Automatic Optimization Techniques for Formal
Verification of Asynchronous Circuits

M. Boubekeur and M.P. Schellekens
Centre for Efficiency-Oriented Languages (CEOL)
Department of Computer Science
NUI Cork, Ireland
{m.boubekeur, m.schellekens} @cs.ucc.ie

Abstract—Even medium size asynchronous circuits may dis-
play a complex behavior, due to the combinational explosion in
the chronology of events that may happen. It is thus essential
to apply automatic optimization techniques to avoid such com-
plexity when formally verifying the correctness of the circuit.
This paper presents dedicated techniques for optimization of
formal verification of asynchronous circuits, these include for
instance: automata reduction, pre-order reduction and automatic
abstraction. All these techniques have been implemented and
tested in a formal verification environment.

I. INTRODUCTION

Large Scale Integration (VLSI) technology in the last few
years has led to faster, but more complex systems. The
synchronous logic design encounters major problems (distri-
bution of clock, energy, modularity) in handling this increasing
complexity. Asynchronous circuits show interesting potentials
in several fields such as the design of microprocessors, smart
cards and circuits with low power consumption.

This work! is part of a research work that consists of
the analysis and the automatic validation of asynchronous
specifications written in CHP[7], prior to their synthesis. The
goal is to introduce formal methods into the asynchronous
circuit synthesis flow [8], [3].

The verification approach consists in using formalisms and
tools coming from the field of software validation. The CADP
toolset from INRIA, whose execution model is similar to the
asynchronous circuits one, was selected. CHP specifications
are analyzed and translated in terms of Extended Labelled
Transitions Systems (ELTS) with guarded commands. These
ELTS descriptions explicitly integrate channels and simple
“read” and “write” actions. They appear to be more appropriate
for the formal validation of initial CHP specifications. They are
validated using the IF/CADP environment [5], which provides
model checking and bi-simulation tools.

The efficiency of the verification approach is significantly
influenced by the size of the underlying ELTS associated
with the circuit. It is therefore crucial to keep this size as
small as possible. For this purpose, it is thus essential to
apply automatic optimization techniques. In this work we
propose and implement strategies for the optimization of
the generated ELTS models. Figure 1 shows the validation

IPart of this work was carried out at TIMA laboratory, Grenoble, France.

1-4244-1378-8/07/$25.00 ©2007 IEEE. 283

environment. We start from a CHP specification, to achieve
some verification tasks. The reduction techniques, including
automata reduction, pre-order reduction, explicit generation of
interleaving and automatic abstraction, are incorporated in the
formal verification environment.

CHP Specification II

Automatic i Reduction
Figail H CHP2IF Kernel H

Intermediate Format
ELTS

Basic LTS II
Formalization of .
correcthess propel‘thﬁ-l] Model-Checking

True/ False
Diagnostic

Formal verification environment

Verification of
deterministic choice
structures

Fig. 1.

A minimum knowledge of asynchronous circuits and formal
verification is needed for the understanding of the presented
work. The reader is invited to read [7] and [2]. They describe
the asynchronous circuits, the CHP language and the inter-
mediate format IF. [1] contains a description of the formal
verification environment for the validation of the asynchronous
circuits specifications.

The remainder of the paper is organized as follows: in
Section II we give a description of the different optimization
techniques. Section III is an example which illustrates the
application of the automatic abstraction technique. Finally
Section IV gives a conclusion of our work.

II. TECHNIQUES OF OPTIMIZATION

The goal of these techniques is to reduce at the compilation
time the number of ELTS states. Generally we are brought
to generate, starting from the product of all ELTS, the LTS
modelling all the possible executions of the circuit. It is then
obvious that any removed state of the ELTS will inevitably

Authorized licensed use limited to: UR Rhone Alpes. Downloaded on January 27, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

Rule 1

Rule2

?%
. G
N |]|]|:(> G2x, ..., Si=vi

Fig. 2. Reduction rules for compacting ELTS during compilation

reduce the size of the generated LTS model and consequently
the time for performing the formal verification phase. In this
section we present the different optimization techniques we
have implemented in the formal verification environment.

A. Automata reductions

In an ELTS, a transition can be composed of a guard, a syn-
chronization expression and possibly of several assignments.
While taking advantage of the expressivity of the ELTS, we
have implemented a set of transformation rules allowing the
reduction in size of the ELTS generated during the compilation
of the CHP specification. This is done while preserving
the semantics of the automata. The rules of reductions are
presented in Figure 2 and outlined as follows:

e Rule 1: The idea is to compact a set of sequential
transitions in only one transition. That is possible in the
case of an action of communication followed by one or
more sequential assignments.

o Rule 2: In the case of a conjunction of several transitions
followed by an assignment, the latter is added to each
preceding transition.

e Rule 3: If an assignment is followed by a disjunction of
several assignments, then the first assignment is added at
the beginning of all the transitions which succeed it.

We note that each transformation rule removes at least a
state, and strictly preserves the same action sequences.
B. Automatic abstraction

The abstraction is a well-known technique to deal with the
problem of states explosion. It consists of building an abstract
model starting from the original model, called a concrete
model, such that each action of the concrete model can be
simulated by an action in the abstract model.

In the verification process, we are often interested in
checking the control aspects since the verification of the
functional properties, calculation for example, is difficult and
very expensive. An intuitive manner to check these control
aspects more easily consists of abstracting the data parameters.
Accordingly, certain ports or variables are not used in the
control aspects of a process (the way the processes behave),
they are then not-relevant for the verification of the control
properties, but their simple presence generates an enormous

284

over-cost of calculation and memory at the time of the formal
verification phase.

The idea is to modify the parameters (variables or ports)
which are not essential so that they always have a constant
value. At best, one can completely remove these parameters.
To do this, we developed an abstraction function called Nec
diminutive of Necessary. The abstraction function Nec ex-
presses that a variable or a port is needed for the verification
of a control property.

Definition 1 (Nec: the abstraction function): Nec(X)
true if X is used in a guard; or if X intervenes by dependency
in the calculation of the value of a variable y, such as
Nec(y) = true;

This function is applied to all parameters (variables and
ports) of the CHP program by using the dependency rules
described in TABLE L.

TABLE I
ABSTRACTION FUCTION RULES

CHP operation Rules
Guard
[f(v1,...,00)] Nec(vi) A ... A Nec(vn)

Communication actions
PI(f(v1,...,on)) Nec(P) = Nec(vl) A ... A Nec(vn)
P Nec(v) = Nec(P)

Assignements
v:= f(vl,...,on)

Nec(v) = Nec(vl) A ... A Nec(vn)

The resolution of this system of equations is done at the
pre-processing compilation time. It thus gives during the
generation of the ELTS code all information concerning the
variables which are not necessary. After application of the
abstraction function, we can build the set Abs.

Definition 2 (Abs: the set of non-necessary parameters):
Let X be a variable or a port of the CHP program:
X € Abs if Nec(X) = false

Finally the abstraction technique consists of building the set
Abs, then to abstract all ports and variables of this set.

1) Parameterized automatic abstraction: If one wishes to
verify a property which depends on a data variable, this
variable should not be abstracted, and of course neither all
the variables intervening during its calculation. We envisaged,
to answer this need, the implementation of a parameterized
automatic abstraction. It is then possible to select a variable
or a port as a necessary parameter for the verification of a
property.

By allowing this possibility, we improved our abstraction
technique, since it becomes not only used for the control
aspects. Concretely we eliminate the parameter (variable or
port) from the set Abs, this parameter then becomes necessary
and consequently cannot be abstracted.

C. Explicit generation of parallelism

As we saw previously, the CHP language allows parallelism
within a process whereas the ELTS format (IF) does not allow

Authorized licensed use limited to: UR Rhone Alpes. Downloaded on January 27, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

this functionality. Indeed, this problem could be solved in
all cases by creating new concurrent processes which would
contain only sequential statements. But this method would
generate new communication actions to allow the synchro-
nization of these new processes.

A manner of avoiding the creation of new processes is to
explicitly generate the parallelism, between the concurrent ac-
tions, according to the interleaving semantic. The method then
consists in distinguishing, among the set of concurrent actions,
those which can be represented by only one ELTS transition
(simple or atomic statement). All the possible interleaving
between these actions are explicitly generated (see Figure 3.)

1) Interleaving example: Lets consider these three concur-
rent atomic statements: S1, S2, S3.

Figure 3 shows the explicit generation of the interleaving
between these concurrent actions. We note that the number of
states necessary to generate the interleaving is: 1+3+3+1 =
8.

Process P/, C1 and C2: (P’ | |C1] |C2) Process P

P 1 @
@ sync init, sync end
sync init m @

Sl i 52
C
e sync init, @ sync end
sync end 0 e
@ S3

Councurrent Processes

Tuterleaving

Fig. 3. Explicit generation of interleaving of concurrent actions

2) General case: Let k be the number of transitions. The
number of states necessary for the generation of all possible
interleaving is 2%.

The construction of the ELTS modelling the interleaving of
k transitions in an optimal way is based on the use of the
Triangle of Pascal [4]. To build all possible interleaving of
k concurrent actions, it is enough to build the representation
of the Triangle of Pascal and add the transitions between the
states. Figure 4 illustrates interleaving between 4 instructions:
the number of necessary states is 24; the 5 levels are laid out
in the following way: “1.4.6.4.1”, according to the coefficients
of the Triangle of Pascal:

" n!
¢ = (n — i)l

3) Need for creation of new processes to model parallelism:
In certain cases, the treatment of concurrency by explicit
generation of interleaving is rather complicated. It is typically
the case for a concurrency between serial behaviors. In this
case we are obliged to model concurrency by the creation of
new concurrent processes synchronized by “extra-ports”.

The following CHP code puts several behaviors in parallel
which cannot be handled by the explicit generation method.
(S1,(S2;S3), [A#= 54])

The sequential portions have to be extracted in new pro-
cesses. These new processes are synchronized on the original

285

Fig. 4. Method for generation the interleaving

Original process

Py :
e P
I(I s ,[\\‘ ‘\\
¢ Pack 152,53 Pear \[A# => 54]
S

Example of concurrency that needs creation of new processes

New process New process

Fig. 5.

process by the extra-ports: Py, and Py The process which
contained parallelism recovers one of the expressions (S1 in
Figure 5), and synchronizes the new processes so that those
are carried out at the appropriate time. It is necessary to make
the shared variables global and to specify the synchronized
ports correctly.

D. Pre-order Reduction

In order to further reduce the ELTS generated during com-
pilation, we implemented a pre-order reduction technique. In
this technique, we consider all the concurrent assignments. We
extract all the assignments which do not contain dependency
between variables. These concurrent assignments are then
replaced by only one sequential execution.

The following CHP code presents a set of sequences to
realize in parallel. We want to extract the sequences which
will not change semantics independently of the execution.

(D (2 (3) “4) %)
x:=10, y=x+1, z=w, Alx, (C; Blt

The first two statements cannot be withdrawn, because
they are in interdependence on variable x: according to the
sequence of execution (1); (2) or (2); (1), the result at the end
of parallelism is not the same one.

The statement (3) can be extracted, because neither variable
z, nor the variable w are dependent on another assignment.
The statement (4) should not be extracted because it is a
communication action, and we think that it would be necessary
to carry out very complex checks to verify dependency be-
tween communication actions. Indeed, contrary to the variables
which are local, all the ports being global makes it more
difficult to analyse their dependency. The expression (5) cannot
be extracted because it is not an atomic action. In conclusion,

Authorized licensed use limited to: UR Rhone Alpes. Downloaded on January 27, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

on this example, we can carry out sequentially the statement
(3), followed by the interleaving of the expressions (1), (2),
(4) and (5).

III. APPLICATION ON AN EXAMPLE

To highlight the previous optimization techniques, we
present here the application of the more sophisticated opti-
mization technique, the automatic abstraction, on a typical
arbiter (Figure 6). The circuit behaves in the following way:
input channel C' is read in a local variable ctrl which is tested
using a deterministic choice structure. The value read from
input channel E is propagated to output channel S1 if ctrl is
0, to S2 if ctrl is 1, and to both S1 and S2 in parallel if ctrl
is 3.

COMPONENT Det—Selector

PORT (C: IN DI MR[3][1]; E: IN DI MR[2];

S1, S2 : OUT DI MR[2])

BEGIN

PROCESS main

PORT (C: IN DI MR[3][1]; E: IN DI MR[2];
S1, S2 : OUT DI MR[2])

variable x : MR[2];

variable ctrl : MR[3][1];

BEGIN

[C?ctrl];

@[Ctrl = ”0”[3] = E?x; Sl!x; break
Ctrl = ”17[3] = E?x; S2!x; break
Ctrl = 727[3] = E?x; Sl!x, S2!x; break]; loop];

END;
END;
Fig. 6. CHP code for the Arbiter

| K
CY ‘

Fig. 7. LTS of the execution model for the asynchronous arbiter

The generated LTS for the asynchronous arbiter without
abstraction of the data is described in Figure 7. After execution
of the automatic abstraction, we obtain the LTS of Figure 8. By
application of the abstraction function (Nec), only one port

286

is decided to be necessary, the control port C. The remaining
ports are considered to be abstracted, Abs = {E, S1,52}. The
data ports of the set Abs are then abstracted by an enumerated
type of one value {D}.

Fig. 8. LTS of the asynchronous arbiter generated by abstraction

We observe that we gain a considerable size factor. This
abstraction preserves the properties of the arbiter. Of course
the formal verification phase is more efficient on the reduced
model.

IV. CONCLUSION

In this paper we presented an implementation of efficient
techniques for optimization of the formal verification of
asynchronous circuits. These techniques allowed the formal
verification of real-world asynchronous circuits, e.g. the results
of the verification of Data Encryption Standard (DES) chip [6]
are reported in [1]. These techniques are entirely integrated in
the formal verification environment.

ACKNOWLEDGMENT

Dr. M. Boubekeur would like to thank Prof. D. Borrione,
Prof. M. Renaudin and Dr. L. Mounier for their contributions
to this work and for many stimulating and helpful discussions.

REFERENCES

D. Borrione, M. Boubekeur, et al. ”VLSI-SOC: From Systems to Chips”.
Chapter:”Validation of Asynchronous Specifications using IF/CADP”,
Kluwer-Springer, 2006, ISBN: 0-387-33402-5.

M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier.
IF : A Validation Environment for Timed Asynchronous Systems. Pro-
ceedings of CAV00 (Chicago, USA) July 2000.

A. V. DinhDuc, “Synthse Automatique de Circuits Asynchrone QDI”.
PhD thesis, INP of Grenoble, 2003.

R. L. Graham, D. E. Knuth, and O. Patashnik, Binomial Coefficients. Ch.
5 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed.
Reading, MA: Addison-Wesley, pp. 153-242, 1994.
http://www.inrialpes.fr/vasy/cadp/

NIST, Data Encryption Standard (DES), FIPS PUB 46-3, National In-
stitute of Standards and Technology, Reaffirmed October 25, 1999. http
://csre.nist.gov/csre/fedstandards.html

M. Renaudin, “Asynchronous Circuits and Systems : a Promising De-
sign Alternative”. In "MIGAS 20007, special issue Microelectronics-
Engineering Journal, Elsevier Science, Vol. 54, N 1-2, December 2000,
pp. 133-149.

M. Renaudin, J.B. Rigaud, et al. “TAST CAD Tools”. ASYNCO02 TU-
TORIAL, ISRN: TIMARR-02/04/01FR, 2002.

(1]

(2]

(3]
[4]

[5]
(6]

(71

(8]

Authorized licensed use limited to: UR Rhone Alpes. Downloaded on January 27, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

