
Ann. Telecommun. (2009) 64:25–43
DOI 10.1007/s12243-008-0069-7

Behavioural models for distributed Fractal components

Tomás Barros · Rabéa Ameur-Boulifa ·
Antonio Cansado · Ludovic Henrio · Eric Madelaine

Received: 30 July 2007 / Accepted: 16 July 2008 / Published online: 10 January 2009
© Institut TELECOM and Springer-Verlag France 2008

Abstract This paper presents a formal behavioural
specification framework for specifying and verifying the
correct behaviour of distributed Fractal components.
The first contribution is a parameterised and hierarchi-
cal behavioural model called pNets that serves as a low-
level semantic framework for expressing the behaviour
of various classes of distributed languages and as a
common internal format for our tools. Then, we use this
model to define the generation of behavioural models
for applications ranging from sequential Fractal compo-
nents, to distributed objects, and finally to distributed
components. Our models are able to characterise both
functional and non-functional behaviours and the in-
teraction between the two concerns. Finally, this work
has resulted in the development of tools allowing the
non-expert programmer to specify the behaviour of his
components and (semi)automatically verify properties
of his application.

T. Barros
Universidad de Chili, Ejército 441, Santiago, Chile
e-mail: tomas.barros@niclabs.cl

R. Ameur-Boulifa
GET/ENST/LabSoC, Telecom Paristech, BP 193,
06904 Sophia-Antipolis Cedex, France
e-mail: Rabea.Ameur-Boulifa@telecom-paristech.fr

A. Cansado · L. Henrio · E. Madelaine (B)
INRIA Sophia-Antipolis, CNRS, UNSA,
INRIA, Oasis. 2004, Route des Lucioles, BP 93,
06902 Sophia-Antipolis Cedex, France
e-mail: Eric.Madelaine@sophia.inria.fr

A. Cansado
e-mail: Antonio.Cansado@sophia.inria.fr

L. Henrio
e-mail: Ludovic.Henrio@sophia.inria.fr

Keywords Hierarchical components ·
Distributed asynchronous components ·
Formal verification · Behavioural specification ·
Model-Checking

1 Introduction

Component models provide a structured programming
paradigm allowing a better reusability of programs by
the fact that both provided/required services and appli-
cation structure are expressed statically in the composi-
tion. This takes even more importance as the structure
of distributed components acts as an abstraction for
the component distribution. However, this architec-
tural description is not always sufficient. Indeed, in
order to be able to safely compose “off-the-shelf” or
even dynamically discovered components, a form of
specification language is required. Such a specification
can only rely on the existence of some well defined
semantics for the underlying programming language or
middleware.

Among the existing component models, Fractal [1]
provides the following crucial features: the explicit
definition of provided/required interfaces for express-
ing dependencies between components; a hierarchical
structure allowing to build components by compo-
sition of smaller components and the definition of
non-functional features through specific interfaces, pro-
viding a clear separation of concerns between func-
tional and non-functional aspects.

Globally, our work is placed in the context of large-
scale distributed applications. This work is strongly
related to programming models that aim at easing the
programming of distributed applications by providing



26 Ann. Telecommun. (2009) 64:25–43

high-level abstractions of distributed features together
with an efficient implementation of these features.
More precisely, we rely on the Grid Component Model
(GCM) [2], which extends Fractal by addressing large-
scale distributed aspects of components.

Moreover, in a distributed context, adaptive compo-
nents are necessary in order to adapt the application to
constantly evolving environments and evolving require-
ments in terms of quality of services. Our work is in-
tended to be adapted to the verification of autonomous
systems adapting and reconfiguring themselves in or-
der to better match dynamic requirements of the
application.

Our main objective is to provide tools to the pro-
grammer of distributed components in order to verify
the correct behaviour of his program. We require those
tools to be intuitive and user-friendly for them to be
usable by non-experts of formal methods. To this end,
we build an analysis toolset, including state-of-the-art
model-checking tools; at the heart of this platform
lie the model generation tools that are the subject of
this article. In this context, the choice of the behav-
ioural model is crucial: it has to be compact, expressive
enough represent the behavioural semantics, but not
too much, to allow an easy mapping to the model-
checker input format.

Related work Historically, models of behaviours were
defined in terms of semantic-level calculi, ranging from
core Labelled Transition Systems (LTS), from the very
beginning of the process algebra era (see [3, 4]), and the
synchronisation vectors of [5], to Milner’s π -calculus
[6]. LTS is also, without contest, the most often used
model for the representing behaviours in analysis and
verification toolsets. At the other end of the spectrum,
the π -calculus has only been used in a few research
prototypes, because its high expressivity comes with a
very high complexity of most related algorithms.

Early verification tools were using internal formats
with a very simple structure, featuring no data para-
meters; even intermediate formats used to interface
different tools were kept at a very low level. However,
introducing data in those languages appeared quickly
as being very beneficial both for compactness and for
expressiveness.

For example, in the CADP toolbox [7], the internal
model is a version of Petri nets with data that can be
later unfolded (eventually on-the-fly) into LTSs suit-
able for model-checking. Recently, a new semantic-
level format named NTIF [8], resembling our pLTS, has
been devised as a more structured and compact inter-

mediate form between LOTOS or ELOTOS programs
and the CADP engines.

In a similar way, the SPIN model-checker is using
PROMELA, a high-level language with data, but data
values are instantiated (on bound domains) by the state
exploration engines.

Many works have been done based on process alge-
bra foundations, and have led to systems with a more
developer-oriented specification language. The FDR2
tool [9] offers a high-level language for expressing CSP
models, and an internal machine-readable dialect of
CSP [10] using a specific expression language, more
adapted to generate the models needed by the verifi-
cation engines. The LTSA tool [11] uses Finite State
Processes as an intermediate language (with processes
and data parameters) for modelling concurrent Java
programs. Another example of research showing
goals close to ours makes use of Symbolic Transition
Systems (STS) [12, 13], which are structures akin to
our pNets. In the STSLib toolset, there is a dedicat-
ed specification language (with algebraic data types)
for distributed components that are modelled by STS,
themselves mapped to LOTOS programs that can be
model-checked with CADP.

In all these cases, two important questions are:
(1) how do you relate the programming language
(or specification language) semantics with the inter-
nal model, and what properties are preserved by this
mapping? (2) how do you transform your (parame-
terised) internal models into finite structures suitable
for analysis (internal data structures of the verifica-
tion engines, typically LTS, BDD, or various classes of
automata. . . )?

Our proposal is different from previous approaches
in the sense that we want a low-level model able to
express various mechanisms for distributed systems,
and that we do not limit ourselves to finite systems: we
shall be able to define mappings to various classes of
systems, finite or not. At the same time, the structure
of our parameterised model is closer to the program-
ming or specification language structure. Consequently,
parameterised models are more compact, and easier to
produce, than classical internal models.

Typically, our pNets model is lower-level than Lotos
and Promela and more flexible for expressing different
synchronisation mechanisms. On the other hand, it has
no recursive constructs, in order to better control the
finiteness of encodings.

Contribution This paper tries to answer these ques-
tions in the framework of distributed component
systems. Toward this challenging perspective, we



Ann. Telecommun. (2009) 64:25–43 27

develop a formal and parameterised behavioural model
called pNets. We use this formalism to express models
for ProActive distributed applications, Fractal com-
ponents, and GCM distributed components. All our
distributed models feature asynchronous calls with fu-
tures, which lowers latency while preserving a natural,
data-flow oriented synchronisation.

One of the strong original aspects of this work is the
focus put on non-functional properties, and the results
we provide on the interleaving between functional and
non-functional concerns. Thus, the programmer should
be able to prove the correct behaviour of his distributed
component system in the presence of evolution (or
reconfiguration) of the system.

Structure of the paper In the next section, we recall
the features of Fractal that are the most relevant to
this study, describe the extensions proposed by the
GCM model, and sketch the informal semantics of
the GCM/ProActive implementation. In Section 3, we
define formally our basic model, named pNets (this
formalisation unifies and extends our previous publi-
cations in [14–17]) and recall the main properties of
this model. In Section 4, we describe the model con-
struction principles for four successive kinds of applica-
tions, namely active objects, hierarchical components,
Fractal components with synchronous controllers and
asynchronous GCM components with controllers. In
Section 5, we describe the Vercors verification plat-
form, and its application to a simple example, start-
ing from the input specifications, through the model
generation phase, to the verification of properties. We
conclude with an analysis of perspectives of this work.

2 Context

2.1 Fractal, GCM and ProActive

The GCM [2] is a novel component model being
defined by the European Network of Excellence Core-
Grid and implemented by the EU project GridCOMP.
The GCM is based on the Fractal Component Model
[1] and extends it to address Grid concerns.

From Fractal, GCM inherits a hierarchical structure
with strong separation of concerns between functional
and non-functional behaviours, including, for example,
life-cycle and binding management. GCM also inherits
from Fractal introspection of components and reconfig-
uration capabilities.

Grids consider thousands of computers all over the
world; for that, GCM extends Fractal using asynchro-

nous method calls for dealing with latency. Grid appli-
cations usually have numerous similar components, so
the GCM defines collective interfaces which ease de-
sign and implementation of such parallel components
by providing synchronisation and distribution capaci-
ties. There are two kinds of collective interfaces in the
GCM: multicast (client) and gathercast (server). Typi-
cally, a multicast interface is bound to the service inter-
faces of a number of parallel components, and a method
call toward this interface is distributed, as well as its
parameters, to several or all of them. GCM provides
various policies for the request parameters that can be
broadcast, or scattered, or distributed in a round-robin
fashion; additional policies can be specified by the user.
Symmetrically, gathercast interfaces are bound to a
number of client components, and various synchronisa-
tion policies are provided. This treatment of collective
communications provides a clear separation of concern
between the programming of each component and the
management of the application topology: within a com-
ponent code, method calls are addressed simply to the
component local interfaces. The management of bind-
ings of clients (on a gathercast interface) or services (on
a multicast interface) is separated from the functional
code.

The GCM also allows the component controllers to
be designed in the form of components, and benefit
from such a design; moreover, the GCM specifies inter-
faces for the autonomic management and adaptation of
components.

The Architecture Description Language (ADL) of
both Fractal and the GCM is an XML-based format
that contains both the structural definition of the system
components (subcomponents, interfaces and bindings)
and some deployment concerns. Deployment relies on
virtual nodes that are an abstraction of the physical in-
frastructure on which the application will be deployed.
The ADL only refers to an abstract architecture, and
the mapping between the abstract architecture and a
real one is given separately as a deployment descriptor.

2.2 A GCM reference implementation:
GCM/ProActive

A GCM reference implementation is based on ProAc-
tive [18], an Open Source middleware implementing
the ASP calculus [19, 20]. In this implementation,
an active object is used to implement each primitive
component and each composite membrane. Although
composite components do not have functional code
themselves, they have a membrane that encapsulates
controllers and dispatches functional calls to inner



28 Ann. Telecommun. (2009) 64:25–43

subcomponents. As a consequence, this implementa-
tion also inherits some constraints and properties with
respect to the programming model:

– Components communicate through asynchronous
method calls with transparent futures (place-
holders for promised replies): a method call on
a server interface adds a request in the server’s
request queue.

– Communication semantics uses a “rendezvous”,
ensuring the causal ordering of communications.

– Synchronisation between components is ensured
with a data-flow synchronisation called wait-by-
necessity: futures are first order objects that can
be forwarded to any component in a non-blocking
manner, execution is only blocked if the concrete
value of the result is needed (accessed), and the
result is still unavailable.

– There is no shared memory between components,
and a single thread is available for each component.

Each primitive component is associated to an active ob-
ject written by the programmer. Some methods of this
active object are exported as the method of the com-
ponent’s interfaces. The active object managing a com-
posite is generic and provided by the GCM/ProActive
platform; it forwards the functional requests it receives
to its subcomponents. Primitive component functional-
ities are addressed by the encapsulated active object.
For primitive components, it is possible to define the
order in which requests are served by writing a specific
method called runActivity(); we call this the service
policy. If no runActivity() is given, a default one
implements a FIFO policy. Composite components al-
ways use a FIFO policy. Note that futures create some
kinds of implicit return channels, which are only used
to return one value to a component that might need
it. One particularity of this approach is that it unifies
the concept of component with the unit of distribution
and parallelism: each primitive component represents
the unit of distribution and is managed by a single
thread. Composite components are also managed by
their own thread and allocated separately, but there
is no link between the location of a composite and
the location of its subcomponents. One essential prop-
erty of GCM/ProActive is that the global behaviour
of a component system is totally independent of the
physical localisation of components on a distributed
architecture.

2.2.1 Life-cycle of GCM/ProActive components

GCM/ProActive implements the membrane of a com-
posite as an active object; thus, it contains a unique

Fig. 1 ProActive composite component

request queue and a single service thread. The re-
quests to its external server interfaces (including con-
trol requests) and from its internal client interfaces are
dropped to its request queue. A graphical view of a
composite is shown in Fig. 1.

Like in Fractal, when a component is stopped, only
control requests are served. A component is started by
invoking the non-functional request: start(). Because
threads are non-interruptible in Java, a component nec-
essarily finishes the request it is treating before being
stopped. If a runActivity() method is specified by the
programmer, the stop signal must be taken into account
in this method. Note that a stopped component will not
emit functional calls on its required interfaces, even if
its subcomponents are active and send requests to its
internal interfaces.

3 Theoretical model

In this section, we give the formal definition of
our intermediate language that we call parameterised
Networks of Synchronised Automata (pNets). This lan-
guage is not a new calculus in the tradition of theo-
retical computer science that gave birth to λ-calculus,
π -calculus or σ -calculus, on which we would build new
theories or new languages, nor is it a new process alge-
bra endowed with syntax, semantics, and equivalences,
that could be used to study new constructs for distrib-
uted computing. Rather, pNets give an intermediate
and generic formalism intended to specify and synchro-
nise the behaviour of a set of automata. We built this
model with two goals: give a formal foundation to the
model generation principles that we developed for vari-
ous families of (distributed) component framework and
build a model that would be more machine-oriented
and serve as a versatile internal format for software
tools, meaning it must be both expressive (from the



Ann. Telecommun. (2009) 64:25–43 29

universality of synchronised LTSs) and compact (from
the conciseness of symbolic graphs).

The synchronisation product introduced by Arnold
and Nivat [5] is both simple and powerful because it
directly addresses the core of the problem. One of the
main advantages of using its high abstraction level is
that almost all parallel operators (or interaction mech-
anisms) encountered so far in the process algebra litera-
ture become particular cases of a very general concept:
synchronisation vectors. We structure the synchroni-
sation vectors as parts of a synchronisation network.
Contrary to synchronisation constraints, the network
allows dynamic reconfigurations between different sets
of synchronisation vectors through a transducer LTS.
Our definition of the synchronisation product is seman-
tically equivalent to the one given by Arnold and Nivat.

In the next step, we use Lin’s [21] approach for
adding parameters in the communications events of
both transition systems and synchronisation networks.
These communication events can be guarded with con-
ditions on their parameters. Our agents can also be
parameterised to encode sets of equivalent agents run-
ning in parallel. This leads us to the definition of pNets,
that will later appear as a natural model of software
systems. Indeed they correspond to the way developers
specify or program these systems: the system structure
is parameterised and described in a finite way (the code
is finite), but a specific instance is determined at each
execution, or even varies dynamically.

We now give the formal definitions of the model
in two steps. In order for this article to be self-
contained and with uniform notations, we first define
LTSs, Nets and synchronisation product; these defin-
itions are equivalent to those found in the literature.
Then, we give the definitions of our parameterised
structures (pLTS and pNet) and of their instantiations;
their semantics are in terms of standard (infinite) LTS.

Notations In the following definitions, we extensively
use indexed structures (maps or vectors) over some
countable indexed sets. The indexes will usually be
integers, bounded or not. When this is not ambiguous,
we shall use abusive vocabulary and notations for sets,
and typically write “indexed set over J” when formally
we should speak of multisets, and still better write
“mapping from J to the power set of A”.

We use uppercase letters A, B, I, J. . . to range over
sets and lowercase letters a, b , i, j. . . to range over ele-
ments of the sets. We write ÃJ for an indexed multiset
of sets (ÃJ = 〈A j〉 j∈J), and ãJ for an indexed multiset
of elements (ãJ = 〈a j〉 j∈J), where J can possibly be
infinite. For indexed sets of elements or sets, we
say ãJ = b̃ I ⇔ J = I ∧ ∀ j ∈ J, a j = bj (element-wise

equality). We write 〈a.ãJ〉 for the concatenation of an
element a at the beginning of an indexed set, x̃J = ẽJ for
an indexed set of equations (〈x j = e j〉 j∈J), e{x̃J ← ẽJ}
for the parallel substitution of variables x̃J by expres-
sions ẽJ within expression e.

As part of our abusive notation, we extensively, and
sometimes implicitly, use the following definition for
indexed set membership: ãJ ∈ ÃJ ⇔ ∀ j ∈ J, a j ∈ A j.
Cartesian product is naturally extended to indexed sets
so that the following is verified:

a0 ∈ A0 ∧ ãJ ∈ ÃJ ⇒ 〈a0.ãJ〉 ∈ ∏
j∈{0}∪J A j

We use the usual notions from (typed) term algebras:
operators, free variables, closed and open terms, etc.
Term algebras are endowed with a type system that
includes at least a distinguished Boolean type and an
Action type.

3.1 Networks of synchronised automata

We model the behaviour of a process as a LTS in
a classical way [3]. The LTS transitions encode the
actions that a process can perform in a given state.

Definition 1 LTS. A LTS is a tuple (S, s0, L, →) where
S (possibly infinite) is the set of states, s0 ∈ S is the
initial state, L is the set of labels and → is the
set of transitions →⊆ SxLxS. We write s

α−→ s′ for
(s, α, s′) ∈ →.

We define Nets in a form inspired by [5], that are
used to synchronise a (potentially infinite) number of
processes.

Definition 2 Net (Network of LTSs). Let Act be an
action set. A Net is a tuple 〈AG, J, ÕJ, T〉 where AG ⊆
Act is a set of global actions, J is a countable set of
argument indexes, each index j ∈ J is called a hole and
is associated with a sort O j ⊂ Act. The transducer T is
a LTS (ST , s0T , LT , →T), and LT = {−→v = 〈ag.α̃I〉. ag ∈
AG, I ⊆ J ∧ ∀i ∈ I, αi ∈ Oi}

Explanations Nets describe dynamic configurations
of processes, in which the possible synchronisations
change with the state of the Net. They are transducers
in a sense similar to the Lotomaton expressions [22, 23].
A transducer in the Net is encoded as a LTS which
labels are synchronisation vectors (−→v ), each describing
one particular synchronisation between the actions (αI)
of different argument processes, generating a global
action ag. Each state of the transducer T corresponds
to a given configuration of the network in which a
given set of synchronisations is possible. Some of those



30 Ann. Telecommun. (2009) 64:25–43

synchronisations can trigger a change of state in the
transducer leading to a new configuration of the net-
work; that is, it encodes a dynamic change on the
configuration of the system.

We say that a Net is static when its transducer con-
tains only one state. Note that each synchronisation
vector can define a synchronisation between one, two
or more actions from different arguments of the Net.
When the synchronisation vector involves only one
argument, its action can occur freely.

Definition 3 A System is a tree-like structure in which
nodes are Nets and leaves are LTSs. At each node, a
partial function maps holes to corresponding subsys-
tems. A system is closed if all holes are mapped and
open otherwise.

Definition 4 The Sort of a system is the set of actions
that can be observed from outside the system. It is
determined by its top-level node, L for a LTS, and AG

for a Net:

Sort(S, s0, L, →) = L Sort(〈AG, J, ÕJ, T〉) = AG

As this is often the case in process algebras, sorts
here are determined statically and are upper approx-
imations of the set of actions that the system can ef-
fectively perform. The precision of this approximation
depends naturally on the specific model generation
procedure, but in most cases, an exact computation is
not possible.

Building hierarchical Nets A Net is a generalised par-
allel operator. Complex systems are built by combining
LTSs in a hierarchical manner using Nets at each level.
There is a natural typing compatibility constraint for
this construction, in terms of the sorts of the formal and
actual parameters. The standard compatibility relation
is Sort inclusion: a system Sys can be used as an actual
argument of a Net at position j only if it agrees with
the sort of the hole Oj (Sort(Sys) ⊆ Oj). Here, also, the
compatibility relation may depend on the language or
formalism that is modelled; for example, if actions rep-
resent Java-like method calls, the compatibility could
take into account sub-typing.

Our behavioural objects being LTSs, and Nets being
operators over LTSs, it is natural to give their seman-
tics in terms of products over LTSs. The definition
of the synchronisation product below defines the LTS
representing any closed Net expression, computed in a
bottom-up manner. It would be also possible to define a
symbolic product over Nets that would reduce any open

Net expression to a single Net, in the spirit of [22], but
this is not necessary for our goals here.

Definition 5 Synchronisation product. Given an in-
dexed set P̃J of LTSs P̃J = (S̃J, s̃0 J, L̃J, →̃J), and
a Net 〈AG, J, ÕJ, T = (ST , s0T , LT , →T)〉, such that
∀ j ∈ J, L j ⊆ Oj, we construct the product LTS (S, s0,

L, →) where S = ∏
j∈{T}∪J S j, s0 = 〈s0T .s̃0J 〉, L ⊆ AG,

and the transition relation is defined as:

s
lt−→ s′ ⇔

⎛

⎜
⎝

s = 〈st.s̃J〉 ∧ s′ = 〈s′
t.s̃

′
J〉 ∧

∃st
〈lt .α̃I〉−−−→ s′

t ∈ →T , ∃I ⊆ J, ∀i ∈ I,
si

αi−→ s′
i ∈ →i ∧ ∀ j ∈ J\I, s j = s′

j

⎞

⎟
⎠

3.2 Parameterised networks of synchronised automata

Next, we enrich the above definitions with parameters
in the spirit of Symbolic Transition Graphs [21]. We
start by giving the notion of parameterised actions. We
leave unspecified here the constructors and operators
of the action algebra; they will be defined together with
the mapping of some specific formalism to pNets.

Definition 6 Parameterised actions. Let V be a set of
names, LA,V a term algebra built over V, including the
constant action τ . We call v ∈ V a parameter, and a ∈
LA,V a parameterised action, B A,V the set of boolean
expressions (guards) over LA,V .

Example In Milner’s value-passing CCS [3], the
action algebra has constructors “tau”, “a” for input
actions, “’a” for output actions and “a(x)” for para-
meterised action. Then, “’out(3)” is a closed output
action term, “a(x,y)” an open input action term with
parameters x and y and “x+y=3” a guard.

Definition 7 pLTS. A parameterised LTS is a tuple
(V, S, s0, L, →) where:

• V is a finite set of parameters, from which we
construct the term algebra LA,V .

• S is a set of states; to each state s ∈ S is associated a
finite indexed set of free variables fv(s) = x̃Js ⊆ V.

• s0 ∈ S is the initial state.
• L is the set of labels, → the transition relation →⊂

S × L × S.
• Labels have the form l = 〈α, eb , x̃Js′:= ẽJs′ 〉 such

that if s
l−→ s′, then:

– α is a parameterised action, expressing a com-
bination of inputs iv(α) ⊆ V (defining new



Ann. Telecommun. (2009) 64:25–43 31

variables) and outputs oe(α) (using action
expressions).

– eb ∈ B A,V is the optional guard.
– The variables x̃Js′ are assigned during the tran-

sition by the optional expressions ẽJs′

with the constraints: fv(oe(α)) ⊆ iv(α) ∪ x̃Js and
fv(eb ) ∪ fv(ẽJs′ ) ⊆ iv(α) ∪ x̃Js ∪ x̃Js′ .

Example Figure 2 is based on an implementation of
the philosopher problem in ProActive. It represents
the pLTS for the body behaviour of a Philo active
object (see how we generate active object behav-
iour models in Section 4.1). The action alphabet used
here reflects the active object communication schema:
each remote request sent by the body has the form
“!dest.request( f,M( ˜arg))”, where dest is the remote
reference, M is the method name, with parameters ˜arg

and f is a future reference. More precisely, f is the
identifier of the future proxy instance. Requests that do
not require a response do not use a future proxy.

Definition 8 A pNet is a tuple 〈V, pAG, J, p̃J, ÕJ, T〉,
where: V is a set of parameters, pAG ⊂ LA,V is its set
of (parameterised) external actions and J is a finite set
of holes, each hole j being associated with (at most)
a parameter pj ∈ V and with a sort Oj ⊂ LA,V . The
transducer T is a LTS (ST , s0T , LT , TT), which tran-
sition labels (−→v ∈ LT) are synchronisation vectors of
the form: −→v = 〈ag, {αt}i∈I,t∈Bi〉 such that: I ⊆ J ∧ Bi ⊆
D om(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊆ V.

Explanations Each hole in the pNet has a parame-
ter pj, expressing that this “parameterised hole” cor-
responds to as many actual arguments as necessary
in a given instantiation of its parameter (we could
have, without changing the expressivity, several para-
meters per hole). In other words, the parameterised
holes express parameterised topologies of processes
synchronised by a given Net. Each parameterised

synchronisation vector in the transducer expresses
a synchronisation between some instances ({t}t∈Bi ) of
some of the pNet holes (I ⊆ J). The hole parameters
being part of the variables of the action algebra, they
can be used in communication and synchronisation
between the processes.

A static pNet has a unique state, but it has state
variables that encode some notion of internal memory
that can influence the synchronisation. Static pNets
have the nice property that they can be easily repre-
sented graphically. We have such graphics in previous
publications to represent parameterised processes in
the Autograph editor [24].

The sorts of our parameterised structures are sets
of parameterised actions. This definition extends the
simple sorts from Definition 4:

Definition 9 Parameterised sorts:

• The sort of a pLTS: Sort(V, S, s0, L, →) ={
α | ∃l ∈ L. l = 〈α, eb , x̃Js′ := ẽJs′ 〉

}

• The sort of a pNet: Sort〈V, pAG, J, p̃J, ÕJ, T〉 =
pAG

Example The drawing in Fig. 3 shows a (static) pNet
representing the classical philosophers problem, with
two parameterised holes (indexed by the same variable
k) for philosophers and forks. On the right-hand side
are the corresponding elements of the formal pNet, in
which we explicitly list the sort of the holes (Ophilo

and OFork), and where appear synchronisation vectors
parameterised over the index k and the future ids f1

and f2.

Building hierarchical pNets Except from the occur-
rence of parameters in the structure of labels, the rest
of the construction of complex systems as hierarchical
pNet expressions is similar to the previous section, with
the additional parameterisation of arguments: an actual
(parameterised) argument of a pNet at position j is a

Fig. 2 Example of pLTS PhiloRunActivityLTS V S s0 L
with:

V f1 f2

S si ,

L Ext Ext
FG f1 FG f1

FD f2 FD f2
FG FD

such that:
s0 Ext s1

s1 FG f1 s2

...Philo:runActivity



32 Ann. Telecommun. (2009) 64:25–43

Fig. 3 Example of pNet

Ext: {Think, Eat}

Ph: {take?, take!, drop?}

Fork [k]

FG: {take!, take?, drop!}

Philo [k]

FD: {take?, take!, drop!}

PhiloNet V pAG J pJ OJ T with:

V k f1 f2
pAG

J

pPhilo k pFork k

OPhilo Ext Ext
FG f1 FD f2
FG f1 FD f2

FG FD

OFork Ph f1 Ph f2

Ph f1 Ph f2

Ph

This pNet is static, T has a unique state, and transitions with the following labels:
LT

Ext
Ext

FG f1 Ph f1
FD f2 Ph f2
FG f1 Ph f1
FD f2 Ph f2

FG Ph
FD Ph

pair 〈Sys, D〉, where Sys is a pNet (or pLTS) that agrees
with the sort of the hole (Sort(Sys) ⊂ Oj), and D is the
actual domain for the hole parameter pj, i.e. denotes
the set of similar arguments inserted in this hole.

We do not define a synchronisation product for
pLTS that would give some kind of “early” or “sym-
bolic” semantics of our generalised pNets. Instead, we
define instantiations of the parameterised LTS and
Nets, based on a (possibly infinite) domain for each
variable.

Given a hierarchical pNet expression, and instan-
tiation domains for all parameters in this expression,
the definitions below allow us to construct a (non-
parameterised) Net expression, by applying instantia-
tion separately on each pLTS and each pNet in the
expression. This can be performed both for closed or
open pNet expressions, the result being, respectively,
closed or open Net expressions. In the former, closed
Net expressions can then be reduced to a single LTS
(expressing the global behaviour) using the synchro-
nous products in a bottom-up way.

Definition 10 pLTS Instantiation. Given a pLTS Pp =
〈V, Sp, s0p, Lp, →p〉, with V = x̃V and given a count-
able domain for each variable DV = {D(x)}x∈V , and
an initial assignment ρ0 for the variables of the initial

state s0p , the instantiation Φ(Pp, DV) is a LTS P =
〈S, s0, L, →〉 such that:

• S = ⋃
sp∈Sp

{
sp{x̃V ← ẽV} | ∀x ∈ V, ∀eV ∈ D(x)

}
,

• s0 = s0p{ fv(s0p) ← ρ0( fv(s0))},
• L is the set of ground actions (i.e. closed terms) of

the action algebra LA,V ,
• → (⊆ SxLxS) = ⋃

t ∈→p
Φ(t) is the union of in-

stantiations of the parameterised transitions, built
in the following way:

let t = s
lp=〈α,eb , x̃Js′ := ẽJs′ 〉−−−−−−−−−−−→ s′

p be a transition, let Vt =
fv(s) ∪ fv(α) ∪ fv(s′) the free variables of t, and DVt

their instantiation domains, then

Φ(t) =
⋃

ẽVt ∈DVt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
(
eb {x̃Vt ← ẽVt} = false

)
then ∅

otherwise
let ψ = {x̃Vt ← ẽVt}
and s′′ = if

(∃ j ∈ Js′ , x = x j
)

then s′ {x ← ψ(e j)


}

else s′ {x ← ex}
in

{

ψ(s)
ψ(α)−−→ s′′

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Apart from the proliferation of indexes, this defini-
tion is quite natural and straightforward; only the case
when variables of the target state are assigned during
the transition needs care (see 
 in the equation) because



Ann. Telecommun. (2009) 64:25–43 33

the assigned open expressions ẽJs′ need themselves to
be instantiated.

This operation has an upper-bound complexity that
is exponential in the cardinality of the instantiation
domains, in number of states and transitions.

Definition 11 pNet Instantiation. Given a pNet Np =
〈V, pAG, J, p̃J, ÕJ, T〉, with the transducer T = (ST ,

s0T , LT , TT), and given domains DV for variables in
V, the instantiation Φ(Np, DV) is a Net N = 〈A′

G, J′,
Õ′

J′ , T ′〉, with T ′ = 〈ST ′, s0T ′ , LT ′, TT ′ 〉 constructed in
the following way:

1. Expand the parameterised holes: J′ = Φ(J) =
� j∈JD(pj) where � is a disjoint union (or
concatenation) of sets; let J′

j ⊂ J′ be the part of J′
corresponding to the expansion of hole number j.

2. Instantiate the sort of holes and the global sort:
for i ∈ J′

j, build Õ′
i = ⋃

a∈Oj
Φ(a)

A′
G = ⋃

a∈pAG
Φ(a)

3. Instantiate the transducer:
ST ′ = ST

s0T ′ = s0T

LT ′ = ⋃
−→v ∈LT

{Φ(
−→v )} the expansion of the syn-

chronisation vectors
TT ′ = ⋃

(s,−→v ,s′)∈TT
{(s, a, s′), a ∈ Φ(

−→v )} the expan-
sion of the transition relation
with Φ(

−→v ) computed by :

let −→v = 〈ag, {αi,t}i∈I,t∈Bi〉,
let V = fv(

−→v ),
and DV their instantiation domains,
for each possible valuation ẽV of x̃ ∈ V,
(let φ = {x̃V ← ẽV} be the corresponding
instantiation function,
expand each parameterised action by

Φ(α j,t) =
if j /∈ I then 〈∗, ..., ∗〉
else 〈x1, ..., x|J′

i |〉,
with xk = ∗ if k /∈ Bi, else φ(α j,t),

build Φ(φ,
−→v ) as a vector of cardinality |J′|

as the concatenation of subvectors x ∈ Φ(α j,t)

for each hole j ∈ J),
return Φ(

−→v ) = {Φ(φ,
−→v )}{ẽV }

Naturally, even if the above definition does not sup-
pose finiteness of the parameter domains, it will be used
in practice with finite instantiation domains and finite
vectors.

Example We give here a small instantiation of the
philosopher system from Fig. 3:

Φ
(
PhiloNet, D(k) = {1, 2}, D( f1) = {1}, D( f2) = {2})

=
〈A′

G, J′, Õ′
J′ , T ′〉 with:

A′
G = {Think(1), Think(2), Eat(1), !TakeG(1),...}

J′ = {Philo, Philo, Fork, Fork}
O′Philo(1) = {!Ext.request(Think), !Ext.request(Eat),

!FG.request(1,Take), ...}
O′Philo(2) = {!Ext.request(Think), !Ext.request(Eat),

!FG.request(1,Take), ...}
...
LT ′ = {
〈 Think(1), !Ext.request(Think), *, *, * 〉
〈 Think(2), *, !Ext.request(Think), *, * 〉
...
〈 !takeG(1), !FG.request(1,Take), *,
?Ph.request(1,Take), * 〉
〈 !takeD(1), !FD.request(2,Take), *, *,
?Ph.request(2,Take) 〉
... }

Expressivity In [14], we gave examples of pNets repre-
senting various kinds of recursive functions: the “data
flow” within an index family of pLTSs is expressed
by an adequate indexing within the synchronisation
vectors. However, one should note that this expressivity
is gained from the properties of the indexes domains
(here, integers with standard arithmetic): the pNets
formal definition is (on purpose) separated from the
data domain definition and does not provide by itself
any formal expressivity result.

Another aspect of expressivity is the representation
of classical patterns of distributed systems. We claim
that pNets, used with simple (first-order) parameter
domains, provide powerful and easy representations for
our needs, including two-way or multi-way synchro-
nisation, dynamic composition operators or dynamic
creation/activation/orchestration of indexed families
of processes, as will be exemplified in the following
sections.

3.3 Data abstraction

The main interest of the instantiation mechanism de-
fined so far is the ability to build specific domain in-
stantiations with specific properties. In particular, if the
instantiation domains are finite, and are built in such a
way that they constitute abstract interpretations of the
initial parameter domains, then the instantiated Net is
finite. Moreover, if parameters were only used as value-
passing variables in the original pNet (by contrast with
parameters of the system topology), then we can apply



34 Ann. Telecommun. (2009) 64:25–43

a result from Cleaveland and Riely [25] to justify the
use of finite model-checking on our instantiated model:

Property 1 Let Sys be a closed pNet system, with pa-
rameters in V, (concrete) parameter domains DV and
abstract parameter domains A V , with the following
hypothesis:

• Each Av is an abstract interpretation1 of the corre-
sponding concrete domain Dv .

• The domains of pNet holes parameters in Sys are
unchanged by the abstraction.

Then, the abstraction preserves the specification
preorder.

The specification preorder [25], or the better-known
testing preorder [26], is closely related to safety and
liveness properties. Given a system and a specification
(set of properties), one can build a “most abstract”
(finite) value interpretation relative to the specification,
and try to establish its satisfaction. If this succeeds, the
result is valid also for the concrete (potentially infi-
nite) system; if it fails, one can select a more concrete
(= more values) interpretation and repeat the analysis.

Unfortunately, the examples from this paper are too
simple for giving a significant example of abstraction.
Rather, let us use an example extracted from a previous
case-study of our team modelling the Chilean elec-
tronic tax systems [27]. There we were manipulating
invoice documents that could typically be described as
structures doct = 〈vendorid, invoiceid, date, content〉
that would be checked by government services against
〈vendorid, invoiceid〉 records. In the case-study, we
were using the abstract domain doct = 〈vendorid ∈
[0..2], invoiceid ∈ [0..2]〉 as an abstract interpretation
preserving all safety properties involving, at most, two
invoice documents.

In cases where the instantiated variables are para-
meters of the system topology, then the previous result
does not apply. However, the same procedure can be
used to build a finite model for one or more finite
abstractions of the value domains. Even if this does not
provide a proof of validity on the original system, it
is still a valuable debugging tool. As an example, one
could check safety properties involving Philo [1] and
Fork [2] in the philosopher system, using an abstract
domain for indexes defined as {{1}, {2}, {others}}. How-
ever, this will not prove that such a property holds for a
system with an arbitrary number of philosophers.

1Cleaveland and Riely [25] was using a slightly relaxed condition
called “galois insertions”.

4 Behavioural models for distributed applications

In this section, we apply the pNets model to four ex-
amples, starting with distributed active objects. Then,
we successively define a hierarchical component model
and enrich it with non-functional controllers. We finally
merge the previous concepts to get a modelisation of
GCM/ProActive distributed components.

4.1 Active objects

The first application of pNets that we have published
was for ProActive distributed applications, based on
active objects, before the introduction of components.
In [14, 15] we presented a methodology for generat-
ing behavioural models for ProActive, based on static
analysis of the Java/ProActive code. This method is
composed of two steps: first, the source code is analysed
by classical compilation techniques, with special atten-
tion paid to tracking references to remote objects in the
code and identifying remote method calls. This analysis
produces a graph including the method call graph and
some data-flow information. The second step consists in
applying a set of structured operational semantics rules
to the graph, computing the states and transitions of the
behavioural model. The pNets model fits well in this
context and allows us to build compact models, with a
natural relation to the code structure: we associate a hi-
erarchical pNet to each active object of the application
and build a synchronisation network to represent the
communication between them.

Figure 4 illustrates the structure of the pNets ex-
pressing an asynchronous communication between two
active objects. A method call to a remote activity goes
through a proxy that locally creates a “future” object,
while the request goes to the remote request queue.
The request arguments include the references to the
caller and callee objects, but also to the future. Later,
the request may eventually be served, and its result
value will be sent back and used to update the future
value.

The construction of the extended graphs by static
analysis is technically difficult and fundamentally im-
precise. Imprecision comes from classical reasons (hav-
ing only static information about variables, types, etc.),
but also from specific sources: it may not be decidable
statically whether a variable references a local or a
remote object. Furthermore, the middleware libraries
include a lot of dynamic code generation, and the analy-
sis would not be possible for code relying on reflexivity,
classically used to manage some types of “dynamic
topologies” in ProActive.



Ann. Telecommun. (2009) 64:25–43 35

Fig. 4 Communication
between two active objects

Nevertheless, for a reasonable subset of ProActive
programs, we have the following result [15]:

Theorem 1 Finite pNet construction: The analysis ter-
minates, and (up to abstraction during analysis) each
active object is modelled by a finite pNet hierarchy.

More precisely, this result applies to most standard
ProActive programs, with either FIFO or user-defined
request selection policies, but with no usage of reflex-
ivity in the Java code. It does not handle first-class
futures, nor group communication, but extensions are
currently studied. The strongest limitations come from
the imprecision of the static analysis mentioned above,
and from some difficulties when dealing with some of
the Java constructs, like arrays of active objects.

4.2 Hierarchical components

Going from active objects to distributed and hierarchi-
cal components allows us to gain precision in the gen-
erated models. The most significant difference is that
required interfaces are explicitly declared, and active
objects are statically identified by components, so we
always know whether a method call is local or remote.
Moreover, the pNets’s formalism expresses naturally
the hierarchical structure of components.

To formalise the model generation for components,
we give a definition of the structural information that
is usually given through Architecture and Interface
definition languages (ADL and IDL, respectively). This
definition extends slightly those used in Fractal or in the
GCM.

Definition 12 Component structure:

• A component C is a tuple 〈V, �V, ẼI, ξξ〉, where V
is a set of parameters, �V a term algebra, ẼI is the
set of external interfaces of C, and ξ the content.

• An interface type Ity = 〈M̃〉 is a set of methods
M = 〈T, name, Ã〉 with T its return type, and each
A = 〈TA, name〉 a typed argument.

• An interface is a tuple Itf=〈name, Ity, κ, ν, ρ〉,
where Ity is its interface type, κ is the Fractal
contingency (mandatory or optional), ν is the in-
terface multiplicity, and ρ the interface role (either
required or provided).

• The content of a composite component is a tuple
ξ = 〈 ˜IItf, ˜SubC, B̃〉, where ˜IItf is the set of internal
interfaces, B̃ the set of bindings. ˜SubC is the set of
parameterised subcomponents SubC = 〈v, C〉, with
v ∈ V a parameter and C a component.

• A binding B is a pair 〈C1.cItf, C2.sItf〉 with
Ci = self | subC

[
expr ∈ �V

]
identifies either the

composite itself or one instance of a subcomponent,
and cItf is a client interface and sItf is a server
interface.

Note that we leave here undefined the content of
a primitive component. It will depend on the frame-
work and will be used to generate a pLTS representing
the primitive behaviour. We also leave undefined the
algebra �V , which is used to build expressions for
specifying indexes within the parameterised structure;
it will depend on the domains used for the parameter V
in a specific language.

From the information in a component structure, it
is straightforward to generate a pNet representing the
communication between the interfaces and the subcom-
ponents, from the following elements:

• The pNet has one hole for each (parametric) sub-
component.

• The global actions pAG and hole sorts ÕJ

of the pNets are sets of actions of the form
[!|?] Ci.Itf.M( ˜arg) for invoking/serving a method
M with each argument arg ∈ �Targ,V .

• It has one parameterised synchronisation vector for
each binding in B̃.

We have shown examples of proofs using such mod-
els in [28]. From now on, we have achieved a nat-
ural model generation for (parametric) hierarchical



36 Ann. Telecommun. (2009) 64:25–43

systems, that can be compared with existing methods
of other verification frameworks, e.g. CADP, μCRL
or πADL. One important difference is that we have
explicitly limited ourselves to (countable) static systems
and use a property-preserving abstraction mechanism.
Now, we build on this result to introduce some man-
agement and reconfiguration mechanisms in such a way
that our verification methods still apply.

4.3 Hierarchical components + management
interfaces = fractal

In the Fractal model, and in Fractal implementations,
the ADL describes a static view of the architecture,
and non-functional (NF) interfaces are used to control
dynamically the evolution of the system. In this section,
we define models for the Life-Cycle Controller (LF)
and the Binding Controller (BC), in terms of pLTS gen-
erated from the component structure of the previous
section.

Stopping a component in Fractal means that its
functional activity is detained, while NF calls are still
allowed in order to allow reconfiguring the component.
This is modelled with an interceptor of all incoming
calls. Then, depending on the components life-cycle
(started or stopped), functional calls are allowed or not.
Similarly, we only allow rebinding interfaces when the
component is stopped.

A LF pLTS (see Fig. 5) is attached to each com-
ponent. Control actions (start/stop) are synchro-
nised with the parent component and with all of
its subcomponents (note that this will not be the
case for the asynchronous version), and status actions
(started/stopped) are synchronised with the compo-
nent’s functional behaviour and with the BC because
the BC may only allow rebinding of interfaces when
stopped.

A BC pLTS (see Fig. 5) is attached to each interface.
Control actions (bind/unbind) are synchronised up to
the higher level (Fractal defines a white-box definition
for NF actions) and with the affected interface; status

actions (bound/unbound) are used to allow method calls
M( ˜arg), to forward the call to the appropriate bound
interface and to signal errors. The latter is a distin-
guished action E(unbound, C, It f ), visible to the higher
level of hierarchy and triggered whenever a method call
is performed over an unbound interface.

Alternatively, this could have been encoded using
one state in the pNet transducer for each configuration
of the bindings. However, this would require many
transducer states, corresponding to all combinations of
states of all controllers. Our approach is equivalent and
more modular.

Note that we put external interface automata of a
component in the next level of the hierarchy. This
enables us to calculate the controller automaton of a
component before knowing its environment. Thus, all
the properties not involving external interfaces can be
verified in a fully compositional manner.

By lack of space, we do not give here the detailed
definition of the pNet expressing the synchronisation
of the LF/BC controllers of a component with its func-
tional behaviour, but we sketch its structure in Fig. 6.
For synchronous Fractal components, the role of the
interceptor is to synchronise incoming requests with
the life-cycle state (either started or stopped actions) in
order to restrict the allowed requests; allowed requests
are synchronised with the inner part of the component
(see Fig. 7).

In this drawing, the behaviour of subcomponents
is represented by the box named SubC k. For each
interface defined in the component’s ADL description,
a box encoding the behaviour of its internal (cI I and
sI I) and external (cEI and sEI) views is incorporated.
The dotted edges inside the boxes indicate a causality
relation induced by the data flow through the box.
Primitive components have a similar automaton with-
out subcomponents and internal interfaces.

Building and using variants of this model The model
construction is applied bottom-up through the hierar-
chy. The generated model is powerful enough to prove

Fig. 5 pLTS of fractal life
cycle and binding controllers



Ann. Telecommun. (2009) 64:25–43 37

Fig. 6 Synchronisation pNet
for a Fractal composite
component

properties about deployment, normal behaviour or re-
configuration of a whole system. For pragmatic reasons,
it is interesting to distinguish variants of this model in
which only selected management actions are visible or
authorised. We define the following variants:

• [Static automaton] This is the model in which all
controllers are initialised in a “started” state, and all
control actions are hidden. If the ADL was correct,
then it should be equivalent (up to weak bisimula-
tion) to the hierarchical component model (without
controllers) from the previous section; otherwise,
there will typically be reachable “unbound inter-
face errors”. It is used to check the normal behav-
iour of the system.

• [Deployment automaton] We define a deployment
sequence for each composite as a sequence of con-
trol operations, expressed by an automaton, ending
with a distinguished successful action

√
. We build

a non-deployed model similar to the static model,
but with controllers initialised in their unbound resp.
stopped states. Then, the deployment automaton
is the product of the non-deployed model with the
deployment sequences. It allows us to check for
correctness of deployment specifications, which is
characterised by reachability of

√
.

Fig. 7 Interceptor for synchronous Fractal components

• [Reconfiguration models] If we build the full
model, then we can check properties relative to
reconfiguration. This can be very costly because of
the size of the action alphabet, so it can be refined
by only keeping visible selected sets of control
actions.

4.4 Distributed components: GCM/ProActive

In the Section 4.1 above, we have shown how to build
the behaviour of ProActive activities; this corresponds
exactly to the functional part of the behaviour of prim-
itive components in our distributed implementation
of Fractal. We now extend the model of Section 4.3
with this communication protocol in order to model
GCM/ProActive components.

4.4.1 Primitive components

Let us recall the principle of asynchronous communi-
cation between two GCM/ProActive primitive compo-
nents, inherited from ProActive (see Fig. 4). There, a
method call on a client interface goes through a proxy
that locally creates a “future” object, while the request
goes to the request queue of the affected compo-
nent. The request arguments include a reference to the
future, together with a deep copy of the method’s argu-
ments; this is because there is no sharing between com-
ponents. Later, the request may eventually be served,
and its result value will be sent back to the future
reference.

The body box in Fig. 4 represents the compo-
nent’s functional behaviour, and is itself modelled by
a synchronisation network made from the synchronisa-
tion product of the runActivity() method’s pLTS—
ProActive’s service policy—with the behaviour of ser-
vice methods (methods defined by provided interfaces).



38 Ann. Telecommun. (2009) 64:25–43

Fig. 8 Behaviour model for a GCM/ProActive primitive

In the model of a GCM/ProActive primitive compo-
nent, we enrich the controller of the active object by
adding two extra boxes, LF and NewServe, which cor-
respond to the Interceptor in Fig. 6. The resulting pNet
is drawn in Fig. 8. The body box is the only part that
cannot be generated automatically from the ADL; it
comes from the user-provided behaviour specification
of the primitive (though its sort is fully specified).

NewServe implements the treatment of control re-
quests. The action “start” fires the process representing
the method runActivity() in the body. “Stop” triggers
the !stop synchronisation with body (Fig. 8). This syn-
chronisation should eventually lead to the termination
of the runActivity() method (!return synchronisa-
tion). In the GCM/ProActive implementation, this is
done through setting the state variable isActive to

false, which should eventually cause the runActivity()

method to finish, only then the component is consid-
ered to be stopped. Note that this may depend on the
programmer’s implementation of the runActivity()

method, so it is worth verifying in the generated model!
The queue box can perform three actions: (1) serve

the first functional method corresponding to the Serve

API primitive used in the body code, (2) serve a control
method only at the head of the queue and (3) serve
only control methods in FIFO order, bypassing the
functional ones.

4.4.2 Composites components

A composite membrane in GCM/ProActive is an active
object. When started, it serves functional or control
methods in FIFO order, forwarding method calls be-
tween internal and external functional interfaces. When
stopped, it serves only control requests.

Figure 9 shows the model of the membrane, that
is similar to the interceptor from Fig. 6, though more
complex. The membrane model is created from the
description of the composite (given by the ADL). The
proxy in Fig. 9 is the same as the one presented in
Fig. 4. In this case, the proxy is in charge of for-
warding the value of the future by receiving the value
in action ?response(..) and forwarding in action
!response(..). Since the method calls include the ref-
erence of the future in the arguments, future updates
can be addressed directly to the caller immediately
before in the chain. Consequently, like in the imple-
mentation, the future update would not be affected in
case of a rebinding or a change in the life-cycle status

Fig. 9 Behaviour of a
composite membrane



Ann. Telecommun. (2009) 64:25–43 39

Fig. 10 The VERCORS
architecture

of the components. Our model is expressive enough to
reflect this property.

The modelisation here does not handle the mecha-
nisms for first-class futures, which require specific con-
trollers for storing and updating chains of future proxies
through several components. We are working on this
extension. This is important both for reflecting realistic
applications that use this mechanism for efficiency and
because it has significant behavioural impact: deadlocks
may be different when you allow first class futures.

5 Platform overview

We present below a high-level view of the Vercors
platform and the properties we are able to verify; the
interested reader could refer to [17] for further details.
Our platform comprises several tools for assisting the
verification process. Rather than creating a new model-
checker, we implement our model-generation methods
in a way that they efficiently integrate with existing
state-of-the-art tools for checking component specifica-
tions based on the models of Section 4. The platform
is presented through the classical problem of a bound
buffer with one consumer and one producer.

Figure 10 gives a snapshot of the platform. In the
next subsections, we shall describe in detail its three
parts: the input from the user (Section 5.1), the behav-
ioural model (Section 5.2), and the verification of prop-
erties (Section 5.3). We illustrate our platform through

the formal verification of the previously outlined case-
study.

5.1 User input

For automatically building the behavioural model, we
take a two-fold approach: (1) the architecture and hi-
erarchy information are extracted from the ADL (and
IDL) and (2) each of the primitive component’s func-
tional behaviour is specified by the user in an automata-
based language which we call Behavioural Description
Language (BDL).

Figure 11 shows an example of a producer con-
sumer system. Both the producer and the consumer
produce/consume one element at a time. Additionally,
the buffer emits an alarm through its interface Ialarm,
when the buffer is full.

The XML description of the ADL of the producer–
consumer example is shown in Fig. 12. It specifies
that the system is composed of the composite Buffer-
System (line 6), itself described in a separate file
(components/BufferSystem.fractal), and the primi-
tive Alarm, the implementation of which is the Java
class components.Alarm (line 15). The BufferSystem
receives a paramater (three in our example, line 7) used
to initialise the component with the maximal size of
the buffer. The BufferSystem also requires an inter-
face named alarm of type components.AlarmInterface

(lines 8 and 9). Alarm provides an interface named
alarm of type components.AlarmInterface (lines 13

Fig. 11 Consumer–producer
example

Buffer

Producer

Consumer

System

BufferSystem Alarm

I lf

I alar m : A

Ibc
I put : P

Iget : C

I lf

I buf f er : P

Ibc

I lf I bc

I lf

I buf f er : C

Ibc

I lf I bc

I lf I bc

I alar m : A

Ialar m : A



40 Ann. Telecommun. (2009) 64:25–43

Fig. 12 System ADL

and 14). Then, interface signatures are given with the
Fractal Interface Definition Language (IDL). In the
implementations we consider, this definition is given by
Java interfaces describing the signatures of the methods
of each component interface. Analysing the ADL and
the IDL, we are able to build the behavioural model
with asynchronous and non-functional controllers of
Section 4.4.

Finally, the functional behaviour is given by a BDL,
in this case in pNets. An example of a behavioural
specification of the Buffer is given in Fig. 13. The
abstract specification does not consider the values of
the elements, but only the amount of elements stored.
Therefore, the parameterised automaton has a variable
N representing the number of elements stored in the
buffer, and the transitions have guards with expressions
related to this variable and to a constant Max. In the
example, the buffer is instantiated with Max = 3 as set
in line 7, Fig. 12. Other parameters are: caller, repre-
senting the reference to the activity (component) that
invoked the method call, and f , representing the identi-
fier of the future that is used to send back the response.
The buffer also invokes methods on its client interface
Ialarm in case the buffer is full (action !Ialarm.alarm()).

Although pNets can be used as a BDL, it is con-
venient to give a higher-level language to non-expert
users. In this vein, we also developed a tool called
CTTool [29], using UML2 statemachines diagrams to
express pLTSs, and a variant of UML2 component
structures to specify the system architecture (but only

Fig. 13 Buffer behaviour (provided by user)

in the static case). We also plan to provide a textual
specification language that would smoothly integrate
architecture and behaviour specifications for GCM ap-
plications, but this is still in progress.

5.2 Internal model

We first automatically build the behavioural model in
pNets seen in Section 4. This is done by ADL2N, which
is a tool written in Java for generating the behavioural
models of Fractal components by analysing the system’s
ADL and IDL (see Section 4.2).

We also specified a model for Fractal’s binding and
life-cycle controllers. Those two controllers allow us to
model the deployment and some basic reconfigurations
of the system. In our case, checking the safeness of
these can be done statically by building the Static, De-
ployment or Reconfiguration automata of Section 4.3.

In practice, the user of ADL2N uses a GUI to specify
at the same time the methods that will be visible, the
arguments that are significant and their finite instan-
tiation. The visibility of methods and the abstraction
(see Section 3.3) depend on the formulas to be checked.
Although it should be possible to infer safe abstractions
given a set of formulas, for the moment, it is up to the
user to provide finite abstractions of the data domains.
The output of ADL2N is the pNets behavioural model
of Section 4.3 with the above abstractions and with the
selected actions hidden.

5.3 Verification

In the current toolset, we only interface with finite-state
model-checkers and, namely, with the evaluator model-
checker from the CADP toolset, that features a very
efficient check of branching-time logics, together with
on-the-fly generation, cluster-based distributed state-



Ann. Telecommun. (2009) 64:25–43 41

generation, tau-confluence reduction, etc. We give here
examples of verification for various usage scenarios.

Deployment In GCM/ProActive, method calls are
asynchronous, and there may be delays between the
request for a non-functional method and its treatment.
So checking the execution of a control operation must
be based on the observation of its application on the
component, rather than the arrival of the request.

One of the interesting properties is that the start
operation, which is hierarchical, occurs during the de-
ployment; i.e. that the component and all its sub-
components are at some point started. This property
can be expressed as the (inevitable) reachability of
the start signal in the static automaton of System, for
all the possible executions, where name = {System,
BufferSystem, Alarm, Buffer, Consumer, Producer}.
This can be translated into a μ-calculus formula and
verified in CADP.

Pure-functional properties The classical interesting
properties concern the behaviour of the system after
its deployment, at least while there are no reconfigu-
rations. For instance, in the example, we would like to
prove that a request for an element from the queue
is eventually served, i.e. that the element is eventually
obtained. This is proved to be true in CADP by model-
checking the global state-space.

Functional properties under reconfigurations Our ap-
proach enables the verification of properties not only
after a correct deployment, but also after and dur-
ing reconfigurations. For instance, the pure-functional
property above becomes false if we stop the producer
since, at some point, the buffer will be empty, and
the consumer will be blocked waiting for an element.
However, if the producer is restarted, the consumer
will eventually receive an element and the property
should become true again. In other words, we can check
that, if the consumer requests an element, and then the
producer is stopped, if the producer is started again, the
consumer will get the element requested.

For proving this kind of property, the static au-
tomaton is not sufficient; we need a behavioural model
containing the required reconfiguration operations. We
add to the component network a reconfiguration con-
troller (Fig. 14): its initial state corresponds to the

Fig. 14 Synchronisation
product supporting further
reconfigurations

deployment phase and the next state corresponds to
the rest of the life-cycle in which reconfigurations are
enabled. This state change is fired by the successful
termination of the deployment (

√
). For the property

stated above, the reconfigurations ?stop(Producer)

and ?start(Producer) are left visible.

Asynchronous behaviour properties Let us now focus
on a property specific to the asynchronous aspect of
the component model. The communication mechanism
in GCM/ProActive allows any future, once obtained,
to be updated with the associated value, provided that
the corresponding method is served and terminates cor-
rectly; binds, unbinds or stops operation cannot prevent
this. For example, if the consumer is unbound after a
request, it gets anyway the response, even if the link is
then unbound or the component stopped. We are able
to verify this in our behavioural models.

6 Conclusion and perspectives

This article defines the pNets formalism, a parame-
terised and hierarchical extension of LTSs. pNets have
a tree-structure in terms of networks of synchronisation
vectors, and a very high expressivity through the use
of parameters at both LTS and network levels. This
formalism is used to represent the behavioural seman-
tics of distributed systems. It provides a compact and
well-defined intermediate format for connecting code
analysers or code generators with model-checking or
equivalence engines.

In addition to the formal definition of pNets, our
contribution is:

– Four scenarios demonstrating the usage of pNets.
We generate behavioural models for active ob-
jects, hierarchical components, hierarchical com-
ponents with non-functional controllers and finally
asynchronous hierarchical components with non-
functional controllers.

– A short description of our verification platform
Vercors, in which we use pNets as the pivot for-
mat for analysis, abstraction, verification and code-
generation tools. We show the results of model
construction and analysis of temporal logic proper-
ties for a simple case-study.

The pNets format is lower-level, and more versa-
tile, than other models used in existing verification
toolsets. Many tools rely on specific synchronisation
and communication mechanisms, like the LOTOS-like
parallelism in the CADP toolset, channels in Promela
or Petri nets in other cases. In contrast, the low-level



42 Ann. Telecommun. (2009) 64:25–43

primitives of pNets (LTS + synchronisation vectors)
are able to represent many possible mechanisms, as
demonstrated by the four applications in this article.

Another important trade-off is between parame-
terised representations (close to developers code) and
lower-level explicit-state encodings that are required
by model-checkers. We argue that the pNets model
allows for finite and compact representation of sys-
tems, expressive enough to capture a large family of
behavioural properties of both synchronous and asyn-
chronous applications.

The Vercors platform (editor, generation, instantia-
tion and conversion tools) and a large-scale case-study
are available at our website.2 These tools currently al-
low to build behavioural models for synchronous Frac-
tal components with partial support for non-functional
controllers. They are interfaced with the explicit-state
verification toolset CADP.

We are currently working on the controller gener-
ation for the GCM/ProActive asynchronous compo-
nents, including the handling of multicast/gathercast
communications, of transparent futures and of com-
ponent reconfiguration. A specific concern is the en-
coding of request queues; a direct representation with
pNets is possible but would be very expensive in term
of state/transition complexity. We are looking for a
specific parametric representation coupled with a spe-
cialised “infinite-state” engine.

Our main application context is the GCM compo-
nent model and its reference implementation within
the Java/ProActive library. However, static analysis of
Java/ProActive code is intrinsically imprecise, making
the generation of pNet models difficult. We are working
on a specification language integrating architectural
and behavioural views, with high-level constructs for
system reconfiguration, and for Grid specific features
like collective interface policies and parameterised
component topologies. This language will be used as an
input for the Vercors platform, but also for tools that
will generate “correct by construction” Java code.

References

1. Bruneton E, Coupaye T, Leclercp M, Quema V, Stefani J
(2004) An open component model and its support in java.
In: 7th int symp on component-based software engineering
(CBSE-7), LNCS, vol 3054. Springer

2. CoreGRID, Programming Model Institute (2006) Basic feat-
ures of the grid component model (assessed). Technical rep-

2http://www-sop.inria.fr/oasis/Vercors.

ort, Deliverable D.PM.04. http://www.coregrid.net/mambo/
images/stories/Deliverables/d.pm.04.pdf

3. Milner R (1989) Communication and concurrency. Prentice
Hall, Englewood Cliffs ISBN 0-13-114984-9

4. Bergstra J, Pose A, Smolka S (2001) Handbook of process
algebra. North-Holland, Amsterdam

5. Arnold A (1994) Finite transition systems. Semantics of com-
municating sytems. Prentice-Hall, Englewood Cliffs

6. Milner R, Parrow J, Walker D (1992) A calculus of mobile
processes. Inf Comput 100(1):1–77

7. Garavel H, Lang F, Mateescu R, Serve W (2007) CADP
2006: a toolbox for the construction and analysis of distrbuted
processes. In: CAV 2007 conference. Berlin, Germany

8. Garavel H, Lang F (2002) NTIF: a general symbolic model
for communicating sequential processes with data. In: Pro-
ceedings of FORTE’02 (Houston), LNCS, vol 2529. Springer

9. Roscoe A (1994) Model-checking CSP. In: A classical mind,
essays in honour of C.A.R. Hoare. Prentice-Hall, Englewood
Cliffs

10. Scattergood J (1998) The semantics and implementation of
machine-readable CSP. PhD thesis, Oxford Un. Computing
Laboratory

11. Magee J, Kramer J (2006) Concurrency: state models and
java programs, 2nd edn. Wiley, New York

12. Poizat P, Royer J, Salaun G (2006) Bounded analysis and
decomposition for behavioural descriptions of components.
In: FMOODS, LNCS, vol 4037. Springer

13. Poizat P, Royer J (2006) A formal architectural descrip-
tion language based on transition systems and modal logic.
J Univers Comput Sci 12(12):1741–1782

14. Barros T, Boulifa R, Madelaine E (2004) Parameterized
models for distributed Java objects. In: Forte’04 conference.
LNCS, vol 3235. Springer, Madrid

15. Boulifa R (2004) Génération de modèles comportementaux
des applications réparties. PhD thesis, University of Nice -
Sophia Antipolis – UFR Sciences

16. Barros T, Henrio L, Madelaine E (2005) Behavioural mod-
els for hierarchical components. In: Godefroid P (ed) Model
checking software, 12th int SPIN workshop, LNCS, vol 3639.
Springer, San Francisco

17. Barros T (2005) Formal specification and verification of dis-
tributed component systems. PhD thesis, University of Nice -
Sophia Antipolis

18. Caromel D, Delbé C, di Costanzo A, Leyton M (2006)
ProActive: an integrated platform for programming and run-
ning applications on grids and P2P systems. Comput Methods
Sci Technol 12(1):69–77

19. Caromel D, Henrio L, Serpette B (2004) Asynchronous
and deterministic objects. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on principles of program-
ming languages. ACM, New York, pp 123–134

20. Caromel D, Henrio L (2005) A theory of distributed object.
Springer, Heidelberg

21. Lin H (1996) Symbolic transition graph with assignment. In:
Montanari U, Sassone V (eds) CONCUR ’96, LNCS, vol
1119. Pisa, Italy

22. Lakas A (1996) Les Transformations Lotomaton: une con-
tribution à la pré-implémentation des systèmes Lotos. Ph.D.
thesis, Univ. Paris VI

23. Najm E, Lakas A, Serouchni A, Madelaine E, de Simone R
(1992) ALTO: an interactive transformation tool for LOTOS
and LOTOMATON. In: Bolognesi T, Brinksma E, Vissers C
(eds) Third lotosphere workshop and seminar, Pisa

24. Madelaine E (1992) Verification tools from the CONCUR
project. In: Rozenberg G (ed) EATCS Bull, vol 47. B. Rovan,
Bratislava

http://www-sop.inria.fr/oasis/Vercors
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf


Ann. Telecommun. (2009) 64:25–43 43

25. Cleaveland R, Riely J (1994) Testing-based abstractions for
value-passing systems. In: CONCUR’94, LNCS, vol 836.
Springer, Heidelberg

26. Cleaveland R, Hennessy M (1993) Testing equivalence as a
bisimulation equivalence. Form Asp Comput 5:1–20

27. Attali I, Barros T, Madelaine E (2004) Formalisation and
proofs of the chilean electronic invoices system. In: Proc. of
the XXIV international conference of the Chilean computer
science society (SCCC’04). IEEE, Arica

28. Barros T, Cansado A, Madelaine E, Rivera M (2006) Model
checking distributed components: the Vercors platform. In:
3rd workshop on formal aspects of component systems.
ENTCS, Prague

29. Ahumada S, Apvrille L, Barros T, Cansado A, Madelaine E,
Salageanu E (2007) Specifying fractal and GCM components
With UML. In: Proc of the XXVI international conference
of the Chilean computer science society (SCCC’07). IEEE,
Iquique


	Behavioural models for distributed Fractal components
	Abstract
	Introduction
	Context
	Fractal, GCM and ProActive
	A GCM reference implementation: GCM/ProActive
	Life-cycle of GCM/ProActive components


	Theoretical model
	Networks of synchronised automata
	Parameterised networks of synchronised automata
	Data abstraction

	Behavioural models for distributed applications
	Active objects
	Hierarchical components
	Hierarchical components + management interfaces = fractal
	Distributed components: GCM/ProActive
	Primitive components
	Composites components


	Platform overview
	User input
	Internal model
	Verification

	Conclusion and perspectives
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


