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ABSTRACT
Motivation: The modeling and simulation of genetic regu-
latory networks have created the need for tools for model
validation. The main challenges of model validation are the
achievement of a match between the precision of model pre-
dictions and experimental data, as well as the efficient and
reliable comparison of the predictions and observations.
Results: We present an approach towards the validation of
models of genetic regulatory networks addressing the above
challenges. It combines a method for qualitative modeling and
simulation with techniques for model checking, and is suppor-
ted by a new version of the computer tool Genetic Network
Analyzer (GNA). The model-validation approach has been
applied to the analysis of the network controlling the nutritional
stress response in Escherichia coli.
Availability: GNA and the model of the stress response
network are available at http://www-helix.inrialpes.fr/gna
Contact: Hidde.de-Jong@inrialpes.fr

1 INTRODUCTION
The functioning and development of living organisms is con-
trolled by large and complex networks of genes, proteins,
small molecules and their mutual interactions, the so-called
genetic regulatory networks. In order to gain an understanding
of how the behavior of an organism, e.g. the response of a bac-
terial cell to a physiological or genetic perturbation, emerges
from such a network of interactions, we need mathematical
and computational tools for modeling and simulation (de Jong,
2002). The predictions obtained through the application of
these tools have to be confronted with experimental data.
This gives rise to the problem of model validation, the assess-
ment of the adequacy of a model by comparing its predictions
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with observations, either already available in the literature or
obtained through novel experiments suggested by the model.

The main challenges of model validation are twofold. First
of all, the precision of the model predictions and the exper-
imental data need to be brought in agreement. At present,
quantitative information on kinetic parameters is usually
absent, thus making traditional numerical models and ana-
lysis techniques difficult to apply. In addition, numerical
predictions on the dynamics of the system are difficult to
verify, because available data are mostly qualitative in nature.
A second challenge is to ensure that the comparison of
model predictions with experimental data is efficient and reli-
able. Models of genetic regulatory networks of biological
interest may become quite large, as they include many genes
and proteins, thus making manual verification of dynamical
properties error-prone or even practically infeasible.

In this paper, we propose an approach towards model val-
idation addressing the above two challenges. The approach
extends our previous work on a method for the qualitative
modeling and simulation of genetic regulatory networks, sup-
ported by the computer tool Genetic Network Analyzer (GNA)
(de Jong et al., 2003, 2004). This method is based on a class
of piecewise-linear (PL) differential equations that permits a
coarse-grained, qualitative analysis of the network dynamics
to be carried out. Instead of numerical values for the paramet-
ers, the method uses inequality constraints that can be inferred
from the experimental literature. It yields predictions on the
possible ways in which the sign pattern of the derivatives of
the protein concentrations can evolve, a level of precision
that is well-adapted to currently-available data. The novelty
of the model-validation approach is that it integrates qualitat-
ive modeling and simulation with model-checking techniques
(Clarke et al., 1999) to verify whether the predictions of
the system behavior are consistent with experimental data.
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In particular, the measured evolution of the derivative sign
pattern or other experimental observations can be formal-
ized as properties in temporal logic, while model-checking
techniques verify whether the predictions account for these
properties. If they do not, then the model is inconsistent with
the experimental data and may need to be revised or exten-
ded. The combination of qualitative modeling and simulation
and model-checking allows large and complex networks to be
verified, with the guarantee that no model is falsely ruled out.

Model-checking or other formal verification techniques
have been used before in systems biology for analyzing
genetic, metabolic, signal-transduction and cell-cycle net-
works. Most approaches start from discrete models, such
as Petri nets (Koch et al., 2005), process algebras (Regev
et al., 2001), concurrent transition systems (Chabrier-Rivier
et al., 2004), rewriting logic (Eker et al., 2002), and Boolean
networks and their generalizations (Bernot et al., 2004). In
this paper we show that model-checking techniques can also
be used for more conventional continuous models, in par-
ticular differential equation models, when using qualitative
abstractions to discretize the dynamics of the system. In com-
parison with ideas along the same line (Antoniotti et al., 2004;
Ghosh et al., 2003; Shults and Kuipers, 1997), our approach is
adapted to a particular class of PL differential equations with
favorable mathematical properties, allowing the development
of tailored algorithms that scale up well to models of large
and complex genetic regulatory networks.

The model validation approach proposed in this paper has
been applied to the analysis of the network controlling the
nutritional stress response in Escherichia coli. In case of
nutritional stress, an E.coli population abandons exponential
growth and enters a non-growth state called stationary phase
(Huisman et al., 1996). At the molecular level, this growth
phase transition is controlled by a complex genetic regulat-
ory network (Hengge-Aronis, 2000). We have constructed a
model including key proteins and their interactions involved
in the carbon starvation response, and validated this model
by comparing the predicted temporal evolution of the protein
concentrations with available experimental data, both during
the transition from exponential to stationary phase, and dur-
ing the reentry into exponential phase after a nutrient upshift.
Although some of the predictions have thus been confirmed,
one prediction has been refuted, suggesting model revisions.
Another prediction concerns a surprising phenomenon that
has not been experimentally investigated yet.

In the next section of the paper, we briefly outline the
qualitative modeling and simulation method used to pre-
dict the behavior of genetic regulatory networks. Section 3
describes the model-checking approach towards model valid-
ation in some detail, as well as its computer implementation
in GNA. The initial results of the validation of our model
of the E.coli nutritional stress response are summarized in
Section 4, followed by a discussion of the achievements in
the final section.

2 QUALITATIVE SIMULATION
The method for the qualitative modeling and simulation of
genetic regulatory networks that we use in this paper is a
refinement of the method that we previously presented (de
Jong et al., 2003, 2004). It is based on a qualitative abstraction
that preserves stronger properties of the network dynamics, in
particular the sign patterns of the derivatives of the concentra-
tion variables. This information is critical for the experimental
validation of models of genetic regulatory networks, since
experimental measurements of the system dynamics by means
of quantitative RT–PCR, reporter genes and DNA microar-
rays usually result in observations of changes in the sign of
the derivatives. We will provide an intuitive overview of the
method, using a simple example. For technical details, the
reader is referred to Batt et al. (2005).

Figure 1a shows a network consisting of two genes. When a
gene (a or b) is expressed, the corresponding protein (A or B) is
synthesized. Proteins A and B regulate the expression of genes
a and b. More specifically, protein B inhibits the expression
of gene a above a certain threshold concentration, whereas
protein A inhibits the expression of gene b above a threshold
concentration, and the expression of its own gene above a
second, higher threshold concentration. The degradation of
the proteins is not regulated.

The dynamics of genetic regulatory networks can be
modeled by a class of piecewise-linear (PL) differential equa-
tion models originally introduced by Glass and Kauffman
(1973). The example network gives rise to the following
model:

ẋa = κa s−(xa , θ2
a ) s−(xb, θb) − γa xa , (1)

ẋb = κb s−(xa , θ1
a ) − γb xb, (2)

where xa and xb denote the concentrations of proteins A and
B, ẋa and ẋb their time derivatives, θ1

a , θ2
a and θb threshold

concentrations, κa and κb synthesis parameters, and γa and γb

degradation parameters. The step function s−(x, θ) evaluates
to 1, if x < θ , and to 0, if x > θ . Step functions are approx-
imations of the steep sigmoid functions often characterizing
gene regulation, preserving their non-linear, switch-like char-
acter. As a consequence, PL models are coarse-grained models
that abstract from the fine aspects of gene regulation, such as
stochasticity, but have been shown adequate for a wide range
of applications (see de Jong et al., 2004, for references).

Equations (1) and (2) describe the rate of change of the
protein concentrations. Equation (2) states that protein B is
produced (at a rate κb), if and only if s−(xa , θ1

a ) = 1, that is, if
and only if xa < θ1

a . This captures the inhibition of the expres-
sion of gene b by protein A. Equation (1) states that protein
A is produced (at a rate κa), if and only if neither xa > θ2

a nor
xb > θb. Both proteins are degraded at a rate proportional to
their own concentration.

Mathematical analysis of this model reveals that mere know-
ledge of the relative order of the threshold parameter(s) and
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(a) (b) (c)

Fig. 1. (a) Simple genetic regulatory network consisting of two genes. (b) Sketch of the dynamics in the phase space of the two-gene network.
The system has three equilibrium points, represented by dots. (c) Domain partition of the phase space.

the quotient of the synthesis and degradation parameter, for
each of the two variables, is sufficient to sketch the flow in
the phase space. This result has been shown to be generaliz-
able to the whole class of PL models considered here. More
particularly, assuming that

0 < θ1
a < θ2

a <
κa

γa

< maxa , (3)

0 < θb <
κb

γb

< maxb, (4)

the phase space can be partitioned into hyperrectangular
boxes, called domains, in which the flow is qualitatively
identical, in the sense that either all solutions of the system
traverse a domain instantaneously (instantaneous domain) or
they have the same derivative sign pattern while remaining in
the domain (persistent domain). Figures 1b and c represent
the flow in the phase space and the domain partition of the
phase space for the two-gene example. D2.2 is an instant-
aneous domain, while D1.1, D4.2 and D4.1 are persistent.
Moreover, the latter domain coincides with an equilibrium
point of the system. The domain partition is finer grained than
the one used in our earlier work, for which the property that
all solutions in a domain have the same derivative sign pattern
does not generally hold.1

Using the domain partition of the phase space, together
with the qualitative characterization of the dynamics in each
of the domains, we can discretize the continuous dynamics.
In the resulting abstract description, the state of the system is
represented by a domain and its associated dynamical prop-
erties. There exists a transition from a domain D to another
domain D′, if and only if there exists a solution reaching
D′ from D, without leaving D ∪ D′. This naturally leads to
the introduction of a so-called qualitative transition system,
consisting of the set of all domains, the set of all transitions
between the domains and a labeling function that associates

1In this simple presentation of the method, we omit the problems raised by the
discontinuities in the right-hand side of the PL differential equations, whose
treatment goes beyond the scope of this article. See de Jong et al. (2004) and
Gouzé and Sari (2002) for a detailed description.

to every domain the sign of the derivatives of the concen-
tration variables and an indication of whether the domain is
persistent or instantaneous. The graph representation of the
qualitative transition system is called a state transition graph
and the domains are also called qualitative states (or qualit-
ative equilibrium states, if the domains consist in equilibrium
points). Figure 2 shows the qualitative transition system of the
two-gene model.

A sequence of qualitative states in the state transition
graph is called a path. A path qualitatively describes a pos-
sible behavior of the system. In our two-gene example,
(D1.1, D2.2, D3.2, D4.2, D4.1) is a path leading to a qualitative
equilibrium state (Fig. 2c). The qualitative transition system
is defined such that it provides a conservative approximation
of the dynamics of the original PL system, in the sense that
to every solution of the model corresponds a path in the state
transition graph. Note that the converse is not true: some paths
may not correspond to any solution, and therefore represent
spurious behaviors. The state transition graph has been shown
to be invariant for all values of the parameters satisfying the
parameter inequality constraints.

Simple rules have been formulated for the symbolic com-
putation of the qualitative transition system from a PL model
of the network. These rules exploit the favorable analytical
properties of the class of PL models, thus allowing the qualit-
ative states, the transitions between qualitative states, and the
labeling function to be inferred from the parameter inequality
constraints. The implementation of these rules has resulted
in a new version of the computer tool GNA (de Jong et al.,
2003). The new version of GNA, available at http://www-
helix.inrialpes.fr/gna, has also been equipped with a strongly
improved graphical user interface.

The paths in the state transition graph correspond to
predicted qualitative behaviors of the system and can be
compared with experimental data. The resulting model-
validation problem is easy to solve for the simple two-gene
example. For instance, the observation shown in Figure 3
is consistent with predictions, since there exists a path,
(D1.1, D2.2, D3.2, D4.2, D4.1), verifying the observed deriv-
ative sign pattern (Fig. 2c). However, the analysis of real-
istic models leads to large state transition graphs, which
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(a) (b) (c)

Fig. 2. Qualitative transition system of the two-gene model, with (a) the state transition graph and (b) the properties of some of the qualitative
states in the graph. The following abbreviations have been used: pers, persistent state; inst, instantaneous state; eq, equilibrium state; dsign,
derivative sign. The numbers −1, 0 and 1 denote the sign of the derivative of the protein concentrations. In instantaneous domains, the
derivatives are not defined (Batt et al., 2005), indicated by a dash. The equilibrium states are D4.1, D7.1 and D11.3, while dots next to states
represent self-transitions. (c) Temporal evolution of the concentrations of proteins A and B in the path (D1.1, D2.2, D3.2, D4.2, D4.1). Arrows
indicate the sign of the derivatives for persistent states (up arrow for 1, down arrow for −1 and open circle for 0).

Fig. 3. Hypothetical experimental observation of the temporal
evolution of the concentrations of proteins A and B.

make manual verification of dynamical properties error-
prone or even practically infeasible. This has motivated the
development of an automated, efficient method for model
validation.

3 MODEL VALIDATION BY
MODEL-CHECKING

Our model-validation approach combines the qualitative
modeling and simulation method outlined above with tech-
niques for model checking (Clarke et al., 1999). These
techniques allow for the verification of properties of the beha-
vior of discrete transition systems, expressed as formulas
in some temporal logic. Using suitable model-checking
algorithms and tools, it is possible to automatically and
efficiently test whether the system satisfies the property.
Model checking has been successfully applied to the veri-
fication of software, telecommunication systems, elec-
tronic circuits and other complex systems (for examples,
see http://www.inrialpes.fr/vasy/cadp/case-studies/ and http://
nusmv.irst.itc.it/).

Various model-checking frameworks exist, differing by
their expressiveness, user-friendliness and computational
efficiency. For the sake of simplicity, we focus here on

one particular framework, in which the discrete transition
system takes the form of a Kripke structure, and the beha-
vioral properties are expressed in Computation Tree Logic
(CTL) (Clarke et al., 1999). We describe the relation between
qualitative simulation and model checking at the conceptual
level, and briefly present an extension of GNA that connects
the qualitative simulator with the model checker NuSMV.
However, we emphasize that our approach is not restricted
to CTL model-checking, and allows other more expressive
temporal logics to be used as well (Section 3.3).

3.1 Translate qualitative transition system into
Kripke structure

As a preliminary step, we introduce a set of atomic pro-
positions to describe the state of the system. To be more
precise, the set of atomic propositions we use consists of
simple expressions describing the range of a protein concen-
tration (e.g. value_xa < θ1

a ), the sign of the derivative of a
protein concentration (e.g. dsign_xa = 1) or the type of a state
(e.g. type = pers). That is, in the example of Figure 2, the set
of atomic propositions AP is given by

AP = {value_xa = 0, value_xa > 0, value_xa < θ1
a , . . . ,

dsign_xa = − 1, dsign_xa = 0, dsign_xa = 1, . . . ,

type = pers, type = inst, type = eq}.
In general, a Kripke structure over a set of atomic propos-

itions AP is a triple 〈S, R, L〉, where S is a set of states,
R ⊆ S × S a total transition relation between the states,
and L:S → 2AP a labeling function that associates to each
state, the set of atomic propositions true in that state (Clarke
et al., 1999). The qualitative transition systems introduced in
Section 2 are Kripke structures. As an illustration, the qualit-
ative transition system of the two-gene network, graphically
represented in Figure 2, can be alternatively represented as
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the triple 〈S, R, L〉, where,

S = {D1.1, D2.1, D2.2, . . . , D15.1},
R = {(D1.1, D2.2), (D1.1, D6.2), . . . , (D15.1, D14.1)},

L :




L(D1.1) = {value_xa ≥ 0, value_xa < θ1
a , . . . ,

value_xb ≥ 0, value_xb < θb, . . . ,
dsign_xa = 1, dsign_xb = 1,
type = pers},

L(D2.1) = {value_xa = θ1
a , . . . , type = inst},

. . .

L(D15.1) = {value_xa > θ2
a , . . . , type = pers}.

3.2 Express dynamical properties in temporal
logic

A CTL formula is built upon atomic propositions. The usual
operators from propositional logic, such as negation (¬),
logical or (∨), logical and (∧), and implication (→), can also
be used. In addition, CTL provides two types of operators:
path quantifiers, E and A, and temporal operators, such as F
and G. Path quantifiers are used to specify that a property p

is satisfied by some (Ep) or every (Ap) path starting from a
given state. Temporal operators are used to specify that, given
a state and a path starting from that state, a property p holds
for some (Fp) or for every (Gp) state of the path. Each path
quantifier must be paired with a temporal operator.2

Informally speaking, path quantifiers are used to quantify
over the possible behaviors of the system, since Ap means
that p must hold for every behavior, and Ep means that p

must hold for at least one behavior. Temporal operators are
used to specify, given a behavior, temporal constraints on the
state of the system, since Fp and Gp can be interpreted as
meaning that for some future state and for every future state,
respectively, p must hold.

How can the properties of interest for model validation be
expressed as CTL formulas? This can be illustrated by means
of the hypothetical experimental observation in Figure 3. The
observation allows us to infer that the system reaches a state
in which the concentrations of proteins A and B are both
increasing, and from that state onwards, a second state in
which the concentration of protein A is increasing and that
of B decreasing. The property can be formalized by the CTL
formula

EF(dsign_xa = 1 ∧ dsign_xb = 1 ∧
EF(dsign_xa = 1 ∧ dsign_xb = − 1)). (5)

The expression EFp means that there exists at least one
path (E) leading to a future state (F) where p holds, thus
expressing the reachability of that state. More generally, any
time-series measurement of gene expression can be given as

2For the formal syntax and semantics of CTL, see Clarke et al. (1999).

a combination of EF operators with conjunctions of atomic
propositions describing the derivative sign patterns.

When understood in a broader sense, model validation does
not just amount to the comparison of model predictions with
time-series measurements of protein concentrations, but also
involves the testing of other biologically meaningful proper-
ties (Bernot et al., 2004; Chabrier-Rivier et al., 2004). Suppose
that we are interested in knowing whether every behavior of
the system will eventually satisfy some property, for example,
reach a specific state. We can investigate this by means of for-
mulas using AF operators, which express the inevitability of
a behavior. The following CTL formula expresses the con-
jecture that the two-gene network of Figure 1 will inevitably
reach the equilibrium state D11.3:

AF(type = eq ∧ value_xa = 0). (6)

As a second example, CTL can be used to express the suf-
ficiency of certain conditions to cause the system to behave
in a particular way. For example, one could ask, given that
protein B is the only regulator of gene a, whether a high con-
centration of protein B guarantees the eventual disappearance
of protein A. This response property can be expressed by the
CTL formula

AG(value_xb > θb → AFvalue_xa = 0), (7)

where AGp specifies that the property p must hold for every
state.

3.3 Check if model satisfies dynamical properties
In order to test whether a discrete transition system satisfies
a given temporal-logic formula, highly efficient algorithms
have been developed and implemented in a range of model
checkers. In addition to a yes/no answer, these tools return
a diagnostic, either a witness or a counterexample, depend-
ing on whether the property holds or not. The diagnostic
often provides valuable information for understanding why
the property is satisfied or not.

In order to combine our qualitative simulator with model-
checking tools, we have integrated export functionalities
in the new version of GNA, allowing the user to generate
text files describing the qualitative transition system in the
format accepted by two widely used model checkers, NuSMV
(Cimatti et al., 2002) and Evaluator, a component of the
CADP toolbox (Mateescu and Sighireanu, 2003). NuSMV is
an efficient, state-of-the-art model checker for CTL, whereas
Evaluator is an on-the-fly model checker for the alternation-
free µ-calculus, a temporal logic based on regular expressions.
The text files generated by GNA can be imported in the model
checkers, after which the verification of the properties of
interest continues in the environment of the latter tools.

In this paper, we focus on the relation between GNA and
NuSMV. Given a description of the Kripke structure, an initial
state and a CTL formula, it is possible to check whether the
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(a)

(b)

Fig. 4. (a) Network of key genes, proteins and regulatory interactions involved in the nutritional stress network in E.coli. The contents of
the boxes labeled ‘Activation’ and ‘Supercoiling’ are detailed in Ropers et al. (2004). (b) PL differential equation and parameter inequality
constraints for the topoisomerase TopA.

qualitative transition system in Figure 2 satisfies the property
described by the formula. Provided that D1.1 is the initial state,
property (5) holds, and the path (D1.1, D2.2, D3.2, D4.2, D4.1),
shown in Figure 2c, is returned as a witness. Also, NuSMV
shows that neither of the properties (6) and (7) hold.

Suppose that an experimentally-observed behavior does not
correspond to any path in the state transition graph. Does this
imply that the model must be rejected? Since the qualitat-
ive simulation method produces a conservative approximation
of the dynamics of the original PL system (Section 2), one
can be sure that a path corresponding to the experimentally-
observed behavior must be present in the state transition
graph, unless the model is invalid. As a consequence, the
model can be safely rejected in the above case. On the other
hand, if a path in the state transition graph corresponds to
an experimentally-observed behavior, then the model is not
necessarily corroborated by the observation, because the path
may be a spurious behavior.

4 ANALYSIS OF NUTRITIONAL STRESS
RESPONSE IN E.COLI

4.1 Model of nutritional stress response
In case of nutritional stress, an E.coli population abandons
exponential growth and enters a non-growth state called sta-
tionary phase. This growth-phase transition is accompanied
by numerous physiological changes in the bacteria, concern-
ing among other things the morphology and the metabolism
of the cells, as well as gene expression (Huisman et al.,
1996). At the molecular level, the transition from exponen-
tial phase to stationary phase is controlled by a complex
genetic regulatory network integrating various environmental
signals.

Understanding the molecular basis of this essential devel-
opmental decision has been the focus of extensive studies for

decades (Hengge-Aronis, 2000). However, notwithstanding
the enormous amount of information accumulated on the
genes, proteins and other molecules known to be involved
in the stress adaptation process, there is currently no global
understanding of how the response of the cell emerges from
the network of molecular interactions. Moreover, with some
exceptions, numerical values for the parameters character-
izing the interactions and the molecular concentrations are
absent from the literature, which makes it difficult to apply
traditional methods for the dynamical modeling of genetic
regulatory networks.

The above circumstances have motivated the qualitative
analysis of the nutritional stress response network in E.coli
by means of the method presented in this paper (Ropers et al.,
2004). On the basis of literature data, we have decided to
focus, as a first step, on a network of six genes that are believed
to play a key role in the response of the cell to carbon starva-
tion (Figure 4). The network includes genes involved in the
transduction of the carbon starvation signal (the global reg-
ulator crp and the adenylate cyclase cya), metabolism (the
global regulator fis), cellular growth (the rrn genes coding for
stable RNAs) and DNA supercoiling, an important modulator
of gene expression (the topoisomerase topA and the gyrase
gyrAB).

Based on data in the experimental literature, a PL model
of seven variables has been constructed, one protein con-
centration variable for each of the six genes and one input
variable representing the presence or absence of the carbon
starvation signal (Ropers et al., 2004). Seven differential
equations, one for each variable, and forty inequality con-
straints describe the dynamics of the system. As an illustration,
the differential equation and the parameter inequality con-
straints for the state variable xtopA are given in Figure 4b.
For instance, the constraints 0 < κ1

topA/γtopA < θ1
topA express

that without stimulation of the topA promoter, the TopA
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(a) (b)

Fig. 5. Temporal evolution of the concentration of the proteins in the nutritional stress response network during the transition from exponential
to stationary phase. (a) Predictions for Fis and CRP in a path in the state transition graph generated by qualitative simulation. (b) Observation
for Fis (open circles) during the growth-phase transition, as indicated by cell density (closed circles) (Ali Azam et al., 1999).

concentration decreases towards a background level, below
the threshold θ1

topA.
Using the new version of the computer tool GNA, described

in the previous sections, we have simulated two phenomena,
namely the transition from exponential to stationary phase,
and the reentry into exponential phase after a nutrient upshift.
In order to validate the model, the simulation results have
been compared with the available experimental data, using the
export functionalities of GNA and the model checker NuSMV.

4.2 Validation of nutritional stress response
model

In the absence of the carbon starvation signal, the system
reaches a single qualitative equilibrium state that corres-
ponds to the physiological conditions found in exponentially-
growing E.coli cells. Starting from this equilibrium state, we
perturb the system by switching on the carbon starvation sig-
nal and simulate the transition from exponential to stationary
phase. This gives rise to a state transition graph of 66 states
(27 of which are persistent), computed in less than one second
on a PC (800 MHz, 256 MB). The graph contains a single
equilibrium state corresponding to stationary-phase condi-
tions. Figure 5 represents the temporal evolution of two of
the protein concentrations in a path in the state transition
graph. It shows that the concentration of Fis monotonically
decreases to 0 and that of CRP monotonically increases to
(κ1

crp + κ2
crp + κ3

crp)/γcrp.
Are the predictions obtained from the model verified by the

experimental data? Figure 5b shows the measured evolution of
the Fis concentration (Ali Azam et al., 1999). Towards the end
of the exponential phase, the concentration of Fis decreases
and then becomes steady in stationary phase, which is charac-
terized by a low concentration of stable RNAs xrrn, that is, a
concentration below the threshold θrrn. This observation can
be translated into the following CTL formula:

EF(dsign_xfis = − 1∧
EF(dsign_xfis = 0 ∧ value_xrrn < θrrn)). (8)

The qualitative transition system has been exported to the
model checker, in order to verify the property. Verification

takes a fraction of a second to complete and shows that
the observed temporal evolution of the Fis concentration is
reproduced by the model, i.e. there exists a path in the state
transition graph satisfying the property (8).

Figure 5b suggests that we could be even more precise
in our temporal-logic formulation of the experimental data.
Not only dsign_xfis = 0 in stationary phase, but in addition it
would seem that value_xfis = 0. However, since the precision
of the measurements is limited, there may remain some small
amount of Fis in the cell in stationary phase. The description
value_xfis = 0 is therefore too strong and might falsely rule
out the model. Also, in this and similar examples, we use
the temporal operator F instead of G, which would allow us
to express that a property holds all of the time. The use of
G is compromised by the fact that the usually low sampling
frequency may cause us to miss phenomena predicted by sim-
ulation (e.g. a transient increase in a protein concentration)
and thus, falsely rule out the model.

It would be interesting to put the predictions of the nutri-
tional stress response model to more severe experimental
tests. Unfortunately, time-series measurements of the evol-
ution of the concentration of the other proteins in the network
in Figure 4 during the transition from exponential to station-
ary phase are currently not available. However, even from the
weak data that are available today, some interesting conclu-
sions for model validation can be drawn. For instance, from
the data in Balke and Gralla (1987) it can be inferred that the
level of DNA supercoiling decreases during and after the trans-
ition to stationary phase. Since the level of DNA supercoiling
is determined by the ratio of the concentration of GyrAB
(which introduces supercoils into the DNA molecule) and
the concentration of TopA (which removes supercoils from
the DNA molecule) (Drlica, 1990), we require the following
property to be satisfied by our model:

EF((dsign_xgyrAB = − 1 ∨ dsign_xtopA = 1)

∧ value_xrrn < θrrn ). (9)

That is, during stationary phase, the concentration of GyrAB
must decrease or the concentration of TopA must increase.
Interestingly, the model does not satisfy the property (9),
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as revealed by model checking: in all paths in the state
transition graph, the TopA concentration remains constant,
while the GyrAB concentration increases! The inconsistency
between the model and the observed level of DNA supercoil-
ing indicates a flaw in the model. It demonstrates that our
picture of the nutritional stress response is incomplete, in the
sense that the network of Figure 4 may need to be extended
with interactions not yet identified or with regulators not yet
considered. In Ropers et al. (2004) we propose experiments
and model extensions to further investigate these possibilities.

In addition to simulating the transition from exponential
to stationary phase, we have also studied the reentry into
exponential phase after a nutrient upshift, i.e. when cells in
stationary phase have been put into fresh medium. Using the
same model as above, but starting the simulation from the
qualitative state characterizing stationary-phase conditions
and with the carbon starvation signal switched off, qualitative
simulation results in a state transition graph of 1143 states (202
of which are persistent), generated in 1.7 s. The graph is more
complex than that generated for the transition from exponen-
tial to stationary phase, in the sense that it contains several
cyclic paths. From all states in the graph, one of these cyclic
paths can be reached, which we have shown to be attractive.
To be more precise, the qualitative transition system satisfies
the property

AG(statesInCycle → AGstatesInCycle), (10)

where the predicate statesInCycle is satisfied by all and only
states in the cyclic path. That is, if the system has reached this
path, it always remains in the path (testing this property takes
NuSMV 9.1 s). Further mathematical analysis has revealed
that the cyclic path arises from solutions spiraling inwards to
an equilibrium point (Ropers et al., 2004). In other words,
during the reentry into stationary phase, the concentrations
of some of the proteins oscillate towards a new equilibrium
level. This is a surprising result, which has not been sub-
ject to investigation so far. We are currently carrying out
experiments in our laboratory to measure the temporal evol-
ution of the protein concentrations in the nutritional stress
response network, directly after a nutrient upshift, in order
to verify this prediction and continue the validation of our
model.

5 DISCUSSION
We have presented an approach for the validation of mod-
els of genetic regulatory networks, which combines a method
for qualitative modeling and simulation with techniques for
model checking. The qualitative modeling and simulation
method, exploiting favorable mathematical properties of a
class of coarse-grained models of genetic regulations, is a
refinement of our previous work (de Jong et al., 2003). The
method yields predictions on the derivative sign patterns of

the concentration variables that are particularly well adapted
to the currently available experimental methods. The method-
ological novelty of this paper is that we use model-checking
techniques to deal with the problem that the state transition
graphs generated by qualitative simulation may become
prohibitively large for biologically-interesting networks. They
permit observed dynamical properties of the system to be reli-
ably and efficiently verified. Moreover, due the fact that the
state transition graphs are conservative approximations of the
dynamics of the underlying PL models, the latter are guaran-
teed not to be ruled out falsely. The model-validation approach
is supported by a new version of the computer tool GNA.

The applicability of our model-validation approach has been
illustrated by the analysis of the complex regulatory network
underlying the nutritional stress response of E.coli. We have
constructed a model of a part of this network, consisting of
key proteins and their interactions involved in the carbon star-
vation response, and validated this model by the available
experimental data in the literature. Although most predictions
on the entry into stationary phase are consistent with the obser-
vations, in one case they contradict the experimental data, i.e.
the observed decrease of the DNA supercoiling level, and
necessitate revisions of the model. In addition, we have used
model checking to further analyze the surprising prediction
of the model that some of the protein concentrations oscillate
after a nutrient upshift. This involves verifications that would
be difficult to achieve by visual inspection.

Several applications of model checking and other formal
verification techniques for the analysis and validation of bio-
chemical network models have been proposed recently. Most
approaches apply to discrete models, such as Petri nets (Koch
et al., 2005), process algebras (Regev et al., 2001), concurrent
transition systems (Chabrier-Rivier et al., 2004), rewriting
logic (Eker et al., 2002) and Boolean networks and their gen-
eralizations (Bernot et al., 2004). For instance, in Bernot
et al. (2004), a logical modeling approach is used in combin-
ation with CTL model checking to analyze models of mucus
production in Pseudomonas aeruginosa, while the valida-
tion of a Petri net model of the sucrose breakdown pathway
is investigated in Koch et al. (2005). The work presented
in this paper shows that model checking can also be used
for more conventional continuous models, like differential
equation models. However, this requires a preliminary dis-
cretization of the dynamics of the system using abstractions.
Several other approaches taking this direction can be men-
tioned (Antoniotti et al., 2004; Ghosh et al., 2003; Shults and
Kuipers, 1997), based on qualitative differential equations
(Shults and Kuipers, 1997) or hybrid automata (Antoniotti
et al., 2004; Ghosh et al., 2003). However, contrary to our
approach, these methods either do not result in a conservative
approximation of the dynamics of the underlying continu-
ous models (Antoniotti et al., 2004) or they are based on
general purpose analysis techniques (Ghosh et al., 2003;
Shults and Kuipers, 1997). The conservative approximation
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that we obtain is critical for preventing that models are unne-
cessarily rejected. The particular mathematical form of the
PL models allows simple, tailor-made algorithms to be used,
which promote the upscalability of our approach to large and
complex networks, but at the same time limits its generality.

The model-validation approach of this paper has been illus-
trated in the context of CTL model checking. While CTL
allows a variety of biologically meaningful properties to be
expressed, some properties fall outside its scope. For instance,
in Section 4.2 we would have liked to express the occur-
rence of oscillations in some of the protein concentrations
after a nutrient upshift. That is, we would have liked to state
that there exists a path in the qualitative transition system,
such that from a state satisfying p it is always possible to
reach a state satisfying ¬p, and from a state satisfying ¬p,
it is always possible to reach a state satisfying p, where p

might express that the concentration of some protein is above
a threshold and ¬p that it is below this threshold. The for-
mula EG(p → F¬p ∧¬p → Fp) expresses this property, but
unfortunately it is not a CTL formula (because F is not paired
with a path quantifier) and it does not admit any CTL equi-
valent (Clarke and Draghicescu, 1988). However, the above
property can be expressed in the µ-calculus and evaluated
using XTL, a component of the CADP toolbox (Mateescu
and Garavel, 1998). The capability of GNA to generate export
files for different model checkers, allows one to take advantage
from the specific strengths of each of them.

A problem encountered in the validation of our model is
that time-series measurements of the concentrations of the
proteins in the model are currently rare and usually have a
low sampling frequency. In addition, the measurements for
different proteins are difficult to combine, because they have
been carried out under different conditions (using different
strains, different culture media, etc.). This has the prac-
tical consequence that many interesting predictions obtained
through qualitative simulation cannot currently be tested. In
order to validate the model more rigorously, we are cur-
rently working on fine-grained measurements of gene expres-
sion in wild-type and mutant strains during growth-phase
transitions. More generally, as systems biology takes hold,
we expect such model-driven experiments to become more
prominent.

REFERENCES
Ali Azam,T., Iwata,A., Nishimura,A., Ueda,S. and Ishihama,A.

(1999) Growth phase-dependent variation in protein composition
of the E.coli nucleoid. J. Bacteriol., 181, 6361–6370.

Antoniotti,M., Piazza,C., Policriti,A., Simeoni,M. and Mishra,B.
(2004) Taming the complexity of biochemical models through
bisimulation and collapsing: theory and practice. Theor. Comput.
Sci., 325, 45–67.

Balke,V.L. and Gralla,J.D. (1987) Changes in the linking number of
supercoiled DNA accompany growth transitions in Escherichia
coli. J. Bacteriol., 169, 4499–4506.

Batt,G. Ropers,D., de Jong,H., Geiselmann,J., Page,M. and
Schneider,D. (2005) Qualitative analysis and verification of
hybrid models of genetic regulatory networks. In Morari,M. and
Thiele,L. (eds), HSCC’ 05, Lecture Notes in Computer Science
Vol. 3414, Springer, Berlin, pp. 134–150.

Bernot,G., Comet,J.-P., Richard,A. and Guespin,J. (2004) A fruitful
application of formal methods to biological regulatory networks:
extending Thomas’ asynchronous logical approach with temporal
logic. J. Theor. Biol., 229, 339–347.

Chabrier-Rivier,N., Chiaverini,M., Danos,V., Fages,F. and
Schächter,V. (2004) Modeling and querying biomolecular inter-
action networks. Theor. Comput. Sci., 325, 25–44.

Cimatti,A., Clarke,E.M., Giunchiglia,E., Giunchiglia,F., Pistore,M.,
Roveri,M., Sebastiani,R. and Tacchella,A. (2002) NuSMV2: an
opensource tool for symbolic model checking. In Brinksma,E. and
Larsen,K.G. (eds), CAV’02, Lecture Notes in Computer Science,
Vol. 2404, Springer, Berlin, pp. 359–364.

Clarke,E.M. and Draghicescu,I.A. (1988) Expressibility results
for linear-time and branching-time logics. In de Bakker,J.W.,
de Roever,W.P. and Rozenberg,G. (eds), REX Workshop, Lec-
ture Notes in Computer Science Vol. 354, Springer, Berlin,
pp. 428–437.

Clarke,E.M., Grumberg,O. and Peled,D.A. (1999) Model Checking.
MIT Press, Cambridge, MA.

de Jong,H. (2002) Modeling and simulation of genetic regulatory
systems: a literature review. J. Comput. Biol., 9, 69–105.

de Jong,H., Geiselmann,J., Hernandez,C. and Page,M. (2003)
Genetic Network Analyzer: qualitative simulation of genetic
regulatory networks. Bioinformatics, 19, 336–344.

de Jong,H., Gouzé,J.-L., Hernandez,C., Page,M., Sari,T. and
Geiselmann,J. (2004) Qualitative simulation of genetic regulat-
ory networks using Piecewise-linear models. Bull. Math. Biol.,
66, 301–340.

Drlica,K. (1990) Bacterial topoisomerases and the control of DNA
supercoiling. Trends Genet., 6, 433–437.

Eker,S., Knapp,M., Laderoute,K., Lincoln,P., Meseguer,J. and
Sönmez,M.K. (2002) Pathway logic: symbolic analysis of biolo-
gical signaling. In Altman,R.B., Dunker,A.K., Hunter,L., Jung,T.,
and Klein,T.C. (eds), PSB’02, World Scientific Publishing,
Singapore, pp. 400–412.

Ghosh,R., Tiwari,A. and Tomlin,C.J. (2003) Automated symbolic
reachability analysis, with application to Delta-Notch signal-
ing automata. In Maler,O. and Pnueli,A. (eds), HSCC’ 03,
Lecture Notes in Computer Science Vol. 2623, Springer, Berlin,
pp. 233–248.

Glass,L. and Kauffman,S.A. (1973) The logical analysis of continu-
ous non-linear biochemical control networks. J. Theor. Biol., 39,
103–129.

Gouzé,J.-L. and Sari,T. (2002) A class of piecewise-linear differ-
ential equations arising in biological models. Dyn. Syst., 17,
299–316.

Hengge-Aronis,R. (2000) The general stress response in E.coli. In
Storz,G. and Hengge-Aronis,R. (eds), Bacterial Stress Responses.
ASM Press, Washington, DC, pp. 161–177.

Huisman,G.W., Siegele,D.A., Zambrano,M.M. and Kolter,R. (1996)
Morphological and physiological changes during station-
ary phase. In Neidhardt,F.C., Curtiss III,R., Ingraham,J.L.,
Lin,E.C.C., Low,K.B., Magasanik,B., Reznikoff,W.S., Riley,M.,

i27



“bti1048” — 2005/6/10 — page 28 — #10

G.Batt et al.

Schaechter,M. and Umbarger,H.E. (eds), Escherichia coli and
Salmonella: Cellular and Molecular Biology. ASM Press,
Washington, DC, pp. 1672–1682.

Koch,I., Junker,B.H. and Heiner,M. (2005) Application of Petri net
theory for modelling and validation of the sucrose breakdown
pathway in the potato tuber. Bioinformatics 21, 1219–1226.

Mateescu,R. and Sighireanu,M. (2003) Efficient on-the-fly model-
checking for regular alternation-free mu-calculus. Sci. Comput.
Program., 46, 255–281.

Mateescu,R. and Garavel,H. (1998) XTL: a meta-language and tool
for temporal logic model-checking. In Margaria,T. and Steffen,B.
(eds) STTT’98. Brics, Aalborg, pp. 33–42.

Regev,A., Silverman,W. and Shapiro,E. (2001) Representation
and simulation of biochemical processes using the pi-calculus
process algebra. In Altman,R.B., Dunker,A.K., Hunter,L. and
Klein,T.E. (eds), PSB’01. World Scientific Publishing, Singapore,
pp. 459–470.

Ropers,D., de Jong,H., Page,M., Schneider,D. and
Geiselmann,J. (2004) Qualitative simulation of nutri-
tional stress response in Escherichia coli. Technical Report
INRIA RR-5412.

Shults,B. and Kuipers,B.J. (1997) Proving properties of continuous
systems: qualitative simulation and temporal logic. Artif. Intell.,
92, 91–130.

i28


