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Abstract
Since software systems are becoming increasingly more concurrent
and distributed, modeling and analysis of interactions among their
components is a crucial problem. In several application domains,
message-based communication is used as the interaction mecha-
nism, and the communication contract among the components of
the system is specified semantically as a state machine. In the
service-oriented computing domain such communication contracts
are called ”choreography” specifications. A choreography speci-
fication identifies allowable ordering of message exchangesin a
distributed system. A fundamental question about a choreography
specification is determining its realizability, i.e., given a choreog-
raphy specification, is it possible to build a distributed system that
communicates exactly as the choreography specifies? Checking re-
alizability of choreography specifications has been an openprob-
lem for several years and it was not known if this was a decidable
problem. In this paper we give necessary and sufficient conditions
for realizability of choreographies. We implemented the proposed
realizability check and our experiments show that it can efficiently
determine the realizability of 1) web service choreographies, 2) Sin-
gularity OS channel contracts, and 3) UML collaboration (commu-
nication) diagrams.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: [Formal Methods]

General Terms Verification

Keywords Message-based Interactions, Choreography, Realiz-
ability

1. Introduction
Most software systems nowadays involve concurrent or distributed
behavior or both. They run concurrently on multi-core hardware,
interact with each other over the network and access data and
computational resources distributed over the compute cloud. An
important concern in construction of concurrent and distributed
software systems is the coordination of different components that
form the whole system. In order to complete a task, components of
a software system have to coordinate their executions by interacting
with each other, and specification and analysis of such interactions
is a challenging problem.

Message-based communication is a common interaction mecha-
nism used in concurrent and distributed systems where components
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interact with each other by sending and receiving messages.Speci-
fication and analysis of message-based interactions has been an ac-
tive research area studied in several application domains including
coordination in service-oriented computing [9, 37], interactions in
distributed programs [2] and process isolation at the OS level [12].
A crucial problem in all these domains is the choreography real-
izability problem. A choreography specification identifiesthe set
of allowable message exchange sequences among the components
(peers) of a distributed system. A choreography is realizable if there
is a way to implement a set of components that conform to the
choreography.

Many message-passing systems use asynchronous messag-
ing [4, 23, 24, 28, 30] where components interact with each other
by sending and receiving messages over unbounded FIFO chan-
nels. Even when the behavior of each component is modeled as a
finite state machine, if asynchronous communication is used, the
state space of the overall system is infinite. In fact, finite state
systems communicating with unbounded FIFO communication
channels are powerful enough to simulate Turing machines, and,
hence, many verification and analysis problems for them are un-
decidable [6]. Determining realizability of choreographyspecifica-
tions for asynchronously communicating systems has been anopen
problem for several years and it was not known if it is decidable.

More precisely, the choreography realizability problem is, given
a choreography specified as a finite state machine, is it possible
to determine if there exists a set of asynchronously communicat-
ing (finite) state machines that generate precisely the set of mes-
sage sequences specified by the choreography specification.Note
that, given a set of asynchronously communicating (finite) state
machines, it is not possible to automatically determine theset of
message sequences generated by them. However, in this paperwe
show that the realizability of a choreography specificationis decid-
able, and we give a necessary and sufficient condition for determin-
ing realizability. There have been earlier results in this area that
provide sufficient conditions for choreography realizability (e.g.,
[14, 18, 25]). To the best of our knowledge this is the first paper
that identifies a necessary and sufficient condition and demonstrates
the decidability of the choreography realizability problem. We have
also experimentally evaluated our approach by checking therealiz-
ability of Singularity channel contracts [12], web servicechoreogra-
phies [37] and collaboration diagrams [7].

Rest of the paper is organized as follows. In Section 2, to mo-
tivate our work, we discuss how the realizability problem arises
in different domains. We also give a high level overview of the
proposed approach. In Section 3 we formally define the realizabil-
ity problem by formalizing the communication contracts as finite
state conversation protocols and a distributed system as a set of fi-
nite state peers communicating via messages over FIFO message
queues. In Section 4 we present our main results on realizability.
In Section 5 we discuss our implementation using the CADP tool-
box [17]. In Section 6 we discuss the related work and in Section 7
we conclude the paper.



...
<interaction name="SendOffer"

operation="offer"
channelVariable="tns:R1ToR2C">

<participate
relationshipType="tns:Hagglers"

fromRoleTypeDef="tns:R1"
toRoleType="tns:R2/>

<exchange name=... action="sendOffer">
<send var="cdl:getVar("offer")/>

</exchange>
...

</interaction>
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Figure 1. Part of the WS-CDL choreography specification for a
bilateral negotiation protocol [22] and the correspondingstate ma-
chine.

2. Motivation and Overview
In this section we motivate our work by describing four application
domains where the choreography realizability problem appears and,
therefore, the results from this paper are directly applicable.

2.1 Service Interactions: Choreography Specifications

Service oriented computing provides technologies that enable mul-
tiple organizations to integrate their businesses over theInter-
net [13, 31]. Typical execution behavior in such a distributed sys-
tem involves a set of autonomous peers1 interacting with each other
through messages. For instance, consider a group of organizations
that wish to integrate their online businesses. The front end that
enables user interaction via web browsers may reside withinone
organization, however, in order to serve a user request, this front
end may send and receive messages from software components that
reside in other organizations. The goal of web services standards
and technologies is to facilitate this type of business to business
integration. Modeling and analysis of interactions is a crucial prob-
lem in this domain due to several distinguishing features ofsuch
systems.

First, organizations may not want to share the internal struc-
tures of their software components with other organizations they
intend to do business with. This type of decoupling requiresstan-
dardized and rich interface specifications that enable integration of
software components that may be written using different languages
and implementation platforms. In order to achieve such a decou-
pling among different components, it is necessary to specify the
interactions among different components without referring to the
details of their local implementations.

1 We use “peer” to denote a process/component/program/service that inter-
acts with other processes/components/programs/services.

Second, modeling and analyzing the global behavior of such dis-
tributed systems is challenging since no single party may know the
full details of all the components in such a system. In the absence
of detailed models for the distributed components that participate in
such a system, the desired global behaviors have to be specified as
constraints on the interactions among different components, since
the messages exchanged among different components are the only
observable global behavior. Moreover, for this type of distributed
systems, it might be worthwhile to model the interactions among
different software components before the components are written.
This type of top-down design may help different organizations to
better coordinate their development efforts.

Choreography specificationlanguages target specification of
this type of interactions. For example, Web Services Choreogra-
phy Description Language (WS-CDL) [37] is an XML-based lan-
guage for describing the interactions among the peers participating
in a composite web service. A choreography specification in WS-
CDL corresponds to a global ordering of the message-exchange
events among the peers participating in a composite service, i.e., a
choreography specification identifies the set of allowable message
sequences for a composite web service. Figure 1 presents a snap-
shot of a WS-CDL specification for two services (behaving asR1,
i.e., Role1 andR2, i.e., Role2) participating in a “haggling” process
where each service continues sending offers to the other until one
of them accepts the offer or cancels the process. The specification
contains information regarding the roles, description of every ac-
tion in terms of the sender, receiver and the message contentand
type, and the ordering (branching and sequencing) of actions.

2.2 Interactions Among Concurrent Processes: Singularity
Channel Contracts

Singularity is a new, experimental, operating system developed by
Microsoft Research to explore new approaches to OS design [21].
One of its main goals is to improve the dependability of software
systems by rethinking some design decisions that have largely gov-
erned operating system architecture to date. Process isolation is
a chief design principle of the Singularity operating system. To
achieve this, certain constraints are enforced to ensure process in-
dependence. Among these is the rule that processes cannot share
memory with each other or the kernel. All inter-process commu-
nication in Singularity, therefore, occurs via message-passing over
bidirectional conduits, called channels.

Channels have two end points referred to as the client and
the server. The client and the server processes use the channel to
communicate with each other by sending and receiving messages.
Communication through Singularity channels corresponds to asyn-
chronous communication via FIFO queues.

In Singularity, each channel is governed by achannel con-
tract [12, 33]. A channel contract is basically a state machine that
specifies the allowable ordering of messages between the client and
the server. Hence, channel contracts serve the same purposethat
choreography specifications serve in service-oriented computing.

Singularity processes are written in an extension of C# called
Sing#. It provides constructs for writing channel contracts and its
compiler statically checks that the processes communicating over
a channel conform to its contract. Figure 2 presents a simplified
version of a Sing# contract governing a channel used by Singularity
for interacting with a keyboard device. This contract defines three
states (Start, Ready, andWaiting) and the evolution among states
(->) correspond to message exchanges. Singularity contracts are
written from the perspective of the server, where send actions by
the server are appended with! to denote communication from the
server to the client and receive actions by the server are appended
with ? to denote communication from the client to the server.



public contract KeyboardDeviceContract {

state Start: {
Success! -> Ready;

}
state Ready: {

GetKey? -> Waiting;

PollKey? -> (AckKey! or NakKey!) -> Ready;
}

state Waiting: {
AckKey! -> Ready;

NakKey! -> Ready;
}

}

S −−> C

Waiting Ready Ready$0

Start

Success

PolKey
C −−> S

NakKey
S −−> C

NakKey
S −−> C

GetKey
C −−> S

AckKey
S −−> C

AckKey
S −−> C

Figure 2. A simplified channel contract from the Singularity OS
for keyboard interaction written in Sing# [33] and the correspond-
ing state machine.

+NAME("IRC SERVER")
...
+STATE start

logon() => ok() & active
| error() & stop

+STATE active
ls() => files() & active

getFile() => fileSent() & active
| noFileErr() & stop

...

ls
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Figure 3. Part of a communication contract for a distributed Er-
lang program written in UBF(B) [2] and the corresponding state
machine.

2.3 Interactions Among Distributed Components: UBF(B)
Contracts

Erlang is a general purpose concurrent programming language that
was developed initially at Ericsson for improving the dependability
of telephony applications [3]. In Erlang, processes do not share
memory and only interact with each other via exchanging messages
asynchronously.

UBF(B) is a language for specifyingcommunication contracts
in distributed Erlang programs [2]. Figure 3 presents partial spec-
ification of a IRC server interface specification and describes the
evolution of the server from one state (start, active, etc.) to an-
other in response to external stimuli (logon, ls, etc.). UBF(B) con-
tracts are based on finite state machines. Given a state (e.g., start),
a transition from that state identifies a request-response sequence
where, after receiving a message (e.g.,logon), the process sends a
response (e.g.,ok) and moves to the destination state (e.g.,active).

2.4 Visual Interaction Specifications: Collaboration
Diagrams

Collaboration diagrams (called communication diagrams in[36])
provide a convenient visual formalism for specifying the interac-
tions among the participants of a distributed system [7, 8].A col-
laboration diagramis a visual representation of a set of peers, a set
of communication links among them, and an ordering of the mes-
sage exchanges among the peers. Unlike MSCs [29], collaboration
diagrams specify the global ordering of send events rather than the
local ordering of send and receive events. The semantics of collabo-
ration diagrams can be formalized as a state machine characterizing
all allowable ordering of message exchanges in a distributed system
[8]. Hence, for example, collaboration diagrams can be usedas a vi-
sual formalism for representing web service choreographies.

2.5 Overview of the Proposed Approach

Web service choreography specifications, Singularity channel con-
tracts, UBF(B) contracts and collaboration diagrams are all differ-
ent mechanisms for specifying ordering of messages exchanged
among a set of concurrent or distributed processes. Analysis of
message-based interactions is an essential problem for allthese
languages. And, although these languages target differentapplica-
tion domains, the interaction analysis problem remains thesame. In
short (a) communication contract specifications cut acrossa wide
range of application domains (service-oriented computing, new
paradigms for OS, embedded systems); (b) communication con-
tracts are used to specify message-based interactions among peers
(services, client/servers, real-time software); and, finally, (c) one
key problem for communication contracts used in each of these
application domains is to check whether a given communication
contract can berealized.

In this paper we present a necessary and sufficient conditionfor
realizability and show how it can be applied to multiple domains. In
our approach, we first translate communication contracts specified
in different languages into aconversation protocolwhich is a finite
state machine that specifies the allowable sequences of messages
(i.e., conversations) among a set of peers. For instance, the state ma-
chine shown in Figure 1 (oi: offer, ai: acceptance andci: cancella-
tion sent byRi) is the conversation protocol for the corresponding
WS-CDL choreography specification. We label the transitions of
the conversation protocols withSender→ Receiver:Msg, denoting
the sending of messageMsg from theSenderpeer to theReceiver
peer. The state machines shown in Figures 2 and 3 are the conversa-
tion protocols for the corresponding Sing# channel contract and the
UBF(B) communication contract specifications, respectively. In the
following section we give a formal definition of conversation pro-
tocols.

In order to analyze realizability of conversation protocols, we
also need a formal model of distributed systems that interact with
messages. We model such systems as a set of peers, where the be-
havior of each peer is specified as a finite state machine. We assume
that each peer has a FIFO message queue that stores messages sent
to it by the other peers. When a peer executes a send transition, the
sent message is appended to the message queue of the receiving
peer. A peer can only execute a receive transition if the transition



matches the message at the head of its receive queue. When a peer
executes a receive transition, the message at the head of itsreceive
queue is removed. The behavior of the overall system is defined by
interleaving the executions of peers.

A conversation protocol is said to be realizable if and only if
there exists a set of peers whose interactions conform to thecon-
tract. Note that, by interactions we mean send sequences (i.e., con-
versations); the receive actions occur locally when a peer consumes
a message from its own message-queue. This is in contrast to the
earlier work on realizability of MSCs (for example in [1, 35]) where
both the send and receive actions are considered. The realizability
problem MSC-graphs is undecidable. It is not immediately clear
if ignoring the receive actions simplifies the realizability problem,
since the basic formal model we are looking at involves peersthat
are interacting in an asynchronous fashion, and each peer isas-
sumed to have a receive-queue of unbounded size. As a result,the
state space of the global system consisting of multiple peers may
be infinite.

Themain result we present in this paper is that choreography
realizability problem is decidable which has been an open problem
for several years. We provide a necessary and sufficient condition
for realizability which states that a choreography specification is
realizable if and only if

• its behavior is language equivalent to the1-bounded system of
asynchronously communicating peers, where each peer behav-
ior is obtained from the projection of the choreography (on each
peer) and where each peer has a message queue of size1 (equiv-
alence condition); and

• the 1-bounded system satisfies a specific temporal property
(well-formedness condition).

Since the choreography specification and the1-bounded system
both have finite state spaces, we were able to implement an au-
tomated choreography realizability checker using existing equiva-
lence checking and model checking tools.

3. Conversations & Realizability
We formalize choreography specifications using conversations and
conversation protocols (Section 3.1), define distributed systems
with asynchronous communication (Section 3.2), and present dif-
ferent variations of choreography realizability (Section3.3).

3.1 Conversations

We use state machines to characterize conversation protocols, peer
behaviors and distributed systems that consist of asynchronously
communicating peers [14].

DEFINITION 1 (Conversation Protocol).A conversation protocol
is represented byC = (P , SC , sC

0 , L, ∆c) whereP is a finite set
of peers,SC is a finite set of states,sC

0 ∈ C is the initial state,
L is a finite set of message labels and, finally,∆c ⊆ SC × P ×
L × P × SC is the transition relation. A transition of the form
(sC

i , P, m, P ′, sC
j ) ∈ ∆c represents the sending of messagem

fromP to P ′ (P, P ′ ∈ P).

Figures 1, 2 and 3 present the communication contracts from three
different domains and the corresponding conversation protocols.
The start states are denoted by an incoming arrow without a source
state. Each transition is labeled with a message along with the
sender and the receiver of the message. We denote the transition
labels asmP→P ′

, wherem is the message being sent byP to P ′.

3.2 Systems

DEFINITION 2 (Peer Behavior).The behaviorB of a peerP is a
finite state machine(M, T, t0, δ) whereM is the union of input

(M in) and output (Mout) message sets,T is the finite set of states,
t0 ∈ T is the initial state, andδ ⊆ T × (M ∪ {ǫ}) × T is the
transition relation.

A transitionτ ∈ δ can be one of the following three types: (1) a
send-transition of the form(t1, !m1, t2) which sends out a message
m1 ∈ Mout, (2) a receive-transition of the form(t1, ?m2, t2)
which consumes a messagem2 ∈ M in from peer’s input queue,
and (3) anǫ-transition of the form(t1, ǫ, t2). We writet

a
−→ t′ to

denote that(t, a, t′) ∈ δ.

Figure 4 illustrates the behaviors of two communicating peers P1

andP2 with send and receive actionsa, b andc.

DEFINITION 3 (System Behavior).Given a set of peersP =
{P1, . . . , Pn} with Bi = (Mi, Ti, t0i, δi) denoting the behavior
of Pi andMi = M in

i ∪ Mout
i such that

- ∀i : M in
i ∩ Mout

i = ∅,
- ∀i, j : i 6= j ⇒ M in

i ∩ M in
j = Mout

i ∩ Mout
j = ∅,

a system behavior or simply a system overP is denoted by a state
machine (possibly infinite state)I = (P , S, s0, M, ∆) where

1. M = ∪iMi

2. S ⊆ Q1 × T1 ×Q2 × T2 . . .Qn × Tn such that∀i ∈ [1..n] :
Qi ⊆ (M in

i )∗

3. s0 ∈ S such thats0 = (ǫ, t01, ǫ, t02 . . . , ǫ, t0n); and
4. ∆ ⊆ S × [(P × M × P) ∪ {ǫ}] × S, and for

s = (Q1, t1, Q2, t2, . . . Qn, tn) ∈ S and
s′ = (Q′

1, t
′
1, Q

′
2, t

′
2, . . . Q

′
n, t′n) ∈ S

(a) s
m

Pi→Pj
−−−−−−→ s′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈ Mout

i ∩ M in
j ,

(i) ti
!m
−−→ t′i ∈ δi, (ii) Q′

j = Qjm, (iii) ∀k ∈ [1..n] : k 6=
j ⇒ Qk = Q′

k and (iv)∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

[send action]

(b) s
ǫ
−→ s′ ∈ ∆ if ∃i ∈ [1..n] : m ∈ M in

i (i) ti
?m
−−→ t′i ∈ δi,

(ii) Qi = mQ′
i, (iii) ∀k ∈ [1..n] : k 6= i ⇒ Qk = Q′

k and
(iv) ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

[receive action]
(c) s

ǫ
−→ s′ ∈ ∆ if (i) ∃i ∈ [1..n] : ti

ǫ
−→ t′i ∈ δi, (ii) ∀k ∈

[1..n] : Qk = Q′
k and (iii) ∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

[internal action]

The above definition states that peers in the system communicate
in an asynchronous fashion. Each peer has an unbounded message
queue (Qi) and a message sent to a peer gets inserted to the tail of
the queue, while a message consumed by a peer is consumed from
the head of its message queue.

Note that, send actions involve two peers, the peer sending the
message and the message queue of the receiver peer; on the other
hand, the receive action is local and involves only the receiver peer.
The behavior of the system depends on the order the send and
receive actions as well as the size of the message queues associated
with each peer participating in the system. In the following, we
define k-bounded systems, where each participating peer has a
message queue of sizek. The send actions in such a system is
blocked if the receiver peer’s message queue is full (i.e., containsk
pending messages to be consumed).

DEFINITION 4 (k-bounded System).Ak-bounded system (denoted
byIk) is a system where the length of message queue for any peer
is at mostk. The description ofk-bounded system behavior is,
therefore, realized by augmenting condition 4(a) in Definition 3 to
include the condition|Qj | < k, where|Qj | denotes the length of
the queue for peerj.



Figure 4 illustrates the behavior ofI1 obtained from the two peers
P1 andP2 with asynchronous communication. For brevity, we only
show the transitions that involve send actions.

We also define synchronous behavior of a system where every
send action by a peer is consumed immediately by a receiver peer,
i.e., the peers interact synchronously. This can be viewed as the
case where the peers do not have any message queues.

DEFINITION 5 (Synchronous Behavior).Given a set of peersP =
{P1, . . . , Pn} withBi = (Mi, Ti, t0i, δi) denoting the behavior of
Pi andMi = M in

i ∪ Mout
i , such that

- ∀i : M in
i ∩ Mout

i = ∅,
- ∀i, j : i 6= j ⇒ M in

i ∩ M in
j = Mout

i ∩ Mout
j = ∅,

the synchronous system behavior containing the peers inP is
denoted by a state machineI0 = (P , S, s0, M, ∆) where

1. M = ∪iMi

2. S ⊆ T1 × T2 × . . . × Tn

3. s0 ∈ S such thats0 = (t01, t02 . . . , t0n); and
4. ∆ ⊆ S×[(P×M×P)∪{ǫ}]×S and fors = (t1, t2, . . . , tn) ∈

S ands′ = (t′1, t
′
2, . . . , t

′
n) ∈ S

(a) s
m

Pi→Pj
−−−−−−→ s′ ∈ ∆ if ∃i, j ∈ [1..n] : m ∈ Mout

i ∩M in
j , (i)

ti
!m
−−→ t′i ∈ δi, (ii) tj

?m
−−→ t′j ∈ δj , (iii) ∀k ∈ [1..n] : k 6=

i ∧ k 6= j ⇒ t′k = tk

[synchronoussend-receive action]
(b) s

ǫ
−→ s′ ∈ ∆ if ∃i ∈ [1..n] (i) ti

ǫ
−→ t′i ∈ δi, (ii)

∀k ∈ [1..n] : k 6= i ⇒ t′k = tk

[internal action]

The synchronous composition of behaviorsB1 andB2 of peersP1

andP2, respectively, in Figure 4 would have a structure that is iden-
tical to B2, with one branch having transitionsaP2→P1 , followed
by bP1→P2 , followed bycP1→P2 ; and the other branch having tran-
sitionsaP2→P1 , followed bycP1→P2 , followed bybP1→P2 .

PROPOSITION1. The synchronous system behavior containing a
set of peersP = {P1, . . . , Pn} with peer behaviorsBj (1 ≤ j ≤
n) where each peer behaviorBj (1 ≤ j ≤ n) is deterministic, is
also deterministic, i.e., the labels on any pair of outgoingtransi-
tions from a state are distinct. Any peer behavior with finitestate-
space can be determinized and a systemI (resp.Ik, k ≥ 0) ob-
tained by determinizing the peer behaviors is denoted byDETER(I)
(resp.DETER(Ik)).

Finally, we define the concept of well-formed systems.

DEFINITION 6 (Well-formed System).A system containing a set
of peersP = {P1, P2, . . . , Pn} with peer behaviorsBj (1 ≤ j ≤
n) is said to be well-formed if and only if every message sent byany
peer can be eventually consumed along some path in the system
by the receiver of the message. This can be expressed precisely in
temporal logic CTL [10] as

AG(|Qi| > 0 ⇒ EF(|Qi| = 0)) (1)

The property states that whenever the size of the receive queue,Qi,
of thei-th peer is greater than0 (i.e.,Qi is non-empty), the system
can eventuallymove to a state whereQi is empty.

All synchronous systems,I0, are well-formed by definition. For all
k-bounded asynchronous systems, it can be automatically verified
(via model checking) whether the system is well-formed or not.
Any k-bounded system has finite state-space; one can model check
such a system against the CTL property (Equation 1).

If a systemIk is well-formed, we say thatWF(Ik). Note that,
well-formedness checking for asynchronous systems (wheremes-
sage queues are unbounded) is undecidable in general.

3.3 Realizability

We consider two variations of realizability. We refer to these varia-
tions as Realizability∀ and Realizability∃.

DEFINITION 7 (Realizability).A conversation protocolC defined
over a set of peersP = {P1, P2, . . . , Pn} is said to be realizable
according to Realizability∀ or Realizability∃, if and only if there
exists some peer behaviorsBj (1 ≤ j ≤ n) and a systemI defined
using these behaviors, such that

Realizability∀: for all i ≥ 0, C is equivalent toIi andWF(Ii), or
Realizability∃: C is equivalent toI andWF(I)

respectively.

Realizability∀ requires the existence of a system such that its be-
haviors for all possible receive queue sizes are equivalent toC.
Realizability∃ requires the existence of a system such that its be-
havior is equivalent toC when unbounded receive queues are used.

Note that, the above variations, Realizability∀ and Realizability∃,
require theequivalencebetween the conversationC, and the sys-
tem(s)Iis andI, respectively. We consider language equivalence,
which ensures that any linear temporal logic property satisfied by
the conversation protocol is also satisfied by the system that realizes
the conversation. Earlier work [14, 18] on choreography realizabil-
ity has focused on language equivalence and Realizability∃, where
sufficient conditions for determining Realizability∃ have been pro-
vided.

It may appear that Realizability∀ is a stronger notion com-
pared to Realizability∃ in the sense that ifC is realizable ac-
cording to Realizability∀ then it is also realizable according to
Realizability∃. However, we show in this paper that Realizability∀
and Realizability∃ are equivalent.

3.3.1 Language Equivalence & Preorder

Language Equivalence. For a conversation protocol, the alpha-
bet isΣ = ∪{mP→P ′

}, whereP , P ′ are peers in the conversation
andmP→P ′

is a send action (Definition 1). We denote the language
of a conversationC asL(C), which contains any sequence overΣ
from the start state. For example, the language of the conversation
in Figure 1 includes a sequence whereoR1→R2

1 is eventually fol-
lowed byaR2→R1

2 and in between there are finite number of subse-
quences of the formoR2→R1

2 oR2→R1
1 .

For a peer behavior, the alphabet isΣ = M in ∪ Mout, where
M in andMout are receive and send actions of the peer respectively
(Definition 2). We denote the language of a behaviorB of a peerP
asL(B). For example, in Figure 4, the behaviorB1 of P1 includes
the sequence?a!b!c in its language.

For a system, the alphabet isΣ = ∪{mP→P ′

}, whereP , P ′

are peers participating in the system andmP→P ′

is a send action
in the behavior of peerP (Definition 3). We denote the language
of a systemI (resp.Ik) as L(I) (resp.L(Ik)). For example,
the language of the systemI1 in Figure 4 includes the sequence
aP2→P1bP1→P2cP1→P2 .

Based on the Definition 7, language realizability requires that
L(C) = L(Ii) for all i ≥ 0 for Realizability∀ andL(C) = L(I)
for Realizability∃.

Ordering. We also require the concept of an ordering between
systems, conversations and peers in terms of their language. Order-
ing with respect to language can be easily obtained using thesubset
relation.



4. Deciding Realizability
In this section, we prove that determining realizability isdecidable,
present the necessary and sufficient condition for checkingrealiz-
ability of a given conversation protocol and show that this condition
can be efficiently computed using existing techniques for equiva-
lence checking and model checking. We prove that a conversation
protocolC is realizable if and only if it is realized by a well-formed
system obtained from peer projections ofC. We define the peer pro-
jection of a conversation protocol as follows.

DEFINITION 8 (Peer Projection).The projection of a conversation
protocolC on one of the peersP , participating in the conversation,
is denoted byC↓P and is obtained fromC by performing the follow-
ing updates to the state machine describingC.

• if a transition label ismP→P ′

then replace it with!m,
• if a transition label ismP ′→P then replace it with?m,
• otherwise, replace transition label withǫ.

We denote the synchronous,k-bounded asynchronous and un-
bounded asynchronous systems obtained from the peer projections
of C byIC

0 , IC
k andIC, respectively. For example, Figure 5 presents

a conversation protocolC and its projections to peersP1 andP2.
Next, we proceed by first considering Realizability∀ (Sec-

tion 4.1) followed by Realizability∃ (Section 4.2), and finally sum-
marize our findings in Section 4.3.

4.1 Deciding Realizability∀
In this section, by realizability, we mean Realizability∀, unless
otherwise mentioned. The following outlines the steps of the proof
establishing the decidability of realizability.

Outline.

1. Behavioral Ordering. We prove that if the conversation pro-
tocol C is equivalent to DETER(IC

0 ), then DETER(IC
0 ) is the

“smallest” system with synchronously communicating peers
that is language equivalent toC. [Theorem 1].

2. Synchronizability Checking.The conversation protocolC is re-
alizable according to Realizability∀ if and only if it is equiva-
lent to Ii for all i ≥ 0, andIis are well-formed (see Defini-
tion 7). That is,C is equivalent toIi irrespective of the sizei of
the receive queues. We use the concept of synchronizabilityof
a system. A system is synchronizable if and only if the system
behavior (over send actions) remains unaltered for any receive
queue size. We show that∀i ≥ 0, Iis are equivalent toI, i.e.,
I is synchronizable, if and only ifI0 is equivalent toI1. [The-
orem 2].

3. Well-formedness Checking.Realizability also requires that the
system that realizes the conversation must be well-formed.We
present the conditions when the synchronizable systems are
well-formed; specifically, we prove that a synchronizable sys-
tem I is well-formed if and only ifI1 is well-formed [Theo-
rem 3]. Finally, we show that deterministic synchronizablesys-
tems are always well-formed [Theorem 4].

4. Realizability∀ Checking. Finally, using the above theorems,
we obtain that the conversationC is realizable if and only
if D ETER(IC) is synchronizable and well-formed, andC is
equivalent to DETER(IC). This statement holds if and only ifC
is equivalent to DETER(IC

1 ). (Recall that DETER(IC) denotes
the system over peer behaviors obtained by determinizing the
projection ofC over peers). As both,C andIC

1 are finite state
systems, verification of equivalence can be done effectively.
[Theorem 5]

4.1.1 Language-based Ordering

For the step 1 noted above, we discuss certain ordering properties of
the systems, conversations and peer behaviors, to qualify what we
mean by the smallest system with synchronously communicating
peers.

PROPOSITION2.

∀C : L(C) ⊆ L(IC
0 ) and ∀i ≥ 0 : L(Ii) ⊆ L(Ii+1)

Proof: The proof follows from the following observations. The
peers inIC

0 are obtained from projections ofC. Therefore, any path
(in terms of send actions) from any state inC is also present inIC

0 .
Any Ii+1 can replicate the behavior (in terms of send actions) of
Ii by avoiding the paths that occur due to the usage of message
queues of lengthi + 1. �

DEFINITION 9. Let P = {P1, P2, . . . , Pn} be a set of peers.
Let I0 be a synchronous system obtained from the peer-behaviors
Bi, 1 ≤ i ≤ n; andI′

0 be a synchronous system obtained from the
peer-behaviorsB′

i, 1 ≤ i ≤ n. We say thatI0 ≤L I′
0 if and only if

∀i ≥ 1, i ≤ n : L(Bi) ⊆ L(B′
i).

In the above, we define the ordering relations≤L between systems
based on the ordering between the behaviors of the corresponding
peers that constitute the respective systems.

PROPOSITION3. LetP = {P1, P2, . . . , Pn} be a set of peers. Let
I0, Ik, I denote the synchronous,k-bounded asynchronous and
unbounded asynchronous systems, where thei-th peer-behavior is
Bi for 1 ≤ i ≤ n; andI′

0, I′
k, I′ denote the corresponding systems,

where thei-th peer-behavior isB′
i for 1 ≤ i ≤ n.

I0 ≤L I′
0

⇒ [L(I0) ⊆ L(I′
0) ∧ L(Ik) ⊆ L(I′

k) ∧ L(I) ⊆ L(I′)]

Proof: The proof follows from the Definitions 3, 4, 5 and 9.
I0 ≤L I′

0 implies that the the language of any peer’s behavior in
I0 is a subset of the language of the corresponding peer’s behavior
in I′

0 (Definition 9), i.e., any sequence of thei-th peer behavior in
I0 is also present in thei-th peer behavior inI′

0. As a result, from
Definition 5,L(I0) ⊆ L(I′

0). �

THEOREM1. Given a conversation protocolC over a set of peers
P , the following holds for all synchronous systemsI0 defined over
a set of peer behaviors for the peers inP .

L(C) = L(DETER(IC
0 )) ⇒

[∀I0 : (L(C) = L(I0) ⇒ DETER(IC
0 ) ≤L I0)]

Proof: Assume that there exists anI0 such that L(C) =
L(DETER(IC

0 )) = L(I0) and DETER(IC
0 ) 6≤L I0. Let the be-

haviors of thei-th peer in DETER(IC
0 ) andI0 beBi andB′

i, re-
spectively. Note that,Bi’s are deterministic in DETER(IC

0 ).
Therefore, there exists ani such thatL(Bi) 6⊆ L(B′

i) (Defini-
tion 9). That is, there exists at least one path inBi, which is not
present inB′

i. Recall that,Bi isC↓Pi
and is determinized; each path

in Bi corresponds to at least one path inC (Definition 8). Therefore,
absence of a path inB′

i implies at least one of the paths inC is not
realizable usingI0. This results in contradiction. �

4.1.2 Synchronizability Checking

As mentioned in the outline (item 2), a conversationC is realizable
according to Realizability∀ if and only if it is equivalent to systems
Ii, for all i ≥ 0. The following theorem due to [5] establishes



?a

!c !b

!b !c

?b

!a !a

?c

?b ?c

B1 B2

b

P2−>P1a P2−>P1a

P1−>P2c

P1−>P2
bcP1−>P2

b

P1−>P2b

P1−>P2c P1−>P2

c P1−>P2
P1−>P2

I1

Figure 4. Two peer behaviors that are language synchronizable.

the necessary and sufficient condition under which the behaviors
of ∀i ≥ 0 : Ii are language equivalent. This is referred to as the
synchronizability condition.

THEOREM 2. I is language synchronizable (i.e.,∀i ≥ 0 : L(Ii) =
L(Ii+1)) and only ifL(I0) = L(I1).

Consider the behaviorsB1 andB2 of peersP1 andP2, respec-
tively, in Figure 4. The synchronous systemI0 obtained from these
peers has a behavioral structure similar to that ofB2; there are two
non-deterministic branches along whicha is sent fromP2 to P1.
Along one branch,b is communicated beforec and in the other
branch,c is communicated beforeb. The1-bounded asynchronous
behavior, on the other hand, (see Figure 4) allows all possible or-
dering for communicatingb andc along both the non-deterministic
branches. The languages ofI0 andI1 are identical. Therefore, the
system obtained fromP1 andP2 is language synchronizable.

4.1.3 Language Synchronizability & well-formedness

We present the condition under which a language synchroniz-
able system is well-formed (see item 3 of outline of proof above
for Realizability∀). We also use this result in the context of
Realizability∃ (see Section 4.2).

THEOREM 3 (Synchronizability & well-formedness).A synchro-
nizable systemI is well-formed if and only ifI1 is well-formed.

Proof: It is immediate thatI is well-formed implies that∀i ≥ 0 :
Ii is well-formed.

For proving the other direction, assume thatI is synchronizable,
WF(I1) and¬WF(I). Therefore, there exists ak > 1 such that
¬WF(Ik), and there exists a path inIk over a sequence of states

t0, t1, . . . , tl, tl+1, with 0 ≤ i ≤ l : ti

m
Pi→P ′

i
i=⇒ ti+1, and the

messageml is never consumed by peerP ′
l . Recall that, asI is

language synchronizable, any sequence of send actions inIk is also

present inI1. From these observations, we iteratively construct a
path inI1.

1. We denote the sequence of send actions causing violation of

well-formedness inIk asω m
Pl→P ′

l

l . Consider the path in the
behavior of peerP ′

l over the sequence of local states identical
to the local states ofP ′

l in the sequencet0, t1, . . . , tl in Ik.

2. As I is synchronizable, consider a path over a sequence of
statest′0, t

′
1, . . . , t

′
l, t

′
l+1 in I1 that results in the same sequence

of send actionsω m
Pl→P ′

l

l , and where all send actions are
immediately consumed by the receiver peer. Such a path is
possible asI0, I1 andIk contain identical sequences of send
actions. Note that, this path inI1 is well-formed.

Consider the path in the behaviors of all peers other thanP ′
l

over the sequence of local states that are identical to theirlocal
states in the sequencet′0, t

′
1, . . . , t

′
l.

3. Construct a path in the system by considering the local states
of P ′

l (item 1 above), the local states of all other peers (item 2
above), and proceed by sequentially matching the send action

sequenceω m
Pl→P ′

l

l . In this path, if at any point a transition
results in a message sent from a sender peerPs to a receiver
peer Pr whose receive queue contains one message (to be
consumed), we delay this transition by moving ahead some
transition that occurs after it (shuffle) and does not involve the
peersPs andPr.

(a) Given the sequenceω m
Pl→P ′

l

l , if the above shuffle oper-

ation can be performed till the actionm
Pl→P ′

l

l , then a new
path is obtained along which none of the receive queues con-
tain more than one pending message to be consumed, i.e., a
path inI1 is obtained. Further note that, as we have con-
sidered the path ofP ′

l , where it does not consume the last
messageml, I1 is not well-formeded. That is, whenI is
synchronizable,¬WF(I) ⇒ ¬WF(I1).

(b) Consider that such shuffling (item 3 above) can be per-

formed on the prefixω1 (such thatω1 ω2 b ω3 m
Pl→P ′

l

l =

ω m
Pl→P ′

l

l ), after which the shuffle operation of moving
b beforeω2 is not possible, without allowing at least one
peer’s receive queue to hold more than one message. In the
above,ω1, ω2 and ω3 are sequences of send actions. Let
the shuffling ofω1 resulted in a new sequenceω′

1. Observe

that,ω′
1 b ω2 ω3 m

Pl→P ′

l

l is a sequence inIk and it not well-
formeded. Repeat the above steps starting from item2 with

this new sequenceω′
1 b ω2 ω3 m

Pl→P ′

l

l . Note that in new it-
eration we are still considering the same path in peerP ′

l

(item 1 above); but considering new paths for all peers other
thanP ′

l . The new paths will ensure that tillω′
1, all send ac-

tions are immediately received making room for at least one
more send action (i.e.,b) to be performed without forcing
any peer’s receive queue to contain more than1 message.

As I is synchronizable, the above iteration will always ter-
minate in Step3a, proving that whenI is synchronizable,
¬WF(I) ⇒ ¬WF(I1). �

THEOREM4 (Determinism, Synchronizability & well-formedness).
A synchronizable systemI consisting of deterministic peers is well-
formed.

Proof: A system is synchronizable and consists of deterministic
peers imply thatL(I0) = L(I1) andI1 is deterministic. Assume
that,I1 is not well-formed.



There exists a sequence of send actionsω = m0m1 . . . m . . .
which leads to a statet from where a messagem is never consumed.
Due to synchronizability, the same sequence of send actionsis also
present inI0 where each message sent is immediately consumed. A
similar path is presentI1, where every send action is immediately
followed by the corresponding receive action, resulting inthe same
sequence of send actionsω. Recall that, all peers are deterministic.
Therefore,I1 cannot contain two different paths with the same send
sequenceω; where one path leads to a state from wherem is never
consumed, and in the other all sent messages are consumed. In
other words, a deterministicI1 containing deterministic peers is
well-formed. From Theorem 3, the corresponding systemI is well-
formed, and therefore,∀i ≥ 0 : WF(Ii) also holds. �

4.1.4 Deciding Language Realizability∀
Based on the above theorems and propositions, we now proceed
to present the necessary and sufficient conditions for language
realizability according to Realizability∀.

THEOREM 5. C is language realizable following Realizability∀ ⇔

[L(C) = L(DETER(IC
1 ))]

Proof: To prove: C is language realizable according to
Realizability∀ impliesL(C) = L(DETER(IC

1 )).
Assume thatC is language realizable and

L(C) 6= L(DETER(IC
1 ))

i.e.,L(C) ⊂ L(DETER(IC
1 )) (Proposition 2)

AsC is language realizable according to Realizability∀, there exists
aI such that∀i ≥ 0 : L(C) = L(Ii). Therefore,I is synchroniz-
able, i.e.,L(C) = L(I0) ∧ L(C) = L(I1) (From Theorem 2).

We first establish that forC to be realizable,L(C) must be
identical toL(DETER(IC

0 )) (or L(IC
0 ); determinizing peers does

not alter the language of the system).
AssumingL(C) 6= L(IC

0 ), from Proposition 2, we haveL(C) ⊂
L(IC

0 ). This implies that there exists a specific ordering of send
actions involving two independent pairs of peers. In other words,C
has a state from whereaP1→P2 is followed bybP3→P4 , andPi’s
are distinct and the reverse orderbP3→P4 followed by aP1→P2

is not allowed from the same state inC. Such a conversationC
cannot be realized by any system as the send actionsa andb are
independent, and any specific ordering required byC cannot be
obtained. Therefore, ifC is realizable thenL(C) = L(IC

0 ) =
L(DETER(IC

0 )).
From Theorem 1, it follows that DETER(IC

0 ) ≤L I0. This
implies that∀i : L(Bi) ⊆ L(B′

i), whereBi and B′
i denote

the behavior of thei-th peer in DETER(IC
0 ) andI0, respectively.

(Recall that in DETER(IC), the peer behaviors are determinized,
i.e.,Bi is deterministic.)

Proceeding further, from Proposition 3, we haveL(DETER(IC
1 ))

⊆ L(I1). This leads to a contradiction as we have assumed
L(C) = L(I1) and L(C) ⊂ L(DETER(IC

1 )). Therefore,C is
realizable according to Realizability∀ impliesL(C) = L(I1) =

L(DETER(IC
1 )), and note that, DETER(IC

1 ) is well-formed (Theo-
rem 4).

Next,L(C) = L(DETER(IC
1 ))

⇒ L(C) = L(DETER(IC
0 )) = L(DETER(IC

1 ))
∧ WF(DETER(IC

1 ))
(Proposition 2)

⇒ ∀i ≥ 0 : L(C) = L(DETER(IC
i )) ∧ WF(DETER(IC

i ))
(Theorems 2, 3, 4)

⇒ C is language realizable according to Realizability∀
(Definition 7)

�
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Figure 5. A conversation protocol that is language realizable ac-
cording to Realizability∀.

Consider the conversation specificationC in Figure 5. The sys-
tem behavior DETER(I) (irrespective of the receive queue size)
based on peers determinized behaviors (DETER(B1), DETER(B2))
is language equivalent toC and isWF(DETER(I)). Therefore,C is
language realizable according to Realizability∀.

4.2 Deciding Language Realizability∃
THEOREM6. C is language realizable following Realizability∃ ⇔

[L(C) = L(DETER(IC
1 ))].

Proof: The proof proceeds by showing the equivalence between
Realizability∀ and Realizability∃.

C is language realizable following Realizability∀
⇔ ∀i ≥ 0 : L(C) = L(Ii) ∧ WF(Ii) (Definition 7)
⇔ L(C) = L(DETER(IC

1 )) (Theorem 5)
⇔ L(C) = L(DETER(IC

1 )) ∧ WF(DETER(IC))(Theorem 4)
⇔ L(C) = L(DETER(IC)) ∧ WF(DETER(IC))(Theorem 2)
⇔ ∃I : L(C) = L(I) ∧ WF(I)
⇔ C is language realizable following Realizability∃

Therefore, from Theorem 5,C is language realizable following
Realizability∃ ⇔ [L(C) = L(DETER(IC

1 ))]. �

The conversation in Figure 5 is realizable as per Realizability∃.
The peer behaviors, obtained from projection of the conversation
and determinization, results in a system that is well-formed and
language equivalent to the conversation.



4.3 Summary of the Results

Theorems 5 and 6 lead to a methodology for automatically check-
ing the realizability of a conversation specificationC for
Realizability∀ and Realizability∃.

Deciding realizability was an open problem. We have proved
that realizability can be verified by checking the language equiva-
lence betweenC and1-bounded system over a set of peers obtained
from projection ofC on peers and verifying the satisfiability of a
temporal property by the1-bounded system (well-formedness veri-
fication). Both equivalence checking and well-formedness verifica-
tion can be performed automatically (using existing tools)as the
1-bounded system and the conversation representing the choreog-
raphy specification both have finite state-space. Furthermore, we
have proved that Realizability∀ and Realizability∃ are equivalent
when language equivalence between choreography and systemis
considered.

The complexity for well-formedness verification is linear to the
size of the1-bounded system and the size of the CTL formula
specifying the well-formed property (complexity for CTL model
checking [10]). The complexity for language equivalence checking
is PSPACE-complete for language equivalence.

The conversation protocols shown in Figures 1, 2 and 3 are
language realizable according to Realizability∀ and Realizability∃.

5. Experimental Evaluation
We have automated our approach for checking realizability of con-
versation protocols leveraging the CADP toolbox [17], which pro-
vides a wide range of constructs for representing communicating
finite state machines and mechanisms for checking equivalences
between such state machines.

We have implemented a translator, which takes a conversation
protocol specification as input (specified in the conversation proto-
col format of the Web Service Analysis Tool [15]) and generates
two LOTOS specifications (the specification language for CADP):
(a) one that corresponds to the conversation protocol itself and
(b) another one that corresponds to the 1-bounded-asynchronous
projection of the protocol. We have developed SVL scripts [16]
that automatically construct state machine representations from the
LOTOS specifications, and check language realizability by deploy-
ing CADP’s Reductor tool, which reduces the state machines and
checks equivalence between them in an optimized fashion.

5.1 Conversation Protocol to LOTOS Translation

In LOTOS, processes are declared asprocess proc[m1, m2, ...]:

exit := behavior, whereprocess is a keyword,proc is the pro-
cess name,m1, m2, ... are the messages that are sent and received
by this process, andbehavior describes the process behavior. The
process behavior specifies the message exchange order usingthe
LOTOS operators. The sequential ordering is specified usingthe
operator; where,e.g., m1;m2 means that messagem1 must precede
messagem2. Choices are specified using the operator[] where
m1[]m2 means that only one message can be executed. Looping be-
havior is encoded as a process with a recursive behavior. Lastly, the
internal τ action and the system termination are described using
the LOTOS messagesi andexit, respectively.

Consider theKeyboardDeviceContract (Figure 2) which de-
scribes the interaction between a server and its client. Below
we show a portion of the automatically generated LOTOS code
for this contract. We use the suffixS C to denote the messages
sent by the server to the client and we use the suffixC S to de-
note the messages sent by the client to the server. The process
KEYBOARDDEVICECONTRACT starts with the messageSuccess S C

which is sent from the server to the client and then the contract
makes a transition into a looping process which starts at theReady

state shown in Figure 2. This looping process describes all possible
behaviors starting from theReady state.

process KEYBOARDDEVICECONTRACT [ Success_S_C ,
PollKey_C_S , AckKey_S_C , GetKey_C_S , NakKey_S_C ] :
exit :=
Success_S_C ; LOOP_READY [ . . . ]
where

process LOOP_READY [ . . . ] : exit :=
( ( GetKey_C_S ; ( ( AckKey_S_C ; LOOP_READY [ . . . ] )

[ ] ( NakKey_S_C ; LOOP_READY [ . . . ] ) ) )
[ ] ( PollKey_C_S ; ( ( AckKey_S_C ; LOOP_READY [ . . . ] )

[ ] ( NakKey_S_C ; LOOP_READY [ . . . ] ) ) ) )
endproc

endproc

5.2 1-Bounded Asynchronous Projection in LOTOS

The LOTOS language does not support asynchronous communi-
cation directly. In order to generate the 1-bounded asynchronous
model in LOTOS we create a bounded FIFO queue process (which
can store at most one message) for each message queue. Given a
conversation protocol, we need to create a message queue foreach
process generated from its projection. For instance, the projection
of the KeyboardDeviceContract generates two processes, namely,
SERVER andCLIENT. In order to generate the asynchronous version
of the server process we compose theSERVER and the queue pro-
cess using LOTOS composition operator|[m1, m2, ...]| where
both processes synchronize on shared messagesm1, m2, .... This
queue is responsible for storing the (at most one) messages to be
consumed by the server.

process ASYNC_SERVER [ . . . ] : exit := . . .
( SERVER [ . . . ]

| [ . . . ] |
SERVER_queue [ . . . ] ( queue (1 ,nil ) ) )

endproc

The queue associated with the server synchronizes with the client
by receiving the actions sent by the client; it also synchronizes with
the server by sending the actions that are consumed immediately
by the server. The synchronized actions between the queue and the
server are hidden during the composition and becomeτ (internal)
transitions in LOTOS (i.e.,ǫ-transition as per our notation). Sim-
ilarly we generate the asynchronous version of the client process
by composing the client’s receive queue and theCLIENT process.
Finally, the overall 1-bounded asynchronous model is obtained by
composing theASYNC SERVER process with theASYNC CLIENT pro-
cess using the LOTOS operator|[...]|. These two processes syn-
chronize on the message send events.

5.3 Equivalence Checking

After generating the LOTOS specifications for the conversation pro-
tocol and 1-bounded asynchronous projection models, we generate
the two corresponding LTSs using the state space generationtools
in the CADP toolbox. We check the equivalence of the two LTSs
to determine realizability of the protocol. During the equivalence
checking, the receive actions are hidden (as internal action τ ) and
the send actions are left visible.

In order to check the language realizability in an optimized
way, we first reduce the resulting LTSs modulo weak trace rela-
tion which reduces the transition systems without modifying their
visible traces. Then we check the equivalence of reduced LTSs for
the conversation protocol and its 1-bounded-asynchronousprojec-
tion using the weak trace equivalence relation. If the two LTSs are
equivalent this means that send-traces for the conversation proto-
col and its 1-bounded-asynchronous projection are identical and,
hence, the conversation protocol is language-realizable.If the two
LTSs are not equivalent, then we conclude that the conversation
protocol is not language-realizable.



Conversation Protocol Size Async. Model Size Analysis Time (seconds)

|C| |∆| |C| |∆| Reduction Equivalence

Mean 6.70 9.74 3268.83 19133.72 11.53 2.18

Min 2 1 2 1 6.50 0.48

Max 31 68 302449 1791867 39.91 3.07

STDV 4.40 9.02 30713.29 181950.70 3.12 0.27

Table 1. Protocol and model sizes and analysis time for the experiments on the realizability of conversation protocols (|C|: the number of
states;|∆|: the number of transitions).

Conversation Language

Protocols Realizable

Singularity Channels 86 84

Choreographies 9 8

Collaboration Diagrams 9 8

Table 2. Results of the experiments on language realizability.

5.4 Experiments

We applied our approach to 104 conversation protocols whichde-
scribe web service choreographies, Singularity OS channelcon-
tracts, and UML collaboration diagrams. All these specifications
were first automatically translated to conversation protocols (in the
conversation protocol format of the Web Service Analysis Tool)
using the translators described in [15], [34], and [7], respectively.
Then we used the conversation protocol to LOTOS translator we
described above to generate the LOTOS specifications for thecon-
versation protocol and the 1-bounded asynchronous projection.

We report the cumulative results of our analysis in Table 1
showing the sizes of the conversation protocol specifications, asyn-
chronous models and the execution times for the reduction and the
equivalence checking steps. The conversation protocol specifica-
tions are not very large, the biggest one has 31 states and 68 tran-
sitions. 1-bounded asynchronous model can be very large in some
cases, however the reduction techniques we use reduces the sizes
of the models significantly. The reductions take about 11 seconds
on average and the equivalence check takes about 2 seconds onav-
erage. So realizability of a conversation protocol can be determined
in about 13 seconds on average.

According to the results of our analysis (see Table 2) all con-
versation protocols in our base are language realizable except four.
Two of the four that fail the realizability check are Singularity chan-
nel contracts which were confirmed by the Singularity developers
to be faulty [34].

6. Related Work
The language-based choreography realizability problem for conver-
sation protocols was first proposed in [14] where sufficient condi-
tions for realizability were given. The work on session types [19,
20] is also related to the realizability of conversation protocols and
has been used as a formal basis for modeling choreography lan-
guages [9]. The restrictions used in session types to guarantee that
local implementations follow the global interaction protocol are
similar to the sufficient conditions for realizability given in [14] and
they are not necessary conditions, i.e., there are realizable choreog-
raphy specifications which fail the conditions given in these earlier
results. In particular, both of these earlier approaches donot allow
a protocol containing a state with anarbitrary initiator [18], i.e., a
state where more than one peer could send the next message andthe

protocol works fine for either case. Protocols which are of this type
and are realizable appear in practice (for example, protocols where
one of the peers can cancel the interaction at an arbitrary point) and
cannot be shown to be realizable with these earlier approaches.

Choreography realizability problem for several differentcom-
munication models have been investigated in [25], however,the pre-
sented techniques can only show realizability if the asynchronous
projection of the protocol has a finite state space (which would
not be the case if the protocol has a single self loop for exam-
ple). More recently, [27] presented an approach that only allows
specification of realizable choreographies but, like the approaches
discussed above, this approach does not allow specificationof re-
alizable choreographies that have arbitrary initiator states. Finally,
[18] proposed a new realizability check that correctly identifies the
realizability of many arbitrary initiator protocols, however, like all
the earlier results, it still provides a sufficient condition for realiz-
ability, and decidability of the realizability problem hasremained
open. In this paper we give a necessary and sufficient condition for
realizability and show that it is a decidable problem. Interestingly,
the similar realizability problem for the MSC-graphs (which is an
extension of MSCs) is undecidable [1].

Realizability of collaboration diagrams has been studied [8] and
it has been showed that language realizability for collaboration dia-
grams can be checked by checking the equivalence of the choreog-
raphy model with the 1-bounded asynchronous model [32]. How-
ever, the collaboration diagram model used in [32] is not as expres-
sive as the conversation protocols, and cannot model the Singular-
ity contracts and the web service choreographies we analyzed in
our experiments.

Realizability of Singularity channel contracts have been first
studied in [34] using the realizability conditions from [14]. The
realizability check we present in this paper can identify some Sin-
gularity channel contracts as realizable for which the realizability
check used in [34] gives false positives.

Message patterns expressed with Petri nets using
synchronous communication are “de-synchronized” in [11]—that
is, one is interested in finding a specification that producesthe same
pattern of messages when communications become asynchronous.
This work, however, already assumes that a conversation is realiz-
able and does not provide realizability conditions.

The work presented in [26] checks choreography realizability
using the controllability concept. Given a choreography description,
a monitor service is computed from that choreography, and is
used as a centralized orchestrator of the interaction to compute
the distributed peers. The choreography is said to be realizable
if the monitor service is controllable, that is, there exists a set
of peers such that the composition of the monitor service and
those peers is deadlock-free. Our approach is different since the
distributed peers are computed without the centralized orchestrator,
i.e., the realizability notion we study in this paper does not require a
monitor service, and our techniques for checking realizability rely
on equivalence checking rather than controllability checking.



7. Conclusion
In this paper, we prove that the choreography realizabilityproblem
is decidable for systems communicating with asynchronous mes-
sages using unbounded FIFO message queues. We provide a nec-
essary and sufficient condition for realizability which states that,
a choreography specification is realizable for systems withasyn-
chronously communicating peers over unbounded message queues,
if and only if, the choreography specification behavior is equivalent
to the behavior of a well-formed1-bounded system where each peer
behavior is obtained from determinizing the projection of the chore-
ography (on each peer) and where each peer has a message queue
of size1. As the choreography specification and the1-bounded sys-
tem both exhibit finite state-space, checking language realizability
of the choreography specification can be automatically performed
using existing equivalence checking and model checking tools. We
have also implemented our technique for realizability checking in a
prototype tool using CADP toolbox and verified the realizability of
a wide range of choreography specifications that describe Web ser-
vice interactions, Singularity OS contracts and UML collaboration
diagrams.
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