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Abstract interact with each other by sending and receiving mess&pesi-

fication and analysis of message-based interactions hasanesc-
tive research area studied in several application domaaisding
coordination in service-oriented computing [9, 37], iatgions in

Since software systems are becoming increasingly moraicamt
and distributed, modeling and analysis of interactions ragrtbeir

components is a crucial problem. In several application alom) S . .
message-based communication is used as the interactionamec distributed programs [2] and process isolation at the OB &2].
A crucial problem in all these domains is the choreograpla}-re

nism, and the communication contract among the componénts o ° = - o ;
the system is specified semantically as a state machine.eln th 1zability problem. A choreography specification identifibe set

service-oriented computing domain such communicatiorraots of allowable message exchange sequences among the cortgonen
are called "choreography” specifications. A choreograpbgcs (peers) of a distributed system. A choreography is redkziathere

fication identifies allowable ordering of message exchariges is a way to implement a set of components that conform to the

distributed system. A fundamental question about a choagpby cho,\rlleography. . h
specification is determining its realizability, i.e., giva choreog- any message-passing systems use asynchronous messag-

raphy specification, is it possible to build a distributedteyn that N9 [4, 23, 24, 28, 30] where components interact with eatlkerot
communicates exactly as the choreography specifies? Clueieki by sending and receiving messages over unbounded FIFO chan-
alizability of choreography specifications has been an qpeb- Pelts Etv?n Wheﬂ.the EehawoL of each compon_entt_ls modeled as a
lem for several years and it was not known if this was a dedédab Inite staté maching, 1 asynchronous communication is

problem. In this paper we give necessary and sufficient ¢iondi state space of the overall system is infinite. In fact, fintates

for realizability of choreographies. We implemented thepmsed SKStemf communlczfitllng W'thh lianun?etd _Ili_IFQ comrrkl]yrr:é;atlon
realizability check and our experiments show that it carcieffitly ﬁ annels are pov_\;(_ar ‘: enoug OIS'm“ a ebl urln% m?ﬁ Ines, a
determine the realizability of 1) web service choreograph?) Sin- ence, many verification and analysis probiems for them are u

gularity OS channel contracts, and 3) UML collaboratiomoau- qlecidable [6]. Determining realizapility of choreograpgpecifica-
nication) diagrams. ' tions for asynchronously communicating systems has beepem

problem for several years and it was not known if it is decieab
Categories and Subject Descriptors D.2.4 [Software/Program More precisely, the choreography realizability problengisen
Verificatiorj: [Formal Methods] a choreography specified as a finite state machine, is itlgessi
General Terms  Verification to determine if there exists a set of asynchronously comoatmi
) ~ing (finite) state machines that generate precisely the fsetes-
Keywords Message-based Interactions, Choreography, Realiz-sage sequences specified by the choreography specificsitioa.

ability that, given a set of asynchronously communicating (finitajes
] machines, it is not possible to automatically determinesisieof
1. Introduction message sequences generated by them. However, in thisvpaper

show that the realizability of a choreography specificatsotecid-

able, and we give a necessary and sufficient condition feraein-
ging realizability. There have been earlier results in thisaathat
provide sufficient conditions for choreography realiziyi(e.g.,
[14, 18, 25]). To the best of our knowledge this is the firstgrap
that identifies a necessary and sufficient condition and detrettes
the decidability of the choreography realizability prahlé/Ne have
also experimentally evaluated our approach by checkingetléz-
ability of Singularity channel contracts [12], web servit®reogra-
phies [37] and collaboration diagrams [7].

Rest of the paper is organized as follows. In Section 2, to mo-

tivate our work, we discuss how the realizability problerses
in different domains. We also give a high level overview of th
proposed approach. In Section 3 we formally define the raailiz
ity problem by formalizing the communication contracts atdi
Permission to make digital or hard copies of all or part o$ thibrk for personal or State conversation protocpls .and a distributed system eba 8-
classroom use is granted without fee provided that coptesiairmade or distributed nite state peers communicating via messages over FIFO geessa

Most software systems nowadays involve concurrent oribliged
behavior or both. They run concurrently on multi-core haacky
interact with each other over the network and access data an
computational resources distributed over the computedcldun
important concern in construction of concurrent and disted
software systems is the coordination of different comptsémat
form the whole system. In order to complete a task, companant
a software system have to coordinate their executions bydoting
with each other, and specification and analysis of suchaoti&ns
is a challenging problem.

Message-based communication is a common interaction mecha
nism used in concurrent and distributed systems where coemt®
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<interaction name="SendOffer"
operation="offer"
channelVariable="tns:R1ToR2C">

<participate
relationshipType="tns:Hagglers"
fromRoleTypeDef="tns:R1"
toRoleType="tns:R2/>

<exchange name=... action="sendOffer">
<send var="cdl:getVar("offer")/>

</exchange>

</interaction>
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Figure 1. Part of the WS-CDL choreography specification for a
bilateral negotiation protocol [22] and the corresponditate ma-
chine.

2. Motivation and Overview

In this section we motivate our work by describing four aggtion
domains where the choreography realizability problem appand,
therefore, the results from this paper are directly appliea

2.1 Service Interactions: Choreography Specifications

Service oriented computing provides technologies thablenaul-
tiple organizations to integrate their businesses over lier-
net [13, 31]. Typical execution behavior in such a distrdalsys-
tem involves a set of autonomous péémseracting with each other
through messages. For instance, consider a group of oejemsg
that wish to integrate their online businesses. The froui thiat
enables user interaction via web browsers may reside withe
organization, however, in order to serve a user request fitbint
end may send and receive messages from software companaints t
reside in other organizations. The goal of web servicedstals
and technologies is to facilitate this type of business tsirimss
integration. Modeling and analysis of interactions is ac@lprob-
lem in this domain due to several distinguishing featuresumh
systems.

First, organizations may not want to share the internalcstru
tures of their software components with other organizatitirey
intend to do business with. This type of decoupling requites-
dardized and rich interface specifications that enablegiaten of
software components that may be written using differerguages
and implementation platforms. In order to achieve such awalec
pling among different components, it is necessary to spebié
interactions among different components without referiio the
details of their local implementations.

1We use “peer” to denote a process/component/programégetiiat inter-
acts with other processes/components/programs/services

Second, modeling and analyzing the global behavior of sigzh d
tributed systems is challenging since no single party mayihe
full details of all the components in such a system. In theeabs
of detailed models for the distributed components thai@péte in
such a system, the desired global behaviors have to be sugkatfi
constraints on the interactions among different compaesice
the messages exchanged among different components arelyhe o
observable global behavior. Moreover, for this type of rifistted
systems, it might be worthwhile to model the interaction©amn
different software components before the components aiteewr
This type of top-down design may help different organizatioo
better coordinate their development efforts.

Choreography specificatiolanguages target specification of
this type of interactions. For example, Web Services Chynao
phy Description Language (WS-CDL) [37] is an XML-based lan-
guage for describing the interactions among the peer<jgting
in a composite web service. A choreography specification W
CDL corresponds to a global ordering of the message-exehang
events among the peers participating in a composite seivcea
choreography specification identifies the set of allowabéssage
sequences for a composite web service. Figure 1 presenggpa sn
shot of a WS-CDL specification for two services (behavinggs
i.e., Rolel ana2, i.e., Role2) participating in a “haggling” process
where each service continues sending offers to the othédromneat
of them accepts the offer or cancels the process. The spaiwfic
contains information regarding the roles, description \afrg ac-
tion in terms of the sender, receiver and the message caaent
type, and the ordering (branching and sequencing) of action

2.2 Interactions Among Concurrent Processes: Singularity

Channel Contracts

Singularity is a new, experimental, operating system daped by
Microsoft Research to explore new approaches to OS design [2
One of its main goals is to improve the dependability of safev
systems by rethinking some design decisions that havelyagge-
erned operating system architecture to date. Procesgidsoia

a chief design principle of the Singularity operating sgstélo
achieve this, certain constraints are enforced to ensaeeps in-
dependence. Among these is the rule that processes cararet sh
memory with each other or the kernel. All inter-process camm
nication in Singularity, therefore, occurs via messagesjyay over
bidirectional conduits, called channels.

Channels have two end points referred to as the client and
the server. The client and the server processes use theethann
communicate with each other by sending and receiving messag
Communication through Singularity channels correspoodsyn-
chronous communication via FIFO queues.

In Singularity, each channel is governed byclaannel con-
tract [12, 33]. A channel contract is basically a state machinée tha
specifies the allowable ordering of messages between & alnd
the server. Hence, channel contracts serve the same putpise
choreography specifications serve in service-orientedpcinyg.

Singularity processes are written in an extension of C#edall
Sing#. It provides constructs for writing channel contsaaind its
compiler statically checks that the processes communigatver
a channel conform to its contract. Figure 2 presents a diieqbli
version of a Sing# contract governing a channel used by &irigu
for interacting with a keyboard device. This contract defitieee
states §tart, Ready, andwaiting) and the evolution among states
(->) correspond to message exchanges. Singularity contreets a
written from the perspective of the server, where send astiy
the server are appended withio denote communication from the
server to the client and receive actions by the server areraigul
with 7 to denote communication from the client to the server.



public contract KeyboardDeviceContract {
state Start: {
Success! -> Ready;
}
state Ready: {
GetKey? -> Waiting;
PollKey? -> (AckKey! or NakKey!) -> Ready;
}
state Waiting: {
AckKey! -> Ready;
NakKey! -> Ready;

}
Start
—>C S->C s_»c

¥
S_
AckKey Success AckKey
Getiey ﬁ@
etKe: olKe
Waiting Y Ready Y Ready$
>C

-—->C

S —- S
NakKey NakKey

Figure 2. A simplified channel contract from the Singularity OS
for keyboard interaction written in Sing# [33] and the cepend-
ing state machine.

+NAME ("IRC SERVER")

+STATE start
logon() => ok() & active

| error() & stop

+STATE active
1sO

getFile()

=> files() & active
=> fileSent() & active
| noFileErr() & stop

A Cc— ¢
files oS getFile
S—=C o
fileSent ‘ &
S—C

nofileErr

Figure 3. Part of a communication contract for a distributed Er-
lang program written in UBF(B) [2] and the correspondingtesta
machine.

2.3 Interactions Among Distributed Components: UBF(B)

Contracts

Erlang is a general purpose concurrent programming laregtied
was developed initially at Ericsson for improving the degtegility
of telephony applications [3]. In Erlang, processes do iatres
memory and only interact with each other via exchanging agss
asynchronously.

UBF(B) is a language for specifyincpmmunication contracts
in distributed Erlang programs [2]. Figure 3 presents phdpec-
ification of a IRC server interface specification and deswithe
evolution of the server from one statetfrt, active, etc.) to an-
other in response to external stimulbgon, 1s, etc.). UBF(B) con-
tracts are based on finite state machines. Given a statesfeufy),

a transition from that state identifies a request-respoegaence
where, after receiving a message (elggon), the process sends a
response (e.gok) and moves to the destination state (eagtive).

2.4 Visual Interaction Specifications: Collaboration
Diagrams

Collaboration diagrams (called communication diagramf3j)
provide a convenient visual formalism for specifying théenac-
tions among the participants of a distributed system [7A8¢ol-
laboration diagramis a visual representation of a set of peers, a set
of communication links among them, and an ordering of the-mes
sage exchanges among the peers. Unlike MSCs [29], colladiora
diagrams specify the global ordering of send events rattzar the
local ordering of send and receive events. The semanticdlabo-
ration diagrams can be formalized as a state machine charicg

all allowable ordering of message exchanges in a distribsitetem

[8]. Hence, for example, collaboration diagrams can be asexvi-
sual formalism for representing web service choreographie

2.5 Overview of the Proposed Approach

Web service choreography specifications, Singularity nbehoon-
tracts, UBF(B) contracts and collaboration diagrams drditir-
ent mechanisms for specifying ordering of messages exelgang
among a set of concurrent or distributed processes. Aabfsi
message-based interactions is an essential problem fohese
languages. And, although these languages target diffeppiica-
tion domains, the interaction analysis problem remainsdmee. In
short (a) communication contract specifications cut aceoasde
range of application domains (service-oriented computimgyv
paradigms for OS, embedded systems); (b) communication con
tracts are used to specify message-based interactiongggoeens
(services, client/servers, real-time software); and,llfinéc) one
key problem for communication contracts used in each ofethes
application domains is to check whether a given commurtnati
contract can beealized

In this paper we present a necessary and sufficient conddron
realizability and show how it can be applied to multiple damsaln
our approach, we first translate communication contracsifipd
in different languages into@nversation protocalvhich is a finite
state machine that specifies the allowable sequences ohgesss
(i.e., conversations) among a set of peers. For instanestate ma-
chine shown in Figure 1o(: offer, a;: acceptance and: cancella-
tion sent byR;) is the conversation protocol for the corresponding
WS-CDL choreography specification. We label the trans#ioh
the conversation protocols withender— ReceiveiMsg denoting
the sending of messadésg from the Sendempeer to theReceiver
peer. The state machines shown in Figures 2 and 3 are thersanve
tion protocols for the corresponding Sing# channel cohttad the
UBF(B) communication contract specifications, respebtiva the
following section we give a formal definition of conversatipro-
tocols.

In order to analyze realizability of conversation protecale
also need a formal model of distributed systems that intevéh
messages. We model such systems as a set of peers, where the be
havior of each peer is specified as a finite state machine. Suerss
that each peer has a FIFO message queue that stores messdages s
to it by the other peers. When a peer executes a send tramsit®
sent message is appended to the message queue of the igceivin
peer. A peer can only execute a receive transition if thesttiam



matches the message at the head of its receive queue. When a pe (1/™) and output (/°"Y) message setq; is the finite set of states,

executes a receive transition, the message at the headecéise
gueue is removed. The behavior of the overall system is defige
interleaving the executions of peers.

A conversation protocol is said to be realizable if and offily i
there exists a set of peers whose interactions conform tedhe
tract. Note that, by interactions we mean send sequeneescn-
versations); the receive actions occur locally when a peesumes
a message from its own message-queue. This is in contrasé to t
earlier work on realizability of MSCs (for example in [1, 3Bjhere
both the send and receive actions are considered. Thealaititiz
problem MSC-graphs is undecidable. It is not immediatebacl
if ignoring the receive actions simplifies the realizalgiliroblem,
since the basic formal model we are looking at involves ptes
are interacting in an asynchronous fashion, and each peas-is
sumed to have a receive-queue of unbounded size. As a rbsult,
state space of the global system consisting of multiplepeey
be infinite.

The main result we present in this paper is that choreography
realizability problem is decidable which has been an opeblpm
for several years. We provide a necessary and sufficientitotmmd
for realizability which states that a choreography speaiifin is
realizable if and only if

e its behavior is language equivalent to théounded system of

asynchronously communicating peers, where each peer behav

ior is obtained from the projection of the choreography (acre
peer) and where each peer has a message queue bdf{siqaiv-
alence condition); and

e the 1-bounded system satisfies a specific temporal property

(well-formedness condition).
Since the choreography specification and thieounded system

both have finite state spaces, we were able to implement an au-

tomated choreography realizability checker using exisgéquiva-
lence checking and model checking tools.

3. Conversations & Realizability

We formalize choreography specifications using convesatand
conversation protocols (Section 3.1), define distributgstesns
with asynchronous communication (Section 3.2), and ptedién
ferent variations of choreography realizability (Sect8).

3.1 Conversations

We use state machines to characterize conversation pieipeer
behaviors and distributed systems that consist of asynolosty
communicating peers [14].

DEFINITION 1 (Conversation ProtocolA conversation protocol
is represented bg = (P, S, s, L, A°) whereP is a finite set

of peers,S© is a finite set of states;5 € C is the initial state,

L is a finite set of message labels and, finally}, C S¢ x P x

L x P x S is the transition relation. A transition of the form
(s€,P,m, P’ s¥) € A° represents the sending of message

fromP to P’ (P, P’ € P).

Figures 1, 2 and 3 present the communication contracts finoee t
different domains and the corresponding conversationopods.
The start states are denoted by an incoming arrow withoutiaceo
state. Each transition is labeled with a message along \uih t
sender and the receiver of the message. We denote the itransit

labels asn”~F’, wherem is the message being sent Byto P’.

3.2 Systems

DEFINITION 2 (Peer Behavior)The behavior3 of a peerP is a
finite state machin€M, T, ty, ) where M is the union of input

to € T is the initial state, andd C 7' x (M U {e}) x T is the
transition relation.

A transitionT € § can be one of the following three types: (1) a
send-transition of the forrf¥.1, !m1, ¢2) which sends out a message
mi € M°" (2) a receive-transition of the forri1, ?7m2, t2)
which consumes a message: € M™ from peer’s input queue,
and (3) ane-transition of the form(¢y, €, t2). We writet = ' to
denote thatt,a,t’) € 6.

Figure 4 illustrates the behaviors of two communicatingrpdg
and P, with send and receive actionsb andc.

DEFINITION 3 (System Behavior)Given a set of peer$® =
{P1,..., P} with B; = (M;, T, toi, 0:) denoting the behavior
of P, and M; = M™ U MP" such that

Vi MMM =0,

- Vi, i i #§ = MMM = MOt A MOt =,
a system behavior or simply a system ofeis denoted by a state
machine (possibly infinite stat&)= (P, S, so, M, A) where

1. M =U;M;

2.5 C 9, X T X Qo x Ty ...Q, x T, such thatvi € [1TL] :
Qi C (M)

3.50€ S such that‘io = (6,t0176,t02 .. .,67ton); and

4. ACSX[(PxMxP)u{e} xS, and for
s = (Q1,t1,Q2,t2, .. .Qn,tn) € Sand
s’ = (Q1, 11, Q5 15, ... Qn,tn) € S

@s ——7 s € Aif3i,j € [L.n] : m € M MM,
() s e s, (i) Q5 = Qym, (i) Vk € [L.n] : k #
j= Qr=Q,and (iV)Vk € [l.n] : k #i=t}, =ty
[send action]

(b)s S s € Aifdie [ln] :m e MM (i) t: -2 ¢ € 65,
(i) Q; = mQ;, (i) Vk € [l.n] 1 k #i= Qr = Q) and
(iV)Vk € [l.n] : k £i=t), =ty
[receive action]

© s> s € Aif () Fie[ln]:t; St € s (i) Vi €
[l.n]: Qr = Q) and (i) Vk € [l.n] : k #£1=1), =ty
[internal action]

The above definition states that peers in the system comutenic

in an asynchronous fashion. Each peer has an unboundedgeessa
queue ;) and a message sent to a peer gets inserted to the tail of
the queue, while a message consumed by a peer is consumed from
the head of its message queue.

Note that, send actions involve two peers, the peer senting t
message and the message queue of the receiver peer; onéhe oth
hand, the receive action is local and involves only the kezgieer.

The behavior of the system depends on the order the send and
receive actions as well as the size of the message queuesatsdo
with each peer participating in the system. In the following
define k-bounded systems, where each participating peer has a
message queue of siZze The send actions in such a system is
blocked if the receiver peer's message queue is full (iantainsk
pending messages to be consumed).

DEFINITION 4 (k-bounded SystemA k-bounded system (denoted
by Z}) is a system where the length of message queue for any peer
is at mostk. The description ofc-bounded system behavior is,
therefore, realized by augmenting condition 4(a) in Deifimit3 to
include the conditiorjQ;| < k, where|Q;| denotes the length of
the queue for peef.



Figure 4 illustrates the behavior &f obtained from the two peers
P, and P; with asynchronous communication. For brevity, we only
show the transitions that involve send actions.

We also define synchronous behavior of a system where every
send action by a peer is consumed immediately by a receiegr pe
i.e., the peers interact synchronously. This can be vieveetha
case where the peers do not have any message queues.

DEFINITION 5 (Synchronous Behaviorfziven a set of peer® =
{P1, ..., P} with B; = (M;, T3, tos, ;) denoting the behavior of
P;and M; = M™ U M°" such that

- Vi MM MOt =g,
. i H o t t
-Vz,j.zgészgan]'_ﬂ_M?umM]c_Ju_0'

the synchronous system behavior containing the peer® iis
denoted by a state machifig = (P, S, so, M, A) where

1. M = U; M;
ZSQT1 XTo x...xT,
3. so € S such thatso = (to1,t02-..,ton); and
4. A C SX[(PxMxP)U{e}|xS andfors = (t1,t2,...
Sands’ = (t},th,...,t,) €S
@s——7 ' € Aif Ji,j € [L.n] : m € MO M, (i)
ti <2 t] € 6, (i) t; 2 8 € 6y, (i) VE € [Ln] : k #
iNk £ =t =t
[synchronoussend-receive action]
s S s € Aif3i € [Ln] () i = t; € &, (i)
Vk € [l.n]: k#£i=t, =t
[internal action]

7tn) e

The synchronous composition of behavistsand B2 of peersP;
and P, respectively, in Figure 4 would have a structure that inide
tical to B2, with one branch having transitiond | followed
by b1 =2 followed by —12; and the other branch having tran-
sitionsa™2 "1 followed by~ 72, followed byb™ — 2,

PropPosITION1. The synchronous system behavior containing a
set of peer$? = { Py, ..., P,} with peer behavior$3; (1 < j <

n) where each peer behavi@#; (1 < j < n) is deterministic, is
also deterministic, i.e., the labels on any pair of outgotransi-
tions from a state are distinct. Any peer behavior with fisitate-
space can be determinized and a sys#ifresp.Z, k > 0) ob-
tained by determinizing the peer behaviors is denoted byeR(7)
(resp.DETER(Zk)).

Finally, we define the concept of well-formed systems.

DEFINITION 6 (Well-formed System)A system containing a set
of peersP = {P1, Ps,. .., P,} with peer behaviord3; (1 < j <
n) is said to be well-formed if and only if every message seanyy

If a systemZ,, is well-formed, we say thawvr(Z ). Note that,
well-formedness checking for asynchronous systems (winee
sage queues are unbounded) is undecidable in general.

3.3 Realizability

We consider two variations of realizability. We refer toghevaria-
tions as Realizability and Realizability;.

DEFINITION 7 (Realizability). A conversation protocal defined
over a set of peer® = {Py, P, ..., P,} is said to be realizable
according to Realizability or Realizabilityy, if and only if there
exists some peer behavidss (1 < j < n) and a systeri defined
using these behaviors, such that

Realizability,: for all i > 0, C is equivalent t&; andwr(Z; ), or
Realizabilityy: C is equivalent t&Z andwr(Z)

respectively.

Realizability, requires the existence of a system such that its be-
haviorsfor all possible receive queue sizes are equivalent.to
Realizability; requires the existence of a system such that its be-
havior is equivalent t€ when unbounded receive queues are used.

Note that, the above variations, Realizabi}hzynd Realizability,
require theequivalencebetween the conversatiaiy and the sys-
tem(s)Z;s andZ, respectively. We consider language equivalence,
which ensures that any linear temporal logic property atisy
the conversation protocol is also satisfied by the systetmehtizes
the conversation. Earlier work [14, 18] on choreographyizehil-
ity has focused on language equivalence and Realizabijlithere
sufficient conditions for determining Realizabitifnave been pro-
vided.

It may appear that Realizabilifyis a stronger notion com-
pared to Realizability in the sense that it is realizable ac-
cording to Realizability then it is also realizable according to
Realizability;. However, we show in this paper that Realizabijity
and Realizability are equivalent.

3.3.1 Language Equivalence & Preorder

Language Equivalence.  For a conversation protocol, the alpha-
betisy = U{m” '}, whereP, P’ are peers in the conversation
andm”~"" is a send action (Definition 1). We denote the language
of a conversatior® as£(C), which contains any sequence over
from the start state. For example, the language of the ceatien
in Figure 1 includes a sequence whet€ — 2 is eventually fol-
lowed byaZ?~F! and in between there are finite number of subse-
quences of the formZ2— 1 oR2—R1 _

For a peer behavior, the alphabetis= M™ U M°", where
M™ andM°“ are receive and send actions of the peer respectively
(Definition 2). We denote the language of a behaydaf a peerP
asL(B). For example, in Figure 4, the behavi8r of P; includes
the sequenc@a!b!c in its language.

peer can be eventually consumed along some path in the system For a system, the alphabetXs = U{mPHP’}, whereP, P’

by the receiver of the message. This can be expressed [yeaaise
temporal logic CTL [10] as

46(|Qil > 0 = EF(|Qs| = 0)) @)

The property states that whenever the size of the receiveeq@e,
of thei-th peer is greater thaf (i.e., Q; is non-empty), the system
can eventuallynove to a state whei@; is empty.

All synchronous systemg), are well-formed by definition. For all
k-bounded asynchronous systems, it can be automaticaifyeder
(via model checking) whether the system is well-formed of. no

are peers participating in the system and—"" is a send action
in the behavior of peeP (Definition 3). We denote the language
of a systemZ (resp.Z;) as L(Z) (resp. L(Zx)). For example,
the language of the systef in Figure 4 includes the sequence
P2~ PrpP1—P2 . P1—Py

Based on the Definition 7, language realizability requilest t
L(C) = L(Z;) for all i > 0 for Realizability; and £(C) = L(Z)
for Realizability;.

Ordering. We also require the concept of an ordering between
systems, conversations and peers in terms of their lang@ager-

Any k-bounded system has finite state-space; one can model checkng with respect to language can be easily obtained usingubset

such a system against the CTL property (Equation 1).

relation.



4. Deciding Realizability

In this section, we prove that determining realizabilitgécidable,
present the necessary and sufficient condition for checiéatiz-
ability of a given conversation protocol and show that tloisdition
can be efficiently computed using existing techniques fariveg
lence checking and model checking. We prove that a convensat
protocolC is realizable if and only if it is realized by a well-formed
system obtained from peer projectiong’ofWe define the peer pro-
jection of a conversation protocol as follows.

DeFINITION 8 (Peer Projection)The projection of a conversation
protocolC on one of the peer®, participating in the conversation,
is denoted by p and is obtained frond by performing the follow-
ing updates to the state machine describihg

e if a transition label ism”~*" then replace it witHm,
e if a transition label ism” '~ then replace it witt?m,
¢ otherwise, replace transition label with

We denote the synchronoug;bounded asynchronous and un-
bounded asynchronous systems obtained from the peer fiooEc
of C by Z§, ZE andZ®, respectively. For example, Figure 5 presents
a conversation protocadl and its projections to peei’ andpP-.

Next, we proceed by first considering RealizabijitySec-
tion 4.1) followed by Realizability (Section 4.2), and finally sum-
marize our findings in Section 4.3.

41 Deciding Realizability,

In this section, by realizability, we mean Realizabilityunless
otherwise mentioned. The following outlines the steps effitpof
establishing the decidability of realizability.

Outline.

1. Behavioral Ordering. We prove that if the conversation pro-
tocol C is equivalent to BTER(ZS), then DETER(ZS) is the
“smallest system with synchronously communicating peers
that is language equivalent @ [Theorem 1].

2. Synchronizability CheckingThe conversation protocdl is re-
alizable according to Realizabilifyif and only if it is equiva-
lent toZ; for all ¢ > 0, andZ;s are well-formed (see Defini-
tion 7). That isC is equivalent tcZ; irrespective of the sizeof
the receive queues. We use the concept of synchronizabflity

a system. A system is synchronizable if and only if the system

behavior (over send actions) remains unaltered for anyivece
queue size. We show thgi > 0, Z;s are equivalent t@, i.e.,
T is synchronizable, if and only iy is equivalent tdZ; . [The-
orem 2].

3. Well-formedness Checkindrealizability also requires that the
system that realizes the conversation must be well-forMé.

411 Language-based Ordering

For the step 1 noted above, we discuss certain ordering piepef
the systems, conversations and peer behaviors, to quati&y we
mean by the smallest system with synchronously communigati
peers.

PROPOSITIONZ.
YC: L(C) C L(Z§) and Vi > 0: L(Z:) C L(Zi+1)

Proof: The proof follows from the following observations. The
peers irZ§ are obtained from projections 6f Therefore, any path

(in terms of send actions) from any state(itis also present i .

Any 7,11 can replicate the behavior (in terms of send actions) of
Z; by avoiding the paths that occur due to the usage of message
queues of length + 1. O

DEFINITIONO. Let P = {P,P,,...,P,} be a set of peers.
LetZ, be a synchronous system obtained from the peer-behaviors
Bi,1 < i < n;andZj be a synchronous system obtained from the
peer-behavior$s;, 1 < i < n. We say thaf, <. Z; if and only if
Vi>1,i<n:L(B;) C L(B).

In the above, we define the ordering relatiehs between systems
based on the ordering between the behaviors of the corrdspn
peers that constitute the respective systems.

PROPOSITIONS. LetP = { P, P, ..., P,} be aset of peers. Let
To, I, Z denote the synchronous;bounded asynchronous and
unbounded asynchronous systems, where-thepeer-behavior is
B; for 1 < i < n;andZ},Z;,Z' denote the corresponding systems,
where thei-th peer-behavior i€3; for 1 < i < n.

To <c I
S 1E@) € £ A £@) € £@) A £@) € L@))

Proof: The proof follows from the Definitions 3, 4, 5 and 9.
To <. Z{, implies that the the language of any peer’s behavior in
Ty is a subset of the language of the corresponding peer’s leghav
in Z{, (Definition 9), i.e., any sequence of th¢h peer behavior in
7o is also present in theth peer behavior iT}. As a result, from
Definition 5,£(Zo) C L(Zp). O

THEOREM1. Given a conversation protocdl over a set of peers
‘P, the following holds for all synchronous systefsdefined over
a set of peer behaviors for the peersfn

£(C) = L(DETERZS)) =
[VZo : (£(C) = L(Zo) = DETER(ZS) <r To)]

Proof: Assume that there exists af, such thatL(C) =

present the conditions when the synchronizable systems areE(DETER(Ig)) — £(Zo) and DETER(ZS) #r To. Let the be-

well-formed; specifically, we prove that a synchronizabjs-s
temZ is well-formed if and only ifZ; is well-formed [Theo-
rem 3]. Finally, we show that deterministic synchronizabye-

tems are always well-formed [Theorem 4].

4. Realizability, Checking. Finally, using the above theorems,
we obtain that the conversatian is realizable if and only
if DETER(Z®) is synchronizable and well-formed, atis
equivalent to BTER(ZC). This statement holds if and onlyGf
is equivalent to BTER(ZY). (Recall that EETER(ZC) denotes
the system over peer behaviors obtained by determiniziag th
projection ofC over peers). As bott( andZ¢ are finite state
systems, verification of equivalence can be done effegtivel
[Theorem 5]

haviors of thei-th peer in DETER(IS) andZ, be B; and B, re-
spectively. Note that3;’s are deterministic in BTER(ZS ).
Therefore, there exists arsuch thatC(B;) ¢ L(B;) (Defini-
tion 9). That is, there exists at least one path3in which is not
present in3;. Recall that3; isC, p, and is determinized; each path
in B; corresponds to at least one patlti(Definition 8). Therefore,
absence of a path if; implies at least one of the pathsdnis not
realizable usind@y,. This results in contradiction. O

4.1.2 Synchronizability Checking

As mentioned in the outline (item 2), a conversatibis realizable
according to Realizability if and only if it is equivalent to systems
Z;, for all « > 0. The following theorem due to [5] establishes
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Figure4. Two peer behaviors that are language synchronizable.

the necessary and sufficient condition under which the befsav

of Vi > 0 : Z; are language equivalent. This is referred to as the

synchronizability condition.

THEOREM2. 7 is language synchronizable (.87 > 0 : L(Z;) =
L(Zi+1)) and only if£(Zo) = L(Z1).

Consider the behavio8; and B2 of peersP; and P, respec-
tively, in Figure 4. The synchronous syst@&mobtained from these
peers has a behavioral structure similar to tha8gfthere are two
non-deterministic branches along whiehs sent frompP; to P;.
Along one branchp is communicated before and in the other
branch,c is communicated beforle The 1-bounded asynchronous
behavior, on the other hand, (see Figure 4) allows all ptessib
dering for communicating andc along both the non-deterministic
branches. The languagesXf andZ; are identical. Therefore, the
system obtained fron?y and P; is language synchronizable.

4.1.3 Language Synchronizability & well-formedness

We present the condition under which a language synchroniz-

able system is well-formed (see item 3 of outline of proof\abo
for Realizability,). We also use this result in the context of
Realizability; (see Section 4.2).

THEOREM3 (Synchronizability & well-formednessp synchro-
nizable systenT is well-formed if and only ifZ; is well-formed.

Proof: Itis immediate that is well-formed implies thati > 0 :
Z; is well-formed.

For proving the other direction, assume tias synchronizable,
WF(Z;) and ~wF(Z). Therefore, there exists/fa > 1 such that
—-WF(Zy), and there exists a path i, over a sequence of states

P;— P!
to, 1y .-yt tipr, With0 < 4 < 1 : ¢ qu:> tiv1, and the
messagen; is never consumed by pedéi. Recall that, a< is
language synchronizable, any sequence of send actidpdsralso

present inZ;. From these observations, we iteratively construct a
path inZ;.

1. We denote the sequence of send actions causing violation o

well-formedness i, asw mlpﬁpl. Consider the path in the
behavior of peei, over the sequence of local states identical

to the local states aP/ in the sequence, t1, ..., t; in Zy.

2. As T is synchronizable, consider a path over a sequence of
statesy, t1, - . ., £, t;41 in Zy that results in the same sequence

. P —P/ .
of send actionsum,' ', and where all send actions are
immediately consumed by the receiver peer. Such a path is
possible a¥y, Z; andZ; contain identical sequences of send
actions. Note that, this path ify is well-formed.

Consider the path in the behaviors of all peers other than
over the sequence of local states that are identical to It
states in the sequeneg t, . .., t;.

3. Construct a path in the system by considering the locésta
of P/ (item 1 above), the local states of all other peers (item 2
above), and proceed by sequentially matching the sendnactio

P—P/ . . . .
sequencev m, . In this path, if at any point a transition
results in a message sent from a sender p&eto a receiver
peer P, whose receive queue contains one message (to be
consumed), we delay this transition by moving ahead some
transition that occurs after it (shuffle) and does not ingdlve
peersPs and P,.

(a) Given the sequence mlpﬁpl/, if the above shuffle oper-

ation can be performed till the actionlpﬁpl , then a new
path is obtained along which none of the receive queues con-
tain more than one pending message to be consumed, i.e., a
path inZ; is obtained. Further note that, as we have con-
sidered the path of/, where it does not consume the last
messagen;, Z; is not well-formeded. That is, wheh is
synchronizablexwWr(Z) = —WF(Z1).
(b) Consider that such shuffling (item 3 above) can be per-
formed on the prefixv; (such thatv; w2 bws mfgﬁpl =
wmlpﬁpl), after which the shuffle operation of moving
b beforew- is not possible, without allowing at least one
peer’s receive queue to hold more than one message. In the
above,w;, wy andws are sequences of send actions. Let
the shuffling ofw; resulted in a new sequencg. Observe

that,w] bws w3 mfjﬁpl is a sequence ifi;, and it not well-
formeded. Repeat the above steps/starting from tevith

this new sequence; b ws w3 mlpﬁpl . Note that in new it-
eration we are still considering the same path in pger
(item 1 above); but considering new paths for all peers other
than P/. The new paths will ensure that till;, all send ac-
tions are immediately received making room for at least one
more send action (i.eb) to be performed without forcing
any peer’s receive queue to contain more thamessage.

As 7 is synchronizable, the above iteration will always ter-
minate in Step3a, proving that whenZ is synchronizable,
“WF(Z) = —-WF(Z1).

THEOREM4 (Determinism, Synchronizability & well-formedness).
A synchronizable systefnconsisting of deterministic peers is well-
formed.

Proof: A system is synchronizable and consists of deterministic
peers imply that®(Zo) = £(Z:) andZ; is deterministic. Assume
that,Z; is not well-formed.



There exists a sequence of send actions momi ... m..
which leads to a statefrom where a message is never consumed
Due to synchronizability, the same sequence of send adsaiso

presentirZ, where each message sent is immediately consumed. A

similar path is preserif;, where every send action is immediately
followed by the corresponding receive action, resultinthensame
sequence of send actions Recall that, all peers are deterministic.
ThereforeZ; cannot contain two different paths with the same send
sequencev; where one path leads to a state from wheres never

consumed, and in the other all sent messages are consumed. In

other words, a deterministi€; containing deterministic peers is
well-formed. From Theorem 3, the corresponding sysfeswell-
formed, and therefor&/i > 0 : wr(Z;) also holds.

4.14 Deciding Language Realizabilityy

to present the necessary and sufficient conditions for ggu

|
©, P1->P
aPl—>’P}/ e 2

O P2—>PQ P2->P
bP2—>,F;J/\i i o
O O O

Based on the above theorems and propositions, we now proceed Q (f O

realizability according to Realizability

THEOREMS. C is language realizable following Realizabilify=
[£(C) = L(DETERZY)))

Proof: Toprove C is language realizable according to
Realizability, implies £(C) = L(DETER(ZY)).
Assume that’ is language realizable and

L£(C) # L(DETERZY))
i.e.,£(C) C L(DETER(ZY)) (Proposition 2)

AsC is language realizable according to Realizabjlitthere exists
aZ such thati > 0 : £(C) = L(Z;). ThereforeZ is synchroniz-
able,i.e..L(C) = L(Zo) N L(C) = L(Z:1) (From Theorem 2).

We first establish that fo€ to be realizable £(C) must be
identical toL(DETER(ZS)) (or L(Z§); determinizing peers does
not alter the language of the system).

AssumingL(C) # L(Z§), from Proposition 2, we havé(C) C
L(Z§). This implies that there exists a specific ordering of send
actions involving two independent pairs of peers. In otherds,C
has a state from where”™ ~ 72 is followed by ™3 —~"4, and P;'s
are distinct and the reverse ordef® —"* followed by a1~ "2
is not allowed from the same state ¢h Such a conversatio@
cannot be realized by any system as the send acticnsd b are
independent, and any specific ordering requiredCbyannot be
obtained. Therefore, i€ is realizable thenZ(C) = L(Z§) =
L(DETER(ZS)).

From Theorem 1, it follows that ETER(ZS) <. Zo. This
implies thatvi : £(B;) C L(B;), whereB; and B; denote
the behavior of the-th peer in DETER(ZS) andZo, respectively.
(Recall that in IETER(Z), the peer behaviors are determinized,
i.e., B; is deterministic.)

Proceeding further, from Proposition 3, we hay@ETER(ZY )

C L(Z,). This leads to a contradiction as we have assumed
L(C) = L(T)) and £L(C) C L(DETERZY)). Therefore,C is
realizable according to Realizabiljyimplies L(C) = L(Z1) =
L(DETER(ZY)), and note that, BTER(ZY) is well-formed (Theo-
rem 4).

Next, £(C) = L£(DETER(ZY))

= L£(C)= L(DETERZS)) = L(DETER(ZY))
A WF(DETER(ZY))
(Proposition 2)
= Vi>0:L(C)=L(DETERZS)) A WF(DETERZY))
(Theorems 2, 3, 4)
= Cis language realizable according to Realizahijlity
(Definition 7)
|
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Figure 5. A conversation protocol that is language realizable ac-
cording to Realizability.

Consider the conversation specificatidmn Figure 5. The sys-
tem behavior BTER(Z) (irrespective of the receive queue size)
based on peers determinized behaviors {BR(31), DETER(S2))
is language equivalent ©© and iswr(DETER(Z)). Therefore( is
language realizable according to Realizabjjity

4.2 Deciding Language Realizability

THEOREM®G. C is language realizable following Realizabilijy:=
[£(C) = L(DETERZY))].

Proof: The proof proceeds by showing the equivalence between
Realizability, and Realizability.

C is language realizable following Realizability
Vi>0:L(C)=L(Z;) N WF(Z;) (Definition 7)
L£(C) = L(DETERZY)) (Theorem 5
£(C) = L(DETERZY)) F(DETER(Z®))(Theorem 4
L£(C) = E(DETER(IC)) F(DETER(Z®))(Theorem 2
I7: L(C) = L(T) N WF(T)

C is language realizable following Realizability

A%
N W

teeeee

Therefore, from Theorem ] is language realizable following
Realizability < [£(C) = L(DETER(ZY))]. 0

The conversation in Figure 5 is realizable as per Realidphil
The peer behaviors, obtained from projection of the comatens
and determinization, results in a system that is well-fatraed
language equivalent to the conversation.



4.3 Summary of the Results

Theorems 5 and 6 lead to a methodology for automaticallylchec
ing the realizability of a conversation specificatiah for
Realizability, and Realizability.

Deciding realizability was an open problem. We have proved
that realizability can be verified by checking the languageia-
lence betwee@ and1-bounded system over a set of peers obtained
from projection ofC on peers and verifying the satisfiability of a
temporal property by thé-bounded system (well-formedness veri-
fication). Both equivalence checking and well-formednesiica-
tion can be performed automatically (using existing toals)the
1-bounded system and the conversation representing theaor
raphy specification both have finite state-space. Furthexnwe
have proved that Realizabilifyand Realizability; are equivalent
when language equivalence between choreography and sistem
considered.

The complexity for well-formedness verification is linearthe
size of thel-bounded system and the size of the CTL formula
specifying the well-formed property (complexity for CTL hel
checking [10]). The complexity for language equivalenceaking
is PSPACE-complete for language equivalence.

The conversation protocols shown in Figures 1, 2 and 3 are

language realizable according to Realizabilignd Realizability.

5. Experimental Evaluation

We have automated our approach for checking realizabifinon-
versation protocols leveraging the CADP toolbox [17], vihpro-
vides a wide range of constructs for representing commtinga
finite state machines and mechanisms for checking equiseden
between such state machines.

We have implemented a translator, which takes a conversatio
protocol specification as input (specified in the conveosagiroto-
col format of the Web Service Analysis Tool [15]) and genesat
two LOTOS specifications (the specification language for ®XD
(a) one that corresponds to the conversation protocolf itsed
(b) another one that corresponds to the 1-bounded-asymmiiso
projection of the protocol. We have developed SVL script§] [1
that automatically construct state machine representafrom the
LOTOS specifications, and check language realizability dyylaly-
ing CADP’s Reductor tool, which reduces the state machimels a
checks equivalence between them in an optimized fashion.

5.1 Conversation Protocol to LOTOS Translation

INnLOTOS, processes are declare@asess proc[mi, m2, ...]:
exit := behavior, Whereprocess is a keyword proc is the pro-
cess nameyt, m2,
by this process, anskhavior describes the process behavior. The
process behavior specifies the message exchange orderthising
LOTOS operators. The sequential ordering is specified usiag
operator; where,e.g, m1;m2 means that message must precede
messagean2. Choices are specified using the operatdrwhere

... are the messages that are sent and received

state shown in Figure 2. This looping process describesatiple
behaviors starting from theeady state.

process KEYBOARDDEVICECONTRACT[Success_S_C,
PollKey_C_S ,AckKey_S_C,GetKey_C_S , NakKey_S_C]:
exit =
Success_S_C
where
process LOOP_READY[...]

; LOOP_READY[...]

. oexit =

((GetKey_C_S; ((AckKey_S_C ; LOOP_READY[...])
[] (NakKey_S_C ; LOOP_READY[...])))
[] (PollKey_C_S; ((AckKey_S_C ; LOOP_READY[...])
[1 (NakKey_S_C ; LOOP_READY[...]))))
endproc
endproc

5.2 1-Bounded Asynchronous Projection in LOTOS

The LOTOS language does not support asynchronous communi-
cation directly. In order to generate the 1-bounded asymdus
model in LOTOS we create a bounded FIFO queue process (which

can store at most one message) for each message queue. Given a

conversation protocol, we need to create a message queeador
process generated from its projection. For instance, thgegion

of the KeyboardDeviceContract generates two processes, namely,
SERVER andCLIENT. In order to generate the asynchronous version
of the server process we compose $EeVER and the queue pro-
cess using LOTOS composition operat@ft, n2, ...l where
both processes synchronize on shared messages2, ....This
queue is responsible for storing the (at most one) messades t
consumed by the server.

process ASYNC_SERVER][...]
( SERVERTJ...]
...
SERVER_queue|[...](queue(l,nil)) )
endproc

i oexit = ...

The queue associated with the server synchronizes withligme ¢
by receiving the actions sent by the client; it also synclanemwith
the server by sending the actions that are consumed imragdiat
by the server. The synchronized actions between the quelthan
server are hidden during the composition and becerfiaternal)
transitions in LOTOS (i.e.¢-transition as per our notation). Sim-
ilarly we generate the asynchronous version of the clicotgss
by composing the client’'s receive queue and ¢heeNT process.
Finally, the overall 1-bounded asynchronous model is abthby
composing the\SYNC_SERVER process with theSYNC_CLIENT pro-
cess using the LOTOS operator. . .11. These two processes syn-
chronize on the message send events.

5.3 Equivalence Checking

After generating the LOTOS specifications for the convéssairo-
tocol and 1-bounded asynchronous projection models, wergen
the two corresponding LTSs using the state space genetatitm
in the CADP toolbox. We check the equivalence of the two LTSs
to determine realizability of the protocol. During the eglénce

m1[Im2 means that only one message can be executed. Looping beehecking, the receive actions are hidden (as internalraefi@and

havior is encoded as a process with a recursive behavidty] the

internal 7 action and the system termination are described using

the LOTOS messagasandexit, respectively.
Consider thekeyboardDeviceContract (Figure 2) which de-
scribes the interaction between a server and its clientoviel

the send actions are left visible.

In order to check the language realizability in an optimized
way, we first reduce the resulting LTSs modulo weak trace- rela
tion which reduces the transition systems without moddytheir
visible traces. Then we check the equivalence of reduced @S

we show a portion of the automatically generated LOTOS code the conversation protocol and its 1-bounded-asynchropoojgec-

for this contract. We use the suffis_c to denote the messages
sent by the server to the client and we use the suffix to de-

tion using the weak trace equivalence relation. If the tw&&are
equivalent this means that send-traces for the convensatioto-

note the messages sent by the client to the server. The procescol and its 1-bounded-asynchronous projection are idanéind,

KEYBOARDDEVICECONTRACT starts with the messagsuccess_S_C
which is sent from the server to the client and then the contra
makes a transition into a looping process which starts akdhey

hence, the conversation protocol is language-realizéfllee two
LTSs are not equivalent, then we conclude that the conversat
protocol is not language-realizable.



Conversation Protocol Siz¢  Async. Model Size Analysis Time (seconds)

cl | |A| icl 1 1A Reduction | Equivalence
Mean 6.70 9.74 3268.83 19133.72 11.53 2.18
Min 2 1 2 1 6.50 0.48
Max 31 68 302449 1791867 39.91 3.07
STDV 4.40 9.02 30713.29 | 181950.70 3.12 0.27

Table 1. Protocol and model sizes and analysis time for the expetsreamthe realizability of conversation protocol€’(: the number of

states]A|: the number of transitions).

Conversation| Language
Protocols Realizable
Singularity Channels 86 84
Choreographies 9 8
Collaboration Diagramsg 9 8

Table 2. Results of the experiments on language realizability.

5.4 Experiments

We applied our approach to 104 conversation protocols wtiech
scribe web service choreographies, Singularity OS chacoe!
tracts, and UML collaboration diagrams. All these spediice
were first automatically translated to conversation proi®¢in the
conversation protocol format of the Web Service Analysisl)lo
using the translators described in [15], [34], and [7], extipely.
Then we used the conversation protocol to LOTOS translator w
described above to generate the LOTOS specifications farahe
versation protocol and the 1-bounded asynchronous pioject

We report the cumulative results of our analysis in Table 1
showing the sizes of the conversation protocol specifinatiasyn-
chronous models and the execution times for the reductidrifen
equivalence checking steps. The conversation protocdlifsgze
tions are not very large, the biggest one has 31 states ana®8 t
sitions. 1-bounded asynchronous model can be very largenie s
cases, however the reduction techniques we use reduceiéke s
of the models significantly. The reductions take about 1bsés
on average and the equivalence check takes about 2 secoagls on
erage. So realizability of a conversation protocol can terdgned
in about 13 seconds on average.

According to the results of our analysis (see Table 2) allcon
versation protocols in our base are language realizabkepeXour.
Two of the four that fail the realizability check are Singitiachan-
nel contracts which were confirmed by the Singularity depete
to be faulty [34].

6. Related Work

The language-based choreography realizability probleradover-
sation protocols was first proposed in [14] where sufficiemtdi-
tions for realizability were given. The work on session ty[j£9,
20] is also related to the realizability of conversationtpools and

protocol works fine for either case. Protocols which are isftype
and are realizable appear in practice (for example, prégéagbere
one of the peers can cancel the interaction at an arbitrany)@nd
cannot be shown to be realizable with these earlier appesach

Choreography realizability problem for several differenm-
munication models have been investigated in [25], howekrepre-
sented techniques can only show realizability if the asyorobus
projection of the protocol has a finite state space (whichlévou
not be the case if the protocol has a single self loop for exam-
ple). More recently, [27] presented an approach that ortywal
specification of realizable choreographies but, like thera@ches
discussed above, this approach does not allow specificafios
alizable choreographies that have arbitrary initiatotestaFinally,
[18] proposed a new realizability check that correctly itfées the
realizability of many arbitrary initiator protocols, howes, like all
the earlier results, it still provides a sufficient conditifor realiz-
ability, and decidability of the realizability problem hemmained
open. In this paper we give a necessary and sufficient condibr
realizability and show that it is a decidable problem. lagtingly,
the similar realizability problem for the MSC-graphs (whiis an
extension of MSCs) is undecidable [1].

Realizability of collaboration diagrams has been studgehd
it has been showed that language realizability for collabon dia-
grams can be checked by checking the equivalence of theatrore
raphy model with the 1-bounded asynchronous model [32]. How
ever, the collaboration diagram model used in [32] is not@ses-
sive as the conversation protocols, and cannot model thrguin
ity contracts and the web service choreographies we ardliyze
our experiments.

Realizability of Singularity channel contracts have beest fi
studied in [34] using the realizability conditions from [14he
realizability check we present in this paper can identifynedSin-
gularity channel contracts as realizable for which theizaallity
check used in [34] gives false positives.

Message patterns expressed with Petri nets using
synchronous communication are “de-synchronized” in [1ijat
is, one is interested in finding a specification that prodtitesame
pattern of messages when communications become asyncistono
This work, however, already assumes that a conversaticenlz¥
able and does not provide realizability conditions.

The work presented in [26] checks choreography realizgbili
using the controllability concept. Given a choreographscdigtion,

a monitor service is computed from that choreography, and is
used as a centralized orchestrator of the interaction topaten

has been used as a formal basis for modeling choreography lanthe distributed peers. The choreography is said to be edréiz

guages [9]. The restrictions used in session types to giesrahat
local implementations follow the global interaction proced are
similar to the sufficient conditions for realizability givén [14] and
they are not necessary conditions, i.e., there are reddizhbreog-
raphy specifications which fail the conditions given in tnesrlier
results. In particular, both of these earlier approachesadallow
a protocol containing a state with arbitrary initiator [18], i.e., a
state where more than one peer could send the next messatleand

if the monitor service is controllable, that is, there exist set

of peers such that the composition of the monitor service and
those peers is deadlock-free. Our approach is differemesine
distributed peers are computed without the centralizedestrator,
i.e., the realizability notion we study in this paper doesrequire a
monitor service, and our techniques for checking reallitglyely

on equivalence checking rather than controllability cliegk



7. Conclusion

In this paper, we prove that the choreography realizalplibblem
is decidable for systems communicating with asynchronoas-m

sages using unbounded FIFO message queues. We provide a ne&td!

essary and sufficient condition for realizability whichtegthat,
a choreography specification is realizable for systems agyn-
chronously communicating peers over unbounded messagesjue
if and only if, the choreography specification behavior isieglent

to the behavior of a well-formettbounded system where each peer

behavior is obtained from determinizing the projectionhaf thore-

ography (on each peer) and where each peer has a message queue

of sizel. As the choreography specification and theounded sys-
tem both exhibit finite state-space, checking languagézedaility
of the choreography specification can be automaticallyoperéd
using existing equivalence checking and model checkinks to'de
have also implemented our technique for realizability &vegin a
prototype tool using CADP toolbox and verified the realiligbof

a wide range of choreography specifications that describde &k
vice interactions, Singularity OS contracts and UML cotiediion
diagrams.
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