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Abstract. We show how fault injection together with recent advances
in stochastic model checking can be combined to form a crucial ingredi-
ent for improving quantitative safety analysis. Based on standard design
notations (Statecharts) annotated with fault occurrence distributions we
compute to what extent certain fault configurations contribute to the
probability of reaching a safety-critical state.

1 Introduction

Today’s transportation systems become ever more complex and rely to a large
extent on embedded systems. Typically such systems come equipped with so-
phisticated redundancy and monitoring concepts to achieve a high degree of
fault-tolerance. Fault injection, that is the injection of particular failure behav-
iour into the nominal behaviour of a formal system model, has been proven to be
a suitable method to investigate the effectiveness of these fault-tolerance recipes.
Based on such an extended system model the ISAAC project [1] developed meth-
ods and tools to automatically compute fault trees [2] and extract Minimal Cut
Sets (MCSs). Intuitively, a MCS describes a minimal combination (i. e. no sub
set of an MCS is still an MCS) of faults that can cause a safety critical situ-
ation to occur. In [3] the application of these tools to an actual system from
the avionics domain and their integration into the established safety process are
presented.

However, in practice such qualitative analyses are not sufficient and quantita-
tive safety assessment, taking concrete fault occurrence rates (e. g. taken from
technical specification) into account, becomes imperative. The key problem for
assessing the quantitative impact of safety-critical fault configurations is to fac-
tor in the actually possible fault ordering as well as the transient nature of faults
that are both deeply integrated in the system and far from being evident. Ex-
pensive manual analyses of the concrete system dynamics and fault interplay
have to be performed in order to set up accurate stochastic models. But, since
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Fig. 1. Timed reachability analysis for Statemate - extended tool chain

those analyses are quite time consuming and can usually only be performed by
experts, simplified, naive methods are often employed to approximate results.
Making use of recent advances in stochastic model checking, in [4,5] a (plug-in)
extension of the industrial design tool Statemate [6] is presented enabling the
automated evaluation of timed reachability properties of the form:

“The probability to enter a safety critical system state within a mission time of
100 hours is at most 10−6.”

This paper presents a valuable extension of the work presented in [4,5]. Based on
a Statemate model extended by fault injection and annotated with fault occur-
rence distributions the probability of reaching a safety critical state is analysed,
taking into account all faults. Our extension makes it possible to determine the
contribution of particular MCSs to the over-all probability and thus to identify
those components, whose failing contributes most to reach a safety critical sys-
tem state. These components should be replaced or improved first in order to
improve the over-all system safety, for example if the requirements for certifica-
tion cannot be met. The benefits of our model-based approach are as follows:
The quantitative analysis is automated and can be performed directly on the
formal system model. Thus, no extra efforts are required and, as only the actu-
ally possible failure sequences are taken into account, more accurate probability
measures are derived compared to naive approaches.

We achieve this by encoding path information into the state space of a labelled
transition system (LTS). The principal set-up of the tool chain presented in [4,5]
and extended by this processing step is depicted in Fig. 1. We will refer to this
figure later. A brief overview of the tool chain is given in the next paragraph.

Tool Chain Overview. The over-all approach presented in [4,5] is compositional:
Stochastic Time Constraints, used to delay firing of particular (failure) transi-
tions, are introduced to the non-stochastic system model in a Minimisation and
Time Constraint Incorporation step, after the model has been minimised dras-
tically by building the Branching Bisimulation quotient. In particular, unique
(Failure) Transition Labels are used in the Extended Statechart formalism to ex-
pose relevant transitions by labels in a corresponding LTS. The same labels are
used to enrich absorbing continuous Markov chains (CTMCs) with “synchronisa-
tion potential” yielding a Stochastic Time Constraint [7]. This way, for example,
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time to failure distributions can be integrated into the system model LTS. Using
phase-type approximation [8] the incorporation of arbitrary stochastic delay dis-
tributions is possible [4,5]. The stochastic process algebra of Interactive Markov
Chains (IMCs) [9] is the key enabler that makes it possible to handle the or-
thogonal combination of LTSs and CTMCs. The path encoding, we present in
this paper, allows for the Computation of MCS Specific LTS Variants, retaining
the contribution of the faults in a particular minimal cut set, while disregarding
contributions of other faults. Note that the time constraint CTMCs are made
uniform. This uniformity is preserved during the different processing steps fi-
nally yielding a uniform continuous time Markov decision process (CTMDP) [10].
Further note that the Timed Reachability Analysis copes with model inherent
non-determinism (often used to represent under-specification or to specify an
unpredictable environment) by computing the worst-case probability to reach a
safety critical state within a given Time Bound among the existing choices.

Structure. In Sect. 2 we describe the modelling approach, how faults are specified
and furthermore introduce an example model that we will extend in Sect. 4 to
highlight benefits of our approach. Section 3 shows the construction of cut set
specific LTS variants. Concluding remarks are given in Sect. 5.

Related Work. Fault trees (FTs) are used to represent the dependencies of fail-
ures and other system events. Based on a FT stochastic models can be developed
to establish a quantitative analysis. Dynamic fault-trees (DFT), described in the
latest revision of the Fault Tree Handbook [2], are an extension of traditional
fault-trees and can be used to describe fault-tolerant systems and also relate
the FT to Markov models. The main differences to conventional FTs are the
introduction of the new, dynamic gate types Priority-And (PAND), Functional
Dependency (FDEP) and Spare. With these new gates it becomes possible to
express also sequences of events. For example only if all sub-events to a PAND
gate occur in the same order in which they are connected will the gate be acti-
vated. The Spare gate enables describing several standby configurations where
in the case of a fault in one basic component the function will be taken over
by another spare component. A spare gate allows sharing of these replacement
components between the different branches of the FT and will only propagate
the fault if no more spares are available that means all inputs to the spare gate
have failed. With these additional gates fault-trees become more expressive and
can be used to model systems that could previously not be described adequately.
However there are also drawbacks most notably the increased complexity of the
formalism for analysis as well as for the construction of the fault-tree although
there are some approaches (cf. [11]) that strive to overcome this issue. But an-
other problem of classical fault-tree analysis is still present with this extended
approach. Generating a DFT is usually a non-automated approach that requires
lots of manual steps and expert knowledge. This is an expensive step in terms of
money as well as in terms of time required to build the fault-tree. Keeping the
fault-tree in sync with an evolving system design requires even more effort.
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2 Extended Statecharts

In this section, following the lines of [5], we introduce extended Statecharts as the
user-visible formalism to specify behavioural models. We show how an extended
Statechart is translated into an LTS and thereby present a concise definition of
the formalism. The focus is set on the relevant core needed to clearly expose the
syntactical and semantic extensions to the conventional Statemate formalism.
We present a simple example to illustrate the translation and furthermore the
tool chain’s principles.

As indicated in Fig. 1, extended Statecharts rest upon two constituents,
namely (i) a Statemate description of the system under study and (ii) a set of
(failure) transition labels. These ingredients determine the semantics of extended
Statecharts. Additionally (iii) a safety requirement is used to characterise a sub-
set of system states to be safety critical. For example we identify all the states
where “sensor has failed without being detected” holds as safety critical. These
are the states we are interested in the timed reachability analysis, reaching one
of them is also considered as top level event (TLE).

While conventional Statecharts [12] support non-determinism, but no stochas-
tic time aspects, extended Statecharts allow one to refer to particular Statechart
transitions by a distinguished set of labels A that are later used as reference
anchors to synchronise with appropriately labelled stochastic time constraints.
This enables the modelling of stochastic, non-deterministic systems.

Example 1. The extended Statechart of Fig. 2 describes a simple train odometer
controller component. It comprises three orthogonal components. The Monitor
component detects faults in the Wheelsensor component, so that, in case of a
sensor fault, a brake manoeuvre can be initiated. A third component Observer
is not part of the system but a means to identify safety critical states.

Depending on the value of a non-deterministic input variable SPEED FAST, the
Wheelsensor can reach the node WF representing “sensor failed”. As soon as the
state WF is entered, the Monitor component will detect this and fire the (thin)
edge pointing to node BRAKE. Note that initiating this “emergency brake” is only

OBSERVER

MONITOR

M OK

WHEELSENSOR

ODOMETER CTRL

WOK WF

A

C

B

D

[SPEED FAST]

[not SPEED FAST]

START W FAIL F

START W FAIL S

WAIT W FAIL F

WAIT W FAIL S

SAFE WAIT TLE

[in(WF) and WSENSOR]

[not(in(WF) and WSENSOR)] SYNC

E BRAKE M FAILED

[in(WF)]/WSENSOR:=false;
EMERGENCY BRAKE;

WAIT MON FAIL

[true]/WSENSOR:=true

Fig. 2. An extended Statechart: a simple train odometer controller
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possible, if the Monitor is still working (i. e. in node E). In particular after firing
the (bold) edge pointing to node M FAILED node E will be left and the Monitor is no
longer sensitive to the guard in(WF) and thus can neither signal the Wheelsensor
status to other train components (WSENSOR:=false) nor initiate a break manoeuvre
(EMERGENCY BRAKE). The over-all compositional modelling approach allows us to de-
lay the occurrence of the WAIT MON FAIL edge using for instance a simple exponential
distribution determined by a rate λ. Likewise, the firing of edge WAIT W FAIL F can
be delayed w. r. t. START W FAIL F by rate μ. Thus, we can describe arbitrary fail-
ure behaviour of a component as part of the Statechart model and control the
occurrence of the injected failure behaviour by means of stochastic delays. In
addition, it is possible to incorporate delays to describe aspects of the nominal
(i. e. non failure related) behaviour.
Statecharts have an intuitive graphical syntax. We vary the corresponding tex-
tual syntax as follows.

Definition 1 (Extended Statecharts). An extended Statechart
SC = (N, A, V, G, S, E, m, r, d, c) is a 10-tuple, with

– N is a finite set of nodes,
– A a finite set of action labels,
– V a finite set of variables with a (possibly empty) subset I of input variables,
– G a finite set of boolean expressions on V,
– S a finite set of variable assignment statements,
– E ⊂ N × A ∪̇ {τ} × G × 2S × N is a finite set of edges,
– m : N → {Basic, Or , And} is a type function, identifying nodes as Basic

nodes, Or nodes, or And nodes.
– r ∈ N, m(r) = Or is the root node of SC ,
– d : {n : n ∈ N ∧ m(n) = Or} −→ N assigns a default node to each node of

type Or,
– c : N → 2N a child relation introducing hierarchy on N.

Example 2. The nodes WAIT and WHEELSENSOR are of type Basic and Or, respec-
tively. And node ODOMETER CTRL is the only child of the root node r. The hierarchy
determined by c is shown by nesting of states. Here d(Monitor) = E. The under-
lined identifiers in the Statechart define the set A (e. g. {SYNC, WAIT MON FAIL} ⊂ A).
Edge e01 = (E, τ, in(WF), {WSENSOR:=false;EMERGENCY BRAKE;}, BRAKE) is a τ -labelled Stat-
echart edge which we draw as a thin line by convention, while edges e02 =
(M OK, WAIT MON FAIL, true, {}, M FAILED) and e03 = (WAIT, SYNC, true, {}, TLE) are labelled by
elements of A and hence drawn bold. We implicitly define the guard g of such
bold edges to be always true.

For the sake of brevity, the above definition omits some well-formedness con-
ditions (cf. [12]) that are unchanged with respect to Statemate Statecharts.
The substantial extension to conventional Statecharts is the labelling of edges
by elements of A ∪̇ {τ}. We use the label τ for system internal behaviour, that is
for ordinary Statechart edges. Labels in A will be used for synchronisation with
“start” and “delay-expired” events of stochastic time-constraints. We emphasise
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that the behaviour of an extended Statechart is essentially in line with that of
conventional Statemate Statecharts, except that extended Statecharts allow
for a more refined control over which edges are allowed to be fired in orthogonal
components within one step. We introduce the following usual notions to deter-
mine this semantics. The scope sc(e) of an edge e ∈ E is the most nested Or state
that contains the edges nodes. We use de(n) to denote the depth of node n ∈ N in
the node hierarchy c and define de(SC) = max

({de(n) : n ∈ N}). The priority
of an edge e is given by its scope distance from the root r. We define the priority
relation e ≤p e′, s. t. e ≤p e′ iff de(SC)− de

(
sc(e)

) ≤ de(SC) − de
(
sc(e′)

)
. Two

edges e, e′ ∈ E are orthogonal, denoted e⊥e′, iff either e = e′ or their scopes
are different children of some And node or their descendants. In the example
Statechart, it holds e01⊥e03 and e01 	⊥e02, for example.

Definition 2 (Configurations). Let D be the data domain of the variables V.
A configuration of an extended Statechart SC is a pair c = (M, σ) ∈ C ⊂ 2N×Σ,
where Σ is the set of all variable valuations σ : V\I → D and M is a set satisfying
1. r ∈ M
2. n ∈ M, m(n) = Or implies ∃!n′ ∈ c(n) : n′ ∈ M
3. n ∈ M, m(n) = And implies ∀n′ ∈ c(n) : n′ ∈ M

Such a node set M is called a valid node configuration. We denote c0 for the
unique initial configuration of Statechart SC, given by an initial valuation of the
variables σ0 and the node configuration determined by d. The set of all configu-
rations of SC is denoted by C.
With dc(M ⊂ N) we refer to the default completion, as the smallest superset of
node set M , so that dc(M) is a valid node configuration. In particular dc(M)
comprises the default node d(n), for all those Or nodes n ∈ dc(M), that are not
already represented by a child node in M . The scope completion scc(e) of edge
e is the maximal set of child nodes derived by recursive application of c to the
edges scope node sc(e).

Intuitively, configurations comprise all current Basic nodes and their parent
nodes (given by inverse of c) and a valuation of the variables V. The state space
of the system LTS is defined over such configurations. We will now define the
transition relation between configurations and thus define how labels in A affect
the semantics of the edges they label. An extended Statechart can be considered
as a labelled transition system using the following transition relation.

Definition 3 (Transition Relation). For extended Statechart SC the transi-
tion relation −→ ⊆ C × A ∪̇ τ × C is composed of two types of transitions:
Internal Step. c = (M, σ) τ−→ c′ = (M ′, σ′), iff there exists a maximal set of
edges E =

{
ei : e1≤i≤k = (ni, ai, gi, si, n

′
i) ∈ E

}
so that

1. E ⊆ Een =
{
e = (n, a, g, s, n′) ∈ E : n ∈ M and g evaluates to true in σ

}
.

2. ∀ei ∈ E : ai = τ and ∀ei, ej ∈ E : ei⊥ej.
3. ∀e ∈ Een \ E ∃e′ ∈ E, s. t. e 	⊥e′ and e ≤p e′.

and σ′ is obtained from σ by applying the statement sets s1≤i≤k in some permu-
tation on σ and M ′ = dc((M \ ⋃k

i=1 scc(ei)) ∪ {n′
i}1≤i≤k).

External Step. c = (M, σ) a−→ c′ = (M ′, σ′), iff
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1. �e = (n, τ, g, s, n′) ∈ E : n ∈ M and g evaluates to true in σ.
2. ∃e = (n, a, g, s, n′) ∈ E : a ∈ A and n ∈ M

and σ′ is obtained from σ by applying the statement set s on σ and M ′ =
dc((M \ scc(e)) ∪ {n′

i}1≤i≤n).

In a nutshell, the Internal Step rule defines conventional Statechart configura-
tion transitions that comprise firing of a maximal set of τ -labelled (thin) edges
in orthogonal components and thus implements truly concurrent executions. In-
stead the External Step rule restricts the (bold) labelled edges to be fired in
mutual isolation and only if no τ -labelled edge can be taken. Since bold edges
relate to time-relevant events, this mutual isolation allows us to recover partic-
ular configuration transitions, relative to other transitions. The semantics also
gives (non time consuming) internal steps precedence over external steps. This
idea of timeless computation is typical for the super-step semantics of State-
mate Statecharts [12]. We allow hiding of action labels (i. e. replace particular
labels in A by τ). This allows us to maintain the effect of external steps with-
out keeping their labels. For example we can hide the label Sync in the example
Statechart. However, within this paper, we will keep the Sync label for simplicity.
Given an extended Statechart and a set Ncr of safety-critical nodes (as specified
by a Safety Requirement, cf. Fig. 1) we derive an LTS as follows.

Definition 4 (LTS Extraction). Given a set of safety critical nodes Ncr ⊂ N
of extended Statechart SC = (N, A, V, G, S, E, m, r, d, c), with initial configu-
ration c0, SC can be considered as an LTS M = (SM , ActM , CM , T M , sM

0 ) by
setting
– SM = C ∪̇ {cinit}, the set of all valid configurations in SC plus a unique

pre-initial state cinit.
– ActM = A ∪̇ {τ} ∪̇ {INIT}, the set of labels occurring in the Statechart steps

plus a unique label INIT.
– CM =

{
c = (Mc, σc) ∈ SM : M

c
∩ Ncr 	= ∅}, the set of safety critical states.

– T M =
{
(cinit, INIT, c0)

}∪{
(c, a, c′) : c

a−→ c′
} ⊆ SM ×ActM ×SM , the set of

transitions possible between the Statechart configurations plus an additional
transition cinit

INIT−→ c0, introduced to represent the system start.
– sM

0 = cinit, a pre-initial configuration of Statechart SC.

Note that here we use nodes, such as the node TLE in the example, to identify
safety critical states of SC and thus also the set CM of critical LTS states.
Instead of this explicit automata based encoding other specification mechanisms
such as temporal logic expressions could also be used.

Example 3. The left part of Fig. 3 shows the LTS that has been constructed from
the extended Statechart in Fig. 2 with Ncr = {TLE} (defining the top-level event
to be an undetected sensor fault). The dashed boxes indicate which states are
considered equivalent under branching bisimulation yielding the depicted quo-
tient LTS. We use shortcuts to refer to the labelling in the extended Statechart
(e. g. SF stands for START W FAIL F). In Fig. 3 the state c01 is the only safety critical
state. If the Wheelsensor fails (leaving state c02 by edge WS or state c03 by edge WF)



310 E. Böde et al.

c0

c11 c04 c06 c05 c12

c09 c02 c03 c10

ca cc ce

c01 cb cd c08

τ τWMF WMF

WMF WMF

SS SS SF SF

INIT

τ

SY NC

τ τ WMF

WS
WF

WS

WF

c0

c11 c04 c06 c05 c12

c09 c02 c03 c10

c13 c07

c01 c08

τ τWMF WMF

WMF WMF

SS SS SF SF

INIT

SY NC WMF

WS WF
WS

WF

Fig. 3. LTS and quotient LTS for the odometer Statechart

the system goes to a configuration where no safety-critical states can be reached
anymore (the Monitor detected the sensor fault). If the monitor fault occurs be-
fore the Wheelsensor fails (e. g. leaving state c04 or state c03 by edge WMF), then the
system will finally enter state c01. There are two pairs of (failure) sequences that
lead to the safety critical state: (i) INIT,τ,WMF,SS,WS,SYNC;INIT,τ,SS,WMF,WS,SYNC and (ii)
INIT,τ,WMF,SF,WF,SYNC; INIT,τ,SF,WMF,WF,SYNC. In each of this sequences WMF precedes the
label WS or WF, respectively. The pairs result from the different failure scenarios in
the Wheelsensor component.
Thus, to actually assess the quantitative impact of the faults on the top-level
event, we have to distinguish the paths where these faults occur. Section 3 shows
how we can incorporate the necessary path information into the state space of
the investigated system. We complete the specification of the example by provid-
ing the time constraints for the extended Statechart of Fig. 2. We furthermore
provide the uCTMDP derived for this model.

Example 4. The left part of Fig. 4 shows the time constraint IMCs (cf. Fig. 1)
that are incorporated into the LTS of Fig. 3. Each of the three time constraints
is derived by a simple absorbing CTMC (drawn grey). These CTMCs are then
equipped with a new initial state and labelled edges for synchronisation with
the system model LTS. Note that the derived IMCs are made uniform. This
uniformity is preserved all along the tool chain. Given these time constraint IMCs
and the LTS of Fig. 3 the tool chain presented in [5] computes the uCTMDP
depicted in the right part of Fig. 4. Here state s5 is the critical state as indicated
by the self-loop labelled tle. State s3 is a sink state that results from those paths
in the LTS that do not finally yield a safety critical system state. In our example,
the Monitor introduces such a sink by a safe shutdown. Non-determinism is present

si

s0

sa

INIT

λ

WMF
λ

WMF

λ

si

s0

sa

SF

μ

WFμ

WF

μ si

s0

sa

SS

ν

WSν

WS

ν

s1

s2

s3

s4s7 s8

s5

τ

μ

λ

ν

τ

ν

λ

μ

τ ν
μ

λ
τμ

ν
λτλ + μ

ν

τ λ + ν

μ
tle κ

τ κ

Fig. 4. Time constraints and uCTMDP for the odometer
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in the states where more than one τ labelled edge emanates. The forking (dashed
drawn) edges represent races. For the sake of brevity, we introduce rate κ =
λ + ν + μ.

3 LTS Transformation

In this section, we show how we encode the context of faults into the state
space of an LTS. The basic idea of our approach to establish model based im-
portance analysis for minimal cut sets is as follows. First, given an LTS M =
(SM , ActM , T M , CM , sM

0 ), we compute an enhanced variant L = (SL, ActM , T L,
CL, sL

0 ), by coding label sets describing the path history (starting in the initial
state of M) to each particular state in M into the state space of L. Note, that for
optimisation purposes we follow [4,5] and use the equivalent quotient LTS, de-
rived by symbolic branching bisimulation minimisation to compute the enhanced
variant LTS.

A path s0
b−→ s1

τ−→ s2
a−→ s3

τ−→ s4
a−→ s5 in M , for example, would

yield a new state, described by the pair (s5, {a, b}) representing the fact that
state s5 is reachable in M by a path that comprises at least single occurrences
of the labels b and a. That is, we do neither code the concrete number of labels
nor occurrences of τ transitions into the state space of L, keeping the overall
number of states, O(|SM | · 2|ActM |) in the worst case, in L manageable in size.
We formalise this notion of path history in the following definition.

Definition 5 (Path History). Let M = (SM , ActM , T M , CM , sM
0 ) be an LTS.

Path. A possibly infinite sequence of transitions
π =

(
πi = (si, ai, s

′
i)

)
i∈N

= π0, π1, ... ∈ (SM×ActM×SM)∗∪(SM×ActM×SM)ω

is called a path in M , iff ∀(si, ai, s
′
i)∀(sj , aj , s

′
j)

(
(si, ai, s

′
i) ∈ T M ∧ (sj , aj , s

′
j) ∈ T M ∧ j = i + 1 → sj = s′i

)
.

We denote π0 to refer to the first transition in π and πi for the i-th transition.
src(π) denotes the source state of π0, last(π) the target state of the last transition
in a finite path π.

Path History. For a given label set D ⊆ ActM and state s0 ∈ SM , we define
ΠD

M (s0) =
{
π : src(π) = s0 ∧ (∀a ∈ D ∃si, s

′
i ∈ SM : πi = (si, a, s′i)

) ∧
π is a path in M

}
as the set of D-history paths in M .

The set ΠD
M (s0) of D-history paths, describes all paths in M , starting in s0,

that comprise at least one occurrence of the labels in D. Given an LTS M =
(SM , ActM , T M , CM , sM

0 ), we compute the enhanced variant LTS L = (SL,
ActM , T L, CL, sL

0 ) as follows.

Definition 6 (eLTS). Let M = (SM , ActM , T M , CM , sM
0 ) be an LTS. We call

the LTS L =
(
SL ⊆ SM × 2ActM

, ActM , T L, CL, (sM
0 , {})) enhanced M , iff

1.
(
(s, D), a, (s′, D ∪ {a})) ∈ T L ⇔ a 	= τ ∧ (s, a, s′) ∈ T M ∧ (∃π ∈ ΠD

M (s0) :
last(π) = s ∨ s = s0 ∧ D = {}) ∧ s /∈ CM
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2.
(
(s, D), a, (s′, D)

) ∈ T L ⇔ a = τ and (s, a, s′) ∈ T M ∧ (∃π ∈ ΠD
M (s0) :

last(π) = s ∨ s = s0 ∧ D = {}) ∧ s /∈ CM

3. CL =
{
(s, D) : s ∈ CM ∧ ∃π ∈ ΠD

M (s0) : last(π) = s
}

While computing L, we preserve the semantics of M w. r. t. the timed reachabil-
ity analysis, that is, we neither remove nor add paths starting in the initial state
of M to the first occurrence of its critical states. In particular, the LTS M and its
enhanced variant are obviously strong (and thus also branching) bisimilar [13,14]
by construction. The equivalence classes on L are induced by the state-pairs state
component, yielding the coarsest branching bisimulation equivalent M (that we
originally computed using the symbolic branching bisimulation [15] as described
in [4,5]1). The property of the enhanced LTS to be in a strong bisimilarity re-
lation to the original LTS is sufficient to justify their substitutability for the
subsequent analysis (cf. [9], p.73, theorem 4.3.1 and [17]).

Example 5. For our running example, we derive the enhanced LTS of Fig. 5 from
the LTS depicted in Fig. 3. This representation comprises the same sequences as
the original LTS but allows for a more detailed analysis: The two critical states
(c01, ·) correspond to the different failure scenarios described in example 3. Thus,
now these states may be distinguished by the failure sequences that caused them.

In a second step, we establish differentiated timed reachability analysis for L. We
only have to shrink the set of critical states CL to particular subsets dependent
on a given minimal cut set mcsi ∈ MCS, where MCS = {mcs1, . . . , mcsn} ⊆
2ActM

denotes the set of all MCSs. In the enhanced variant LTS L for each
state scr = (scr, Dcr) ∈ CL label set Dcr encodes the concrete failure (la-
bel) set that caused the particular safety critical state scr. As we are inter-
ested in the contribution of all failure scenarios (i. e. paths) that require at
least the occurrence of the faults in the minimal cut set mcsi, we analyse
cut set specific LTS variants. For an enhanced LTS L we analyse the LTS
Lmcsi =

(
SL, ActM , T L, Cmcsi , (s0, {})

)
, where Cmcsi =

{
(s, D) : (s, D) ∈

CL ∧ mcsi ⊆ D}. Note that our prototypical implementation of the described
LTS transformation is able to extract the set of minimal cut sets MCS by
analysing all label sets Dcr. Fig. 6 summarises the intuition of the transforma-
tion step. Given an LTS (a), the enhanced variant (b) is computed by unfolding
the paths in (a). This LTS encodes the paths of the original LTS in a differenti-
ated manner. Here, each of the critical states is related to one particular minimal
cut set. The analysis of the two cut set specific variants (c) and (d) using the
tool chain back-end (cf. Fig. 1) entails the disregard of minimal cut set {a, c}
for (c) and {a, b} for (d), respectively. One benefit of our model based approach
is that only those failure sequences that indeed cause a safety critical state are
considered. For example the multiple occurrence of fault c. In contrast the naive
approach, frequently used in practice, to determine the cut set specific measures
would be to multiply the single failure probabilities. For cut set {a, c}, given
1 As detailed in [4,5] we consider safety-critical states and non safety-critical states

non-bisimilar by definition. A more detailed discussion of the related issue of state
vs. transition labelling in IMCs can be found in [16].
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Fig. 5. Unfold LTS for the odometer Fig. 6. Overview: (a) LTS (b) eLTS (c)
LTSmcs{a,b} (d) LTSmcs{a,c}

the constant failure rates λa, λc this approach yields a less accurate probability
measure: Q(t){a,c} = (1− e−λa t) · (1− e−λc t). We consider all faults (stochastic)
independent and assume that common mode analysis has been carried out in
order to validate this assumption.

4 Case Study

In this section, we enrich the train odometer example of Sect. 2 and furthermore
present numbers for a more complex model, to show the general feasibility and
scalability of our approach2.

4.1 A Train Odometer Controller

The odometer system under study consists of two independent sensors used to
measure speed and position of a train. A Wheelsensor is mounted to an un-
powered wheel of the train to count the number of revolutions. A Radarsensor
determines the current speed by evaluating the Doppler shift of the reflected
radar signal. We consider transient faults for both sensors. For example water
on or beside the track could interfere with the detection of the reflected signal and
thus cause a transient fault in the measurement of the Radarsensor. Similarly,
skidding of the wheel affects the Wheelsensor. Due to the sensor redundancy
the system is robust against faults of a single sensor. However it has to be
detectable to other components in the train, when one of the sensors provides
invalid data. For this purpose a Monitor continuously checks the status of both
sensors. We will focus on this monitoring aspect of the system. Figure 7 shows
the corresponding Statechart model. The Radarsensor starts in the initial state
ROK and, when a fault occurs, enters state RF. The transient nature of the fault is
implemented by the transition back to the state ROK. The Wheelsensor behaves
like the Radarsensor with the exception that the rate for the fault depends on
the current, non-deterministically selected, Speed of the train. Whenever either
2 The experiments were carried out on a PC with P4 3GHz processor and 1GB RAM.
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Fig. 7. A train odometer controller

the Wheelsensor or the Radarsensor fail and enter the WF or RF state respectively
this is detected by the Monitor and the corresponding status variable (WSENSOR or
RSENSOR) is set to false. This information can be used by other train components
that have to disregard temporary erroneous sensor data. Due to the robustness
against single faults and since both sensor faults are transient the system even
can recover completely from such a situation. If both sensors fail the system is
shut down by the Monitor (i. e. a brake manoeuvre is initiated), but also in this
case the system is safe. Only if the Monitor fails first, any subsequent faults
in the sensors will no longer be detected. Since now the train may be guided
by invalid speed and position information such situations are safety critical. We
therefore define the entering of node TLE of the Observer component as the safety
critical state. Consequently, three minimal cut sets (mcsa, mcsb, mcsc) exist
in this model. Table 1 shows all labelled transitions and their mapping to the
particular cut sets. Note, that we do not list implicit labels, such as the system-
start transition (INIT) used for instance to delay the Monitor fault. Based on
the listed rates, the lower part of the tables compare the concrete probabilities,
we computed for the model using the stochastic model checker MRMC3 [18],

Table 1. Rates and minimal cut set probabilities

Label

WAIT MON FAIL

WAIT R FAIL

START W FAIL F

WAIT W FAIL F

START W FAIL S

WAIT W FAIL S

WAIT W OK

WAIT R OK

time bound (h) method

10 mrmc
naive

100 mrmc
naive

1000 mrmc
naive

mcsa mcsb mcsc rate

yes yes yes 0.001

yes no no 0.015

no yes no -

no yes no 0.025

no no yes -

no no yes 0.01

no no no 240

no no no 360

P (t) P (t) P (t) -

0.0007122 0.0011479 0.0005027 -
0.0013860 0.0022010 0.0009469 -

0.0479257 0.0605680 0.0397182 -
0.0739289 0.0873512 0.0601542 -

0.5973047 0.6078448 0.5677622 -
0.6321204 0.6321206 0.6320919 -

mcsa mcsb mcsc rate

yes yes yes 0.01

yes no no 0.04

no yes no -

no yes no 0.003

no no yes -

no no yes 0.3

no no no 0.001

no no no 0.002

P (t) P (t) P (t) -

0.0149402 0.0014070 0.0318196 -
0.0313732 0.0028125 0.0904247 -

0.2343468 0.0724729 0.1887776 -
0.6205429 0.1638341 0.6321206 -

0.7310061 0.5490308 0.2095549 -
0.9999546 0.9501698 0.9999546 -

3 That in particular supports uCTMDP analysis [17].
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with those derived following the naive approach (cf. Sect. 3). It can be observed
that our model based approach yields probabilities well below those of the naive
approach. Moreover the numbers of the right table show that even the ranking
of the MCSs induced by the probabilities can diverge. While the naive approach
indicates 1. mcsc, 2. mcsa, 3. mcsb, the model based approach yields 1. mcsa,
2. mcsb, 3. mcsc for sufficiently large time bounds. Intuitively, in this example,
the high failure rates make it probable that the monitor signals the sensor to be
inoperable before failing itself and thus prevents a safety critical situation. Thus,
here, the naive approach that does not take the concrete system dynamics into
account, even yields a misleading importance measure.

4.2 Performance Remarks

The upcoming European Train Control System (ETCS), is designed to replace
the multitude of incompatible safety systems used by European Railways and
enable safe fast transnational railway service. Based on a fault tree description
taken from the ETCS specification [19], we developed an ETCS Level 2 train
model that we use to show the inherent worst case complexity of the path encod-
ing to be negligible in practice. Table 2 depicts the numbers of the intermediate
models (cf. Fig. 1). Note that the LTS extraction and the branching bisimulation
are implemented using efficient representations of the state space using binary
decision diagrams. The remaining steps rely on explicit representations of the
state space and make use of the CADP [20] tool box. We found that (i) the ef-
ficient symbolic branching bisimulation on the LTS yields enormous reductions
of the state space in the quotient LTS and thus is a crucial preprocessing step to
our unfolding step. Moreover (ii) the stochastic branching bisimulation [21,17]
that interleaves the (one-by-one) incorporation steps of the stochastic time con-
straints balances the introduced complexity (cf. column eLTS ) of the unwinding:
the finally computed stochastic models are of similar size to the model generated
for the original LTS (cf. uCTMDP-LTS and uCTMDP-eLTSmcs1−4

).

Table 2. ETCS Level 2 Train Model - comparison of LTSs and uCTMDP state spaces

LTS quotient
LTS

uCTMDP-
LTS

eLTS uCTMDP-
eLTSmcs1

uCTMDP-
eLTSmcs2

uCTMDP-
eLTSmcs3

uCTMDP-
eLTSmcs4

states 8266964 142789 3230 1071250 10023 3911 3919 1654

transitions 18313109 727609 15680 5538073 48066 22347 19137 8348

time (sec.) 12222.1 4714.24 173.15 5617.79 1013.48 674.42 635.77 628.52

5 Conclusion

In this paper we presented an automated model-based approach to determine
the quantitative contribution of safety critical fault configurations (MCSs) to
the over-all probability of reaching a safety critical state.

Therefore we extended the tool chain presented in [4,5] by an encoding of
path information into the state space of an LTS that enables to distinguish (and
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relate) all relevant paths leading to a safety critical state to a MCS. This also
allows for the extraction of the MCSs itself, but this is secondary. We gave a
detailed explanation of the LTS encoding as well as of how the LTS is derived
from an extended Statechart [5]. The over-all approach was successfully applied
to a case-study taken from the train-control domain. In particular, we observed
that the sophisticated combination of the symbolic branching and stochastic
branching minimisation steps balances the encodings inherent complexity.

On the application side the benefits are obvious. The derived MCS importance
measures enable the system developer to direct their work on those parts of the
systems where improvements will yield most impact. Due to the preservation
of the actual sequences of faults, the derived measures are more accurate than
conventional naive or manual safety assessment techniques that may even yield
misleading results. And – thanks to the automation – they can be derived without
any extra effort directly from the design model. Furthermore, by incorporating
stochastic non failure behaviour (e. g. repair rates of transient faults) into the
modelling and cut set analyses, again the accuracy can be improved, that is, a
less pessimistic assessment is derived.

All in all the (extended) tool chain seems to be a crucial step towards a better
integration of system development and quantitative safety analysis. Future work
will therefore strive for further integration of conventional safety assessment
tasks and refinements such as the inclusion of common mode failures.

Acknowledgements. We would like to thank our co-authors of [4,5] for the tight
cooperation resulting in those works making this work possible at all.
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1. Åkerlund, O., et al.: ISAAC, a framework for integrated safety analyses of func-
tional, geometrical and human aspects. ERTS (2006)

2. Vesely, W.E., Dugan, J., Fragola, J., Minarick III, J., Railsback, J.: Fault Tree
Handbook with Aerospace Applications. National Aeronatics and Space Adminis-
tration (August 2002)

3. Peikenkamp, T., Cavallo, A., Valacca, L., Böde, E., Pretzer, M., Hahn, E.M.: To-
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2006. LNCS, vol. 4166, pp. 275–288. Springer, Heidelberg (2006)
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5. Böde, E., Herbstritt, M., Hermanns, H., Johr, S., Peikenkamp, T., Pulungan, R.,
Rakow, J., Wimmer, R., Becker, B.: Compositional performability evaluation for
statemate. In: Quantitative Evaluation of Computer Systems - Special issue of
IEEE Transactions on Software Engineering (to appear, 2008)

6. Harel, D., Politi, M.: Modelling Reactive Systems with Statecharts: The STATE-
MATE Approach. McGraw-Hill, New York (1998)



Model Based Importance Analysis for Minimal Cut Sets 317

7. Hermanns, H., Katoen, J.P.: Automated compositional markov chain generation
for a plain-old telephone system. Science of Computer Programming 36(1), 97–127
(2000)

8. Pulungan, R., Hermanns, H.: Orthogonal distance fitting for phase-type distribu-
tions. Reports of SFB/TR 14 AVACS 10, SFB/TR 14 AVACS (November 2006)
ISSN: 1860-9821, http://www.avacs.org

9. Hermanns, H.: Interactive Markov Chains – The Quest for Quantified Quality.
LNCS, vol. 2428. Springer, Heidelberg (2002)

10. Hermanns, H., Johr, S.: Uniformity by construction in the analysis of nondeter-
ministic stochastic systems. In: International Conference on Dependable Systems
and Networks, DSN 2007 (2007)

11. Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using in-
put/output interactive markov chains. In: DSN 2007: Proceedings of the 37th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks,
Washington, DC, USA, pp. 708–717. IEEE Computer Society Press, Los Alamitos
(2007)

12. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans-
actions on Software Engineering and Methodology 5(4), 293–333 (1996)

13. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-
delberg (1980)

14. Glabbeek, R., Weijland, W.P.: Branching time and abstraction in bisimulation
semantics. Journal of the ACM 43(3), 555–600 (1996)

15. Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., Becker, B.: Sigref – a
symbolic bisimulation tool box. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS,
vol. 4218, pp. 477–492. Springer, Heidelberg (2006)

16. Hermanns, H., Johr, S.: May we reach it? or must we? in what time? with what
probability? In: Proceedings 14th GI/ITG Conference on Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB 2008), Dortmund,
Germany, March 31 - April 2, 2008, VDE Verlag (to appear, 2008)

17. Johr, S.: Model Checking Compositional Markov Systems. PhD thesis, Universität
des Saarlandes, Saarbrücken (2007)

18. Katoen, J.P., Khattri, M., Zapreev, I.S.: A markov reward model checker. In: Sec-
ond International Conference on the Quantitative Evaluaiton of Systems (QEST
2005), Torino, Italy, 19-22 September 2005, pp. 243–244. IEEE Computer Society
Press, Los Alamitos (2005)

19. ERTMS User Group, UNISIG: ETCS Application Level 2 - Safety Analysis - Part 1
- Functional Fault Tree. Technical report, ALCATEL,ALSTOM,ANSALDO SIG-
NAL,BOMBARDIER,INVENSYS RAIL,SIEMENS

20. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European As-
soc. for Software Science and Technology (EASST) Newsletter 4, 13–24 (2002)

21. BCG MIN: Project Website (March 2006),
http://www.inrialpes.fr/vasy/cadp/man/bcg min.html

http://www.avacs.org
http://www.inrialpes.fr/vasy/cadp/man/bcg_min.html

	Model Based Importance Analysis for Minimal Cut Sets
	Introduction
	Extended Statecharts
	LTS Transformation
	Case Study
	A Train Odometer Controller
	Performance Remarks

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




