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Abstract: Fiacre was designed in the framework of 
the TOPCASED project dealing with model-driven 
engineering and gathering numerous partners, from 
both industry and academics. Therefore, Fiacre is 
designed both as the target language of model 
transformation engines from various models such as 
SDL, UML, AADL, and as the source language of 
compilers into the targeted verification toolboxes, 
namely CADP and Tina in the first step. In this 
paper, we present the Fiacre language. Then 
transformations from AADL to Fiacre are illustrated 
on a small example. 
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1. Introduction 

Fiacre[10] is an acronym for Format Intermédiaire 
pour les Architectures de Composants Répartis 
Embarqués (Intermediate Form for Architectures of 
Embedded Distributed Components). Fiacre is a 
formal intermediate model to represent both the 
behavioural and timing aspects of systems -in 
particular embedded and distributed systems- for 
formal verification and simulation purposes.  Fiacre 
was designed in the framework of the TOPCASED 
project[11] dealing with model-driven engineering 
and gathering numerous partners, from both industry 
and academics. Therefore, Fiacre is designed both 
as the target language of model transformation 
engines from various models such as SDL, UML, 
AADL, and as the source language of compilers into 
the targeted verification toolboxes, namely CADP 
and Tina in the first step. Here, we focus on the 
front-end of this pipeline, namely on the Fiacre 
language and on the translation of a high level 
modelling language (AADL) to Fiacre. The rest of 
this paper is organized as follows: Section 2 
presents the TOPCASED environment and its meta-
level tools. Section 3 briefly introduces Fiacre as a 

pivot language for verifying high level modelling 
languages and describes in more details the 
translation of some aspects of AADL to Fiacre. 
Section 4 details the Fiacre language and its 
semantics. Section 5 illustrates parts of the 
translation of AADL to Fiacre on a communication 
protocol. 

2. The TOPCASED environment 

The TOPCASED project aims at developing an open 
source CASE tool for safety critical applications. It 
offers meta-level tools helping in the implementation 
of model driven environments which aim at 
designing models which can be verified and 
transformed into executable code. 
 
The TOPCASED environment is based on the 
Eclipse platform. It is organized around a model bus 
allowing the communication between editing, 
verification, simulation and code generation tools.  It 
offers meta-level tools to help in the implementation 
of dedicated CASE tools:  

 Graphic EMF metamodel editors 
 Static semantic verification or analysis tools 

based on the OCL[7]. 
 Tree-based and graphic model editors can 

be generated from an EMF metamodel.  
 Model transformation languages (ATL[4], 

Kermeta[3]) and code generation languages 
(OAW[5], Acceleo[6]) are provided to 
support model driven development. 

Metamodels and editors are provided by 
TOPCASED for well known modelling languages, 
such as UML, SysML and AADL.  

3. Verification in TOPCASED 

Model verification is one of the most important 
objectives of TOPCASED. A support for the static 
analysis of models already exists through an OCL 
interpreter. OCL can be used to specify the static 
semantics (type checking conditions, usage 
restrictions, ...) of modelling languages and 
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marginally to specify dynamic properties. Here, we 
focus on tools allowing the verification of dynamic 
properties of real time systems. This paragraph 
presents the architecture of the verification 
framework and presents in more details the various 
elements that interact in the verification process. 
 
3.1 Architecture of the verification framework 
 
The modelling language of model checkers must be 
kept simple enough for the tool to be efficient. It is 
thus preferable to reuse existing model checkers 
(Tina and CADP) to check properties of high level 
languages (UML, SysML, AADL), which leads to the 
introduction of a transformation phase between the 
two levels. In order to make easer the connection of 
model checkers to those languages, we have 
introduced the pivot language Fiacre so that the 
expression of the run-time semantics of high level 
languages can be factored and expressed using the 
pivot. It must be powerful enough to support the 
expression of the semantics of real time preemptible 
systems even if back-end model checkers do not 
take into account all the aspects of the model. The 
TOPCASED environment is exploited to implement 
this process, as shown by the following figure: 

TOPCASED offers the metamodel of the high level 
modelling languages together with graphical editors. 
The abstract syntax of the Fiacre intermediate 
language is defined through its metamodel. 
Transformation languages are used to generate 
Fiacre models from modelling languages. At this 
step, some semantics choice must be performed to 
identify relevant subsets of sources languages and 
reduce the complexity of intermediate models. Then, 
source code generators are used to produce the text 
representation of the Fiacre model and communicate 
with the external Fiacre front-end. The Fiacre tool 
performs static analysis of its entry and generates 
Tina and CADP models which are analysed by the 
corresponding tools.  
 

It has to be noted that this schema does not illustrate 
the reverse path which should take as inputs the 
counter-examples produced by CADP or TINA, 
convert them to a (to be defined) Fiacre trace model 
and finally to trace models of each high level 
modelling language. Such traces should be played 
back using simulation tools. 
 
3.2 Verification of high level modelling languages 
 
High level modelling languages have a very complex 
semantics and only subsets of them will be taken 
into account. Uses of these languages must be 
defined, which correspond to defining profiles in the 
UML terminology. For example, AADL can be used 
as a synchronous language. The validity of the 
synchronous hypothesis can be checked 
independently. Then, translating AADL models to a 
non-temporised model checker is sufficient. AADL 
can also be used as a totally asynchronous 
language with preemptive scheduling. In this case, 
even reachability analysis becomes undecidable, but 
the semi-decision algorithm provided by Tina can be 
used. Intermediate choices can be performed as for 
example ignoring preemption, considering task have 
fixed duration, ignoring remote procedure calls, 
ignoring concurrent accesses to shared variables, ... 
 
3.3 Translating AADL to Fiacre 
 
We illustrate this framework with the translation of 
AADL models to Fiacre. This transformation is 
performed using Kermeta. Kermeta is a model 
transformation language which combines features 
coming from Eiffel, Java, OCL and aspect oriented 
programming and offers easy access to EMF model 
repositories. Two main features are heavily used in 
the translation: high level iterators on lists and 
aspect oriented annotations. These annotations 
allow to specify extensions of existing classes with 
new attributes and operations. The attributes are 
used to memorize the Fiacre objects resulting from 
the transformation of the AADL objects. Otherwise, 
external data structures such as hash tables should 
be used. 
 
3.3.1 Aspect Oriented Programming 
 
Aspect oriented programming is illustrated through 
the translation of variables declared in the AADL 
behavioural annex to Fiacre variables. For each 
occurrence of a variable in an expression, a Fiacre 
variable must be created and contains a reference to 
its declaration, which is the image through the 
transformation process of the declaration point of the 
annex variable. This structure is described by the 
following class diagram: 



 Page 3�/8� 

In this schema, classes on the left side belong to the 
source metamodel while classes on the right side 
belong to the target metamodel. An important 
property to be ensured by the transformation is that 
the diagram commutes: the VarRef image of a 
VariableExpression refers to the LocalVariable which 
is the image of BehaviorVariable referenced by the 
source VariableExpression.  
 
This property is established by adding the 
m_variable reference to the BehaviorVariable 
metaclass thanks to Kermeta aspect oriented 
features: 
 
@aspect "true" 
class BehaviorVariable { 
reference m_variable: Fiacre::LocalVariable 
} 
The following code describes the transformation of 
BehaviorVariable instances. A new image is created 
only if this has not been done yet (flv=void).  
 
operation transformVariable 
  (bv: behavior::BehaviorVariable): 
    Fiacre::LocalVariable is do 
  var flv:Fiacre::LocalVariable 
  flv := bv.m_variable 
  if (flv==void) then 
    flv:= Fiacre::LocalVariable.new 
    flv.name:=bv.name 
    if component::DataClassifier.isInstance 
      (bv.type) then 
      var dc: component::DataClassifier 
      dc?=bv.type 
      flv.type := data.transformData(dc) 
    else  
      -- error 
    end 
    bv.m_variable := flv 
  end 
  result:=flv 
end 
 

3.3.2 Transformation of an AADL architecture 
 
An AADL system is specified by a hierarchical 
structure of software and hardware components. 
Here, we ignore hardware components so that the 
system can be seen as a hierarchy of components, 
the leaves of which are threads encapsulating 
behaviours. Threads communicate asynchronously 
through ports and shared variables, and 
synchronously using remote procedure calls. We 

only consider here asynchronous port 
communication, which differs from Fiacre 
synchronous communication. In order to offer to 
threads a simple access to their ports, we introduce 
at each level of the hierarchy a new component 
called a glue which desynchronizes sender and 
receiver ports and makes received data accessible 
to consumers at the moment specified by the AADL 
semantics: data is provided to a thread when it is 
dispatched. Given the considered restrictions, it 
cannot receive new data while it is active. Data is 
either stored in a one place buffer or queued. 
Queued data is made totally or partially visible to the 
thread, depending on port properties. A flag 
indicates if new data has arrived since the previous 
dispatch. The size of the visible part of the queue 
can also be accessed by the thread. Thus, an AADL 
thread has access to its environment via the glue 
through one or two channels for each AADL port: a 
data channel and possibly a control channel. 
 
3.3.3 Transformation of thread behaviours 
 
Thread behaviours are expressed using the 
behavioural annex we have proposed for AADL[2]. A 
thread behaviour is mainly an automaton, the 
transitions of which are triggered by incoming events 
and perform local state changes and 
communications. As previously explained, 
communications are controlled by the AADL 
semantics and pass through the glue process. So, a 
thread is translated into a Fiacre process taking as 
parameters ports linked to the glue. Annex specific 
constructs associated to the AADL programming 
interface such as checking the fresh status of 
incoming data or the number of messages in input 
event (data) queues are translated to 
communications through control channels managed 
by the glue.  
Thread dispatch is another important aspect of 
AADL execution model. It is not yet fully managed as 
temporised aspects are not considered, but dispatch 
is synchronized with data transfers within the glue: 
data seen by dispatched processes is that of the 
time of dispatch.  
 
3.4 The Tina verification environment 
 
TINA is a software environment to edit and analyze 
Petri nets, Time Petri nets, and Time Transition 
Systems, and extension of these nets handling data, 
priorities and temporal preemption. Beside the usual 
editing and analysis facilities of similar 
environments, the essential components of the 
toolbox are a state space abstraction tool (also 
called tina) and a model checking tool (selt). More 
details about the toolbox capabilities can be found in 
[8]. 
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TINA offers various abstract state space 
constructions that preserve specific classes of 
properties of the state spaces of nets, like absence 
of deadlocks, linear time temporal properties, or 
bisimilarity. For untimed systems, abstract state 
spaces help to prevent combinatorial explosion. For 
timed systems, TINA provides various abstractions 
based on state classes, preserving reachability 
properties, linear properties or branching properties. 
Mode details about these constructions can be found 
in [15]. 
 
State space abstractions are provided in various 
formats suitable for existing model checkers. The 
TINA toolbox also provides a native model checker, 
selt. Selt allows one to check more specific 
properties than the general ones (boundedness, 
deadlocks, liveness) already checked by the state 
space generation tool. Selt implements an extension 
of linear time temporal logic known as State/Event 
LTL [SELTL], a logic supporting both state and 
transition properties. The modelling framework 
consists of Kripke transition systems (labelled Kripke 
structures, the state class graph in our case), which 
are directed graphs in which states are labelled with 
atomic propositions and transitions are labelled with 
actions. 
 
State/Event-LTL formulas are interpreted over the 
computation paths of the model. They may express 
a wide range of state and/or transition properties, 
some typical formulas are the following (a formula 
evaluates to true if it does so on all computation 
paths, X, F, G and U are LTL modalities, p, q are 
formulas): 
 
p p holds at the start 
X p p holds at the next step (next) 
G p p holds all along the path (globally) 
F p p holds in a future step (eventually) 
p U q p holds until q holds (until) 
 
Realtime properties, like those expressed in so-
called “timed temporal logics”, are checked using the 
standard technique of observers, encoding such 
properties into reachability properties. The technique 
is applicable to a large class of realtime properties 
and can be used to analyse most of the ``timeliness'' 
requirements found in practice. 
 
3.5 The CADP verification environment 
 

CADP (Construction and Analysis of Distributed 
Processes), is a toolbox for the design of 
communication protocols and distributed systems, 
connected to various complementary tools. 
 
CADP offers a wide set of functionalities, ranging 
from step-by-step simulation to massively parallel 
model-checking, including: 

 
 Compilers for several input formalisms: 

High-level protocol descriptions written in the 
ISO language LOTOS, Low-level protocol 
descriptions specified as finite state 
machines, and Networks of finite state 
machines; 

 Equivalence checking tools for e.g. 
minimization and comparisons modulo 
bisimulation relations; 

 Model-checkers for various temporal logic 
and mu-calculus; 

 Several verification algorithms for  
enumerative, on-the-fly and symbolic 
verification, compositional minimization, 
partial orders, and distributed model 
checking; 

 A number of other tools with advanced 
functionalities such as visual checking, 
performance evaluation, etc. 

CADP is designed in a modular way and puts the 
emphasis on intermediate formats and programming 
interfaces (such as the BCG and OPEN/CAESAR 
software environments), which allow the CADP tools 
to be combined with other tools and adapted to 
various specification languages.  A recent 
description of the toolbox can be found in [9] 

4. The Fiacre language 

This paragraph presents the main characteristics of 
the Fiacre language, how Fiacre programs are 
verified and a small example. 
 
4.1 Introduction to Fiacre 
 
Fiacre was developed as an intermediate formal 
language for the Topcased project to represent both 
the behavioural and timing aspects of systems ⎯ in 
particular embedded and distributed systems ⎯ for 
formal verification and simulation purposes. 
 
The language, formally described in [8], embeds the 
following notions:  
 

 Processes describe the behaviour of 
sequential components. A process is defined 
by a set of control states, each associated 
with a piece of program built from 
deterministic constructs available in classical 
programming languages (assignments, if-
then-else conditionals, while loops, and 
sequential compositions), non-deterministic 
constructs (non-deterministic choice and 
non-deterministic assignments), 
communication events on ports, and jumps 
to next state. 

 Components describe the composition of 
processes, possibly in a hierarchical 
manner. A component is defined as a 
parallel composition of components and/or 
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processes communicating through ports and 
shared variables. The notion of component 
also allows to restrict the access mode and 
visibility of shared variables and ports, to 
associate timing constraints with 
communications, and to define priorities 
between communication events.  
 

Fiacre is designed both as the target language of 
model transformation engines from various models 
used with the TOPCASED project such as SDL or 
AADL, and as the source language of compilers into 
the targeted verification toolboxes, namely CADP [9] 
and Tina [8]  in the first step. 
 
Fiacre was directly inspired from two works, namely 
V-Cotre [18] and Ntif [19], and indirectly by a number 
of research works in concurrency theory and real-
time systems theory over the last two decades. Its 
timing primitives are borrowed from Time Petri nets. 
Time constraints and priorities have been integrated 
so that the properties of components can be 
deduced from the properties of their constituents 
(compositionality property), as in the BIP framework 
[16]. Concerning compositions, Fiacre makes use of 
a “graphical” parallel composition operator 
previously found in E-Lotos [17]. 
 
4.2 Verification of Fiacre programs 
 
For verification purposes, Fiacre programs are 
compiled into suitable input formalisms for the Tina 
and CADP toolboxes. The Fiacre compilers for both 
toolboxes share their front-end (syntactical analysis 
and type-checking). The Tina back-end translates 
Fiacre programs into Time Transition Systems (an 
extension of Time Petri nets handling data and 
priorities) and the specification requirements into 
State-Event LTL formulas. The CADP back-end 
translates Fiacre programs into LOTOS programs, 
which are then handled by the dedicated LOTOS 
tools embedded into the CADP toolbox (translation 
into C code for simulation, testing and verification). 
 
4.3 A transmission protocol in Fiacre 
 
The following code specifies a timed version of the 
alternated bit protocol. It contains the two 
communicating processes (sender and receiver) and 
the unsafe communication media (mmedium and 
amedium).  Timings are specified in the 
encapsulating abp component.  For example, the 
timeout channel is declared with the timing interval 
[5,6]. It means that synchronization through this 
channel must be performed after 5 time units have 
elapsed in the wait state of the sender, and before 6 
time units. 
 
type data is ... (* left unspecified *) 
channel msg is bool # data 
 

process sender [inp: data, outp: msg,  
     timeout, ack: none] (ssn: bool) is 
  states idle, send, wait, resend 
  var data: data 
  from idle inp? data; to send 
  from send 
    outp! ssn,data; ssn := not ssn; to wait 
  from wait 
    select ack; to idle 
     []    timeout; to resend 
    end 
  from resend outp! ssn,data; to wait 
 
process receiver [inp: msg, outp: data,  
     ack: none] (expected:bool) is 
  states idle, accept, ack 
  var data:data, ssn:bool 
  from idle 
    inp? ssn,data; 
    if ssn = expected then to accept  
    else to ack end 
  from accept  
    ssn := not ssn; outp! data; to ack 
  from ack ack; to idle 
 
process mmedium [get: msg, lost: none,  
     put: msg] is 
  states get; put 
  var b:bool, d:data 
  from get get?b,d; to put 
  from put 
    select put!b,d; to get 
    []     lost, to get 
    end 
 
process amedium [get: none, lost: none, 
     put: none] is ... 
 (similar to mmedium except types of ports) 
 
component abp [inp: data, outp: data] is 
  port timeout in [5,6], 
       min, mout: msg in [0,1], 
       ain, aout: none in [0,1], 
       mloss, aloss: none in [0,1] 
  par sender [inp,min,timeout,aout](false) 
  ||  mmedium [min, mloss, mout] 
  ||  receiver [mout,outp,ain](false) 
  ||  amedium [ain, aloss, aout] 
  end 
 

Remarks 
 The use of time intervals associated to ports 

can be considered as a design decision 
resulting from the Cotre project[20]. Actually, 
we have considered this feature as more 
suitable than the one which consists in using 
clocks explicitely. In fact, this solution 
introduces the usual timers as special ports. 
It follows that times are automatically, and 
consequently safely, set and reset. 

 In this paper we have not talked about timing 
issues related to process scheduling. More 
precisely, we have not considered how 
processes should be specified as periodic, 
sporadic, ... Again, some solutions to this 
problem have already been experimented 
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within the Cotre project. We are currently 
experimenting alternative solutions. Our goal 
is to be able to specify generic solutions to 
real-time scheduling problems. 

5. An illustrative transformation example 

In this section, we illustrate the translation process 
from a high level description in AADL to a Fiacre 
description. We sketch such a translation using the 
Kermeta transformation language. We take as an 
example the alternating bit protocol. It is described in 
AADL by a system implemented as the composition 
of two processes, s instance of the sender process 
type, and r, instance of the receiver process type. 
They communicate through two asynchronous 
unidirectional communication channels which are 
supposed unsafe. Data and a status bit are 
exchanged through ports named d while 
acknowledgements use ports named a. The AADL 
architecture of the protocol is illustrated by the 
following figure and described by the AADL system 
implementation abp.i. 

 
system implementation abp.i 
subcomponents 
  s: process sender.i; 
  r: process receiver.i; 
connections 
  event data port s.d -> r.d; 
  event data port r.a -> s.a; 
end abp.i; 

 
The Fiacre translation of the architecture introduces 
a glue process which manages asynchronous 
communications using synchronous communications 
between the sender root_s and the glue, and the 
receiver root_r and the glue. The new architecture is 
illustrated by the following AADL model: 

In Fiacre, the processes root_r and root_s are 
composed using interleaving. Their product is 
synchronized with the glue. 
 
component root is 
port 
  root_s_dGlue : in out root_s_d_ty, 
  root_r_dGlue : in out root_r_d_ty, 
  root_r_aGlue : in out root_r_a_ty, 
  root_s_aGlue : in out root_s_a_ty 
par 
  root_s_dGlue,root_r_dGlue,root_r_aGlue, 
    root_s_aGlue ->  
  par 
      -> root_s[root_s_dGlue, root_s_aGlue] 
   || -> root_r[root_r_dGlue, root_r_aGlue] 
  end 
|| 
  root_s_dGlue,root_r_dGlue,root_r_aGlue, 
    root_s_aGlue ->  
  rootGLUE[root_s_dGlue, root_r_dGlue, 
           root_r_aGlue, root_s_aGlue] 
end 

 
Now, we consider the implementation of the 
receiver. AADL does not support the specification of 
detailed behaviours. It is either provided through a 
link to the actual code or specified in extensions of 
AADL called annexes. Here, we use the behavioural 
annex we have proposed [2]. The receiver code is 
described as a two states automaton which waits for 
data. An acknowledge is returned and the receiver 
changes its state if it receives the expected data. 
 
thread implementation t_receiver.i 
subcomponents 
  v: data V.i; 
annex behavior_specification {** 
states 
  st: initial complete state; 
  sf: complete state; 
transitions 
  st -[d?(v) when v.b]-> sf {a!(v.b);}; 
  st -[d?(v) when not v.b]-> st {a!(v.b);}; 
  sf -[d?(v) when not v.b]-> st {a!(v.b);}; 
  sf -[d?(v) when v.b]-> sf { a!(v.b); }; 
**}; 
end t_receiver.i; 

 
This AADL thread is translated into the following 
Fiacre process which takes as parameters the 
channels linked to the glue. The translation is here 
straightforward.  
 
process root_r_t[d: in V_i, 
                 a: out boolean] is 
  states st, sf 
  var v : V_i 
  init to st 
  from st d?v where v.b; a!v.b; to sf 
  from st d?v where not v.b; a!v.b; to st 
  from sf d?v where not v.b; a!v.b; to st 
  from sf d?v where v.b; a!v.b; to sf 
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Timeouts should be added to the AADL model to 
conform with the actual protocol. In fact, they can be 
expressed both in the source (behavioural annex) 
language and in the target (Fiacre) language but are 
not yet supported by the translator. For example, the 
following transition should be added to the AADL 
model: 
 
  st -[on timeout T]-> st {a!(false);}; 

 
It sends again a negative acknowledgement if the 
next message is not received with T time units. This 
transition informs the scheduler to dispatch the 
thread when a message arrives or after the specified 
timeout. 
 
It should be possible to verify some LTL properties 
such as the following: if each kind of messages 
crosses the glue infinitely often, the receiver reaches 
each of its two states infinitely often. 
 

6. Conclusion and Perspectives 

In this paper, we have presented the current state of 
the development of the Fiacre intermediate language 
for model verification in the TOPCASED 
environment. It should be stressed that many design 
decisions have been made based on previous 
research projects and especially the Cotre 
project[20]. With respect to model checking, Fiacre 
relies on mature tools like CADP and Tina. However, 
we have to keep in mind that the combinatoric 
explosion hinders the verification process. We have 
to look for abstraction mechanisms which enhance 
it. Some research directions have been suggested. 
Of course, these abstractions should be made 
concrete for code generation. The TOPCASED 
environment, through its transformation engines, 
should make easy such a task. 
 
Status of implementations 
 
The metamodel of the source and target languages 
are available: AADL metamodel is provided by the 
OSATE[21] tool integrated in TOPCASED and the 
Fiacre metamodel has been build using the 
TOPCASED environment. The implementation of the 
AADL to Fiacre translator is partial for the moment. It 
supports the translation of architectural and 
behavioural aspects. Work now focuses on the 
specification in Fiacre of scheduling and temporised 
behaviours. These aspects will have a great impact 
on the overall performance of the analysis tool. So 
subsets of AADL will have to be specified in order to 
avoid producing too complex models. They range 
from fully synchronous models to fully asynchronous 
ones with preemptive scheduling. Management of 
time is also important. It can be either completely 
abstracted, considered as discrete or dense. Fiacre 

and the Tina model checker will offer a support for 
all these variants. 
 
Perspectives 
 
In this paper, we have discussed about the basic 
Fiacre. Currently, we are also investigating 
extensions that could be interesting in order to make 
easier the translation from high level description 
languages or to make more efficient the verification 
process. Among them, let us mention: 

 The notion of modes [14]: actually such a 
feature is currently available in some 
architecture description languages, e.g. 
Giotto, AADL. It would be interesting to offer 
such a notion with a dedicated verification 
process. 

 The generalization of the send-receive 
primitives. For instance, one can envision a 
statement where multiple sends and 
receives could be done atomically in one 
step. Then, such a step could be analyzed 
as a whole and translated afterwards into 
basic send and receive statements. 

 The verification of parameterized systems: 
currently, a system is composed of a fixed 
number processes and components. Each 
system of a same family must be verified 
separately. Fiacre could be enriched to 
specify families of systems with regular 
architectures, e.g., a bus, a ring, ... It follows 
that dedicated verification techniques could 
be used in order to go beyond the traditional 
model checking techniques where, for 
instance, the number of components, the 
size of buffers, ... have to be fixed a priori. 
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8. Glossary 
 
AADL Architecture Analysis & Design Language 

ADL Architecture Design Language 

ATL Atlas Transformation Language 

CMU Carnegie Mellon University 

EMF Eclipse modeling Framework 

OSATE Open Source AADL Tool Environment 

TOPCASED Toolkit in Open Source for Critical 
Applications & Systems 
Development 

UML Unified Modeling Language 

SEI Software Engineering Institute 

XMI XML Metadata Interchange 
 
 

 
 


