
 Page 1�/8�

Fiacre: an Intermediate Language for Model Verification in the
TOPCASED Environment

B. Berthomieu1, JP. Bodeveix2, P. Farail3, M. Filali2, H. Garavel4, P. Gaufillet3, F. Lang4,
F. Vernadat1

1: LAAS-CNRS, 7 avenue du Colonel Roche, F-31077 TOULOUSE
2: IRIT, Université Paul Sabatier-CNRS, 118 route de Narbonne, F-31062 TOULOUSE

3: AIRBUS France, 316 route de Bayonne, F-31060 TOULOUSE
4: INRIA Rhône-Alpes, 655 avenue de l'Europe, Montbonnot Saint-Martin, F-38334 SAINT ISMIER

Abstract: Fiacre was designed in the framework of
the TOPCASED project dealing with model-driven
engineering and gathering numerous partners, from
both industry and academics. Therefore, Fiacre is
designed both as the target language of model
transformation engines from various models such as
SDL, UML, AADL, and as the source language of
compilers into the targeted verification toolboxes,
namely CADP and Tina in the first step. In this
paper, we present the Fiacre language. Then
transformations from AADL to Fiacre are illustrated
on a small example.

Keywords: model checking, model transformation,
embedded systems, architecture description
languages

1. Introduction

Fiacre[10] is an acronym for Format Intermédiaire
pour les Architectures de Composants Répartis
Embarqués (Intermediate Form for Architectures of
Embedded Distributed Components). Fiacre is a
formal intermediate model to represent both the
behavioural and timing aspects of systems -in
particular embedded and distributed systems- for
formal verification and simulation purposes. Fiacre
was designed in the framework of the TOPCASED
project[11] dealing with model-driven engineering
and gathering numerous partners, from both industry
and academics. Therefore, Fiacre is designed both
as the target language of model transformation
engines from various models such as SDL, UML,
AADL, and as the source language of compilers into
the targeted verification toolboxes, namely CADP
and Tina in the first step. Here, we focus on the
front-end of this pipeline, namely on the Fiacre
language and on the translation of a high level
modelling language (AADL) to Fiacre. The rest of
this paper is organized as follows: Section 2
presents the TOPCASED environment and its meta-
level tools. Section 3 briefly introduces Fiacre as a

pivot language for verifying high level modelling
languages and describes in more details the
translation of some aspects of AADL to Fiacre.
Section 4 details the Fiacre language and its
semantics. Section 5 illustrates parts of the
translation of AADL to Fiacre on a communication
protocol.

2. The TOPCASED environment

The TOPCASED project aims at developing an open
source CASE tool for safety critical applications. It
offers meta-level tools helping in the implementation
of model driven environments which aim at
designing models which can be verified and
transformed into executable code.

The TOPCASED environment is based on the
Eclipse platform. It is organized around a model bus
allowing the communication between editing,
verification, simulation and code generation tools. It
offers meta-level tools to help in the implementation
of dedicated CASE tools:

 Graphic EMF metamodel editors
 Static semantic verification or analysis tools

based on the OCL[7].
 Tree-based and graphic model editors can

be generated from an EMF metamodel.
 Model transformation languages (ATL[4],

Kermeta[3]) and code generation languages
(OAW[5], Acceleo[6]) are provided to
support model driven development.

Metamodels and editors are provided by
TOPCASED for well known modelling languages,
such as UML, SysML and AADL.

3. Verification in TOPCASED

Model verification is one of the most important
objectives of TOPCASED. A support for the static
analysis of models already exists through an OCL
interpreter. OCL can be used to specify the static
semantics (type checking conditions, usage
restrictions, ...) of modelling languages and

 Page 2�/8�

marginally to specify dynamic properties. Here, we
focus on tools allowing the verification of dynamic
properties of real time systems. This paragraph
presents the architecture of the verification
framework and presents in more details the various
elements that interact in the verification process.

3.1 Architecture of the verification framework

The modelling language of model checkers must be
kept simple enough for the tool to be efficient. It is
thus preferable to reuse existing model checkers
(Tina and CADP) to check properties of high level
languages (UML, SysML, AADL), which leads to the
introduction of a transformation phase between the
two levels. In order to make easer the connection of
model checkers to those languages, we have
introduced the pivot language Fiacre so that the
expression of the run-time semantics of high level
languages can be factored and expressed using the
pivot. It must be powerful enough to support the
expression of the semantics of real time preemptible
systems even if back-end model checkers do not
take into account all the aspects of the model. The
TOPCASED environment is exploited to implement
this process, as shown by the following figure:

TOPCASED offers the metamodel of the high level
modelling languages together with graphical editors.
The abstract syntax of the Fiacre intermediate
language is defined through its metamodel.
Transformation languages are used to generate
Fiacre models from modelling languages. At this
step, some semantics choice must be performed to
identify relevant subsets of sources languages and
reduce the complexity of intermediate models. Then,
source code generators are used to produce the text
representation of the Fiacre model and communicate
with the external Fiacre front-end. The Fiacre tool
performs static analysis of its entry and generates
Tina and CADP models which are analysed by the
corresponding tools.

It has to be noted that this schema does not illustrate
the reverse path which should take as inputs the
counter-examples produced by CADP or TINA,
convert them to a (to be defined) Fiacre trace model
and finally to trace models of each high level
modelling language. Such traces should be played
back using simulation tools.

3.2 Verification of high level modelling languages

High level modelling languages have a very complex
semantics and only subsets of them will be taken
into account. Uses of these languages must be
defined, which correspond to defining profiles in the
UML terminology. For example, AADL can be used
as a synchronous language. The validity of the
synchronous hypothesis can be checked
independently. Then, translating AADL models to a
non-temporised model checker is sufficient. AADL
can also be used as a totally asynchronous
language with preemptive scheduling. In this case,
even reachability analysis becomes undecidable, but
the semi-decision algorithm provided by Tina can be
used. Intermediate choices can be performed as for
example ignoring preemption, considering task have
fixed duration, ignoring remote procedure calls,
ignoring concurrent accesses to shared variables, ...

3.3 Translating AADL to Fiacre

We illustrate this framework with the translation of
AADL models to Fiacre. This transformation is
performed using Kermeta. Kermeta is a model
transformation language which combines features
coming from Eiffel, Java, OCL and aspect oriented
programming and offers easy access to EMF model
repositories. Two main features are heavily used in
the translation: high level iterators on lists and
aspect oriented annotations. These annotations
allow to specify extensions of existing classes with
new attributes and operations. The attributes are
used to memorize the Fiacre objects resulting from
the transformation of the AADL objects. Otherwise,
external data structures such as hash tables should
be used.

3.3.1 Aspect Oriented Programming

Aspect oriented programming is illustrated through
the translation of variables declared in the AADL
behavioural annex to Fiacre variables. For each
occurrence of a variable in an expression, a Fiacre
variable must be created and contains a reference to
its declaration, which is the image through the
transformation process of the declaration point of the
annex variable. This structure is described by the
following class diagram:

 Page 3�/8�

In this schema, classes on the left side belong to the
source metamodel while classes on the right side
belong to the target metamodel. An important
property to be ensured by the transformation is that
the diagram commutes: the VarRef image of a
VariableExpression refers to the LocalVariable which
is the image of BehaviorVariable referenced by the
source VariableExpression.

This property is established by adding the
m_variable reference to the BehaviorVariable
metaclass thanks to Kermeta aspect oriented
features:

@aspect "true"
class BehaviorVariable {
reference m_variable: Fiacre::LocalVariable
}
The following code describes the transformation of
BehaviorVariable instances. A new image is created
only if this has not been done yet (flv=void).

operation transformVariable
 (bv: behavior::BehaviorVariable):
 Fiacre::LocalVariable is do
 var flv:Fiacre::LocalVariable
 flv := bv.m_variable
 if (flv==void) then
 flv:= Fiacre::LocalVariable.new
 flv.name:=bv.name
 if component::DataClassifier.isInstance
 (bv.type) then
 var dc: component::DataClassifier
 dc?=bv.type
 flv.type := data.transformData(dc)
 else
 -- error
 end
 bv.m_variable := flv
 end
 result:=flv
end

3.3.2 Transformation of an AADL architecture

An AADL system is specified by a hierarchical
structure of software and hardware components.
Here, we ignore hardware components so that the
system can be seen as a hierarchy of components,
the leaves of which are threads encapsulating
behaviours. Threads communicate asynchronously
through ports and shared variables, and
synchronously using remote procedure calls. We

only consider here asynchronous port
communication, which differs from Fiacre
synchronous communication. In order to offer to
threads a simple access to their ports, we introduce
at each level of the hierarchy a new component
called a glue which desynchronizes sender and
receiver ports and makes received data accessible
to consumers at the moment specified by the AADL
semantics: data is provided to a thread when it is
dispatched. Given the considered restrictions, it
cannot receive new data while it is active. Data is
either stored in a one place buffer or queued.
Queued data is made totally or partially visible to the
thread, depending on port properties. A flag
indicates if new data has arrived since the previous
dispatch. The size of the visible part of the queue
can also be accessed by the thread. Thus, an AADL
thread has access to its environment via the glue
through one or two channels for each AADL port: a
data channel and possibly a control channel.

3.3.3 Transformation of thread behaviours

Thread behaviours are expressed using the
behavioural annex we have proposed for AADL[2]. A
thread behaviour is mainly an automaton, the
transitions of which are triggered by incoming events
and perform local state changes and
communications. As previously explained,
communications are controlled by the AADL
semantics and pass through the glue process. So, a
thread is translated into a Fiacre process taking as
parameters ports linked to the glue. Annex specific
constructs associated to the AADL programming
interface such as checking the fresh status of
incoming data or the number of messages in input
event (data) queues are translated to
communications through control channels managed
by the glue.
Thread dispatch is another important aspect of
AADL execution model. It is not yet fully managed as
temporised aspects are not considered, but dispatch
is synchronized with data transfers within the glue:
data seen by dispatched processes is that of the
time of dispatch.

3.4 The Tina verification environment

TINA is a software environment to edit and analyze
Petri nets, Time Petri nets, and Time Transition
Systems, and extension of these nets handling data,
priorities and temporal preemption. Beside the usual
editing and analysis facilities of similar
environments, the essential components of the
toolbox are a state space abstraction tool (also
called tina) and a model checking tool (selt). More
details about the toolbox capabilities can be found in
[8].

 Page 4�/8�

TINA offers various abstract state space
constructions that preserve specific classes of
properties of the state spaces of nets, like absence
of deadlocks, linear time temporal properties, or
bisimilarity. For untimed systems, abstract state
spaces help to prevent combinatorial explosion. For
timed systems, TINA provides various abstractions
based on state classes, preserving reachability
properties, linear properties or branching properties.
Mode details about these constructions can be found
in [15].

State space abstractions are provided in various
formats suitable for existing model checkers. The
TINA toolbox also provides a native model checker,
selt. Selt allows one to check more specific
properties than the general ones (boundedness,
deadlocks, liveness) already checked by the state
space generation tool. Selt implements an extension
of linear time temporal logic known as State/Event
LTL [SELTL], a logic supporting both state and
transition properties. The modelling framework
consists of Kripke transition systems (labelled Kripke
structures, the state class graph in our case), which
are directed graphs in which states are labelled with
atomic propositions and transitions are labelled with
actions.

State/Event-LTL formulas are interpreted over the
computation paths of the model. They may express
a wide range of state and/or transition properties,
some typical formulas are the following (a formula
evaluates to true if it does so on all computation
paths, X, F, G and U are LTL modalities, p, q are
formulas):

p p holds at the start
X p p holds at the next step (next)
G p p holds all along the path (globally)
F p p holds in a future step (eventually)
p U q p holds until q holds (until)

Realtime properties, like those expressed in so-
called “timed temporal logics”, are checked using the
standard technique of observers, encoding such
properties into reachability properties. The technique
is applicable to a large class of realtime properties
and can be used to analyse most of the ``timeliness''
requirements found in practice.

3.5 The CADP verification environment

CADP (Construction and Analysis of Distributed
Processes), is a toolbox for the design of
communication protocols and distributed systems,
connected to various complementary tools.

CADP offers a wide set of functionalities, ranging
from step-by-step simulation to massively parallel
model-checking, including:

 Compilers for several input formalisms:

High-level protocol descriptions written in the
ISO language LOTOS, Low-level protocol
descriptions specified as finite state
machines, and Networks of finite state
machines;

 Equivalence checking tools for e.g.
minimization and comparisons modulo
bisimulation relations;

 Model-checkers for various temporal logic
and mu-calculus;

 Several verification algorithms for
enumerative, on-the-fly and symbolic
verification, compositional minimization,
partial orders, and distributed model
checking;

 A number of other tools with advanced
functionalities such as visual checking,
performance evaluation, etc.

CADP is designed in a modular way and puts the
emphasis on intermediate formats and programming
interfaces (such as the BCG and OPEN/CAESAR
software environments), which allow the CADP tools
to be combined with other tools and adapted to
various specification languages. A recent
description of the toolbox can be found in [9]

4. The Fiacre language

This paragraph presents the main characteristics of
the Fiacre language, how Fiacre programs are
verified and a small example.

4.1 Introduction to Fiacre

Fiacre was developed as an intermediate formal
language for the Topcased project to represent both
the behavioural and timing aspects of systems ⎯ in
particular embedded and distributed systems ⎯ for
formal verification and simulation purposes.

The language, formally described in [8], embeds the
following notions:

 Processes describe the behaviour of
sequential components. A process is defined
by a set of control states, each associated
with a piece of program built from
deterministic constructs available in classical
programming languages (assignments, if-
then-else conditionals, while loops, and
sequential compositions), non-deterministic
constructs (non-deterministic choice and
non-deterministic assignments),
communication events on ports, and jumps
to next state.

 Components describe the composition of
processes, possibly in a hierarchical
manner. A component is defined as a
parallel composition of components and/or

 Page 5�/8�

processes communicating through ports and
shared variables. The notion of component
also allows to restrict the access mode and
visibility of shared variables and ports, to
associate timing constraints with
communications, and to define priorities
between communication events.

Fiacre is designed both as the target language of
model transformation engines from various models
used with the TOPCASED project such as SDL or
AADL, and as the source language of compilers into
the targeted verification toolboxes, namely CADP [9]
and Tina [8] in the first step.

Fiacre was directly inspired from two works, namely
V-Cotre [18] and Ntif [19], and indirectly by a number
of research works in concurrency theory and real-
time systems theory over the last two decades. Its
timing primitives are borrowed from Time Petri nets.
Time constraints and priorities have been integrated
so that the properties of components can be
deduced from the properties of their constituents
(compositionality property), as in the BIP framework
[16]. Concerning compositions, Fiacre makes use of
a “graphical” parallel composition operator
previously found in E-Lotos [17].

4.2 Verification of Fiacre programs

For verification purposes, Fiacre programs are
compiled into suitable input formalisms for the Tina
and CADP toolboxes. The Fiacre compilers for both
toolboxes share their front-end (syntactical analysis
and type-checking). The Tina back-end translates
Fiacre programs into Time Transition Systems (an
extension of Time Petri nets handling data and
priorities) and the specification requirements into
State-Event LTL formulas. The CADP back-end
translates Fiacre programs into LOTOS programs,
which are then handled by the dedicated LOTOS
tools embedded into the CADP toolbox (translation
into C code for simulation, testing and verification).

4.3 A transmission protocol in Fiacre

The following code specifies a timed version of the
alternated bit protocol. It contains the two
communicating processes (sender and receiver) and
the unsafe communication media (mmedium and
amedium). Timings are specified in the
encapsulating abp component. For example, the
timeout channel is declared with the timing interval
[5,6]. It means that synchronization through this
channel must be performed after 5 time units have
elapsed in the wait state of the sender, and before 6
time units.

type data is ... (* left unspecified *)
channel msg is bool # data

process sender [inp: data, outp: msg,
 timeout, ack: none] (ssn: bool) is
 states idle, send, wait, resend
 var data: data
 from idle inp? data; to send
 from send
 outp! ssn,data; ssn := not ssn; to wait
 from wait
 select ack; to idle
 [] timeout; to resend
 end
 from resend outp! ssn,data; to wait

process receiver [inp: msg, outp: data,
 ack: none] (expected:bool) is
 states idle, accept, ack
 var data:data, ssn:bool
 from idle
 inp? ssn,data;
 if ssn = expected then to accept
 else to ack end
 from accept
 ssn := not ssn; outp! data; to ack
 from ack ack; to idle

process mmedium [get: msg, lost: none,
 put: msg] is
 states get; put
 var b:bool, d:data
 from get get?b,d; to put
 from put
 select put!b,d; to get
 [] lost, to get
 end

process amedium [get: none, lost: none,
 put: none] is ...
 (similar to mmedium except types of ports)

component abp [inp: data, outp: data] is
 port timeout in [5,6],
 min, mout: msg in [0,1],
 ain, aout: none in [0,1],
 mloss, aloss: none in [0,1]
 par sender [inp,min,timeout,aout](false)
 || mmedium [min, mloss, mout]
 || receiver [mout,outp,ain](false)
 || amedium [ain, aloss, aout]
 end

Remarks
 The use of time intervals associated to ports

can be considered as a design decision
resulting from the Cotre project[20]. Actually,
we have considered this feature as more
suitable than the one which consists in using
clocks explicitely. In fact, this solution
introduces the usual timers as special ports.
It follows that times are automatically, and
consequently safely, set and reset.

 In this paper we have not talked about timing
issues related to process scheduling. More
precisely, we have not considered how
processes should be specified as periodic,
sporadic, ... Again, some solutions to this
problem have already been experimented

 Page 6�/8�

within the Cotre project. We are currently
experimenting alternative solutions. Our goal
is to be able to specify generic solutions to
real-time scheduling problems.

5. An illustrative transformation example

In this section, we illustrate the translation process
from a high level description in AADL to a Fiacre
description. We sketch such a translation using the
Kermeta transformation language. We take as an
example the alternating bit protocol. It is described in
AADL by a system implemented as the composition
of two processes, s instance of the sender process
type, and r, instance of the receiver process type.
They communicate through two asynchronous
unidirectional communication channels which are
supposed unsafe. Data and a status bit are
exchanged through ports named d while
acknowledgements use ports named a. The AADL
architecture of the protocol is illustrated by the
following figure and described by the AADL system
implementation abp.i.

system implementation abp.i
subcomponents
 s: process sender.i;
 r: process receiver.i;
connections
 event data port s.d -> r.d;
 event data port r.a -> s.a;
end abp.i;

The Fiacre translation of the architecture introduces
a glue process which manages asynchronous
communications using synchronous communications
between the sender root_s and the glue, and the
receiver root_r and the glue. The new architecture is
illustrated by the following AADL model:

In Fiacre, the processes root_r and root_s are
composed using interleaving. Their product is
synchronized with the glue.

component root is
port
 root_s_dGlue : in out root_s_d_ty,
 root_r_dGlue : in out root_r_d_ty,
 root_r_aGlue : in out root_r_a_ty,
 root_s_aGlue : in out root_s_a_ty
par
 root_s_dGlue,root_r_dGlue,root_r_aGlue,
 root_s_aGlue ->
 par
 -> root_s[root_s_dGlue, root_s_aGlue]
 || -> root_r[root_r_dGlue, root_r_aGlue]
 end
||
 root_s_dGlue,root_r_dGlue,root_r_aGlue,
 root_s_aGlue ->
 rootGLUE[root_s_dGlue, root_r_dGlue,
 root_r_aGlue, root_s_aGlue]
end

Now, we consider the implementation of the
receiver. AADL does not support the specification of
detailed behaviours. It is either provided through a
link to the actual code or specified in extensions of
AADL called annexes. Here, we use the behavioural
annex we have proposed [2]. The receiver code is
described as a two states automaton which waits for
data. An acknowledge is returned and the receiver
changes its state if it receives the expected data.

thread implementation t_receiver.i
subcomponents
 v: data V.i;
annex behavior_specification {**
states
 st: initial complete state;
 sf: complete state;
transitions
 st -[d?(v) when v.b]-> sf {a!(v.b);};
 st -[d?(v) when not v.b]-> st {a!(v.b);};
 sf -[d?(v) when not v.b]-> st {a!(v.b);};
 sf -[d?(v) when v.b]-> sf { a!(v.b); };
**};
end t_receiver.i;

This AADL thread is translated into the following
Fiacre process which takes as parameters the
channels linked to the glue. The translation is here
straightforward.

process root_r_t[d: in V_i,
 a: out boolean] is
 states st, sf
 var v : V_i
 init to st
 from st d?v where v.b; a!v.b; to sf
 from st d?v where not v.b; a!v.b; to st
 from sf d?v where not v.b; a!v.b; to st
 from sf d?v where v.b; a!v.b; to sf

 Page 7�/8�

Timeouts should be added to the AADL model to
conform with the actual protocol. In fact, they can be
expressed both in the source (behavioural annex)
language and in the target (Fiacre) language but are
not yet supported by the translator. For example, the
following transition should be added to the AADL
model:

 st -[on timeout T]-> st {a!(false);};

It sends again a negative acknowledgement if the
next message is not received with T time units. This
transition informs the scheduler to dispatch the
thread when a message arrives or after the specified
timeout.

It should be possible to verify some LTL properties
such as the following: if each kind of messages
crosses the glue infinitely often, the receiver reaches
each of its two states infinitely often.

6. Conclusion and Perspectives

In this paper, we have presented the current state of
the development of the Fiacre intermediate language
for model verification in the TOPCASED
environment. It should be stressed that many design
decisions have been made based on previous
research projects and especially the Cotre
project[20]. With respect to model checking, Fiacre
relies on mature tools like CADP and Tina. However,
we have to keep in mind that the combinatoric
explosion hinders the verification process. We have
to look for abstraction mechanisms which enhance
it. Some research directions have been suggested.
Of course, these abstractions should be made
concrete for code generation. The TOPCASED
environment, through its transformation engines,
should make easy such a task.

Status of implementations

The metamodel of the source and target languages
are available: AADL metamodel is provided by the
OSATE[21] tool integrated in TOPCASED and the
Fiacre metamodel has been build using the
TOPCASED environment. The implementation of the
AADL to Fiacre translator is partial for the moment. It
supports the translation of architectural and
behavioural aspects. Work now focuses on the
specification in Fiacre of scheduling and temporised
behaviours. These aspects will have a great impact
on the overall performance of the analysis tool. So
subsets of AADL will have to be specified in order to
avoid producing too complex models. They range
from fully synchronous models to fully asynchronous
ones with preemptive scheduling. Management of
time is also important. It can be either completely
abstracted, considered as discrete or dense. Fiacre

and the Tina model checker will offer a support for
all these variants.

Perspectives

In this paper, we have discussed about the basic
Fiacre. Currently, we are also investigating
extensions that could be interesting in order to make
easier the translation from high level description
languages or to make more efficient the verification
process. Among them, let us mention:

 The notion of modes [14]: actually such a
feature is currently available in some
architecture description languages, e.g.
Giotto, AADL. It would be interesting to offer
such a notion with a dedicated verification
process.

 The generalization of the send-receive
primitives. For instance, one can envision a
statement where multiple sends and
receives could be done atomically in one
step. Then, such a step could be analyzed
as a whole and translated afterwards into
basic send and receive statements.

 The verification of parameterized systems:
currently, a system is composed of a fixed
number processes and components. Each
system of a same family must be verified
separately. Fiacre could be enriched to
specify families of systems with regular
architectures, e.g., a bus, a ring, ... It follows
that dedicated verification techniques could
be used in order to go beyond the traditional
model checking techniques where, for
instance, the number of components, the
size of buffers, ... have to be fixed a priori.

7. References

[1] SAE Aerospace: "Architecture Analysis & Design
Language (AADL)", AS-5506, SAE International,
2004.

[2] Ricardo Bedin Franca, Jean-Paul Bodeveix , David
Chemouil, Mamoun Filali, Dave Thomas, Jean-
François Rolland: "The AADL behaviour annex
experiments and roadmap", UML&AADL'2007,
(Auckland, New Zealand), 2007.

[3] Pierre-Alain Muller, Franck Fleurey, Didier
Vojtisek, Zoé Drey, Damien Pollet, Frédéric
Fondement, Philippe Studer, and Jean-Marc
Jézéquel. « On executable meta-languages
applied to model transformations » In Model
Transformations In Practice Workshop,
Montego Bay, Jamaica, October 2005.

[4] Jouault, F, and Kurtev, I : Transforming Models with
ATL. In: Proceedings of the Model Transformations
in Practice Workshop at MoDELS 2005, Montego
Bay, Jamaica.

[5] OAW, http://www.openarchitectureware.org/

 Page 8�/8�

[6] Acceleo, http://www.acceleo.org/
[7] OCL, UML 2.0 Object Constraint Language,

http://www.omg.org/cgi-bin/doc?ptc/2003-10-
14.pdf

[8] B. Berthomieu, P.-O. Ribet, F. Vernadat, The tool
TINA -- Construction of Abstract State Spaces for
Petri Nets and Time Petri Nets, International
Journal of Production Research, Vol. 42, No 14,
July 2004.

[9] H. Garavel, F. Lang, R. Mateescu, W. Serve.
« CADP 2006: A Toolbox for the Construction and
Analysis of Distributed Processes », 19th Int. Conf.
On Computer Aided Verification (CAV'07), July
2007.

[10] B.Berthomieu, J.P.Bodeveix, M.Filali, H.Garavel,
F.Lang, F.Peres, R.Saad, J.Stoecker, F.Vernadat.
“The syntax and semantics of Fiacre ». Rapport
LAAS N°07264, Rapport de Contrat, Projet
ANR05RNTL03101 OpenEmbeDD, Mai 2007, 30p.

[11] Topcased: "Toolkit in OPen-source for Critical
Apllications and SystEms Development",
http://www.topcased.org

[12] D. Garlan and R. Monroe and D. Wile: "ACME: An
Architecture Description Interchange Language",
CASCON'97, Toronto, 1997.

[13] Robert Allen: "A Formal Approach to Software
Architecture", Carnegie Mellon, School of
Computer Science, 1997.

[14] Jean-François Rolland, Jean-Paul Bodeveix,
Mamoun Filali, Dave Thomas and David Chemouil:
"Modes in asynchronous systems", UML&AADL'08,
IEEE ICCECS, Belfast (to appear).

[15] B. Berthomieu, F. Vernadat, State Space
Abstractions for Time Petri Nets, Handbook of
Real-Time and Embedded Systems, Ed. I. Lee, J.
Y-T Leung, S. H. Son, Chapman & Hall/CRC, 2007.

[16] A. Basu, M. Bozga, J. Sifakis. « Modeling
heterogeneous real-time systems in BIP ». 4th
IEEE Int.l Conf. on Software Engineering and
Formal Methods (SEFM06), Pune, Sept 2006.

[17] ISO/IEC. Enhancements to LOTOS (E-LOTOS).
International Standard 15437:2001, International
Organization for Standardization --- Information
Technology, Genève, Sept 2001.

[18] B. Berthomieu, et al. « Towards the verification of
real-time systems in avionics: the Cotre approach.
Proceedings of the 8th Int. Workshop on Formal
Methods for Industrial Critical Systems, 2003.

[19] H. Garavel and F. Lang. « NTIF: A general
symbolic model for communicating sequential
processes with data ». 22nd IFIP WG 6.1 Int.
Conference on Formal Techniques for Networked
and Distributed Systems, 2002.

[20] J.-M. Farines, B. Berthomieu, J.-P. Bodeveix, P.
Dissaux, P. Farail, M. Filali, P. Gaufillet,H. Hafidi,
J.-L. Lambert, P.Michel, F. Vernadat. « The Cotre
Project: Rigorous Software Development for Real
Time Systems in Avionics ». Electronic Notes in
Theoretical Computer Science.

 http://www.sciencedirect.com/science/journal/
15710661

 Volume 80. August 2003, Pages 203-218. Eighth
International Workshop on Formal Methods for
Industrial Critical Systems (FMICS'03).

[21] The SEI AADL Team: "An Extensible Open Source
AADL Tool Environment (OSATE)",Software
Engineering Institute, 2006.

8. Glossary

AADL Architecture Analysis & Design Language

ADL Architecture Design Language

ATL Atlas Transformation Language

CMU Carnegie Mellon University

EMF Eclipse modeling Framework

OSATE Open Source AADL Tool Environment

TOPCASED Toolkit in Open Source for Critical
Applications & Systems
Development

UML Unified Modeling Language

SEI Software Engineering Institute

XMI XML Metadata Interchange

