
Compositional Performability Evaluation for
STATEMATE

Eckard Böde3 Marc Herbstritt2 Holger Hermanns1 Sven Johr1

Thomas Peikenkamp3 Reza Pulungan1 Ralf Wimmer2 Bernd Becker2

1Saarland University, Saarbrücken, Germany
2Albert-Ludwigs-University Freiburg im Breisgau, Germany

3Kuratorium OFFIS e.V., Oldenburg, Germany

Abstract— This paper reports on our efforts to link an indus-
trial state-of-the-art modelling tool to academic state-of-the-art
analysis algorithms. In a nutshell, we enable timed reachability
analysis of uniform continuous-time Markov decision processes,
which are generated from STATEMATE models. We give a detailed
explanation of several construction, transformation, reduction,
and analysis steps required to make this possible. The entire
tool flow has been implemented, and it is applied to a nontrivial
example.

I. MOTIVATION

This paper reports a success story. It is the story of how we
managed to integrate very recent advances in stochastic model
checking into a modelling environment with a stable industrial
user group. The modelling environment is STATEMATE, a
Statechart-based toolset used in several avionic and automotive
companies like AIRBUS or BMW. The model checking is
based on computing time bounded reachability probabilities,
and allows us to verify properties like: “The probability to hit a
safety-critical system configuration within a mission time of 3
hours is at most 0.01.” The algorithmic workhorse to validate
(or refute) such properties is the first implementation of an
algorithm [1] which computes the worst-case (or best-case)
time bounded reachability probability in a uniform continuous-
time Markov decision process (uCTMDP).
This combination of Statechart-modelling and uCTMDP anal-
ysis raises theoretical and practical questions, both of which
are answered in this paper. On the theoretical side, we describe
how the STATEMATE-model can be enriched with stochastic
time aspects, and then transformed into a CTMDP which is
uniform by construction. One key feature of this approach is
that the model construction steps rely heavily on compositional
properties of the intermediate model, which is the model of
interactive Markov chains (IMCs) [2]. On the practical side,
we report how symbolic (i. e. BDD-based) representations
and compositional methods can be exploited to keep the
model sizes manageable. While the later steps in our analysis
trajectory use explicit-state representations, the earlier steps
are symbolic, and cumulate in a novel symbolic branching
bisimulation minimization algorithm.

This work is supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org
for more information.

Safety
requirements

Statemate
discription

Failure modes
untimed

Failure mode
distributions

Worst case
Probabilities

Quotient LTS

Time bound

S
ym

b
o

lic

E
xp

lic
it

T
ra

ns
fo

rm
at

io
ns

T
ra

ns
fo

rm
at

io
ns

Fig. 1. Tool chain overview.

An overview of the tool chain is depicted in Fig. 1. Apart
from a STATEMATE design, a collection of failure modes and
safety requirements constitute the input of our symbolic trans-
formations. Failure distributions, describing the likelihood of
failure occurrences as time elapses, are another ingredient of
the problem specification, but are only considered in the later,
explicit stage of the tool chain, which finally yields the worst-
case probability to violate the safety requirements at a given
time bound.
We apply the entire tool chain to a parametric case study from
the train control domain. For this example, we manage to avoid
state spaces in the order of 1023, and instead only need to
handle models of up to 105 states and 106 transitions.
In summary, the paper makes the following contributions. It
reports on (1) the first implementation of a time bounded
reachability algorithm for uCTMDPs, (2) the first – to our
knowledge – entirely BDD-based algorithm for computing
branching bisimulation quotients, (3) a compositional method
to construct uniform CTMDPs, (4) the integration of these
pieces in a useable tool chain, and (5) the application of this
tool chain to a nontrivial example.
Organization of the paper. The paper is organized as follows.
Section II introduces some basic definitions. Section III ex-
plains the symbolic steps of our tool chain, while Section IV
covers the subsequent explicit transformations. Section V
describes how we implemented the entire tool flow, and
Section VI demonstrates its practical feasibility for an example
from the train control domain. Finally, Section VII concludes
the paper.

II. MODEL BASICS

This section briefly reviews the most important concepts
needed in this paper. The construction process revolves around

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

different flavors of interactive Markov chains [2], an orthogo-
nal combination of labelled transition systems and continuous-
time Markov chains. We consider a basic set of actions A
which contains the distinguished action τ . This action is
deemed unobservable and plays a crucial role in our approach,
since it is used for abstracting behaviors of the system, which
at certain stages are irrelevant for the transformation steps that
follow.

Definition 1 (IMC)
An interactive Markov chain (IMC) is a tuple (S,A, T,R)
where S is a non-empty set of states, A is the above set of
actions, T ⊆ S ×A×S is a set of interactive transitions, and
R ⊆ S × R

+ × S is a set of Markov transitions.

By R(s, s′) we denote the transition rate from s to s′,
i. e., R(s, s′) = λ iff (s, λ, s′) ∈ R and 0 otherwise. A
labelled transition system (LTS) is a triple (S,A, T) whenever
(S,A, T, ∅) is an IMC. A continuous-time Markov chain is a
triple (S,A,R) whenever (S,A, ∅, R) is an IMC.
Notation: For IMC I = (S,A, T,R), a state s ∈ S is stable,
written s �� τ−→, if ∀s′ ∈ S (s, τ, s′) �∈ T . Otherwise s is called
instable. For stable state s and C ⊆ S we define r(s, C) =∑

s′∈C R(s, s′). For instable s, r(s, C) = 0. The distinction
between stable and instable states is justified by the notion of
maximal progress, see [2] for details. IMC I is called uniform,
iff ∃e ∈ R

+ such that ∀s ∈ S : s � τ−→ implies r(s, S) = e.

We write s
a−→ t for (s, a, t) ∈ T , and

a∗
−→ for the reflexive

transitive closure of
a−→. If R(s, s′) = λ > 0 we will sometimes

depict this as s
λ��� s′. For an equivalence relation B on S,

we let S/B denote the set of equivalence classes of B.

Definition 2 (Stochastic Branching Bisimulation)
For a given IMC I = (S,A, T,R), an equivalence relation
B ⊆ S × S is a stochastic branching bisimulation iff for all
s1, s2, t1 ∈ S the following holds: If (s1, t1) ∈ B then

1) s1
a−→ s2 implies

either a = τ and (s2, t1) ∈ B,

or ∃t′1, t2 ∈ S : t1
τ∗
−→ t′1

a−→ t2 ∧ (s1, t
′
1) ∈ B∧

(s2, t2) ∈ B,

and
2) s1 � τ−→ implies

∃t′1 : t1
τ∗
−→ t′1 � τ−→: ∀C ∈ S/B : r(s1, C) = r(t′1, C).

Two states are stochastic branching bisimilar, iff they are
contained in some stochastic branching bisimulation B.

This notion is a variant of branching bisimulation [3] and
stochastic weak bisimulation [2]. For LTSs, the definition
coincides with that of the original branching bisimulation,
which we can hence define as follows.

Definition 3
For a given LTS M = (S,A, T), an equivalence relation
B ⊆ S × S is a branching bisimulation iff it is a stochas-
tic branching bisimulation on (S,A, T, ∅). Two states are
branching bisimilar iff they are contained in some branching
bisimulation.

Symbolic LTS

Failure modes
untimed

requirements

Statemate
description

Safety

Symbolic LTS

Quotient LTS

C
o

n
e−

o
f−

in
fl

u
en

ce
re

d
u

ct
io

n

F
ai

lu
re

in
je

ct
io

n

S
ym

b
o

lic
 b

ra
n

ch
in

g
m

in
im

iz
at

io
n

Fig. 2. Symbolic tool flow for shrink-fitting STATEMATE designs.

Definition 4 (CTMDP)
A continuous-time Markov decision process (CTMDP) is a
triple (S,L,R) where S is a non-empty set of states, L is a
set of transition labels, and R ⊆ S × L × (S −→ R

+) is the
set of transitions.

Any CTMDP can be viewed as a special IMC in which
interactive transitions and Markov transitions occur in a strictly
alternating manner. This will be used in the final step of
our construction. As in [1], a CTMDP is called uniform iff
∃e ∈ R

+ such that ∀s ∈ S and ∀l ∈ L : (s, l, R) ∈ R implies∑
s′∈S R(s′) = e.

III. FROM STATEMATE TO QUOTIENT LTS: SYMBOLIC

TRANSFORMATIONS

In this section we describe the compilation of STATEMATE

designs together with a specification of failure occurrences
into a labelled transition system (LTS). Additionally, we
describe how this LTS is built and manipulated by symbolic
representations and manipulations, and we describe how the
resulting symbolic representation, a BDD, is minimized with
our novel branching bisimulation minimization algorithm.

A. Model Generation

The left part of Fig. 2 depicts the principal translation and
analysis steps necessary to successfully perform the reduction.
The main ingredients of the problem specification are: first, a
STATEMATE model specifying the nominal behavior of the
system; second, a number of failures that are injected, leading
to a model encompassing also the dysfunctional behavior; and
third, a specification of safety-critical states. The rationale for
keeping the failures separated from the model is described
in [4]. It can be considered as a compositional approach in an
otherwise non-compositional formalism.
1) Compilation: In the first step of the compilation the
STATEMATE model is translated into a simple intermediate
language by replacing graphical items of the specification
language by state variables, replacing structured data types
by simple ones, and discretizing continuous variables (see
[5] for details). The generated intermediate model represents
the nominal behavior, and can be viewed as an LTS M =
(S,A, T).
2) Failure injection: In the second step, we inject failure
behavior to our model by an instantiation of elements of a
failure library. The behavior associated with these elements is
parametrized so that, e. g., stuck-at failures have a parameter
indicating the value to which a certain variable is stuck, once
the failure occurs. The concrete values of these parameters
are specified during instantiation. For the purpose of the
considerations that follow, it is sufficient to know that the
system extended with a set of failures F “includes” the original

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

system in the following sense: A labelled transition system
M ′ = (S,A′, T ′) is called an F -extension of M = (S,A, T)
iff A′ is the disjoint union of A and F , T ′ ⊃ T , and
∀s ∈ S : ∀f ∈ F : ∃s′ ∈ S : (s, f, s′) ∈ T ′. (The compilation
gurantees that the system deviates from the nominal behavior
if and only if a transition in T ′ \ T is taken.) According to
this definition, any failure can occur at any time; the rationale
being that we may not exclude some occurrences of failures
a priori.
3) Safety-critical states: After introducing the failure behav-
ior, we need to identify safety-critical states, i. e., states where
safety requirements are violated. In a nutshell, these states
are characterized by a predicate over the basic states and the
variable valuations of the design.
4) Cone-of-influence reduction and introduction of τ -actions:
The predicate encoding safety-critical states is first used to
reduce the size of the model by performing a cone-of-influence
reduction (COI) with respect to these states [6]. This reduction
is achieved by eliminating variables whose values do not
contribute to the reachability of the safety-critical states. This
elimination reduces the number of possible variable valuations
and therefore also the state space of the resulting model.
This COI reduction is property-specific, and as such a core
step allowing us to associate small, property-specific models
to large designs. It is implemented symbolically. To prepare
for a further reduction step on the symbolic representation,
we replace all nominal actions, i. e., labels not in F , by the
unique τ action. In this way, the concrete nominal behavior
is abstracted away, but its effect on the reachability of safety-
critical states remains. In other words, the vulnerability of the
nominal system with respect to failures is still present. We are
then left with a model where only failures and τ -transitions
are visible.
5) BDD generation of LTS: The previous reduction steps are
carried out on a symbolic, but non-canonical representation
of the system model. After the reduction steps the reduced
model is translated into a canonical model with binary values
only. The result is a BLIF-MV file suitable for the VIS model
checker [7]. The latter is used to flatten the hierarchy of the
design and to transform the net-list-like input format into a
relational representation of the transition relation. Using VIS,
we get a symbolic BDD-representation of our LTS. Further,
the predicate representing safety-critical states is encoded into
a BDD.
These two BDDs are then passed on to the symbolic branching
bisimulation algorithm, which will be described in the next
section. The partition of the state space induced by the
predicate (into safety-critical and non-critical states) will be
used as a starting point for this algorithm.

B. Symbolic Minimization

In this section we describe the fully symbolic implementation
of a branching bisimulation algorithm that works entirely on
BDDs. We assume that the reader is familiar with standard
BDDs and the corresponding algorithms. For a comprehensive
treatment see [8]. To shorten writing, we first introduce some
notations. For LTS M = (S,A, T) and partition P of S we

Algorithm 1 Computation of the coarsest branching bisimu-
lation

1: procedure BRANCHINGBISIMULATION
2: Pold ← ∅, P ← initial partition
3: while Pold �= P do
4: Pold ← P
5: for all blocks B of Pold do
6: P ← P \ {B} ∪ sigrefP (B)
7: return P

write
a−→
P

for a transition that is inert w.r.t. P , and
a∗
−→
P

for the

reflexive transitive closure of
a−→
P

. Inert means that the source

and target state of a transition are contained in the same block.
By P (s) we denote the block of P that contains the state s,
i. e., P (s) = {t ∈ S | ∃B ∈ P : s ∈ B ∧ t ∈ B}.
In [9], Blom and Orzan present a novel approach for the
distributed computation of branching bisimulation. Their algo-
rithm is based on analyzing the signatures of states w.r.t. the
current partition. The signature of a state is like a fingerprint
identifying possible actions that can be executed in the state.
To preserve branching bisimilarity, the unobservable action τ
is taken into account by ignoring sequences of inert τ -actions.
Let P = {B0, . . . , Bp−1} be a partition of the state space S.
The signature sigP (s) of a state s w.r.t. partition P is formally
defined as

sigP (s) ={(a,Bi) | ∃s′, s′′ ∈ S : s
τ∗
−→
P

s′ a−→ s′′ ∈ Bi ∧
(a �= τ ∨ s �∈ Bi)}.

Then, a refinement of a partition can be computed by grouping
the set of states having the same signature:

sigrefP (B) =
{
{s′ ∈ S | sigP (s) = sigP (s′)}

∣
∣ s ∈ B

}
.

The fixpoint algorithm of [9] is sketched in Algorithm 1. We
extend the algorithm such that we can start with an initial
partition provided by the BDD representation of the above-
mentioned predicate separating safety-critical and non-critical
states. Additionally, we integrate a simple, but efficient opti-
mization technique, not applicable in the distributed algorithm
of [9], that handles not all blocks altogether but takes one
block at a time. For this block the signature refinement is
computed and the corresponding result is updated in situ in
the current partition. This block forwarding technique results in
impressive speedups within our experiments due to the reduced
number of iterations of the fixpoint algorithm (see [10] for
details).
In the following we describe briefly how the algorithm of [9]
can be lifted to BDDs. The starting point is a BDD T for
the transition relation with T (s, a, t) = 1 iff s

a−→ t. Note
that the state space is implicitly encoded by T . The BDD
relies on a vector of variables s, a, and t to encode the current
state, the action, and the target state, respectively. Additionally,
we have a BDD S for the signatures with S(s, a, k) = 1 iff
(a,Bk) ∈ sig(s).
The novelty of our approach is a dedicated BDD-operator for
identifying states that have the same signature, thus enabling

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

a full BDD-based methodology. To do so, we place the si-
variables at the beginning of the variable order of the BDDs.
Then, level(si) < level(aj) and level(si) < level(kl) hold
for all i, j and l. This enables us to exploit the following
observation. Let s be the encoding of a state and v the BDD
node that is reached when following the path from the BDD
root according to s. Then, the sub-BDD at v is a representation
of the signature of s. The point is that for all states having the
same signature as s, the corresponding paths lead also to this
BDD-node v. Therefore, to get the new block that contains s
and all other states having the same signature as s, we simply
have to replace the sub-BDD at v by the BDD for the encoding
of the new block number k.

Finally, after we have reached the fixpoint in Algorithm 1, we
have to extract the quotient LTS from the final partition. This
can be performed by mapping all states of a block onto one
quotient state. The resulting model is represented in an explicit
form, i. e., all states are explicitly enumerated, and passed on to
the next phase of the tool chain. We refer to [10], [11] for more
details and for experimental evaluations of this minimization
algorithm.

IV. FROM QUOTIENT LTS TO CTMDP ANALYSIS:
EXPLICIT TRANSFORMATIONS

This section describes the timed behavior of failures modes,
their approximation by phase-type distributions, and how
we weave them into the minimized LTS obtained from the
symbolic minimization phase (cf. Section III-B). We will first
lay out the principal philosophy and its technical constituents,
needed to integrate failure distributions in a compositional
manner. Then we turn our attention to a specific fine point,
namely that we intend to ensure that the result of our construc-
tion is a uniform IMC, and how we indeed ensure this. As a
final step, we describe how we transform the uniform IMC into
a uniform CTMDP, from which we extract the performability
measure of interest, namely the worst-case probability to reach
a safety-critical state within a given time bound.

A. Time constraints and composition

As noted in Section III-A, each failure mode is governed
by a continuous probability distribution, describing the time-
to-failure, a random variable corresponding to time up to
which the occurrence of the failure is to be delayed, since
the initialization of the system. Typical distributions in this
context are Weibull, deterministic or exponential distribu-
tions, or distributions resulting from measurements of real
equipment. In the current state of the implementation we
consider non-repairable systems only, but this restriction is
not a methodological one.
1) Phase-type Approximation: The approach we follow ren-
ders the model under study into a Markov model. To achieve
this, we must represent the failure distributions provided to
us into a Markov model. This is achieved by a nowadays
widespread approach, which is based on phase-type approxi-
mation. A phase-type distribution is the distribution of the time
until absorption in a finite and absorbing Markov chain [12].
The class of phase-type distributions thus consists of all serial,

λ λ

f

λ λ
i a i

Fig. 4. A simple phase-type distribution (left) and the effect of elapse (right).

parallel and cyclic arrangements of exponential distributions.
This means that the tractability and possibilities of explicit
solutions that are encountered when dealing with exponential
distributions are retained when phase-type distributions are
substituted in their stead. Furthermore, the class of phase-
type distributions is topologically dense [13]. In principle,
any probability distribution on [0,∞) can be approximated
arbitrarily closely by a phase-type distribution given enough
phases, i. e., states. Efficient approximation algorithms are
available [14], [15], [16], [17].

We now assume that the delay of each failure f ∈ F in
the system model is given by a phase-type distribution PHf

determining the time-to-failure. This phase-type distribution
can be obtained by approximating the known failure mode dis-
tribution with one of the available algorithms. We implemented
a variant thereof, based on orthogonal distance fitting [18]. The
implementation ensures that the initial distribution is assigned
to a single state.

2) Elapse: Structurally, PHf is a continuous-time Markov
chain (S,A,R) with a distinguished initial state i and ab-
sorbing state a. Operationally, the distribution PHf can be
viewed as describing the time up to which the occurrence
of failure f has to be delayed, since the start of the system.
This interpretation is a special case of what is called a time
constraint in [19], where an elapse operator is introduced.
This operator enriches PHf with “synchronization potential”
needed to effectively weave the Markov chain of PHf into the
behavior described by some LTS or IMC.

To provide some intuition of the semantics of this operator,
we here discuss the effect of the elapse operator, which we
denote by elapse(PHf , f), on PHf . Recall that PHf is given by
a MC (S,A,R) with distinguished initial state i and absorbing

state a. Then, elapse(PHf , f) will generate IMC (S,A, {a f−→
i}, R), i. e., a transition labelled f now connects the absorbing
and the initial state, see Fig. 4.

3) Weaving the time constraint: In elapse(PHf , f), between
any two occurrences of failure f , there must be a delay which
is given by PHf . To enforce this also for the LTS of our
system under study, we weave this IMC with the LTS, where
weaving is just another word for interleaving, with proper
synchronization.

To this end, we use the process algebraic parallel composition
operator. Intuitively, given IMCs I and J , in I|[f]|J both
IMCs have to synchronize on f , while they interleave all other
transitions. For I = elapse(PHf , f), this has the expected
effect, namely that between any two f -transitions in J , the
MC associated with PHf is weaved. The semantic rules of
parallel composition of IMCs are as follows.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

Phase−type
distribution

Uniform IMC

Failure mode
distributions

Uniform CTMDP

constraints

Uniform
quotient IMC

Worst case
Probabilities

Quotient LTS

Time

Compositional Construction

Time−bound

A
p

p
ro

x−
im

at
io

n

E
la

p
se

b
ra

n
ch

in
g

S
to

ch
as

ti
c

m
in

im
iz

at
io

n

T
im

ed
 r

ea
ch

ab
ili

ty
an

al
ys

is

T
ra

n
sf

o
rm

at
io

n

w
ea

vi
n

g

T
im

e
co

n
st

ra
in

ts

Fig. 3. Explicit tool flow for failure-distribution weaving and CTMDP analysis.

s
a−→s′ a/∈{a1...an}

s|[a1...an]|v a−→s′|[a1...an]|v
v

a−→v′ a/∈{a1...an}
s|[a1...an]|v a−→s|[a1...an]|v′

s
a−→s′ v

a−→v′ a∈{a1...an}
s|[a1...an]|v a−→s′|[a1...an]|v′

s
λ���s′

s|[a1...an]|v λ���s′|[a1...an]|v
v

λ���v′

s|[a1...an]|v λ���s|[a1...an]|v′

With this operator, and the elapse-operator, we can weave the
failure distributions one-by-one with the original system. Dur-
ing this phase the IMC is explicitly represented and grows in
size. One way of counteracting this is to minimize according to
stochastic branching bisimulation. For this we use a stochastic
branching bisimulation minimization algorithm [20], together
with the abstraction- (or hiding)- operator. The semantics of
the abstraction operator is as follows (we give it for single
actions only here for the sake of brevity).

s
b−→s′ a�=b

hide a in (s)
b−→hide a in (s′)

s
a−→s′

hide a in (s)
τ−→hide a in (s′)

s
λ���s′

hide a in (s)
λ���hide a in (s′)

In other words, we start from the initial explicit LTS as Sys0,
and incrementally build an IMC where the failure distributions
are weaved, which is achieved by constructing

hide fi in (elapse(PHfi
, fi)|[fi]|Sysi−1)

and minimizing the result with respect to stochastic branching
bisimulation to form Sysi. If we are dealing with n different
failures, then the resulting IMC Sysn does not contain any
failure transitions anymore, but the failure distributions now
interleave in the correct way governing the time to reach a
safety-critical state.
The above approach alternates construction and minimization
steps, and as such it deviates from the sequential procedure
indicated in Fig. 3: it replaces the trajectory from quotient
LTS and time constraints to quotient IMC by the one depicted
in Fig. 5. This compositional approach is justified, because
stochastic branching bisimulation is compatible with the two
operators we have introduced: it is a congruence for parallel
composition and hiding.

B. Uniformity

So far we have ignored the word ‘uniform’ which is attached
to the IMC models appearing in Fig. 3. We recall that IMC
I is called uniform, iff ∃e ∈ R

+ such that ∀s ∈ S :
s � τ−→ implies r(s, S) = e. We will later understand why
we are aiming at a uniform quotient IMC. To arrive there,
we will ensure that our entire construction process preserves

uniformity. Without going into the technical details, this is
ensured due to the following properties [21]:

• The parallel composition of two uniform IMCs is a
uniform IMC.

• Hiding of any action in a uniform IMC preserves unifor-
mity.

• The stochastic branching bisimulation quotient of a uni-
form IMC is a uniform IMC.

Thus, to preserve uniformity by construction, we are left with
the requirement that all our input models must be uniform.
Since any LTS is a uniform IMC by definition, we only
need to ensure that the time constraints, which are used for
composition, are uniform, too.
Technically, this can be achieved as follows. Let (S,A,R) be
the CTMC of some phase-type distribution PHf with initial
state i and absorbing state a, and let e = maxs∈S r(s, S). We
associated a uniform CTMC by (S,A,R′), where R′(s, s′) =
e − r(s, S\{s}) if s = s′ and R(s, s′) otherwise. Under the
usual interpretation of CTMCs, there is no difference between
the two CTMCs (since the induced generator matrices are
identical). For our purposes, however, we note a seemingly
minor difference, namely that in the uniform CTMC, jumps
occur on average after 1/e time units, regardless of the state
considered1.
For the example from Fig. 4, the uniform variants are obtained
by equipping the rightmost states each with a looping λ-
transition. Here, and in general, the result can be easily ensured
to be a uniform IMC. All in all, the time constraints, and the
input LTS are uniform, and thus our construction preserves
uniformity all along.

C. CTMDP Transformation and Analysis

In Section IV-A timed behavior was incorporated in the system
description turning the LTS into an IMC, and Section IV-B

1The uniform CTMC is – strictly speaking – not an absorbing one, since
the a-state is now equipped with an e-loop. Still, the time to hit this state a
is distributed according to PHf .

Sys2

Stochastic branching bisimulation of

Sys1

Stochastic branching bisimulation of

Sysn

Stochastic branching bisimulation of

Sysn−1

Stochastic branching bisimulation of

..
.

Sysn−2

hide fn in (elapse(PHfn
, fn) |[fn]| Sysn−1)

hide fn−1 in (elapse(PHfn−1
, fn−1) |[fn−1]| Sysn−2)

hide f2 in (elapse(PHf2
, f2) |[f2]| Sys1)

hide f1 in (elapse(PHf1
, f1) |[f1]| Sys0)

Fig. 5. Compositional weaving of phase-type distributions.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

discussed how to ensure uniformity of the result. This section
describes a transformation from uniform IMCs to uniform
CTMDPs. We also detail how we analyze the resulting model,
to distill worst-case probabilities of hitting a safety-critical
state within a given time bound.
1) Transformation: The model we are dealing with is the
complete description of the system under consideration, and
can hence be viewed as a closed system. This means that
the transformation to be carried out now is no longer com-
positional, which is justified by the fact that all necessary
composition operations have been performed in earlier steps
of the tool chain. As a consequence we will now employ an
urgency assumption, i. e., we assume that interactive transitions
take zero time (which is a non-compositional hypothesis [2]).
Given an IMC I = (S,A, T,R), we can partition the set S into
three disjoint sets of states. These are the sets of (1) interactive
states, where no Markov transitions are possible, (2) Markov
states, where only Markov transitions are possible, (3) hybrid
states where at least one Markov and at least one interactive
transition is possible.
Recall that any CTMDP can be viewed as a special IMC in
which interactive states and Markov states occur in a strictly
alternating manner. Thus, in order to turn an IMC I into a
CTMDP C we have to ensure that all states are either Markov
or interactive state, and that they alternate strictly. We call this
class of IMC strictly alternating.
We now sketch a transformation which turns any IMC into a
strictly alternating one [22], while preserving the probabilistic
behavior. The transformation involves (1) identifying Markov
and interactive states, (2) breaking sequences of Markov states,
(3) merging sequences of interactive states – where the order
of steps 2 and 3 can be swapped. As a result we end up
in a strictly alternating IMC which directly corresponds to a
CTMDP.
The first step is achieved by implementing the urgency hy-
pothesis: This means that we cut off all emanating Markov
transitions from hybrid states, turning them into interactive
states. Step (2) is straightforward: As interactive transitions are
deemed to consume no time, an interactive transition can be
inserted in-between any two consecutive Markov transitions.
Step (3) is more involved, it is based on the transitive closure
of the interactive transition relation. For each interactive state s
that has at least one Markov state as direct predecessor and at
least one interactive state as direct successor, we determine
the Markov states which terminate all these sequences of
interactive transitions. This means that the transitive closure
on the interactive transition relation is calculated in a fashion
that returns all of these Markov states. These states are used to
define a strictly alternating IMC where interactive transitions
are labelled by words of (A\{τ})+ ∪̇{τ} and always end in a
Markov state. Interactive states whose direct predecessors are
interactive states only (except the initial state) are removed
from the resulting state space.
We note that step 3 destroys the branching structure of
the IMC, and is as such not compositional. However, we
can show that the entire transformation does not alter the
probabilistic behavior of the output CTMDP relative to the
input IMC. Formalizing this property requires the introduction

of probability measures, trace distributions and schedulers for
IMCs (and CTMDPs). Then, we can show that given an
input IMC I together with scheduler D and its associated
output CTMDP C with scheduler D′ corresponding to D, it
holds that the scheduler dependent probabilities of reaching
a particular set B of states within t time units coincide. A
formal proof of this property is not in the scope of this paper,
but is presented in [21]. In addition, the transformation can be
shown to preserve uniformity: If IMC I is uniform, then the
associated CTMDP C is as well.
2) Timed Reachability Analysis: The model obtained after
performing the transformation described above is a uniform
CTMDP. Our aim is to calculate the worst-case probability of
reaching any of the safety-critical states within a given time
bound.
For CTMCs, the corresponding question can be reduced to
an instance of transient analysis [23], for which efficient
and numerically stable iterative algorithms are known, based
on uniformization. Timed reachability analysis of stochastic
systems with nondeterminism is not that straightforward. For
uniform CTMDPs this problem was tackled in [1]. The canon-
ical approach to associate a stochastic process to a stochastic
system with nondeterminism uses a sufficiently general class
of scheduler. A scheduler is a function that determines how to
proceed next for a given state s. For a given state s, it resolves
nondeterminism by picking a particular enabled action. It does
so on the basis of information about the current state and the
history of the system evolution. In full generality, schedulers
may decide on the basis of the entire history of the system, and
may decide using randomization (i. e., probability distributions
over enabled actions). In a timed model, the history of the
system may even be a timed one. Intuitively, the more power
(in terms of knowledge and randomness) a scheduler class
Sched provides, the more widely the resulting probabilities
vary when ranging over all possible schedulers in Sched .
For a uCTMDP C with uniform rate E we aim to calculate the
maximal probability to reach a given set of states B within t
time units from a particular state s in C w.r.t. all schedulers
D ∈ Sched . We denote this by

sup
D∈Sched

PrD(s,
≤t� B)

(and must refer to [1] for a precise definition of the uCTMC
induced by D and the probability measure PrD). [1] studies
the problem of approximating this probability for Sched being
the class of all untimed history-dependent schedulers that may
use randomization. In short, their algorithm is based on three
observations: (1) randomization does not add to the power of
the schedulers, (2) history-dependence only adds in the form
of step-dependence, (3) the step-dependence is only decisive
up to a specific depth k which can be precomputed on the
basis of E, t and the accuracy ε of the approximation.
Thus, it is sufficient to consider non-randomized k-truncated
step-dependent scheduler D : S × {0, . . . , k} �→ L. Unfortu-
nately, the number of such schedulers can be exponential in the
value of k. However, the authors show that in order to derive
the maximal value of PrD(s,

≤t� B), the actions to be selected
by a (worst-case) scheduler D can be computed by a greedy
backward strategy. For instance, D(s, k) for s ∈ S needs to

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

choose an action such that the probability to reach a B-state in
one step is maximal. Due to space constraints we refer to [1]
for an elaborate discussion of this greedy algorithm, which is
linear in k and linear in the size of L. The algorithm returns
for each state the worst-case probability to reach a state s ∈ B
within time t. By looking up the computed value for the initial
state, we finally obtain the result we are looking for.
Given the uniform CTMDP C = (S,L,R), a set of goal states
B ⊆ S, and a time point t, the algorithm approximates the

vector PrD(
≤t� B) containing state-wise maximal probabilities

to reach B within time t. Thus, assuming that the set B
of states corresponds to safety-critical states, the algorithm
returns for each state the worst-case probability to reach
a safety-critical s ∈ B within time t. By looking up the
probability for the initial state, we finally answer that question
for the system studied.
It is worth noting that this algorithm requires the CTMDP to
be uniform. Intuitively, the reason is that in uniform CTMDPs
with uniform rate E, jumps occur on average after 1/E time
units, regardless of the state considered, while in non-uniform
CTMDPs the average time between two jumps varies from
state to state, and thus the precise history of visited states
provides more information about the estimated time that has
elapsed, than just counting the number of steps. We refer
to [1] for a non-uniform CTMDP example where this fact
is exploited to construct a history-dependent scheduler which
is – with respect to timed reachability – strictly more powerful
than any step-dependent one.

V. IMPLEMENTATION

This section explains how the tool flow (cf. Fig. 2) described in
detail in the preceding two sections is put into practice by an
interoperation of different toolkits: STATEMATE, CADP, and
ETMCC.
The aforementioned symbolic manipulations have been im-
plemented as a plugin for STATEMATE. After starting the
tool on the model to be investigated the compilation (III-
A.1) is performed. Then the user is allowed to enter failure
modes (III-A.2) and safety-critical states (III-A.3) based on the
given model. After having completed the problem specification
the process continues with the symbolic cone-of-influence
reduction and τ -relabelling (III-A.4) followed by the BDD
generation (III-A.5). The subsequent symbolic minimization
described in Section III-B constitutes the final step carried out
by the STATEMATE-plugin. It generates an XML-representation
of the quotient LTS, which can be either in symbolic form,
or in explicit form. The latter enumerates all states and
transitions, together with the initial state of the model. Each
state in this explicit representation is decorated with a flag
indicating whether the state is safety-critical or not.
The explicit part of the tool flow first transforms this XML-
file into a file in the BCG-format2. The latter is a compact

2All states in the XML-file flagged as safety-critical are in the BCG-
file decorated with a self-loop labelled “unsafe”. This encoding preserves
the relevant information, and is needed because the latter format is strictly
transition-oriented, and does not allow information to be directly attached
to states. We remark that this strictness is what enables our compositional
approach, because state identities can be considered entirely irrelevant, the
entire information is in the transition structure.

file-format for explicit representations of LTSs, and is the
core format of the CADP toolkit. CADP is a construction and
verification toolkit developed by the VASY-team of Hubert
Garavel at INRIA Rhône-Alpes, and is strictly based on
process algebraic principles [24]. It has been extended to en-
able compositional performance evaluation with IMC [25]. In
particular, it provides genuine support for parallel composition
and hiding on IMC, and it provides an efficient implementation
of stochastic branching bisimulation, in the form of the tool-
component BCGMIN [20].
Therefore, the compositional construction steps illustrated
in Fig. 5 are performed by interaction with CADP: time-
constraint weaving and stochastic branching minimization.
To enable mechanized interaction, CADP provides a scripting
language, SVL, which is particularly convenient to experi-
ment with different strategies to alternate construction and
minimization steps. Note that due to the considerations in
Section IV-A.3, we can perform minimization after every
construction or after some construction steps, which gives
an interesting time-space tradeoff, further discussed in Sec-
tion VI-C.
The phase-type approximation algorithm and the elapse-
operator are implemented as stand-alone tools, which take
the input failure distribution, the failure mode, and some
further parameters (such as the number of phases used for
approximation). They produce a uniform IMC, stored in BCG-
format.
The final transformation to CTMDPs in turn takes a BCG-
file of the final uniform IMC, and generates a uCTMDP in a
format readable by the ETMCC model checker3. ETMCC is a
CSL model checker for Markov chains [26]. We adapted the
data structures and extend it with a sparse-matrix implementa-
tion of the timed reachability algorithm. This algorithm finally
calculates the worst-case probability to reach the set of safety
critical states within a user-specified time bound.
The entire tool flow is running in a prototypical form, and
we are currently performing numerous experiments to identify
bottlenecks and to improve interoperability. One of our latest
experiments is reported in the next section.

VI. CASE STUDY

This section applies our tool chain to an example taken from
the context of the upcoming European train control system
standard ETCS. At the current stage, the purpose of this ex-
ample is to study and demonstrate the strength and limitations
of the tool chain rather than providing new insight into the
case which has been studied in [27], [28], [29]. Therefore, we
deviate in some aspects from the true characteristics as laid out
in the standard. Experiments related to the STATEMATE-plugin
were carried out on a PC with P4 2.66 GHz processor with
1GB RAM running Windows XP SP2. All other experiments
were run on PCs with P4 2.66 GHz processor with 2 GB RAM
running Linux 2.6.15-1-k7.

3In this transformation, all self-loops labelled “unsafe” which identify the
safety-critical system states are collected in an explicit enumeration of the
safety-critical states, thus re-assembling the predicate to be used in the final
model.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

Connection_N

Transmitting

E
.w

ai
t_

tr
an

s_
su

cc
ee

ds
 /

m
ov

e

m
ov

e_
fr

om
_p

re
d

E.wait_error_starts

Connected

E
.w

ai
t_

tr
an

s_
fa

ils

po
si

tio
n

/ m
ov

e_
to

_n
ex

t

Idle

Transferring

E
.w

ait_error_ends

E.wait_conn_loss_starts E.wait_conn_loss_ends

Error burst

Connection_loss

Fig. 6. Model of the Connection between the Train and the RBC.

A. Description

In level 3 of the upcoming ETCS standard, high-speed trains
will be allowed to follow each other at close distances. To
assure safety in this mode of operation, the trains communicate
with trackside “radio block centers” (RBCs), reporting their
positions at periodic time intervals, and receiving the right
to move on (so-called “movement authorities”) from them at
similar intervals. Communication between train and RBC is
based on GSM-R, an adaptation of GSM wireless protocol.
This communication infrastructure is error-prone and subject
to failures which may cause delays in sending and receiving
of critical messages.
Here we study the effects of these failures on the proper
functioning and safety of the system. When constructing the
model, one of the main concerns was scalability. The current
implementation can handle arbitrary many consecutive trains
on a single track. Here we report on instances of the model
with up to four trains.
For our case, we assumed the RBC to operate as follows: It
receives the current position of each moving train. To authorize
a train to move on, it sends an authorization message. The idea
is that the RBC only sends a moving authorization once it has
received the position from the preceding train. Since a train is
only allowed to send its new position if it is moving, each train
can only move if the previous trains did already send a “move”
before. A special case has to be observed for the first train,
since there is no predecessor train the moving authorization
for this train is always valid.
Several failures have been taken into account that can lead to
faulty and unsafe behavior. For example, the communication
between the RBC and the trains can be lost.

B. Modelling

1) STATEMATE Description and Failure Modes: In Fig. 6
and 7, some actions are prefixed with E.wait and some are
not. All prefixed actions denote delayed actions. They are pre-
served during minimization and will later be associated with
phase-type distributions. In the terminology of Section III, they
serve as our failure modes.
Initially, the RBC is idle (state IDLE). Upon receiving a
position information from the train in front, i.e., event
MOVE FROM PRED, it tries to transmit a moving authorization.
Depending on the environmental circumstances, this either
fails or succeeds (conditions TRANS FAILS or TRANS SUCCEEDS).
The moving authorization will be submitted as an event

Train_N

report ready report sent

moving braking

E.wait_report

move

[in(moving)]/position

E.wait_brake

Fig. 7. Model of the Train Internals.

(MOVE) to the parallel state which represents the train. If a
train successfully transmits its position report to the RBC, an
affirmative signal (MOVE TO NEXT) is sent to the next train.
Two types of errors can disturb the communication between
the RBC and the train. The occurrence of ERROR STARTS

indicates errors in the communication. The condition
CONN LOSS STARTS, on the other hand, signals a connection
loss. At the end of error and connection lost, the conditions
ERROR ENDS and CONN LOSS ENDS, respectively, are set.
The train consists of two parallel activities, which are modelled
in STATEMATE by an AND-node (see Fig. 7). The lower node
controls the movement of the train. Upon getting a MOVE event
from the RBC, the train is in the MOVING state until the BRAKE

condition is set. The train then waits in the BRAKING state until
a new moving authorization arrives. The upper node controls
the position reports. If the lower node is in state MOVING, a new
position is reported (via the POSITION event). Afterwards, the
train has to wait in the state REPORT SENT for a new REPORT

event, which indicates, that all necessary information for a new
report has been collected. It then changes to the REPORT READY

state, from which it can send a new position report (provided
that it is in the MOVING state).
2) Safety requirements: We consider all system states as
unsafe, where the system occupies the node BRAKING.
3) Failure mode distributions: The failure mode distributions
used are taken from [29], now interpreted for multiple trains.
Some of the delays associated with the failure modes are
distributed according to exponential distributions, others are
given by deterministic distributions. The latter are approxi-
mated directly by Erlang distributions with n phases [30].
We made some experiments to understand the sensitivity of
the numerical results and of the state space sizes on different
values of n.
The delay of TRANS SUCCEEDS, indicating the delay to establish
a GSM-R connection, is at most 5 seconds with 95 % and at
most 7.5 seconds with 99.9 % probability. We approximated
this delay by our prototype tool. Fig. 8 depicts the resulting
CTMC obtained. To simplify the figure, the chain is not

16.07 14.88 8.13 6.56 4.79

2.09

10.15

2.54

8.89

Fig. 8. Phase-type approximation of the delay of TRANS SUCCEEDS.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

uniform, i.e., self-loops are omitted.

C. Statistics

In this section, we give some statistics we obtained from
experiments on the ETCS case study where we vary the
number of consequtive trains. The delays of events BRAKE and
REPORT are distributed by deterministic distribution 25 and 5
seconds, respectively, and they are approximated by Erlang
distributions. The different settings we use are determined by
the number of phases (namely 1, 5 and 10) in the approximat-
ing Erlang distributions.
1) Symbolic Transformation: Table I gives an overview of
the computation time and the model sizes for the symbolic
part of our tool chain (cf. Section III), as generated by our
STATEMATE-plugin. We display the bitvector sizes for states
and transitions of the generated LTS, with and without cone-
of-influence reduction. The bitvector size corresponds to a
potential state space of the model, where a bitvector size of x
gives a potential of 2x. We also show the actual reachable state
space, and the result of symbolic branching minimization, as
well as the overall computation time (in seconds) in the table.
2) IMC Construction: In Table II and III, we report results
concerning the construction and minimization using CADP

(Section IV-A). Experimental results are displayed for mono-
lithic (Table II) and compositional (Table III) construction
(cf. Fig. 5). For each type of construction, we report the size of
the largest intermediate state space we needed to handle, the
construction time (Generation) and the Minimization time in
seconds. The state spaces of the final results are also provided.
For the compositional approach, we report the accumulated
time (G+M) over all steps.
The advantage of using compositional construction in terms of
space and time is apparent. Stepwise minimization keeps the
size of state spaces low. This, in turns, reduces the duration of
the minimization time in the next step, and so on, thus saving
significant amount of time.
3) CTMDP Transformation: Statistical results for the trans-
formation from IMC to CTMDP (Section IV-C) are displayed
in Table IV. We give the number of states and transitions
for the quotient IMC and the resulting CTMDP, together with
the computation time required for this transformation. The
column depicting the number of CTMDP transitions deserves
a special comment. Since transitions in CTMDPs are triples
(s, l, R) with a function R assigning rates to successor states,
representing one transition may in the worst case already
require space in the order of the number of states. Of course,
this is not the case, the functions are very sparse. The numbers
denoted in brackets are the average number of nonzero entries
per transition.
4) CTMDP Analysis: The runtime of the extended ETMCC

model checker is shown in the last two columns of Table IV.
The computation time needed to compute the worst case
probability to reach the set of safety critical states has been
computed for time bounds of 10 and 180 seconds, respec-
tively. Since the timed reachability algorithm is implemented
prototypically so far, we are actually quite satisfied with its
performance.

VII. CONCLUSION

This paper has made the following contributions. It reported
on (1) the first implementation of a time bounded reachability
algorithm for CTMDPs, (2) the first – to our knowledge –
entirely BDD-based algorithm for computing branching bisim-
ulation quotients, (3) a compositional method to construct
uniform CTMDPs, (4) the integration of these pieces in a
useable tool chain, and (5) the application of this tool chain
to a nontrivial example.
We are currently experimenting with the tool chain to identify
bottlenecks and to improve interoperability. We feel that the
tool chain as such is long and not easy to debug. In the
future, we plan to make more phases of the tool flow work
with purely symbolic data structures. Further, we are working
on alleviating some of the modelling restrictions, which are
currently dictated by the way failure modes are handled by
STATEMATE. Concretely, we are going to open the approach
towards repairable systems and other types of failures, and to
allow time constraints to be attached to non-failure events in
the system.
Acknowledgements. We would like to thank Michael Adelaide
(OFFIS Oldenburg) and Hubert Garavel (INRIA Rhônes-
Alpes) for their valuable support during the preparation of
this paper.

REFERENCES

[1] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort, “Effi-
cient computation of time-bounded reachability probabilities in uniform
continuous-time Markov decision processes.” Theor. Comput. Sci., vol.
345, no. 1, pp. 2–26, 2005.

[2] H. Hermanns, Interactive Markov Chains and the Quest for Quantified
Quality, ser. LNCS, 2002, vol. 2428.

[3] R. J. van Glabbeek and W. P. Weijland, “Branching Time and Abstrac-
tion in Bisimulation Semantics,” Journal of the ACM, vol. 43, no. 3, pp.
555–600, 1996.

[4] T. Peikenkamp, E. Böde, I. Brückner, H. Spenke, M. Bretschneider, and
H. Holberg, “Model-based Safety Analysis of a Flap Control System,”
in Proc. of INCOSE, Toulouse, 2004.

[5] T. Bienmüller, U. Brockmeyer, W. Damm, G. Döhmen, C. Eßmann,
H.-J. Holberg, H. Hungar, B. Josko, R. Schlör, G. Wittich, H. Wittke,
G. Clements, J. Rowlands, and E. Sefton, “Formal Verification of an
Avionics Application using Abstraction and Symbolic Model Checking,”
in Proc. of Safety-critical Systems Symposium. Safety-Critical Systems
Club, 1999, pp. 150–173.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[7] The VIS Group, “VIS: A system for verification and synthesis,” in
Proc. of CAV, ser. LNCS, vol. 1102, July 1996.

[8] R. Drechsler and B. Becker, Binary Decision Diagrams – Theory and
Implementation. Kluwer Academic Publishers, 1998.

[9] S. Blom and S. Orzan, “Distributed branching bisimulation reduction of
state spaces,” in Proc. of Int’l Work. on Parallel and Distributed Model
Checking, 2003.

[10] M. Herbstritt, R. Wimmer, T. Peikenkamp, E. Böde, H. Hermanns,
S. Johr, M. Adelaide, and B. Becker, “Analysis of Large Safety-Critical
Systems: A quantitative approach,” Reports of SFB/TR 14 AVACS 8,
Jan 2006, ISSN: 1860-9821, http://www.avacs.org.

[11] R. Wimmer, M. Herbstritt, and B. Becker, “Minimization of Large
State Spaces using Symbolic Branching Bisimulation,” in Proc. of IEEE
Workshop on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), 2006.

[12] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Dover, 1981.

[13] M. A. Johnson and M. R. Taaffe, “The denseness of phase distributions,”
Purdue University, 1988.

[14] S. Asmussen, O. Nerman, and M. Olsson, “Fitting phase-type distribu-
tions via the em algorithm,” Scand. J. Stat., vol. 23, no. 4, pp. 419–441,
1996.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

TABLE I

SYMBOLIC STEPS: STATEMATE SAFETY ANALYSIS AND MINIMIZATION STATISTICS

Trains
Without COI With COI Branching Bisimulation

Potential Reachable Time Potential Reachable Time Min. Result Time
s bits t bits s t (sec.) s bits t bits s t (sec.) s t (sec.)

2 18 12 253 11132 6.9 16 12 121 5324 0.3 25 359 0.07
3 30 22 10585 3217840 30.2 28 22 5041 1532464 1.9 79 2065 1.16
4 42 32 444529 768146112 897.5 40 32 211681 365784768 6 79 2969 43.19
5 54 42 18670200 167284992000 18677 52 42 8890560 79659417600 6.1 79 4341 1150.94

TABLE II

MONOLITHIC CONSTRUCTION FOR ETCS WITH 2 TRAINS

Phases
Monolithic Construction

States Transitions G Time (sec.) M Time (sec.)
1 33600 518464 12 3
5 302400 4142016 22 402

10 1016400 13521376 46 5154

TABLE III

EXPLICIT STEPS: COMPOSITION AND MINIMIZATION STATISTICS

Trains Phases
Compositional Construction Final Quotient IMC

States Transitions G + M Time (sec.) States Transitions
2 1 600 2505 42 355 1590

5 10000 53625 61 5875 39500
10 37500 207500 511 20000 154750

3 1 3240 16064 58 1375 5225
5 64440 354100 813 36070 159119

10 249480 1382900 10666 113650 533500
4 1 2870 11260 53 1435 5475

5 57950 260350 420 30575 141000
10 224900 1022700 7391 119650 558500

TABLE IV

EXPLICIT STEPS: CTMDP TRANSFORMATION AND ANALYSIS STATISTICS

Trains Phases
Quotient IMC Uniform CTMDP Time Time for Analysis of Formula (sec.)

States Transitions States Transitions (sec.) supD PrD(s,
≤10� B) supD PrD(s,

≤180� B)
2 1 358 1593 227 352 (1.75) 3.39 0.06 0.44

5 5878 39503 3127 3752 (4.60) 3.67 0.54 7.00
10 22003 154753 11252 12502 (5.52) 4.70 2.23 31.15

3 1 1378 5228 787 1347 (1.10) 3.61 0.14 2.01
5 36073 159113 21722 35942 (1.55) 4.99 6.24 89.39

10 113653 533503 56452 90402 (1.84) 8.46 17.95 254.29
4 1 1438 5478 817 1457 (1.01) 3.53 0.16 2.28

5 30578 141003 15477 26577 (1.57) 4.86 4.43 62.83
10 119653 558453 59452 101402 (1.64) 8.40 19.94 280.88

[15] A. Horváth and M. Telek, “Phfit: A general phase-type fitting tool.” in
Computer Performance Evaluation / TOOLS, 2002, pp. 82–91.

[16] R. E. A. Khayari, R. Sadre, and B. R. Haverkort, “Fitting world-wide
web request traces with the em-algorithm.” Perform. Eval., vol. 52, no.
2-3, pp. 175–191, 2003.

[17] A. Thümmler, P. Buchholz, and M. Telek, “A novel approach for fitting
probability distributions to real trace data with the em algorithm.” in
DSN, 2005, pp. 712–721.

[18] R. Pulungan, “Orthogonal distance fitting for phase-type distributions,”
Tech. Rep., Forthcoming.

[19] H. Hermanns and J.-P. Katoen, “Automated compositional Markov
chain generation for a plain-old telephone system,” Science of Comp.
Programming, vol. 36, pp. 97–127, 2000.

[20] BCG MIN, “Project Website,” March 2006,
http://www.inrialpes.fr/vasy/cadp/man/bcg min.html.

[21] H. Hermanns and S. Johr, “Compositional construction and analysis of
uniform interactive markov chains,” In preparation for TACAS submis-
sion.

[22] S. Johr, “Transforming Stochastic Activity Networks to continuous-time
Markov decision processes,” in Proceedings of the PMCCS-7, 2005.

[23] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen, “Model-

checking algorithms for continuous-time markov chains.” IEEE Trans.
Software Eng., vol. 29, no. 6, pp. 524–541, 2003.

[24] H. Garavel, F. Lang, and R. Mateescu, “An overview of CADP 2001,”
European Assoc. for Software Science and Technology (EASST) Newslet-
ter, vol. 4, pp. 13–24, 2002.

[25] H. Garavel and H. Hermanns, “On Combining Functional Verification
and Performance Evaluation Using CADP,” in Prof. of FME, ser. LNCS,
vol. 2391, 2002.

[26] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, “A Tool for
Model-Checking Markov Chains,” J. STTT, vol. 4, no. 2, pp. 153–172,
2003.

[27] ERTMS, “Project Website,” Jan 20 2006,
http://ertms.uic.asso.fr/etcs.html.

[28] A. Zimmermann and G. Hommel, “A train control system case study in
model-based real time system design.” in IPDPS, 2003, p. 118.

[29] H. Hermanns, D. N. Jansen, and Y. S. Usenko, “From stocharts to mod-
est: a comparative reliability analysis of train radio communications.” in
WOSP, 2005, pp. 13–23.

[30] J. Abate, G. L. Choudhury, and W. Whitt, “Calculation of the GI/G/1
waiting-time distribution and its cumulants from pollaczek’s formulas,”
AEÜ Hirzel Verlag, vol. 47, 5/6, pp. 311–321, 1993.

Third International Conference on the Quantitative Evaluation of Systems (QEST'06)
0-7695-2665-9/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

