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Abstract. We describe a method for the specification and verification
of the dynamic behaviour of component systems. Building applications
using a component framework allows the developers to specify the ar-
chitecture, the deployment, the life-cycle of the system with well-defined
formalisms, and to gain productivity by reusing existing components.

But then one wants to make sure that the application built from existing
components is safe, in the sense that its parts fit together appropriately
and behave together smoothly. Each component must be adequate to
its assigned role within the system, and the update or replacement of a
component should not cause deadlock or failure of the rest of the system.

The usual notion of type compatibility of interfaces is not sufficient;
we need to capture the dynamic interaction between components, and
typically to avoid deadlocks or unexpected behaviours in the system.
In this work, we focus on hierarchical component systems. We describe
both the functional behaviour and the non-functional features (life-cycle
management) of components in terms of synchronised transition systems;
we define a notion of correct component composition; then we show how
we can prove, using (compositional) model-checking techniques, tempo-
ral properties of a component system. Transformations of a system, for
example replacement of a sub-component, are expressed as transforma-
tions of its behavioural semantics, allowing to prove preservation of some
properties, or the validity of new properties after transformation.

1 Introduction

Components have emerged as a new programming paradigm in software de-
velopment. Beyond structuring concepts inherited from modules and objects,
component frameworks provide means for architecture and deployment descrip-
tion. Some frameworks define a number of non-functional features for controlling
the life-cycle of the components and the application, or allow for construction
of distributed components. In general words, a component is a self contained
entity that interacts with its environment through well-defined interfaces (pro-
vided services and required functionalities to be provided by other components).
Besides these interactions, a component does not reveal its internal structure.



In hierarchical component frameworks like Fractal [6], different components
can be assembled together creating a new self contained component which can be
itself assembled to other components in a upper level of hierarchy. Hierarchical
components make visible the hierarchy of the system and hide, at each level, the
complexity of the sub-entities. The compositional aspect together with the sepa-
ration between functional and non-functional aspects helps the implementation
and maintenance of complex software systems.

The challenge that we want to address in this work is to build a formal frame-
work to ensure that compositions are correct. Standard components systems have
typed interfaces, that ensure some level of static compatibility between the com-
ponents: interfaces are bound only if their operations have compatible types in
the classical sense (OO method typing). This does not prevent assembled com-
ponents from having non compatible behaviours, that could lead to deadlocks,
live-locks, or other kinds of safety problems. A number of recent works do try
to address better dynamic guaranties, e.g. research on behavioural typing or
contracts [7], as well as frameworks like Wright [1] or Sofa [12].

Our approach is to give behavioural specifications of the components in the
form of hierarchical synchronised transition systems. The semantics of a com-
posite is then computed as a product of the LTSs of its sub-components with
the controller of the composite. This system can be checked against require-
ments expressed as a set of temporal logic formulas, or again as an LTS. We
aim to provide the final user with tools to verify the behaviour at the design
phase (definition), the assembly phase (implementation), as well as the dynamic
reconfiguration (maintenance) of the component system. Therefore the intended
user of our framework is the application developer in charge of those tasks. In
this work, we choose to rely on the Fractal hierarchical component model.

The models for the functional behaviour of basic components may be derived
from automatic analysis of source code (involving adequate data abstraction),
as we have described in [4], or expressed by the developer in a dedicated specifi-
cation language, e.g. the graphical language for synchronised automata used in
this paper.

Our main contributions in this paper are:

– a methodology for building behavioural models of hierarchical components,
including non-structural reconfiguration operations,

– the modelling of the full behaviour of the application as a hierarchy of pa-
rameterized LTSs,

– a specification of structural reconfigurations as transformations of the LTS
expressing the component behaviour,

– a classification of correctness properties for a component system together
with tools allowing and easing their verification.

Our final target is distributed component systems communicating asyn-
chronously. We have shown in [3] how we build models for distributed objects
and verify their properties; in this paper we concentrate on the modelisation
of the control and transformation operations of hierarchical components, and
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we leave for further work the integration with the asynchronous communication
semantics. One example of distributed implementation of Fractal is given in [5].

In Section 2 we present the features of Fractal that will be useful for the
understanding of this paper, and we introduce a small example that will serve
as an illustration for the rest of the paper. Section 3 discusses the notion of
correct behaviour. In section 4 we recall the main features of the formal models
that we defined in [4]. Section 5 develops, step by step, the formalisation and
the behaviour computation of this example, starting with the specification of
base components, then building the composite controllers, computing the com-
posite behaviour, specifying errors, dealing with deployment and transformation
phases, and finally proving in Section 6 some properties of the assembly.

2 The Fractal Component Model

The Fractal component model provides an homogeneous vision of software sys-
tems architecture with a few but well defined concepts such as component, con-
troller, content, interface, binding. It is recursive – components structure is auto-
similar at any arbitrary level (hence the name ’Fractal’); it is completely reflex-
ive, i.e., it provides introspection and inter-cession capabilities on components
structure.

2.1 Guidelines to Fractal Components

A Fractal component is formed out of two parts: a controller and a content. The
content of a component is composed of (a finite number of) other components,
called sub-components, which are under the control of the controller. This allows
for hierarchic components, in the sense that components may be nested at any
arbitrary level. A component that exposes its content is called a composite com-
ponent. A component that does not expose its content, but at least one control
interface, is called a primitive component.

The controller of a component can have external and internal interfaces. A
component can interact with its environment through operations at its external
interfaces, while internal interfaces are accessible only from the component’s
sub-components.

Interfaces can be of two sorts: client and server. A server interface can receive
methods invocations while a client interface emits methods call. A functional
interface provides or requires functionalities of a component, while a control
interface is a server interface that corresponds to a “non functional aspect”,
such as introspection, configuration or reconfiguration.

A component controller encodes the control behaviour associated with a par-
ticular component. Fractal defines three basic (optional) levels of control capa-
bilities for a component: no control at all, introspection, and configuration. Only
the latter is of interest to us. At the configuration control level, Fractal proposes
four control interfaces:
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– Attribute control: provides operations to get and set attribute values of the
component.

– Binding control: provides operations to bind and unbind the component
client interfaces.

– Content control: provides operations to add and remove sub-components
into/from the component.

– Life cycle control: provides operations to stop and start the component, as
well as to get its current status (stopped/started).

The Fractal specification defines a number of constraints on the interplay
between functional and non-functional operations. In particular :

– Content and binding control operations are only possible when the compo-
nent is stopped.

– When started, a component can emit or accept invocations. Note that this
does not prevent control operations to throw an error (exception) because
of an unstable state.

– When stopped, a component do not emit invocations and must accept invoca-
tions through control interfaces ; whether or not an invocation to a functional
interface is possible is undefined.

Other features are left unspecified in the Fractal definition, and may be set by
a particular Fractal implementation, or left to be specified at user level. For this
paper, we make the following choices: (1) the start/stop operations are recursive,
i.e. they affect the component and each one of its sub-components; (2) functional
operations cannot fire control operations. (3) the controller (membrane) of com-
posites is only a forwarder between external and internal functional interfaces
without any other control capability; The last feature implies that there is ex-
actly one internal interface for each external interface of a composite.

2.2 Component System Example

In this section we introduce a particular component system as an example, which
we will use later to better explain our work. Fig. 1 is a graphical view for it.

The example is built from three primitive components (A, B and Logger),
which are composed in two levels of hierarchy defined by two composite compo-
nents (C and System). Each component exposes the interfaces for the control
operations they support (in our example all the components support life-cycle
control operation through the interface Ilf and binding control operations through
the interface Ibc).

All the functional interfaces in the example are typed either by the type I,
the type L, or the type R. We define the type I having the operation foo(), the
type L having the operation log() and the type R having the operation reset().

The system is deployed in a bottom-up fashion from the innermost compo-
nents to the outer component (System in our example). At each level of hierarchy
a specific deployment is applied. For instance, at the C level of hierarchy in Fig.
1 the deployment includes, among others, the binding between the interface Ic
of A and the interface Ip of B.
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Irst : R

Logger

Ilf Ibc
Ilog : L

A

Ilf Ibc
Ic : I

Ilog : L
I1 : I

B

Ilf Ibc

Ilog : L

Ip : II1 : I Ilog : L

C

I1 : I

I2 : R

System

Ilf Ibc

Fig. 1. A simple component system

3 Defining Correct Behaviour

Control (i.e., non-functional) operations can introduce changes on the component
behaviour. For instance, adding or replacing a sub-component may add features
(new actions) to the system. A set of control operations is called a transformation
phase.

We make the assumption (this is a restriction with respect to the Fractal
specification) that no functional operation can fire control operations. Then we
are interested in three phases in the components behaviour:

1. Deployment: this is the building phase of a component. In this phase the
component’s content (its sub-components) is defined as well as the initial
transformation phase (sequence of control operations), as described usually
in the application ADL. The application deployment typically ends with a
recursive start operation.

2. Running phase: only functional operations occur here.
3. Reconfiguration: we distinguish between non-structural reconfigurations (life

cycle and binding controls) and structural transformations (adding, removing
or updating components).

From these definitions, we discuss the correctness of the component system:

1. Initial composition: “Is the deployed system behaving correctly?”. The con-
cept of “correct behaviour” covers the absence of dead-locks and in general
safety and liveness properties (common sense properties like not using an un-
bound required interface, or any user-requirement expressed as a temporal
logic property). Ultimately, it could be “Does this implementation respect a
pre-defined specification? (with respect to some implementation pre-order)”.

2. Reconfiguration : “After a transformation phase, does the system behave cor-
rectly?”. This covers both preservation of some properties valid before the
transformation, and the satisfaction of a new set of properties, corresponding
to features added by the transformation. These proofs must take into account
the intricate interplay between functional and non-functional actions during
transformation, like the management of the internal state of subcomponents.
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For example, one can expect to be able to prove the safety and transparency
(from the user point of view) of the replacement of a components by another
one.

We want to provide the user with tools that help answer those questions before
deploying the application or applying a transformation, so he can be confident
about the reconfigurations he will apply and therefore, have a reliable system.

4 Formalism

In [4] we have defined a parameterized and hierarchical model for synchronised
networks of labelled transition systems. We have shown how this model can be
used as an intermediate format to represent the behaviour of distributed Java
applications, and check their temporal properties.

Our model is an adaptation of the symbolic transition graphs with assignment
of [11] into the synchronisation networks of [2]: we extend the general notion of
Labelled Transition Systems (LTS) and hierarchical networks of communicating
systems (synchronisation networks) by adding parameters to the communication
events in the spirit of [11].

We model the behaviour of a process as a parameterized Labelled Transition
System (pLTS). We use parameters both for encoding data in value passing
messages and for manipulating indexed families of processes.

Then we use a parameterized Net to synchronise a finite number of processes.
A parameterized Synchronisation Network (pNet) is a form of generalised parallel
operator, where each of its arguments is typed by a Sort that is the set of its
possible observable actions.

The actions to be synchronised between the arguments of the Net are encoded
in a transducer automaton. A state in the transducer defines a particular set of
synchronisations, then a state change in the transducer introduces a new set of
synchronisations, i.e. it models a dynamic reconfiguration. A Net with a unique
state is called a static Net.

Given a finite instantiation of the parameters in the model, we have intro-
duced in [4] an automatic procedure producing a (hierarchical) finite instanti-
ation of the parameterized LTSs and Nets. Having done the instantiation, we
can generate the synchronisation product, which is an LTS encoding the full be-
haviour of the Net when synchronising the actions of its processes as defined in
the transducer. Since the synchronisation product is an LTS, it can be used as an
argument in a upper Net definition. In other words, we do support hierarchical
composition of processes.

Our formalism fits nicely in the components model. The behaviour of a prim-
itive component is a LTS, that can be specified by the developer, or derived from
code analysis. For a given composite, its content is the arguments of the Net and
its initial bindings are encoded in the initial state of the transducer. The LTS
of a composite encodes the functional behaviour of the component but also the
control operations that do not change the geometry of the composite, namely
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start/stop, and bind/unbind operations. In the sequel, we define our transducers
using a set of small automata, that we call controllers. On this model, we can
check all properties during and after the “initial composition”, and involving
reconfigurations only relying on start, stop, bind, and unbind.

We deal with transformations that change the arity of the Net or the struc-
ture of the application (add/remove/update of components) as transformers of
the model: starting with a hierarchical model in a given state, we build a new
model after a sequence of transformations, in which we maintain the state of the
components that were not changed by the transformation. We can then check
for the properties (preserved or new) of the reconfigured system.

5 Building the Behaviour for the Example

We start building an automaton for each component encoding both its functional
and non-functional (control) behaviours. In this section, we show how we build
the controller automata, in a bottom-up fashion, for primitives and for composite
components.

To benefit from the compositional properties of our models, we define this
construction in the context of a given temporal logic formula, or more generally
for a given set of actions that the user wants to observe. Then we shall consider
abstract automata for a given family of hidden actions (renamed as τ actions), or
conversely for a given family of visible actions (all others are hidden), minimised
by weak bisimulation at each step of the construction.

In particular, specific models can be constructed to exhibit to check the
correct detection of some classes of errors.

5.1 Computing Controller Automata

We use a general purpose Controller as a scheme from which we get instantiations
to specific components.

In the general purpose Controller shown in Fig. 2, we have a finite number k of
sub-component automata (SubCk), a life-cycle automaton (LF), a finite number
np of external (E PInp) and internal (I PInp) provides interface automata, and
a finite number nr of external (E RInr) and internal (I RInr) requires interface
automata . Synchronised actions are encoded by links between processes (in the
graphics we use an ellipse when more than two actions are synchronised).

To obtain the Controller for a component we instantiate the general con-
troller, using the sub-components and interfaces that the component defines.
For instance, for the component C, the set {SubCk} becomes {A,B}. Since we
build the controller automata in a bottom-up fashion, the controllers of the sub-
components have been already built when we compose them. The automaton
encoding the sub-component behaviour is the controller of this sub-components,
hiding the internal functional actions that are not specified as visible.

Please remark that this instantiation fixes the set of sub-components and
internal/external interfaces. The resulting pNet is still parameterized, and its
actions contain variables for value-passing and for reference-passing.
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LF

?start

?stop

stopped started

?stop ?start

stopped

started

E_PInp

L

?bind(Iext)

  push(L,Iext)

[in(L,Iext)] ?unbind(Iext) 

 delete(L,Iext)

[in(L,Iext)] 

   bound(Iext) 

[empty(L)] 
  unbound

empty(L)

?bind(Iext) ?unbind(Iext)

bound(Iext)unbound

unbound

Iext

?bind(Iext)  Iext

?unbind(Iext)

bound(Iext)

unbound

?unbind(Iext)

E_RInr

bound(Iext)

?bind(Iext)

unbound

Iext

?bind(SubC[i].PIscnp)

    SubC[i].PIscnp

?unbind(SubC[i].ISns)

bound(SubC[i].PIscnp)

unbound

?unbind(SubC[i].PIscnp)

I_PInp
bound(SubC[i].PIscnp)

?bind(SubC[i].PIscnp)

I_RInr

L

?bind(SubC[i]. RIscnr)

  push(L,SubC[i]. RIscnr)

[in(L,SubC[i]. RIscnr)] 

?unbind(SubC[i]. RIscnr) 

 delete(L,SubC[i]. RIscnr)

[in(L,SubC[i]. RIscnr)] 

   bound(SubC[i]. RIscnr) 

[empty(L)] 
  unbound

empty(L)

?bind(SubC[i]. RIscnr)

?unbind(SubC[i]. RIscnr)

bound(SubC[i]. RIscnr)

unbound

[cond2]?bind(I_PInp,SubC[i].PIscnp)

?Ibc.bind(SubC[i].RIscnr,Isext1)

?Ilf.start()

SubCk

?Ibc.unbind(SubC[i].RIscnr,Isext1)

?Ibc.bind(Isext2,SubC[j].PIscnp)

?Ibc.unbind(Isext2,SubC[j].PIscnp)

!Isext1.m()

?Isext2.m()

?Ilf.stop()

[cond3]?unbind(SubC[i]. RIscnr, I_RInr)

[cond3]?bind(SubC[i]. RIscnr, I_RInr)

[cond2]?unbind(I_PInp,SubC[i].PIscnp)

?Ibc.unbind(RInr,Iext1) ?Ibc.bind(RInr,Iext1)!Iext1.m()

?Ilf.stop()

?Ilf.start()

?Ibc.bind(Iext2,PInp) ?Iext2.m()

cond1: i≠j & SubC[i]. RIscnr:type = SubC[j].PIscnp:type

cond2: I_PInp:type = SubC[i].PIscnp:type (= E_PInp:type)

cond3: SubC[i]. RIscnr:type = I_RInr:type (= E_RInr:type)

?Ibc.unbind(Iext2,PInp)

SubCk RIscnr

Ilf Ibc

PIscnp

E_PInp I_PInp E_RInrI_RInr

Ilf Ibc

!visiblesn

[cond4]m(Isext1,Isext2)

[cond1]?bind(SubC[i].RIscnr,SubC[j].PIscnp)

[cond1]?unbind(SubC[i].RIscnr,SubC[j].PIscnp)

cond4: Isext1:owner ≠ Isext2:owner & Isext1:type = Isext2:type

Fig. 2. General purpose Controller

For a primitive component, the set {SubCk} is reduced to a single automaton
which encodes its functional behaviour; the set of internal interfaces ({I PInp}
and {I RInr}) is empty. The functional behaviour automaton encodes calls and
receptions of methods on the component interfaces (in addition to internal ac-
tions). Whether it is obtained by source analysis or given by the user is outside
the scope of this paper.

Because of space restrictions we only present the controller for component A
which is the product of the 5 LTSs composing the pNet shown in Fig. 3. The
controller for the composite component C is displayed in annexe A. The full
version of this paper is available at http://www-sop.inria.fr/oasis/Vercors/.

In Fig. 3, Iext∗ are variables encoding the set of external interfaces to which
the interfaces of A can potentially be bound. This set is instantiated at the
next level of hierarchy by type matching analysis (conditions cond1, cond2 and
cond3 in the general controller). For instance when building the controller of C,
the variable Iext1 in the figure becomes the set {B.IP}.
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?Ibc.bind(Ic,Iext1)

LF

?start

?stop

stopped started

?stop ?start

stopped

started

?Ibc.unbind(Iext3,I1)

?Ilf.start

?Ilf.stop

!Ic.foo()

!Ilog.log()

?I1.foo()
?Ilf.start

?Ilf.stop

?I1.foo()

!Ic.foo()

!Ilog.log()

A

?Ibc.unbind(Ic,Iext1)?Ibc.bind(Ilog,Iext2)

?Ibc.bind(Iext3,I1)

?Ilf.start

?Ilf.stop

!Iext2.log()

?Iext3.foo()

!Iext1.foo()

?Ibc.bind(Ilog,Iext2)

E_PI1

L

?bind(Iext)

  push(L,Iext)

[in(L,Iext)] ?unbind(Iext) 

 delete(L,Iext)

[in(L,Iext)] 

   bound(Iext) 

[empty(L)] 
  unbound

empty(L)

?bind(Iext) ?unbind(Iext)

bound(Iext)unbound

unbound

Iext

?bind(Iext)  Iext

?unbind(Iext)

bound(Iext)
unbound

?unbind(Iext)

E_RIc

bound(Iext)

?bind(Iext)

unbound

Iext

?bind(Iext)  Iext

?unbind(Iext)

bound(Iext)
unbound

?unbind(Iext)

E_RIlog
bound(Iext)?bind(Iext)

A

Ilf Ibc
Ic : I

Ilog : L
I1 : I

ERROR_UNBOUND_ERI(A.Ic)

Fig. 3. Controller for A

In addition, the controller pieces in Fig. 3 include some of the constraints
introduced in Section 2, e.g. that the bindings of requires interfaces are only
possible when the component is stopped or that calls to requires interfaces are
only possible when these interfaces are bound.

5.2 Detecting Errors

We can introduce in our model the detection of common sense errors (un-
desired behaviours) introduced in Section 3. For instance, by triggering an
ERROR UNBOUND message upon a call to the operations of the interface Ilog

when it is unbound, we can detect the erroneous uses of the Ilog interface. This
is shown in Fig. 4.

In addition to common sense errors, others undesired behaviours are directly
or intrinsically defined in the Fractal specification. In order to keep simplicity
and clarity during our guided example, we will consider only the error consisting
in calling an operation on an unbound interface.

5.3 Species of Temporal Properties

All the temporal properties (that do not involve a structural transformation) can
be expressed and verified directly on the controller automaton of a component,
or of the whole application. Yet, it is possible to define classes of properties
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!Ic.foo()

() !Ic.foo()

A

!Iext1.foo()

unbound

Iext
(Iext)

ound(Iext)

ERROR_UNBOUND_ERI(A.Ic)

Fig. 4. Zoom into the A controller detecting errors

that can be checked on smaller systems, avoiding to build the global state-space.
This section identifies abstractions and tools allowing to verify some specific
categories of properties.

For a component C (including the full application itself), let us call OF the
set of external functional operations, OE the set of observable errors, OI the set
of internal actions chosen to be observable. Then we define the set of deployment
action as OD = ¬(OF ∪OE ∪ OI).

Deployment As we mention in Section 2.2, a system is deployed in a bottom-
up fashion in the component hierarchy. At each node (composite component) of
the system a specific deployment is applied.

This deployment is defined by the user ; e.g. in Fractal, the bindings for the
sub-components of a composite, can be given using its ADL. The deployment is
a sequence of internal control operations of the composite, possibly interleaved
with functional operations, and terminating with a distinguished successful state√

. In our example (Fig. 1):

!bind(A.Ic,B.Ip) !bind(A.Ilog,Ilog) !bind(I1,A.I1)
√

¬OD ¬OD ¬OD ¬OD

Fig. 5. Deployment automaton for C

The interplay between the building of all components of the application,
and their start operations (that are usually applied recursively after building)
may be quite complex and error-prone. So it may be useful for the developer
to check, independently, that the deployment (possibly without start) of each
component succeeds, and that the global deployment, including start operations,
is also successful. This will be checked on the synchronisation of the component
controllers with their respective deployment automata.

Functional behaviour A functional property is a property concerning only
functional actions, or more precisely properties of a system after correct deploy-

10



ment, on a system in which we forbid any subsequent control action. This kind of
formulas can be model-checked on a controller automaton for which we already
have proved correct deployment, and in which we build only the relevant part of
the behaviour, either by an had-hoc construction algorithm, or using on-the-fly
techniques.

Functional behaviour properties are useful for component systems that do not
perform any reconfiguration or for which non-functional actions have a transpar-
ent behaviour regarding functional aspects, i.e. non-functional actions commute
with functional ones.

Non-structural Reconfiguration Non-structural reconfiguration, i.e. involv-
ing only bind, unbind, start and stop operations, can be dealt with directly
on the controller automaton. Indeed, the interleaving between functional and
non-functional actions may have consequences on the state of the system ; we
cannot provide any general abstraction fitting with this case that could reduce
the complexity of the model construction for this class of properties.

Structural Transformations Remove, add and update are the main control
operations that modify the content of a composite. The first remark is that
there is no hope to encode all possible future transformations in the model.
Then, technically, add and remove operations change the arity of the enclosing
Net, so they cannot be modelled as transducer transitions. Instead we model
the structural transformation operations as functions transforming the whole
hierarchical model of the application ; each elementary structural change affects
a single Net or LTS in the model.

Update could be expressed as a sequence unbind*;remove;add;bind*, but this
would lead both to less efficient implementations and to more complex model
constructions and proofs: we are interested in expressing full sequences of trans-
formations, that preserve properties of the system, while elementary transfor-
mations usually don’t.

The main difficulty with structural reconfigurations is that one wants to
keep the rest of the system in the same state. A large application should not be
stopped when updating or adding a specific sub-component, and the state of a
replaced component itself should be preserved whenever possible. The framework
ensures minimum conditions before replacements (in terms of stopped/unbound
state), but we have to assume that the developer will specify which data from
the replaced components are to be saved, and how this data will be mapped in
the new component.

In our formalism, this tree transformation and state transfer is expressed on
the hierarchical pNets, as the following sequence of steps :

– build the new hierarchical pNet, by replacement of the transformed part;
call S′ the semantics of this new system;

– define a mapping between actions in the original and the new systems, based
on a user-defined mapping between the action names and parameters in the
replaced component;
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– identify the set T of states on the initial system where the transformation
is possible;

– build a synchronised product of the old and new system, using the mapping
of old to new actions, and adding in each state of T a transition t−→ encoding
the transformation; we call T ′ the image of t−→ in this product;

– finally obtain the controller automaton of the transformed system, A′ defined
by: the set of initial states of A′ is T ′, the states and the transitions of A′

are those of S′ reachable from T ′.

The actions mapping will eventually be defined in terms of the source lan-
guage of the application, but this is out of the scope of this paper.

6 Proving Properties

In our tools, we use the modal µ-calculus as a powerful internal language for
logic formulas. For this paper, we prefer to use an Action-based Computation
Tree Logics (ACTL, see e.g. [8]), that may be more suitable for a human reader.

1. Deployment: We want at first to verify that the deployment for a
component is always successful. This is done by proving the ACTL formula

[true]
√

(1) (all paths lead to success)
in the synchronisation product between the component controller and its
deployment. This formula is true for the deployment in Fig. 5.
A second property we would like to verify is the absence of er-
ror during the deployment. This is done by proving the formula

EF¬OE < OE > false (2)
in the synchronisation product between the component controller and its
deployment. This property is also true for the deployment in Fig. 5. However,
in a scenario very reasonable, let’s suppose the user starts the component
C at the end of the deploy (which means to add a !start transition before
the state

√
). Under this scenario the property is not true anymore (even

though the deployment is possible), and the model-checking tool give us the
counter-example shown in Fig. 6

bind(A.Ic,B.Ip) bind(A.Ilog,Ilog) bind(I1,A.I1)
√

start

ERROR_UNBOUND_ERI(C.Ilog)

Fig. 6. Diagnostic path

The error is because the required interface C.Ilog may be used before it is
bound, which in fact is true since the interface Ilog of C will be bound at the
next level of hierarchy (when deploying System). This example also shows
us the importance of the hierarchical behaviour of start and stop.
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2. Functional behaviour: We would like to verify the absence of er-
rors during a running phase, i.e. the absence of errors after the
deploy until a new reconfiguration phase. If OE is the set of observ-
able errors and OD is set of observable control operations, then we
can verify the property in System by proving the ACTL formula:

A[true]
√

AG¬OD [OE ]false (3)
is true in its controller. The proof is successful for System.

3. Transformation: Suppose we do, during the application running-phase,
an update of the sub-component B in C by a component B2. B2 has a
similar behaviour than B, but in addition it logs the calls to its Ip inter-
face using its Ilog interface. When we prove formula (3), it becomes false
in this updated system, and the tool gives us a path containing the action
ERROR UNBOUND ERI(B2.log). This is because in the initial deployment
of the system, we did not bind the interface Ilog of B. Since B did not use
its interface Ilog, the composition did not produced an undesired behaviour.
However, the new B2 uses its Ilog interface, and so it produces the error. So
the update of B by B2 should be followed by a binding of its Ilog interface.
This example, likely to happen in real systems, shows the necessity of formal
tools of verification for checking reconfiguration requirements.
If after the update and before starting the system, we bind the interface Ilog

of B2 to the internal interface Ilog of C, then the property is preserved.

7 Related Work

Most component frameworks available today only have tools for checking the
static type compatibility of interfaces. Work on behaviour compatibility is quite
recent, and not yet available on industrial plate-forms. We mention here research
works and tools that may be the closest to our approach.

Wright [1] was an early proposal for specifying the behaviours of components
in an Architecture Description Language (ADL). They use connectors similar to
our Nets, that define the possible interactions between a set of roles (specification
of sub-components). The behaviours of roles is specified in CSP, and they have
a notion of compatibility based on a variant of CSP’s refinement pre-order that
ensures the absence of deadlock.

Darwin [10] is an Architecture Description Language, in which a distributed
program is represented as a hierarchical composition of subsystems, with inter-
acting processes at the leaves of the hierarchy. The behaviours are specified and
computed in a way similar to ours, including weak bisimulation minimisation
during the bottom-up construction. Verification of safety and liveness proper-
ties, specified in terms of finite-state automata, is done by the Tracta tool. The
main difference with our approach is that Darwin expresses only the functional
operations of the components, and does not support system reconfiguration.

Sofa [12] defines a hierarchical component system. At each level of hierar-
chy, a frame protocol specifies the external behaviour of the component, while
a architecture protocol describes an implementation capturing also the internal
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synchronisation between its sub-components. The architecture protocol can be
automatically generated from the frame protocols of its sub-components. The
behaviours are expressed as regular expressions, and the substitutability of com-
ponents is based on trace language inclusion, though it is yet unclear how to
compare with our bisimulation-based semantics. One specificity of Sofa is its so-
phisticated mechanism for detecting and reporting errors. They also have a syn-
tax for expressing asynchronous operations, for which the emission of a method
call and the return of its result may be interleaved with other events.

A quite different approach is advocated by Carrez, Fantechi and Najm in
[7]. They propose a (non-hierarchical) component model in which interfaces are
given a behavioural type expressed in a kind of modal process algebra. Then,
they define the sound assembly of components as the conjunction of compliance
of components to their interface (contracts), and compatibility between inter-
faces. The type language definition ensures that the compatibility is decidable
and can be computed efficiently. Unfortunately, the compliance relation is more
complex, and may even require theorem-proving techniques, but only needs to
be guarantied once for a given component.

8 Discussion and Conclusion

This paper provides methods and tools allowing the user to prove the correctness
of the behaviour of hierarchical components. One of our main contributions is
the specification of the behaviour of non-functional aspects, and the hierarchical
building of LTSs modelling the behaviour of the system of components. Our ap-
proach rely on the definition of a generic controller allowing (once instantiated)
to encode the whole behaviour of any component except non-structural recon-
figuration. Then a component behaviour is obtained by synchronisation product
of the LTSs expressing the behaviour of its content and the control behaviour
associated to its interfaces. Structural (dynamic) reconfiguration is handled by
a LTS transformation. The tools provided to the user include:

– a controller automaton allowing to prove general properties on the behaviour
of a component provided no structural reconfiguration is considered;

– an error detection: firing of error messages upon common sense errors can
automatically be added; then, for example, the user may prove the absence
of such messages in order to assert the correctness of the application;

– a set of hiding mechanisms in order to facilitate the proof of usual species of
temporal properties;

– modelling of structural reconfigurations as transformations of the applica-
tion model, thus allowing to reason about the most general components
reconfigurations.

We have developed a tool in Java that automatically and incrementally gen-
erates the synchronisation files for a component system from its description, and
we use the CADP[9] tool set to calculate the synchronisation product, minimise
the systems, and model-check the formulas.
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A promising perspective is to extend this framework in order to specify and
verify the behaviour of asynchronous distributed components. Such a work would
benefit from our previous experience in specification of asynchronous commu-
nicating objects [3], and consist in extending and adapting the notion of asyn-
chronous method calls, request queues, etc.

Finally, many approaches are being developed to cover the right composi-
tion of components considering their functional aspects. One of the strongest
advantage of using components is the separation of concerns from the user point
of view. However, when coming to behavioural verification, one still needs to
take into account the inter-play between functional and non-functional aspects,
at least for existing component models. The main contribution of this paper is
to encode the deployment and reconfigurations as part of the behaviour of the
system, and thus verify the behaviour of the whole component system.
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A Appendix: C Controller

The controller for the composite C is the synchronisation product of the 7 LTLs
composing the Net in Fig. 7. We distinguish in the figure the internal control
operations, which are labelled inside the controller Net (e.g. ?bind(A.Ilog, Ilog)),
from the external control operations, which are in the edge of the Net (e.g.
?Ibc.bind(Iext2, I1)). The internal control operations are those used during the de-
ployment of the component, while the external control operation are used during
the deployment of the next level of hierarchy. Since the start/stop operations are
hierarchical, they appear twice, both as internal and as external control opera-
tions.

At this level of hierarchy, the variables Iext∗ in the controller of A (Fig. 3) have
been instantiated: Iext1 becomes {B.Ip}, Iext2 becomes {C.Ilog} and Iext3 becomes
{C.I1}.

Similarly to the primitive components, we can see in the figure some con-
straints in the control operations, such as that the binding between the inter-
nal interface I1 of C and the external provides interface I1 of A, encoded by
?bind(I1, A.I1) is possible only when the composite C is stopped. We also see in
the figure an edge for the functional calls between the sub-components A and
B named as foo(A.Ic, B.Ip); by default this call is hidden to the upper levels of
hierarchy since its an internal action of C, but we chose to keep it visible. Recall
the final user can specify the internal actions he wants to observe, which will
remain visible to the upper levels of hierarchy. Thus allowing the user to prove
temporal properties involving those actions.
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Fig. 7. Controller of C
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