bug originates.
Indeed they allow us to understand that player one is the
cheater and that she cheats after having lost a game using
rock as shape. First, the initial neighbourhood indicates that
alternative combinations that avoid the occurrence of the
bug are possible (Figure 13a). A subsequent neighbourhood
highlights a game rock versus paper between player one and
player two, where player one loses and thus should have
exited the tournament (Figure 13b). This neighbourhood is
interesting also because it shows that, if player two chooses
scissors, she would lose that game and the bug would not
occur. The last neighbourhood points out that a new game
is played between player one and two, but this should not
be possible, since the previous neighbourhood has indicated
that player one has lost (Figure 13c).

(a) (b) (c)

Fig. 13: Shifumi tournament: three of the neighbourhoods
detected in the abstracted counterexample.

The shortest path to a neighbourhood technique (de-
picted in Figure 14) shows that the discovered neighbour-
hood, which is only two transitions far from the initial
state, belongs to the first type (outgoing correct and neutral
transitions). The correct transitions show games between

Fig. 14: Shifumi tournament: shortest path to a neighbour-
hood.

players one and two using scissors and paper, while the
neutral ones show the selection of the three possible shapes
by player three. This means that the use of scissors and paper
shapes between players one and two avoids the bug, and
confirms that player one must use a rock to cheat. Moreover,
neutral transitions show that the choice of the shape by
player three has no impact on the bug. The combined use
of the two abstraction techniques allowed us to have a finer
information about the bug.

6.1.2 Case Study: Sanitary Agency

We now describe the sanitary agency [15] example (line 3 in
Table 1), which models an agency that aims at supporting
elderly citizens in receiving sanitary assistance from the
public administration. A bank model is defined to manage
fees and payments, while a cooperative model is built to
provide transportation and meal services. A citizen and
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a sanitary agency models are also defined. The four LTS
models are depicted in Figure 15.

Fig. 15: Sanitary agency: LTS models.

For illustration purposes, we use an MCL safety prop-
erty, which indicates that the payment of a transportation
service to the transportation cooperative cannot occur after
submission of a request by a citizen to the sanitary agency:

[ true* . ’REQUEST EM’ . true* . ’PAYMENTT EM’ . true* ] false

Our tool was able to identify twelve neighbourhoods
in the tagged LTS, divided into five neighbourhoods from
correct transitions, five from incorrect transitions and two
from correct and incorrect transitions (without neutral tran-
sitions).

We applied the abstracted counterexample technique to
the shortest counterexample. The abstracted counterexam-
ple involves four neighbourhoods, and this allows us to
reduce its size from 19 actions to only 6 actions. Figure 16
shows (from left to right) the full LTS of the sanitary agency
model, the abstracted counterexample, and the four neigh-
bourhoods for this counterexample. Actions that appear in
the counterexample are highlighted in bold. The neighbour-
hoods and corresponding extracted actions are relevant in
the sense that they precisely identify choices that lead to
the incorrect behaviour. In particular, they identify the two
causes of the property violation and those causes can be
observed on the abstracted counterexample. The first cause
of violation is emphasised by the first neighbourhood and
occurs when the citizen request is accepted. In that case,
the refusal of the request is a correct transition and leads
to a part of the LTS where the property is not violated. The
three next neighbourhoods pinpoint the second reason of
property violation. They show that actions which trigger
the request for payment of the transportation services have
been performed, while this is not permitted by the property.
Note that different neighbourhood types provide us with
different information about choices. For instance, the first
neighbourhood is of the first type, highlighting a choice that
leads to correct behaviour, while the third neighbourhood
is of the second type, thus highlights a choice that leads to
incorrect behaviour. Finally, note that in this specific case
the abstracted counterexample technique was sufficient to
understand the cause of the bug. The shortest path to a

neighbourhood technique would not be useful, since the
first neighbourhood identified with the abstracted coun-
terexample is common to all the counterexamples.

Fig. 16: Sanitary agency: full LTS and abstracted counterex-
ample.

6.1.3 Case Study: Multiway Rendezvous Protocol
The last example we present is the Multiway Rendezvous Pro-
tocol. This case study represents the evaluation of a formal
model, written in LNT, of the multiway rendezvous protocol
implemented in DLC (Distributed LNT Compiler) [16], a
tool that automatically generates a distributed implemen-
tation in C of a given LNT specification. The multiway
rendezvous protocol must allow processes (called tasks)
to synchronize, through message exchange, on a given
gate. In this case messages (e.g., abort, commit, ready)
are exchanged between two tasks T1 and T16 and a gate
A to synchronize. Note that in this case study the gate
A does not correspond to an LNT gate construct, but is
built through an LNT process. A synchronization success
between T1 and T16 on gate A is represented by ACTION
!DLC GATE A !{DLC TASK 0 T1, DLC TASK 1 T16}. One
of the two tasks cannot execute more than two actions on
gate A. This is expressed with the following MCL property:

[true* . ’ACTION !DLC GATE A .*’.
true* . ’ACTION !DLC GATE A .*’.
true* . ’ACTION !DLC GATE A .*’.

true* ] false

We have analysed a preliminary faulty version of the
protocol (line 14 in Table 1) which allows performing three
synchronizations on gate A, that is prohibited by the prop-
erty. We made use of two abstraction techniques to debug
this model: the abstracted counterexample, applied to the
shortest counterexample, and the version of the shortest
path to a neighbourhood technique where the path must
match a given pattern of actions. The first technique shows
that the bug is due to a combination of causes, all high-
lighted by neighbourhoods. We summarise here the main
ones. First of all, one of the neighbourhoods (Figure 17a)
lets us understand that if a second synchronization on gate
A is executed instead of the refusal of the negotiation (that
is actually executed in the counterexample) the bug does
not arise. This means that the refusal of the negotiation
by gate A is involved in causing the bug. We then detect
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a set of neighbourhoods, which shows that the bug does
not arise if an abort message is received by the task T16
before the reception of a commit message. Figure 17b de-
picts one example of these neighbourhoods. Finally, the last
neighbourhood (Figure 17c) triggers definitively the bad
behaviour with the second execution of the synchronization
on gate A, represented in the form of an incorrect transition.

(a) (b) (c)

Fig. 17: Multiway rendezvous protocol: three of the neigh-
bourhoods detected in the abstracted counterexample.

Our approach shows that the bug comes from a shift
between the progress of task T16 and the rest of the system
when a refusal is performed by gate A. This is precisely
highlighted through the presence in the neighbourhoods of
the refusal of the negotiation by gate A and the reception
of the abort message after the first commit message. Our
technique also shows that the causes of the bug are all
located before the execution of the second synchronization
on gate A (included), while the rest of the counterexample
is irrelevant from a debugging perspective. This outcome is
also confirmed by the second abstraction technique we used.
We defined two different patterns, one containing a single
synchronization and the other one with two synchroniza-
tions on gate A. While the abstraction technique used with
the single synchronization returned a path to the closest
neighbourhood, it did not returned any result using the sec-
ond pattern, confirming that all neighbourhoods are located
before the second synchronization on gate A (included).

Finally, as collateral information, our approach provides
the set of labels that are not involved in the counterexample
LTS, through the difference between the set of labels of
the full LTS and the set of labels of the counterexample
LTS. Since the counterexample LTS contains all the possible
counterexamples, labels that do not belong to it are not
involved in the cause of a bug. For instance, in Table 1 we see
that in this case the number of labels in the counterexample
LTS is lower than the one in the full LTS (41 to 53), meaning
that about 20% of labels are not related to the bug.

6.2 Empirical Study

We built an empirical study to validate our approach. We
asked to 17 developers, with different degrees of expertise,
to find bugs on two test cases by taking advantage of the
abstracted counterexample technique. The two test cases
were specifically developed for the empirical study and
modified to introduce a bug. The first one represents a
vending machine, in which a bug in the change allows the
customer to buy drinks even if there is not enough money.
The second test case is a system with three communicating
processes (a producer, a consumer and a process that can
be both), in which a bug in the synchronization allows a
process to consume even if nothing has been produced yet.

The developers were divided in two groups, in order
to evaluate both test cases with a classic counterexample
and with the abstracted counterexample. The first group
was provided with the vending machine test case with a
classic counterexample and the communicating processes
test case with the abstracted counterexample. We did the
opposite for the second group of users. We gave to the
users a description of the test cases, the LNT specifications
of the tests, the properties, the classic counterexamples and
an abstracted counterexample with an explanation of our
method (only in one of the two tests). The developers were
asked to discover the bug and measure the total time spent
in debugging each test case, then to send us the results by
email. 70% of the developers found the correct bug with
the classic counterexample, while 77% found the correct
bug with the abstracted counterexample. When a developer
did not discover an actual bug in one of the two tests we
considered this result as a false positive and we did not take
it into account in computing total average times. Note that,
if the other test was correct, we took it into account.

Vending Machine Concurrent Sys. Total time
Classic count. 21.5 min 16 min 19 min
Abstracted count. 20.5 min 10 min 15 min

TABLE 2: Empirical study: average time results.

Table 2 depicts the empirical study results in terms of
time, comparing for both test cases the time spent with the
classic counterexample and with the abstracted one. The
total average time spent in finding the bug in both test
cases without our techniques is of 19 minutes, while the
average time using the abstracted counterexample is of 15
minutes, showing a gain in terms of time with the use of our
approach. Figure 18 depicts the time distributions charts for
both test cases, with the classic counterexample and with the
abstracted one. Missing columns represent cases in which
the developer did not discover an actual bug.

Fig. 18: Empirical study: time distributions.

We also computed the median time spent in both test
cases. Median time for vending machine with the classic
counterexample is of 21 minutes, while it is slightly higher
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with the abstracted one (23 minutes). On the contrary in
the concurrent system test case, median values are of 15
minutes with the classic counterexample, and of 9 minutes
with the abstracted one, showing a time improvement. It is
worth noting that the results we obtained in the concurrent
system case are better than in the vending machine one.
This is because the bug on the vending machine is caused
by a missing value update, requiring the developer to reason
about variables accesses, which are not easy to spot for the
developer when she has not been involved in the implemen-
tation of the specification.

We also asked developers’ opinion about the benefit
given by our method in simplifying the detection of the bug.
Over 17 developers, only 23% of them said the abstracted
counterexample was not useful or that they did not need
it. 65% of the developers agreed considering our approach
helpful: 47% of them found that our technique was useful
and 18% said that it can be useful in some circumstances
(the remaining 12% did not express an opinion).

Finally, given the small sample size, one may won-
der whether the improvements obtained with the use of
the abstracted counterexample technique could have been
caused by random chance. Therefore, we have carried out
a statistical analysis of the empirical study results. More
precisely, we have computed the 95% confidence interval
of the time difference and the p-value using a two-tailed
test. As far as the Vending Machine case is concerned, the
interval is [-6.89,8.69] and the p-value is 0.7996, which is not
statistically significant. However in the Concurrent System
case the interval is [0.41,12.09], and the p-value is 0.0379,
which is generally accepted as statistically significant (p ≤
0.05).

6.3 Results Discussion
Experiments presented in Table 1 with the abstracted coun-
terexample technique show a clear gain in length w.r.t the
original counterexample, allowing us to answer to research
question RQ1. Our case studies show that our approach,
with the help of the chosen abstraction technique, allows
the developer to identify the cause of the property violation
by identifying specific actions and removing noise in coun-
terexamples thanks to the notion of neighbourhood. Our
empirical study shows that the automatic computation of
the neighbourhoods with the use of the chosen abstraction
technique makes the debugging approach easier. This is
also confirmed by the developer satisfaction percentages we
obtain, thus answering our research question RQ2. Finally,
since our approach applies on the tagged LTS and computes
all the neighbourhoods, the returned solution is able to
pinpoint all the sources of the property violation, as we
have shown precisely in the case studies, thus allowing us
to answer to RQ3.

6.4 Threats to Validity
We discuss here some threats to validity of the results of our
evaluation work. First of all, one of the issues we had to cope
with during our work was the lack of erroneous models.
A benchmark of erroneous case studies (in the form of
behavioural models), similar to the Siemens Test Suite [17]
for the testing community, does not exist yet. Consequently,

either we reused existing real-world models and artificially
introduced bugs, either we had to build new faulty models.

For what concerns the empirical study, the average gain
in time is not that high. This is due to three main reasons.
First, the length of the two counterexamples is quite short
(27 and 15 actions respectively) w.r.t. real-world cases, mak-
ing the advantage of our techniques less obvious. This is
caused by simple specifications, expressly chosen to allow
developers to carry out tests in a reasonable time. The
aim of our approach is not to debug simple test cases like
these ones, but is rather to complement existing analysis
techniques to help the developer when debugging complex
specifications, which can take hours to debug. Second, a part
of the developers were using our method for the first time,
while our method requires some knowledge in order to use
it properly. The gain in time brought by our approach w.r.t.
a classic counterexample might thus not be visible for such
developers. Third, the number of developers involved in
the empirical study is rather low (only 17), thus potentially
weakening the results pertinence.

7 RELATED WORK

In this section, we review existing results for debugging
hardware/software systems with a particular focus on
causality analysis, counterexample explanation approaches,
and testing-based fault localization.

Causality analysis. Causality analysis aims at relating
causes and effects, which can help in debugging faults in
systems. This analysis relies on a notion of counterfactual
reasoning, where alternative executions of the system are
derived by assuming changes in the program. There have
been several papers published on this subject recently, see,
e.g. [18], [19], [20], [21]. Let us mention a couple of them
with more details. In [20], the authors present a general
approach for causality analysis of system failures based on
component specifications and observed component traces.
This approach uses counterfactual reasoning and blames
components based on a single execution trace violating a
safety property. In [21], the authors choose the Halpern
and Pearl model to define causality checking. In particu-
lar, they analyse traces of counterexamples generated by
bounded model checking to localise errors in hardware
systems. We observed that our approach was useful for
detecting bugs that could have been detected using causality
analysis techniques, such as [20] and [21]. This is the case
of the neighbourhoods detected with the abstracted coun-
terexample technique in the Sanitary Agency case study
(Section 6.1.2), where the bug had a first cause in the choice
of the first neighbourhood. However, this was not our focus
when developing our solution, which was on the analysis
of choices made in the specification and their impact on the
validity of a given property.

Counterexample explanation. Another line of research
focuses on interpreting counterexample and favouring their
comprehension, see, e.g. [22], [23], [24], [25], [26], [27]. Let
us introduce with more details two recent works which
perform counterexample analysis by applying pattern min-
ing techniques. In [27], sequential pattern mining is applied
to execution traces for revealing unforeseen interleavings
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that may be a source of error, through the adoption of the
well-known mining algorithm CloSpan [28]. CloSpan is also
adopted in [26], where the authors apply sequential pattern
mining to traces of counterexamples to reveal unforeseen
interleavings that may be a source of error. However, rea-
soning on traces as achieved in [26], [27] induces several
issues. The handling of looping behaviours is non-trivial
and may result in the generation of infinite traces or of
an infinite number of traces. Coverage is another problem,
since a high number of traces does not guarantee to produce
all the relevant behaviours for analysis purposes. As a result,
we decided to work on the debugging of LTS models, which
represent in a finite way all possible behaviours of the
system. It is also worth noting that the approaches presented
in [26], [27] are usually more scalable for large systems and
do not require a complete model of the system, which may
be difficult to obtain for real software artefacts.

Two other works have a specific focus on a finer anal-
ysis of counterexample traces that is more similar to our
approach. In [22] the authors propose a method to interpret
counterexamples traces from liveness properties by dividing
them into fated and free segments. Fated segments repre-
sents inevitability w.r.t. the failure, pointing out progress
towards the bug, while free segments highlight the possi-
bility to avoid the bug. The proposed approach classifies
states in a state-based model in different layers (which
represent distances from the bug) and produces a counterex-
ample annotated with segments by exploring the model.
Both our work and [22] aim at building an explanation
from the counterexample. However, our method focuses
on locating branching behaviours that affect the property
satisfaction whereas their approach produces an enhanced
counterexample where inevitable events (w.r.t. the bug) are
highlighted. Moreover our approach has a specific focus on
safety properties, while they focus on liveness properties.

In [24] the authors propose automated methods for
the analysis of variations of a counterexample, in order
to identify portions of the source code crucial to distin-
guishing failing and successful runs. These variations can
be distinguished between executions that produce an error
(negatives) and executions that do not produce it (positives).
By relying on a notion of control location, their method
tries to make sure that such variations are for one bug
to avoid multi-bug confusions. The authors then propose
various methods to extract common features and differences
between the two sets in order to provide feedbacks to
the user. Three different extraction methods are proposed:
transition analysis, invariant analysis and transformation of
positives into negatives. Similarly to our work, the work
in [24] also wants to better explain the counterexample with
a focus on safety properties. However, while our approach
has a global view on the whole LTS and focuses on the
comparison of the full and the counterexample LTS to locate
choices that affect the property satisfaction, their method
relies on the analysis of a single counterexample and its
variations, making sure that negative variations are from
the same bug.

Fault localization using testing. Fault localization for
program debugging has been an active topic of research for
many years in the software engineering community. Sev-

eral options have been investigated such as static analysis,
slice-based method, statistical methods, or machine learning
approaches, see [29] for a survey. We focus here on fault
localization using testing approaches, see, e.g. [30], [31], [32],
which is quite related to our approach since testing can
be seen as a case of non-exhaustive model checking. Let
us introduce as an example a recent approach proposed
by Le Traon and Papadakis using a mutation-based fault
localization approach [32]. This paper suggests the use
of a sufficient mutant set to locate effectively the faulty
statements. Experiments carried out in this paper reveal
that mutation-based fault localization is significantly more
effective than current state-of-the-art fault localization tech-
niques. Note that this mutation analysis approach applies
on sequential C programs under validation using testing
techniques whereas we focus here on formal models of
concurrent programs being analysed using model checking
techniques.

Previous work. We published in [3] a preliminary ver-
sion of our approach for counterexample analysis of safety
property violations, which has been extended in this work
from multiple perspectives. First of all, in the current work
we introduced the detection of new types of transitions
(neutral and incorrect), that allow us to improve the notion
of neighbourhood and to recognise different neighbourhood
types. Neighbourhood types favour a finer categorization
of choices. Indeed, they allow to detect also choices that
lead only to incorrect behaviours, while in [3] we had a fo-
cus on the neighbourhood generated by correct transitions.
Secondly, we expanded the number of techniques that the
developer can use for debugging the model. Indeed, the
abstracted counterexample now represents only one of the
abstraction techniques that can be chosen by the developer
depending on the required information, and which allow a
more complete analysis of the model. Finally, we improved
the experimental evaluation of our approach by: (i) revising
the results of test cases presented in [3] by taking into
account the new transitions types; (ii) extending the set of
test cases with new ones, by considering also models with
an high number of transitions; (iii) building an empirical
evaluation with real developers, which confirmed the bene-
fits of our approach.

8 CONCLUSION

In this article, we have proposed a novel method for de-
bugging behavioural models based on the analysis of coun-
terexamples produced by model checking techniques. First,
we have defined a procedure to obtain an LTS containing all
the counterexamples given a full LTS and a safety property.
Second, we have introduced the notion of neighbourhoods
corresponding to the junction of correct and incorrect tran-
sitions in the LTS. We have defined several notions of neigh-
bourhoods depending on the type of transitions located at
such a state (correct, incorrect or neutral transitions). We
have also proposed an algorithm for automatically com-
puting all neighbourhoods by comparing the full LTS and
the LTS consisting of all counterexamples. Third, we have
proposed several abstraction techniques to exploit the pre-
viously computed neighbourhoods for providing abstracted
counterexamples useful for debugging purposes. Finally, we
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have implemented our approach as a tool and evaluated it
on several real-world case studies. Our experimental study,
also supported by an empirical evaluation, shows that our
neighbourhood approach helps in practice for more easily
pinpointing the source of the bug in the corresponding LTS
model.
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