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A Rigorous, Compositional, and Extensible
Framework for Dynamic Fault Tree Analysis
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Abstract— Fault trees (FT) are among the most prominent for-
malisms for reliability analysis of technical systems. Dynamic FTs
extend FTs with support for expressing dynamic dependencies
among components. The standard analysis vehicle for DFTs is
state-based, and treats the model as a CTMC, a continuous-time
Markov chain. This is not always possible, as we will explain,
since some DFTs allow multiple interpretations.

This paper introduces a rigorous semantic interpretation of
DFTs. The semantics is defined in such a way that the semantics
of a composite DFT arises in a transparent manner from the se-
mantics of its components. This not only eases the understanding
of how the FT building blocks interact. It also is a key to alleviate
the state explosion problem. By lifting a classical aggregation
strategy to our setting, we can exploit the DFT structure to build
the smallest possible Markov chain representation of the system.
The semantics - as well as the aggregation and analysis engine
is implemented in a tool, called CORAL. We show by a number
of realistic and complex systems that this methodology achieves
drastic reductions in the state space.

Index Terms— Fault trees, Reliability, Compositionality, For-
mal models, Framework.

I. INTRODUCTION

RELIABILITY ENGINEERING is an important activity in
the design of today’s computer and communication systems.

For safety critical systems, such as airplanes and nuclear power
plants, failures can be life threatening; for other applications, such
as online ticket vending systems, failures often incur a high cost.

One of the most popular formalisms to model and analyze
systems’ reliability is the fault tree (FT) formalism [27]. Dynamic
fault trees (DFT) [13], [8], [26] extend standard (or static) FTs
by defining additional gates called dynamic gates. These gates
allow the modeling of complex system components’ behaviors
and interactions which greatly increases the modeling capabilities
of standard FTs. Like standard FTs, dynamic fault trees are
a high-level formalism for computing reliability measures of
computer-based systems. For over a decade now, DFTs have been
experiencing a growing success among reliability engineers.

DFTs, like FTs, describe the system failure in terms of the
failure of its components. A DFT is a tree (or rather a directed
acyclic graph (DAG), since subtrees can be shared) in which
the leaves are basic events (BEs) and the other elements are
gates. A BE typically models the failure of a physical component
and is governed by a probability distribution. In this paper, we
consider exponential distributions and phase-type distributions,
the latter allowing to approximate other probability distributions
with arbitrary precision. Gates express how component failures
induce system failures and are either static (AND, OR, and the
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K/M voting gate) or dynamic (Priority AND, SPARE, and the
Functional Dependency gate). DFTs are typically used to compute
system unreliability, that is, the probability that the system fails
during a specified period of time (usually called mission time)
and under given conditions. Other measures, such as the average
time until a failure occurs can be computed as well.

Despite their success, current DFT analysis methods have
several (mutually related) drawbacks.

1) Existing analysis methods (most notably, the DIFTree
method [21] implemented in analysis tools like Galileo [25]
and Relex [23]) typically convert a DFT into a continuous-
time Markov chain (CTMC) whose states are vectors of
modes (up, failed, active, inactive) for each BE. Hence, the
size of the state space is exponential in the number of basic
events.

2) These methods impose rather severe syntactic restrictions
on DFTs, greatly diminishing the modeling flexibility and
power of DFTs. Most notably, DFT spare components must
be BEs, whereas spare components in practice are often
entire subsystems.

3) The DFT semantics is rather imprecise and the lack of
formality has, in some cases, led to undefined behavior and
misinterpretation of the DFT model.

4) DFTs lack comprehensive modular analysis. DIFTree uses
a limited form of compositional analysis: it solves in a
separate way all stochastically independent subtrees of a
static gate, provided none of its ancestors in the tree is
a dynamic gate. Then it combines, using Binary Decision
Diagrams, their analysis results to obtain the result for
the entire DFT. However, this method is not applicable to
dynamic gates. In particular, those DFTs whose top-node
is a dynamic gate can not be analyzed compositionally.

5) The current methods are difficult to extend or to modify.

In this paper, we present a framework for DFT analysis based
on I/O-IMCs that greatly alleviates these drawbacks. I/O-IMCs
are a powerful and versatile formalism to model and analyze
stochastic system behavior, and have been used in an number
of applications, ranging from telecommunication systems [18] to
railway networks [3] and multiprocessor arrays [11]. I/O-IMCs
extend CTMCs with input, output and internal actions, used for
communication between several I/O-IMCs. They are equipped
with a parallel composition operator, allowing one to build larger
I/O-IMCs from smaller ones, and with powerful minimization
(a.k.a. lumping) techniques to reduce the state space of an I/O-
IMC.

The core of our methodology is a compositional semantics
of DFTs in terms of I/O-IMCs. That is, we translate each DFT
element (i.e. gate or BE) into one or more I/O-IMCs — obtaining
these semantics turned out to be non-trivial, and required a
careful re-examination and generalization of the concept of spare
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activation. Then, the semantics of an entire DFT is obtained as
the parallel composition of all DFT element I/O-IMCs. Since
these I/O-IMCs semantics pin down the meaning of a DFT in
a mathematically precise way, we lift drawback 3 mentioned
above. Relatedly [10] presented a formal semantics in Z. The
main difference between the formal specification in [10] and the
formal specification used in this paper is that in our framework we
use a process algebra-like formalism (i.e. I/O-IMC) which comes
with two very powerful concepts, namely parallel composition
and aggregation/minimization.

Since composing all element I/O-IMCs at once would give the
same blow up as the DIFTree method, we use the compositional
aggregation method to reduce the size of the models. That is, we
compose two I/O-IMCs, hide actions that are no longer needed
for communication with other components, and minimize them.
We repeat this process until all element I/O-IMCs have been
composed. While this method is still exponential in worst case,
our experiments show that serious reductions (one or two orders
of magnitude) are realized in practice. Thus, our methodology
relieves drawback 1 mentioned above. Since this analysis method
is fully compositional, that is, the analysis of a DFT (i.e. its
underlying I/O-IMC) is obtained from analysis results of its
components (i.e. lumped I/O-IMCs of sub-models), we also lift
drawback 4.

We note that the order in which we compose these I/O-IMCs
matters for the size of the intermediate I/O-IMC models, but not
for the final result. We employ heuristics, based on the way indi-
vidual I/O-IMC models communicate with each other, to obtain
smart composition orders. These models have specific properties
(acyclicity) that we exploit by tailored algorithms. Also, it turns
out that our techniques require much lighter syntactic restrictions
than existing DFT methodologies. Any subsystem can now be
used as a dependent event and any activation-independent (see
Section IV) can be used as a spare component. Hence, drawback 2
is alleviated. Finally, we show how the current DFT semantics
can readily be extended or modified; we present extensions
with inhibition, mutual exclusion and repair, thus addressing
drawback 5.

We have implemented our DFT framework in a tool called
CORAL. The tool derives all I/O-IMC models and composes them
using the CADP tool-set [15], which is also used to compute the
system reliability. We used CORAL to analyze nine case studies,
including ones showing systems with spare and dependent event
subsystems which are currently not supported by any other DFT
tool and a system showing the need for non-determinism. We
have compared our tool with Galileo and our experiments show
that, in almost all cases, our tool is much faster and generates
significantly smaller models (where we consider the largest model
encountered during analysis).

This paper combines and extends the work previously carried
out in [7] and [5]. In particular, our contributions over these
papers are

1) a complete semantics of all DFT elements: Whereas [7]
and [5] describe the semantics of DFT gates for a specific
number of inputs, we cover here the general case, employ-
ing the IOIML notation. Moreover, we allow phase-type
distributions as failure distributions of basic events;

2) a complete proof for the congruence theorem;
3) a more extensive set of case studies including systems

with spare and dependent event subsystems which are not

currently supported by any other DFT tool and examples
showing the need of non-determinism;

4) CORAL, our prototype tool for analyzing DFT using the
I/O-IMC semantics. It employs the specialized I/O-IMC
minimization algorithm from [12], yielding much faster
computation times than [7] and [5].

a) Organization of the paper.: The remainder of the paper
is organized as follows: In Section II we introduce DFTs and in
Section III we discuss I/O-IMCs. In Sections IV and V we present
the formal DFT syntax and semantics respectively. In Section VI,
we show, through three examples, how one can readily extend the
existing DFT formalism. Section VII presents the compositional
aggregation technique and Section VIII describes the CORAL tool.
Finally, in Section IX, we present a number of case studies and
Section X concludes the paper.

II. DYNAMIC FAULT TREES

As described in Section I, DFTs and FTs are directed acyclic
graphs describing the system failure in terms of the failure of
its components. Their leaves are labeled with basic events, and
non-leaves with gates.

1) BE: A BE, graphically depicted by a circle (see Fig-
ure 1(g)), typically represents the failure of a basic system
component; its failure behavior is governed by a probability
distribution. In order to describe these distributions using I/O-
IMCs, this paper considers exponential and (acyclic) phase-type
distributions, the latter allowing to approximate other probability
distributions with arbitrary precision.

An exponential distribution has a parameter λ that represents
the component’s failure rate (i.e. number of failures per time unit).
A BE has three modes of operation: dormant, active, and failed.
In dormant (or standby) mode, the BE failure rate λ is reduced by
a factor α ∈ [0, 1] called dormancy factor. Thus, the BE failure
rate in standby mode is μ = αλ. In active mode, the failure rate is
unchanged and equals to λ. The dormancy is relevant when the BE
is used as a spare (more details on spare BEs is provided below).
In failed mode, the BE, as the name suggests, has failed and
remains in that state (i.e. we do not consider repairable systems
at this point).

Phase-type basic events (PHBE) are basic events that fail after
a delay governed by a phase-type (PH) distribution [22] with a
finite number of phases. The passive behavior of a PHBE is also
described by a PH distribution with a finite number of phases.
Activation of a PHBE is described by a function which links
passive phases to active phases. When a PHBE is activated it
moves from its current passive phase to the associated active
phase. Note that a BE (with exponential distribution) is a special
case of a PHBE where both active and passive distributions have
only one phase.

2) Gates: Non-leaf elements are called gates and express
how component failures induce system failures. Their graphical
representation is given in Figures 1(a)-(f). Each gate has one or
more inputs, corresponding to outputs of other elements, and
exactly one output. It often represents or maps to a subsystem
contained in the whole system, the top element representing the
system failure. When the failure event of a BE or a gate occurs,
we use the terms failing, occurring, or firing interchangeably.

Gates can either be static (AND, OR gate, and VOTING (also
called K/M) gate) or dynamic. Static gates (which are the only
gates in static fault trees) are combinatorial: they are only sensitive
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to the combinations of failures of their inputs and not to their
order.

Dynamic gates allow the modeling of sequence dependencies
(via the priority AND (PAND) gate), functional dependencies
(functional dependency (FDEP) gate) and spare management and
allocation (via the SPARE gate)1. Thus, DFTs enrich the FT for-
malism with powerful and yet easy-to-use modeling capabilities.

Below, we describe all DFT gates.

output

inputs
(d) PAND gate

output

inputs
(a) AND gate

output

primary

spares
(e) SPARE gate

output

inputs
(b) OR gate

dummy output

trigger
event dependent

events

(f) FDEP gate

2/3

output

inputs
(c) VOTING gate

tire tire tire tire spare

Tires fail

Car fails

Road trip fails

engine

phone

(g) DFT example
Fig. 1. DFT gates and example.

3) AND gate: The AND gate fails when all of its inputs fail.
4) OR gate: The OR gate fails when at least one of its inputs

fails.
5) VOTING gate: A K/M VOTING gate fails when at least

K (called the threshold) out of its M inputs fail.
6) PAND gate: The PAND gate fails when all its inputs fail

and fail from left to right (as depicted in the figure) order.
7) FDEP gate: The functional dependency gate consists of

a trigger event (i.e. a failure event) and a set of dependent
events. When the trigger event occurs, it causes all the dependent
components to become inaccessible or unusable. Essentially, once
a dependent component is triggered, it is assumed to have failed.
Dependent events, as originally defined in [13], need to be
BEs. This restriction will be later lifted in our framework. All
dependent events and the trigger event are considered to be inputs
to the FDEP gate. The FDEP gate’s output is a ‘dummy’ output
(i.e. it is not taken into account during the calculation of the
system failure probability).

8) SPARE gate: The SPARE gate has one primary input and
zero (which is a degenerated case) or more alternate inputs called
spares. The primary input of a SPARE gate is initially powered
on (i.e. in active mode) and the alternate inputs are in standby
mode. When the primary fails, it is replaced by the first available
alternate input (which then switches from standby mode to active
mode). This operation is called spare activation and causes the
spare to switch from dormant to active mode. In turn, when this
alternate input fails, it is replaced by the next available alternate
input, and so on and so forth. Note that multiple spare gates can
share a pool of spares. When the primary unit of any of the spare
gates fails, it is replaced by the first available (i.e. not failed or not
already taken by another spare gate) spare unit; which becomes,
in turn, the active unit for that spare gate. The SPARE gate fails
when the primary fails and all its spares are failed or unavailable.

If all SPARE inputs are BEs, two special cases arise depending
on the spare’s dormancy factor α. If α = 0, the spare is called

1A fourth gate called ‘Sequence Enforcing’ gate introduced in[13] can be
emulated using a cold spare gate.

a cold spare and can not by definition fail before the primary.
When α = 1, the spare is called a hot spare and its failure rate
is the same whether in standby or in active mode. If 0 < α < 1,
the spare is called a warm spare.

Example 1 Figure 1(g) shows a DFT modeling a road trip.
Looking at the top PAND gate, we see that the road trip fails (i.e.
we are stuck on the road) if the car fails after the mobile phone
has failed; if the car fails first, then we can call the road services
to tow the car and continue our journey. The car subsystem fails
if either the engine fails or the tires subsystem fails. The car is
equipped with a spare tire, which can be used to replace any of the
primary tires; when a second tire fails, the tires subsystem fails,
causing in turn a car failure. Thus, we model the tires subsystem
by four spare gates, each having a primary tire and all sharing
a spare tire. The spare tire is a cold spare, i.e. its failure rate is
zero in standby mode.

A. Simultaneity and non-determinism

In earlier development of the DFT modeling formalism, the
semantics (i.e. the model interpretation) of some DFT configura-
tions, where FDEP gates are used, remained unclear. For instance,
in Figure 2, the FDEP gate triggers (in both configurations) the
failures of two basic events. Does this mean that the dependent
events fail simultaneously and if so what is the state of the PAND
gate in the left configuration and which spare gate gets the shared
spare S in the right configuration? These examples were also
discussed in [10], and we believe that this is an inherent non-
determinism in these models. Whereas in [10], these special cases
are dealt with by systematically removing the non-determinism by
transforming it into a probabilistic (or deterministic) choice. In
our framework, we allow non-determinism should this be inten-
tional or unintentional. If the non-determinism was not intended,
then its presence (which is easily detected) indicates that an error
occurred during the model specification. Non-determinism could
also be an inherent characteristic of the system being analyzed,
and should therefore be explicitly modeled.

T
A B

T
A B

S
Fig. 2. The occurrence of non-determinism.

In the I/O-IMC formalism, the DFT configurations depicted in
Figure 2 will be interpreted as follows: Whenever the dependent
events failure has been triggered, then the trigger event (the cause)
happened first and was then immediately (with no time elapsing)
followed by the failure of the dependent events (the effect).
This adheres to the classical notion of causality. Moreover, the
dependent events fail in a non-deterministic order (i.e. essentially
considering all combinations of ordering). In this case, the final
I/O-IMC model is not a continuous-time Markov chain but rather
a continuous-time Markov decision process (CTMDP), which can
be analyzed by computing bounds of the performance measure
of interest [2]. As an example, we have modeled and analyzed
a simple non-deterministic case study (see Subsection IX) using
the MRMC model-checker [19]. However, the conversion of I/O-
IMCs to CTMDPs, which closely follows [17], has not yet been
automated in the tool-chain.
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B. Lifting DFT restrictions

Previously, DFT required all inputs to a SPARE gate and
all dependent events of an FDEP gate to be basic events. This
restriction greatly diminishes the modeling power of DFTs, since
it is very natural to have spare components that are comprised
of multiple components or subsystems. To lift this restriction, we
need to carefully reexamine the notion of spare activation.

For primaries and spares that are complex systems, we say that
a BE b is a primary-BE (or just primary) of a SPARE gate G if
b is contained in the subtree that constitutes the primary of G.
This is the case if there exists a path from b to G whose last edge
ends in the first input of G. Spare-BEs are defined analogously.

The basic idea behind spare activation is that all BEs that
are primary-BEs of some SPARE gate are activated from the
beginning. A BE that is a spare-BE of some SPARE gate gets
activated as soon as one of its SPARE parents is activated. Since
spares can be shared, a BE can have multiple SPARE parents.

When a BE is both a primary-BE and a spare-BE, activation
is unclear: is this BE activated from the beginning or through the
SPARE gate? To rule out such situations we require all primaries
and all spares to be activation-independent subtrees. This means
that primaries and spares are disjoint subtrees and that spares can
only be shared via their top-node.

A B C D

primary spare

system

A B C D

primary spare

system

Fig. 3. Complex spare modules.

To illustrate the activation, consider Figure 3 (left). Here, the
activation of module ‘spare’ simply means the activation of the
BEs C and D. The AND gate has the same behavior whether
‘spare’ is active or not. In fact, whenever the SPARE gate (i.e.
‘system’) is activated, it activates BEs C and D.

The behavior of all the non-SPARE gates is unchanged whether
they are used as spares or not; the SPARE gate does behave
differently when used as a spare. To illustrate this, consider in
Figure 3 (right). When ‘spare’ is not activated (i.e. ‘primary’ has
not failed), BEs C and D are dormant; and even if C (being a
warm spare) fails, D remains dormant. This is the same behavior
as for the ‘spare’ AND gate in Figure 3 (left). If now ‘spare’
is activated, the activation signal is only used to activate the
primary C and D remains dormant (this is clearly different from
the AND gate ‘spare’ where both BEs are activated). Should C

fail and ‘spare’ being in its active mode, then D is activated.
Thus, ‘system’ activates ‘spare’, while ‘spare’ activates D.

III. INPUT/OUTPUT INTERACTIVE MARKOV CHAINS

A. The I/O-IMC model

Input/output interactive Markov chains (I/O-IMCs) are a com-
bination of input/output automata (I/O-automata) [20] and inter-
active Markov chains (IMCs) [16].

I/O-IMCs distinguish two types of transitions: (1) Interactive
transitions labeled with actions; (2) Markovian transitions labeled

with rates λ, indicating that the transition can only be taken
after a delay that is governed by an exponential distribution with
parameter λ. Inspired by I/O-automata, actions can be further
partitioned into:

1) Input actions (denoted a?) are controlled by the envi-
ronment. They can be delayed, meaning that a transition
labeled with a? can only be taken if another I/O-IMC
performs an output action a!. A feature of I/O-IMCs is that
they are input-enabled, i.e., in each state they are ready to
respond to any of their inputs a?. Hence, each state has an
outgoing transition labeled with a?.

2) Output actions (denoted a!) are controlled by the I/O-IMC
itself. In contrast to input actions, output actions cannot be
delayed, i.e., transitions labeled with output actions must be
taken immediately. An observable action is either an input
or an output action.

3) Internal actions (denoted a;) are not visible to the envi-
ronment. Like output actions, internal actions cannot be
delayed.

States are depicted by circles, initial states have an incoming
arrow without origin, Markovian transitions are denote by dotted
lines, and interactive transitions by solid lines. Figure 4 shows an
I/O-IMC B with two Markovian transitions: one from state 1 to
state 2 and one from 3 to 4, both transitions with rate λ. The I/O-
IMC has one input action a?. To ensure input-enabling, we specify
a?-self-loops in states 3, 4, and 52. Note that state 1 exhibits a
race between the input and the Markovian transition: in 1, the
I/O-IMC delays for a time that is governed by an exponential
distribution with parameter λ, and moves to state 2. If however,
before that delay ends, an input a? arrives, then the I/O-IMC
transitions to 3. The only output action b! leads from 4 to 5.

Formally, an I/O-IMC is defined as follows.

Definition 1 (I/O-IMC) An input/output interactive Markov
chain P is a tuple 〈S, s0, A,−→,−→M〉, where:

• S is a set of states,
• s0 ∈ S is the initial state,
• A is a set of discrete actions, where A = (AI , AO, Aint)

is partitioned into a set of input actions AI , output actions
AO and internal actions Aint. This partition is called the
action signature of P . We write AV = AI ∪AO for the set
of visible actions of P .

• −→ ⊆ S × A × S is a set of interactive transitions. We write
s

a
−→s′ for (s, a, s′) ∈ −→. We require that I/O-IMCs are input-

enabled: ∀s ∈ S, a? ∈ AI · (∃s′ ∈ S · s
a?
−−→s′).

• −→M ⊆ S × R>0 × S is a set of Markovian transitions. We
write s

λ
−→Ms′ for (s, λ, s′) ∈ −→M .

We denote the components of P by SP , s0
P , AP , −→P , −→M

P and
omit the subscript P whenever clear from the context.

B. Parallel composition and hiding

The parallel composition operator allows one to build larger
I/O-IMCs out of smaller ones. We say that two I/O-IMCs syn-
chronize if either (1) they are both ready to accept the same input
action or (2) one is ready to output an action a! and the other
is ready to receive that same action (i.e., has input action a?).

2In the sequel we often omit these self-loops for the sake of clarity and
simplicity of the I/O-IMC representation.
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A
1 2 3

B
1

2

3

4 5

λ a!

λ

a?

a?

λ
b!

a? a?

a?

Fig. 4. Two examples of I/O-IMCs.

A‖B
1, 1

1, 2

2, 1

2, 2

3, 3

3, 4 3, 5

λ

λ

λ

λ

a;

a;

λ

b!

Fig. 5. I/O-IMCs A‖B, and (hide a in A‖B).

I/O-IMCs are also equipped with a parallel composition operator
“||”, to build larger I/O-IMCs out of smaller ones. The behavior
of P = Q||R, i.e., the parallel composition of I/O-IMCs Q and
R, is the joint behavior of its constituent I/O-IMCs and can be
described as follows:

1) If an action does not require synchronization (i.e. it belongs
to only one of the I/O-IMCs) then Q and R can evolve
independently, i.e., if Q (resp. R) can make any transition
(interactive or Markovian) and behaves afterwards as Q′

(resp. R′), the same behavior is possible in the parallel
context, i.e., Q||R can evolve to Q′||R (resp. Q||R′).

2) If an action of an interactive transition requires synchro-
nization, then both I/O-IMCs Q and R must be able to
perform that action at the same time, i.e., Q||R evolves
simultaneously into Q′||R′. Note that when an output and
an input action synchronize the result is an output action.

Figure 5 illustrates the parallel composition of I/O-IMCs A and
B where synchronization is on the shared action a. Formally, we
have the following.

Definition 2 (parallel composition) Let P and Q be two I/O-
IMCs.

1) P and Q are composable if AO
P ∩AO

Q = Aint
P ∩AQ =

AP ∩Aint
Q = ∅.

2) If P and Q are composable, their composition P‖Q is
the I/O-IMC (SP × SQ, (s0

P , s0
Q), ((AI

P ∪ AI
Q) \ (AO

P ∪

AO
Q), (AO

P ∪ AO
Q), (Aint

P ∪ Aint
Q )),−→P‖Q,−→M

P‖Q), where:

−→P‖Q = {(s, t)
a
−→P‖Q(s′, t) | s

a
−→Ps′ ∧ a ∈ AP \ AQ}

∪{(s, t)
a
−→P‖Q(s, t′) | t

a
−→Qt′ ∧ a ∈ AQ \ AP}

∪{(s, t)
a
−→P‖Q(s′, t′) | s

a
−→Ps′ ∧ t

a
−→Qt′∧

a ∈ AP ∩AQ}

−→M

P‖Q = {(s, t)
λ
−→M(s′, t) | s

λ
−→M

P s′}

∪{(s, t)
λ
−→M(s, t′) | t

λ
−→M

Qt′}

Like in process algebras, the hiding operator hide B in P makes
internal all actions in a set B of output actions, such that no further
synchronization is possible over actions in B (e.g. in Figure 5, we
hide action a).

2λ λ b!

Fig. 6. Aggregation of hide a in A‖B.

Definition 3 (Hiding) Let B ⊆ AO
P be a set of output actions.

We define hide B in P as the I/O-IMC given by (SP , s0
P ,

(AI
P , AO

P \B, Aint
P ∪ B),−→P ,−→M

P ).

C. Weak bisimilarity

State equivalences, such as bisimulation relations, are crucial
in reducing the size of the model to be analyzed. By grouping
together equivalent states, one obtains a model that is equivalent
but smaller. This operation is called aggregation, lumping or
minimization. For two states s, t to be bisimilar, one requires
that all a-transitions in state s can be mimicked in state t.
Weak bisimulations abstract from internal computation, thus the
matching transition in t may be a weak transition, consisting of
some internal steps, an a step (omitted if a is internal), and some
more internal steps. For Markovian transitions, we compare the
accumulated rates in s and t.

In this way, bisimilar states have the same observable behavior,
and in particular, bisimilar states exhibit the same performance
properties.

Our notion of weak bisimilarity for I/O-IMCs generalizes the
one for IMCs [16]. Apart from the distinction between input and
output transitions, an important difference between our approach
and [16] is that we ignore Markovian self-loops (as in [9]), which
drastically reduces the sizes of the I/O-IMC models.

Let s be a state and C ⊆ S be a subset of states in an I/O-IMC
P . We use the following notation.

• The accumulated rate from s into the set of states C is
denoted γM(s,C) =

P
{|λ | s

λ
−→Ms′ ∧ s′ ∈ C|}, where

{| . . . |} denotes a multiset of transition rates.
• State s stable is if it has no outgoing internal or output

transitions.
•

int
−→ is the internal transition relation, i.e. we have s

int
−→t if

s
a
−→t for some a ∈ Aint. The weak transition relation =⇒

arises from −→ by abstracting from external steps. Thus, we
have s=⇒t if there is a sequence s

int
−→ . . .

int
−→t. We have

s
a

=⇒s′ if there exist t, t′ such that (1) s=⇒t, t
a
−→t′ and

t′=⇒s′ or (2) a ∈ Aint ∧ s=⇒s′.
• The set Cint = {s′ | ∃s ∈ C · s′=⇒s} contains all states

with a weak step into set C.

Definition 4 (Weak bisimulation) Let P = 〈S, s0, A,−→,−→M〉
be an I/O-IMC. Let R be an equivalence relation on S. Then R

is a weak bisimulation iff for all (s, t) ∈ R, a ∈ A

1) s
a

=⇒s′ implies that there is a weak transition t
a

=⇒t′ with
(s′, t′) ∈ R.

2) s=⇒s′ and s′ stable imply that there is a t′ such that
t=⇒t′ and t′ stable and γM(s′, Cint) = γM(t′, Cint), for
all equivalence classes C ∈ (S/R) \ {[s′]R}

The states s and t in P are weakly bisimilar, notation s ≈P

t, if and only if there exists a weak bisimulation R with
(s, t) ∈ R. Weak bisimilarity for an I/O-IMC P is defined
as the union of all weak bisimulations on P: ≈P=

S
{R |

R is a weak bisimulation on P}. We often omit the name of the
I/O-IMC if it is clear from context.
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The following theorem states that our notion of weak bisimi-
larity enjoys the expected properties: ≈P is largest weak bisim-
ulation relation on P and weak bisimilarity is a congruence with
respect to parallel composition and hiding. Its proof can be found
in Appendix I.

Theorem 1 Let P and Q be two I/O-IMCs with identical action
signatures, let R be an I/O-IMC composable with P and Q and
let B ⊆ AO

P :

1) ≈P is a weak bisimulation on P and it is the largest weak
bisimulation on P ,

2) P ≈ Q implies P‖R ≈ Q‖R,
3) P ≈ Q implies R‖P ≈ R‖Q,
4) P ≈ Q implies hide B in P ≈ hide B in Q.

Figure 6 shows the result after applying weak bisimulation on
the I/O-IMC resulting from the composition of A and B and the
hiding (i.e. made internal) of action a.

D. IOIML
IML[16] (IMC modeling language) provides a process algebra

based syntax for specifying IMCs in an easy and concise way. We
extend IML to IOIML (I/O-IMC modeling language), that provides
a similar syntax for specifying I/O-IMCs. We use IML to describe
the semantics of DFT elements in a parametric way.

We assume there is a countable set of process variables V and
a countable action signature A = (AI , AO, AV ).

Definition 5 (IOIML) Let λ ∈ R>0, a ∈ A and X ∈ V . We
define the language IOIML as the set of expressions given by the
following grammar:

E ::= 0 | a.E | (λ).E | E + E | X | X:=E |⊥

The intuitive meaning of the language constructs is described
below:

• The terminal symbol 0 describes a terminated behaviour
i.e. the process 0 cannot perform any output or internal
actions and absorbs all inputs of the I/O-IMC.

• The expression a.E may interact on action a and afterwards
behave as expression E. We say that E is action prefixed
by a. As before, we post-fix actions with ”?”, ”!” or ”;”
according to their role as inputs, outputs or internal actions.

The remaining constructs are identical to their IML counterparts.
• The expression (λ).E, a delay prefix expression, describes

a behaviour that will behave as expression E after a delay
that is governed by an exponential distribution with a mean
duration of 1/λ time units.

• The expression E + F describes two alternatives. It may
either exhibit the behaviour of expression E or the behaviour
of expression F .

• The expression X:=E describes a recursively defined be-
haviour. Assuming that the variable X appears somewhere
inside expression E, the meaning is as follows. Whenever
the variable X is encountered during the evolution of the
expression, the expression will reinitialise its behaviour to
X:=E.

• The symbol ⊥ is intended to represent an ill-defined be-
haviour. We will not use this symbol, but it is included for
completeness.

The formal semantics of an IOIML expression, i.e. its underlying
I/O-IMC, can be obtained in a way similar to the semantics for
IML (see [16]). Since the I/O-IMC P obtained in this way need
not to be input-enabled, we complete the expression by adding
self-loops s

a?
−−→s whenever a? is not enabled from state s. An

IOIML expression therefore must be accompanied by the action
signature of the I/O-IMC it describes to be meaningful.

The IOIML description of the I/O-IMC B in Figure 4 is

P1 = (λ).P2 + a?.P3 P3 = (λ).P4

P2 = a?.P4 P4 = b!.0

E. IMCs vs I/O-IMCs.

IMCs only distinguish between observable and internal actions.
All observable actions are delayable and communication is a
hand-shake, i.e. synchronization on action a only occurs when
both IMCs involved are ready to perform the a action. While
IMCs could in principle be used to model DFTs, we obtain
more natural and more concise models by introducing an I/O
distinction: it is always the failing DFT element that takes the
initiative to notify its failure to its parents in the DFT.

IV. DFT SYNTAX

To formalize the syntax of a DFT, we first define the set
E , characterizing each DFT element by its type, number of
inputs and possibly some other parameters. We use the following
notation. Given a set X, we denote by P(X) the power set over
X and by X∗ the set of all sequences over X. For a sequence
x ∈ X∗, we denote by |x| the length of the sequence (also called
list), and by (x)i the ith element in x.

Definition 6 The set E of DFT elements consists of the following
tuples. Here, k, n ∈ N are natural numbers with 1 ≤ k ≤ n and
λ, μ ∈ R>0 are rates.

• (OR, n), (AND , n), (PAND , n) represent respectively OR,
AND and PAND gates with n inputs.

• (VOT , n, k) represent a voting gate with n inputs and
threshold k.

• (SPARE , n) represent a SPARE gate with one primary and
n − 1 spares. By convention, the first non-dummy input to
the SPARE gate is the primary component.

• (FDEP , n) represents an FDEP gate with 1 trigger input
event and n − 1 dependent input events. By convention, the
first non-dummy input to the FDEP gate is the trigger event.

• (BE , 0, λ, μ), represents a BE, which has no inputs (i.e. n =

0), an active failure rate λ and a dormant failure rate μ.
• (PHBE , 0, φA, QA, φP , QP , ψ), represents a phase-type BE,

which has no inputs (i.e. n = 0), an active failure distribution
with φA ∈ N phases and generator matrix QA ∈ RφA·φA

and a dormant failure distribution with φP ∈ N phases and
generator matrix QP ∈ RφP ·φP . The activation of the PHBE
is described by the function ψ : [1, . . . , φP ] → [1, . . . , φA].

Given a tuple e ∈ E , we write type(e) for the first item in e, and
arity(e) for the second.

We introduce several notions for graphs (potentially with
cycles) whose nodes are labeled with DFT elements. An edge
in such graphs from v to w means that the output of the DFT
element associated with v is an input to the DFT element of w.
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Since the order of inputs to a gate matters (e.g. for a PAND gate),
the inputs to v are given as a list in(v), rather than as a set.

Definition 7 An element-labeled graph is a triple D = (V, in, l),
where

• V is a set of vertices,
• in : V → V ∗ is an input function that assigns to each vertex

a list of inputs.
• l : V → E is a labeling function, that assigns to each vertex

a DFT element.
We write type(v) for type(l(v)) and arity(v) for arity(l(v)).

Given in, we define the set of edges Ein by {(v, w) ∈

V 2|∃i . v = (in(w))i}. Thus, Ein contains all pairs (v, w) such
that v appears as an input of w. We also define the pruned
input function in ′ that contains only the non-dummy connections
between vertices (recall that the outputs of FDEP gates are
dummy outputs): Thus, in ′(v) : V → V ∗ is the function in ′(v)

that arises from in(v) = v1v2 . . . vn by removing all elements
vi s.t. type(vi) = FDEP . Consequently, the set of edges Ein′

is the set {(v, w) ∈ V 2|type(v) �= FDEP ∧ ∃i . v = (in(w))i}
containing all pairs (v, w) such that v appears as a non-dummy
input of w. Finally, for the sake of spare activation, we define
another pruned input function in ′′ that ignores all inputs, except
the trigger input, of all FDEP gates: Thus, in ′′(v) : V → V ∗

is the function in ′′(v) that arises from in(v) = v1v2 . . . vn

by keeping only the first element (i.e. the trigger) v1 for all
v ∈ V s.t. type(v) = FDEP . Consequently, the set of edges
Ein′′ is the set {(v, w) ∈ V 2|∃i . (type(w) �= FDEP ∧ v =

(in(w))i) ∨ (type(w) = FDEP ∧ v = (in(w))1)}. We write E

for Ein , E′ for Ein′ , and E′′ for Ein′′ if in is clear from the
context.

Given a DFT node v, the subtree below v consists of all vertices
with a path in E′′ leading to v. Node v is activation-independent
if there are no edges leading from stb(v) to a node outside stb(v),
except for the outgoing edges of v.

Definition 8 Let D be a DFT and v ∈ V a node in D.
• Then subtree below v, denoted stb(v), is the set {w |

∃v0, v1 . . . vn ∈ V, n ≥ 0 . v0 = w, vn = v ∧ ∀0 ≤ i <

n . (vi, vi+1) ∈ E′′}.
• Vertex v is activation-independent if ∀w ∈ stb(v), w′ ∈ V \

stb(v) . (w, w′) ∈ E′′ =⇒ w = v.

Note that in the definition of an activation-independent vertex,
we ignore the inputs, except the trigger input, to FDEP gates as
by convention activation signals do not propagate through these
edges. In the sequel, we will generally refer to an activation-
independent vertex as simply an independent vertex.

Finally, we define a DFT as an element-labeled graph D with
several restrictions. These restrictions, which are checked syntac-
tically by our tool, ensure that the DFT contains no anomalies
and that it has a well-defined semantics.

Definition 9 A DFT is an element-labeled graph D with the
following restrictions.

• (V, E′) forms a directed acyclic graph,
• All inputs to a DFT element must be connected to some node

in D, i.e. for all v ∈ V , we have arity(v) = |in(v)|,
• All DFT gates must have at least one non-dummy input3:

3Otherwise, the gate should be removed.

for all v ∈ V with type(l(v)) �= BE and type(l(v)) �= PHBE

we have |in ′(v)| ≥ 1,
• There is a unique top element in D, i.e. a non-FDEP element

whose output is not connected. That is, there exists a unique
v ∈ V , type(v) �= FDEP such that there is no w ∈ V with
(v, w) ∈ E. This unique v is denoted by TD; or by T if D
is clear from the context.

• The first non-dummy input of a SPARE gate (i.e. its primary)
cannot be an input to another SPARE gate, i.e. primary
components cannot be shared: If v = (in ′(w))1 = (in ′(w′))1
and type(w) = type(w′) = SPARE , then w = w′.

• Non-dummy inputs (primary and spare components) to
a SPARE gate must be outputs coming from activation-
independent vertices (see Section V for details):
for all (v, w) ∈ E′ with type(w) = SPARE we have that v

is activation-independent,
• An output cannot be twice or more the input of the same

gate: For all w ∈ V and 1 ≤ i, j ≤ |in(w)| with (in(w))i =

(in(w))j , we have i = j.

V. DFT SEMANTICS

In this section, we first define the semantics of the DFT
elements by giving the I/O-IMC for each of the tuples in E .
We also need two auxiliary I/O-IMCs: the activation auxiliary,
that activates BEs and SPARE gates when they change from
dormant to active mode and the firing auxiliary that handles the
dependencies between events as modeled by the FDEP gate. Then,
we obtain the semantics of the whole DFT from the parallel
composition of the semantics of its elements and the auxiliaries.

The semantics of each non-FDEP element in E (denoted
�...�ELT) is a function which takes as input a number of actions
and returns an I/O-IMC. The FDEP gate is handled through the
use of firing auxiliaries. We present the graphical descriptions for
BEs and gates with two or three inputs and we use the language
IOIML to specify the semantics for the general case.

Basic event I/O-IMC model. As pointed out in Section II, a BE

a?

λ f !
a?

μ

λ f !
a?

λ

λ f !

Fig. 7. The I/O-IMCs �(BE , 0, λ, 0)�ELT(a, f), �(BE , 0, λ, μ)�ELT(a, f),
and �(BE , 0, λ, λ)�ELT(a, f), modeling the semantics of a cold, warm and
hot BE.

has a different failing behavior depending on its dormancy factor.
Figure 7 shows the (parametrized) I/O-IMCs associated to a cold,
warm, and hot BE4, i.e. it shows the functions �(BE , 0, λ, μ)�ELT :

A2 → IOIMC taking as arguments an activation signal a? and a
firing signal f !.

In IOIML the I/O-IMC �(BE , 0, λ, μ)�ELT(a, f) has action sig-
nature ({a}, {f}, ∅) and is described by the following expression
E0:

E0 =

j
a?.E1 + (μ).E2, if μ > 0

a?.E1, otherwise
E1 = (λ).E2

E2 = f !.0

4The hot BE I/O-IMC can be reduced to:
J λ

−→©
f !
−→©
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Phase-type basic event I/O-IMC model. A phase-type basic
event (PHBE) does not fail after an exponential delay, but rather
after a delay governed by a phase-type (PH) distribution [22].
Here, the phase-type distributions for failure in either passive
or active mode are described by absorbing CTMCs. A PHBE
is described by the tuple (PHBE , 0, φA, QA, φP , QP , ψ) where
φA, φP ∈ N denote the number of phases of the active and passive
PH distribution, respectively. Matrices QA : [1, φA]×[1, φA] → R

and QP : [1, φP ] × [1, φP ] → R are the generator matrices of
the PH distributions5. Finally the function ψ : [1, φP ] → [1, φA]

matches passives phases to active phases. If the basic event is
activated while its passive failure distribution is in phase i then the
I/O-IMC will move to phase ψ(i) of the active failure distribution.
In the case of a cold spare the number of passive phases is set
to one with the only entry in Qp being 0. This is interpreted
as being the PH representation with a single state that cannot
reach the absorbing state. This representation in fact does not
represent a true PH distribution, but the semantics is clear: the
spare can never fail when it is in passive mode. For other PHBEs
the generator matrices must have strictly negative numbers on the
diagonal and positive numbers elsewhere. Furthermore the sum
of each row must be negative.

In IOIML we find action signature ({a}, {f}, ∅) for the I/O-
IMC �(PHBE , 0, φA, QA, φP , QP , ψ)�ELT(a, f). The I/O-IMC is
described by the expression EP,1, below i ∈ [1, φP ] and k ∈
[1, φA]:

EP,i =

8>>><
>>>:

a?.EA,ψ(i), if QP (i, i) = 0

a?.EA,ψ(i)+P
1≤j≤φP ∧i�=j(QP (i, j)).EP,j+

(−
P

1≤j≤φP
QP (i, j)).EF , otherwise

EA,k =
X

1≤j≤φA∧k �=j

(QA(k, j)).EA,j + (−
X

1≤j≤φA

QA(k, j)).EF

EF =f !.0

VOTING gate I/O-IMC model. Figure 8 shows the seman-
tics of the voting gate (VOT , 3, 2) element, i.e. the function
�(VOT , 3, 2)�ELT : A4 → IOIMC, taking as arguments the output
and three input signals of the VOTING gate. The voting gate fires
(action f1) when at least 2 of its inputs fire (actions f2, f3, and
f4).

f2?

f3?

f4?

f3?

f4?

f2?

f4?

f2?

f3?

f1!

Fig. 8. The I/O-IMC �(VOT , 3, 2)�ELT(f1, f2, f3, f4).

To define the semantics of a (VOT , n, k) gate with n inputs
and threshold k, we use the process variables PV (I, U, f, k), that
depend on three parameters; a set I containing the firing signals
of all inputs to the VOT gate, a set U containing the firing signals

5As the initial distribution of our phase-type representation we always use
the vector [1, 0, . . . , 0], i.e. a single starting state. This is not a problem since
any PH representation can easily be transformed to a PH representation with
the same number of phases and a single starting state.

of inputs that are still operational, and an action f , f /∈ I ∪U ,
being the VOT gate’s own output firing signal. We set

PV (I,U, f, k) = f !.0 if |I \ U | ≥ k

PV (I,U, f, k) =
X
a∈I

a?.PV (I, U \ {a?}, f, k) if |I \ U | < k.

Thus, PV (I,U, f, k) emits the failure signal f ! after
having received k failure signals. The I/O-IMC of an n-
input voting gate is: �(VOT , n, k)�ELT(fo, f1, . . . , fn) =

PV ({f1, . . . , fn}, {f1, . . . , fn}, fo, k) with action signature
({f1, . . . , fn}, {fo}, ∅). Note that the VOT gate6 does not have
an activation signal as this element does not exhibit a dormant
or active behavior as such.

AND gate I/O-IMC model. Figure 9(a) shows the semantics
of the (AND, 2) gate, i.e. the function �(AND , 2)�ELT : A3 →

IOIMC, taking as arguments the output and two input signals of
the AND gate. This I/O-IMC models the fact that the AND gate
fires (action f1) after it receives firing signals from both its inputs
(actions f2 and f3).

(a)

f2?

f3?

f3?

f2?

f1! (b)

f2?

f3?

f1!

(c)

f2?

f3?

f3?

f1!

Fig. 9. (a) �(AND , 2)�ELT(f1, f2, f3), (b) �(OR, 2)�ELT(f1, f2, f3),
(c)�(PAND , 2)�ELT(f1, f2, f3).

The semantics of an (AND, n) gate with n inputs is defined
as a special case of the VOT gate, where the threshold is equal
to the number of inputs. The I/O-IMC associated to an n-ary
AND gate is then given by:�(AND , n)�ELT(fo, f1, . . . , fn) =

PV ({f1, . . . , fn}, {f1, . . . , fn}, fo, |{f1, . . . , fn}|) with action
signature ({f1, . . . , fn}, {fo}, ∅).

OR gate I/O-IMC model. Figure 9(b) shows the semantics of the
OR gate (OR, 2) element, i.e. the function �(OR, 2)�ELT : A3 →

IOIMC, taking as arguments the output and two input signals of
the OR gate. The OR gate fires (action f1) after it receives one
of its input firing signals (actions f2 or f3).

The semantics of an (OR, n) gate with n inputs is
defined as a special case of the VOT gate with threshold
equal to one. The I/O-IMC associated to an n-ary OR

gate is then given by: �(OR, n)�ELT(fo, f1, . . . , fn) =

PV ({f1, . . . , fn}, {f1, . . . , fn}, fo, 1) with action signature
({f1, . . . , fn}, {fo}, ∅).

PAND gate I/O-IMC model. Figure 9(c) shows the seman-
tics of the PAND gate (PAND , 2) element, i.e. the function
�(PAND , 2�ELT : A3 → IOIMC, taking as arguments the output
and two input signals of the PAND gate. The PAND gate fires
(action f1) after all its inputs (actions f2 or f3) fire from left to
right order. If the inputs fire in the wrong order, the PAND gate
moves to an operational absorbing state (denoted with an X). The
semantics of a (PAND , n) gate with n inputs is defined by means
of the process variables PP (U, f). However now, U is given as

6This is true for all gates except the SPARE gate.
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a sequence of firing signals of operational inputs, rather than a
set and f is the PAND gate’s own firing signal. The actions in
U must occur in the correct order for the PAND gate to fail. We
write U = a1a2 . . . an. We set

PP (U, f) = f !.0 if U = ε

PP (U, f) = ak?.PP (U \ {ak?}, f)+X
a∈U\{ak?}

a?.0 if U = akak+1 . . . an

Now PP (U, f) emits the failure signal f ! after having received
failure signals from all its inputs, which can only happen if
they occurred in the specified order, since deviations from
this order end in 0. We set �(PAND, n)�ELT(fo, f1, . . . , fn) =

PP (f1 . . . fn, fo) with action signature ({f1, . . . , fn}, {fo}, ∅).

FDEP gate I/O-IMC model. An FDEP gate does not have a
semantics in itself, but instead it is used in combination with the
semantics of its dependent events. To model a functional depen-
dency, we define the firing auxiliary function FA : A2 ×P(A) →

IOIMC. This (parametric) I/O-IMC ensures that a dependent event
fires either when the event fails by itself, or when its failure is
triggered by the FDEP gate trigger: Figure 10 (left) shows the FA

to be applied in combination with an event that is functionally
dependent on n triggers. Signal f2 corresponds to the failure of
the dependent event by itself; signals f3, f4, . . . , fn+2 correspond
to the failures of any of the triggers; and f1 corresponds to
the failure of the dependent event when also considering its
functional dependency upon the triggers. Hence, f1 is emitted
as soon as any signal from {f2, f3, . . . , fn+2} occurs. Thus, the
FA takes as arguments two firing signals and a set of firing signals
(corresponding to all triggers of the dependent event).

T

B

A

C

System

...

f2?

f3?

fn+2?

f1!

Fig. 10. FA(f1, f2, {f3, f4 . . . , fn+2}) (left) and an example of the FDEP
gate extension (right).

The I/O-IMC FA(f1, f2, T ) can in fact be interpreted as an
OR gate: FA(f1, f2, T ) = �(OR, |T | + 1)�ELT(f1, f2, t1, . . . , tn),
where T = {t1, . . . , tn}. The I/O-IMC FA(f1, f2, T ) has the
following action signature: ({f2, t1, . . . , tn}, {f1}, ∅).

Note that the FDEP gate can trigger the failure of any gate
(representing a subsystem) and not only BE as originally defined
in Galileo [25]. Indeed, this extension comes at no extra cost, and
the I/O-IMC used in this case is still the same as the one shown
in Figure 10 (left). Figure 10 (right) shows such a configuration
where T triggers the failure of the subsystem A. Note that
subsystem A does not need to be an independent module. Note
also that the trigger T only affects the failure of the gate A and
none of its elements below it such as the basic event C.

When l(v)7, an element of the DFT, is triggered by multiple
FDEP gates, then we define Tv = {ft | ∃w ∈ V . (v, w) ∈

E′ ∧ type(w) = FDEP ∧ t = (in ′(w))1} as the set of trigger
signals of FDEP gates on which l(v) is dependent.

SPARE gate I/O-IMC model. Given the discussion in Section II-
B, Figure 11 shows the I/O-IMC of a SPARE gate (the spare gate

7Does not apply to FDEP gates.

on the left side) sharing a spare with another SPARE gate. When
the SPARE gate is active, the state reached after the primary fails
is of particular interest. In this state, a non-deterministic situation
arises where the spare can be activated by either of the SPARE
gates (signals aS,A! and aS,B?). This matches exactly the non-
deterministic choice described in Subsection II-A.

The semantics of a SPARE gate having n−1 spares is a function
A3 × (A2 × P(A))n−1 → IOIMC that takes as inputs the firing
signal and the activation signal of the SPARE gate, the firing
signal of its primary and a sequence of spare-tuples containing,
for each spare, its firing signal, its activation signal (output by
the SPARE gate in question) and a list of spare activation signals
of the other SPARE gates sharing that spare.

A B

P
Q

S

fP fS

aS,A

aS,B

fA

fP ?

fS?

aS,B?

aA?

aA?

aS,B?

fS?

fP ?

aA?

fP ?

fS?

aS,B?

fS?

aS,B?

aS,A!

fS?

fP ?
fA!

Fig. 11. The semantics �(SPARE , 2)�ELT(fA, aA, fP , (fS , aS,A, {aS,B}))
of (left) SPARE gate.

We now look at the IOIML definition of a spare gate with n−1

(possibly shared) spares �(SPARE , n)�ELT(f1, a1, f2, S), where
f1 is the failure signal of the spare gate, a1 is the activation
signal of the spare gate, f2 is the failure signal of the primary
component, S = (f3, a3,1, P3), . . . , (fn+1, an+1,1, Pn+1) and
Pi = {ai,2, . . . , ai,m}. The set Pi is in fact the set of all activation
signals of the i-th spare by other spare gates. The signals ax,y

then correspond to the activation of spare x by spare gate y. We
separate the state space of the spare gate into four distinct sets:
DO The spare gate is dormant and its primary is operational.
DN The spare gate is dormant and its primary is not operational.
AO The spare gate is active and its primary is operational.
AN The spare gate is active and its primary is not operational.
We now define the functions DO ,DN ,AO ,AN :

DO(f, a, fp, S) = a?.AO(f, a, fp, S)+

fp?.DN(f, a, fp, S)+X
(k,l,M)∈S

X
x∈{k}∪M

x?.DO(f, a, fp, S − (k, l, M))

DN(f, a, fp, S) = f !.0 , if S = ∅

DN(f, a, fp, S) = a?.AN(f, a, fp, S)+X
(k,l,M)∈S

X
x∈{k}∪M

x?.DN(f, a, fp, S − (k, l, M))

, if S �= ∅
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AO(f, a, fp, S) = fp?.AN(f, a, fp, S)+X
(k,l,M)∈S

X
x∈{k}∪M

x?.AO(f, a, fp, S − (k, l, M))

AN(f, a, fp, S) = f !.0 , if S = ∅

AN(f, a, fp, S) = q!.AO(f, a, p, S − (p, q, R))+X
(k,l,M)∈S

X
x∈{k}∪M

x?.AN(f, a, fp, S − (k, l, M))

, if S = (p, q, R), . . .

Now the IOIML definition of
�(SPARE , n)�ELT(f1, a1, f2, S) = DO(f1, a1, f2, S). The
action signature of �(SPARE , n)�ELT(f1, a1, f2, S) is:
({a1, f2} ∪ {{k} ∪ M | (k, l, M) ∈ S}, {f1} ∪ {l | (k, l, M) ∈

S}, ∅).

The activation auxiliary. BEs and SPARE gates have a distinct
input activation signal. When more than one SPARE gate can
activate any of these two elements it becomes convenient to carry
out this activation through an intermediate I/O-IMC model called
activation auxiliary.

Activating a BE (or a SPARE gate) l(v) is done by composing
�l(v)�ELT in parallel with an activation auxiliary I/O-IMC model,
where the latter outputs the activation signal av of l(v). The
activation auxiliary I/O-IMC model is obtained through a function
AA : A × P(A) → IOIMC that takes as arguments an output
activation signal and a set of input activation signals (emitted by
some SPARE gates). The activation auxiliary behaves similarly to
an OR gate: It outputs the activation signal as soon as it receives
an activation signal emitted by one of the SPARE gates.

The general form of v’s activation auxiliary function AA is
AA(av,Atvv), where av is v’s activation signal and Atvv =

{aw,sp | type(sp) = SPARE ∧ w ∈ (in ′(sp) \ (in ′(sp))1) ∧ v ∈
stb(w) ∧ (�v0, v1 . . . vn ∈ V, n ≥ 0 . v0 = v, vn = w ∧ ∀0 ≤

i < n . (vi, vi+1) ∈ E′′ ∧ type(vi+1) = SPARE ∧ vi ∈

(in ′(vi+1)\(in ′(vi+1))1))} is the set of activation signals emitted
by all SPARE gates sharing v. The last clause simply ensures
that there is no directed path from v to w containing an edge
that is a spare input (i.e. non-primary) to a SPARE gate. It is
important to note that activation does not propagate through an
FDEP dependent event input.

Thus we can write AA(av,Atvv) =

�(OR, n)�ELT(av, (Atvv)1, . . . , (Atvv)n), given that |Atvv| = n

(n > 0). The action signature of AA(av,Atvv) is (Atvv , av, ∅).
If n = 0 (i.e. no explicit activation by a SPARE gate and
therefore activated when system starts at time t = 0), then
AA(av, ∅) = av!.0.

Complete semantics of a DFT. To obtain the semantics of a
DFT from the semantics of its elements, we need to appropriately
instantiate the parameters of �l(v)�ELT (we sometimes use �v�ELT

for short) of each node v. We use the following notation: (1) The
firing signal fv of element l(v) ∈ E denotes the failure of v,
(2) the activation signal av denotes its8 activation, and (3) av,u

denotes the activation signal output by a SPARE gate u to activate
spare v. We also introduce the following notation: VBE is the set
of all nodes v ∈ V s.t. type(v) = BE or type(v) = PHBE ,
VAOVP is the set of all nodes v ∈ V s.t. type(v) = AND ∨OR∨

VOT ∨ PAND , and VSPARE is the set of all nodes v ∈ V s.t.

8Only for BEs and SPARE gates.

type(v) = SPARE . Now, the semantics of a DFT is obtained by
parallel composing the semantics of all (non-FDEP) nodes.

Definition 10 The semantics of a DFT D = (V, in, l) is the
I/O-IMC

�D� =‖v∈VBE
�v�ELT(av, f∗

v )‖FA(fv, f∗
v , Tv)‖AA(av,Atvv)

‖v∈VAOVP
�v�ELT(f∗

v , fw1 , fw2 , . . . fwn )‖FA(fv , f∗
v , Tv)

‖v∈VSPARE
�v�ELT(f∗

v , av, fw1 , S2, . . . , Sn)‖FA(fv, f∗
v , Tv)‖

AA(av,Atvv)

where, in ′(v) = w1w2 . . . wn and Si = (fwi , awi,v, Pwi) with
i > 1, is a tuple which gives, for spare l(wi) the failure signal
(fwi ), the activation signal by SPARE gate l(v) (awi,v) and the
set of activation signals emitted by all SPARE gates (except v)
sharing spare l(wi): Pwi = {awi,g | (wi, g) ∈ E′ ∧ g �= v ∧

type(g) = SPARE}.
To compute the reliability of D, we are only interested in the

failure of the top node T . Hence, we hide all signals except fT ,
i.e. we compute MD = hide AD \ fT in �D�; recall that AD

denotes the set of all actions in D. The compositional aggregation
technique described in Section VII is an efficient way to derive
MD .

Example 2 Figure 12 shows the I/O-IMC semantics of a DFT
consisting of a SPARE gate A having a primary B and a spare
C. Since the DFT contains no FDEP gates, we ignore all firing
auxiliaries. The I/O-IMC of the DFT is obtained by parallel
composing �A�, �B�, and �C�.

�A� = �(SPARE , 2)�ELT(fA, aA, fB , (fC , aC,A, ∅))‖AA(aA, ∅)
�B� = �(BE , 0, λ, 0)�ELT(aB , fB)‖AA(aB, ∅)

�C� = �(BE , 0, λ, μ)�ELT(aC , fC)‖AA(aC , {aC,A})

A

B C

�B�ELT

aB?
λ fB !

�C�ELT

aC?
μ

λ fC !

�A�ELTfB?

fC?

aA?

aA?

fC?

fB?

aA?

fB?

fC?

fC?

aC,A!

fC?

fB?

fA!

AA(aA, ∅)

aA!

AA(aB , ∅)

aB !

AA(aC , {aC,A})

aC,A? aC !

Fig. 12. A DFT example and the six I/O-IMCs that model its behavior.

VI. DFT ELEMENTS EXTENSION

In this section, we show, through three examples, how one can
readily extend the DFT elements within the I/O-IMC framework.
These extensions concern the modeling of inhibition, mutually
exclusive events, and repair.

Adding/modifying elements is done at the level of the elemen-
tary I/O-IMC models. Moreover, adding/modifying one element
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does not affect the remainder of the elements (i.e. their corre-
sponding I/O-IMC models). This is indeed a desirable property
of the I/O-IMC framework, where the behavioral details and
interactions of any element is kept as local as possible. These
extensions only affect Step 1 of the DFT conversion/analysis
algorithm laid out in Section VII, leaving the other five steps
unchanged.

Inhibition and mutual exclusion. We say that event A inhibits
the failure of B if the failure of B is prevented when A fails
before B. Following the idea of the firing auxiliary (cf. Section V),
this could be modeled by simply adding an inhibition auxiliary
(IA). Figure 13 shows the configuration of such inhibition and the
corresponding I/O-IMC model of the IA of B. f∗

B corresponds
to the failure signal of B taken in isolation, i.e. without A’s
inhibition. Note that, as with the FA, any element which has B as
input has to now interface with B’s IA rather than directly with
B.

If A inhibits the failure of B and B also inhibits the failure
of A, the failure of A and the failure of B become two mutually
exclusive events. Clearly, this can be modeled in our framework
by adding IAs for both A and B. Mutual exclusion is very
useful for modeling different failures of a single component with
different effects (e.g. a valve being stuck open or closed).

A B

IAB

fA f∗

B

fB

f∗

B?

fA?

fB !

Fig. 13. The I/O-IMC model of the IA.

Repair. Adding a notion of repair is somewhat more complicated
as every DFT element can now fail or be repaired. Thus, no
longer only a ‘failed event’ should be signaled but also a ‘repaired
event’. However, as mentioned above, we only need to modify
‘locally’ the elementary I/O-IMC corresponding to each DFT
element behavior. Here we will only discuss the new I/O-IMC
for the BE and the AND gate (other elements are treated in the
same fashion). The repairable cold BE’s I/O-IMC is shown in
Figure 14. Here, μ denotes the BE repair rate and r! is a signal
output by the BE notifying the rest of the elements that it has
been repaired. The repairable AND gate I/O-IMC model is shown

a?

f !

r!

λ

μ

Fig. 14. The repairable BE I/O-IMC model.

in Figure 15. The AND gate has its own repair output signal
(i.e. r!) and needs to consider both failure (fA? and fB?) and
repair (rA? and rB?) signals coming from its inputs A and B.
Compared to the unrepairable AND gate (Figure 9), Figure 15
has 3 extra states. If we consider a very simple repairable system
composed of an AND gate with two BE A and B (Figure 16
(left)), then the resulting I/O-IMC after automatic composition,
hiding of all signals and aggregation is, as expected, the CTMC
shown in Figure 16 (right). At this point, one can perform analysis
on the CTMC such as computing the system unavailability.

fA?

rA?

fB?

rB?

fB?

rB?

fA?

rA?

fA?

rA?

fB?

rB?

fB?

rB?

fA?

rA?

f !

r!

r!

r!

Fig. 15. The repairable AND gate I/O-IMC model.

A B

λA λB

μAμB

λA

μBμA

λB

Fig. 16. A simple repairable system. The gray state denotes the state in
which the DFT has failed.

VII. COMPOSITIONAL AGGREGATION APPROACH

The technique of compositional aggregation consists of com-
posing a large model out of smaller ones and aggregating sub-
models after each compositional step. This approach is to be
contrasted with a more classical approach of model generation,
such as the one used by Galileo DIFTree [21], where the model of
a system is generated at once and as a whole and then eventually
aggregated at the end. Compositional aggregation is very effective
in combating the state-space explosion problem and has been
already successfully used on a number of case studies, most
notably in [18].

Once the DFT elements have been converted into a set of I/O-
IMCs, the compositional aggregation methodology can be applied
to combine the set into a single I/O-IMC. The final I/O-IMC
reduces in many cases to a CTMC. This CTMC can then be solved
using standard methods [24] to compute performance measures
such as system unreliability. The conversion/analysis algorithm9

is as follows:

1) Map each DFT element to its corresponding (aggregated)
I/O-IMC and match all inputs and outputs. The result of
this step is a set of I/O-IMCs.

2) Pick two I/O-IMC and parallel compose them.
3) Hide output signals that won’t be subsequently used (i.e.

synchronized on).
4) Aggregate (using weak bisimulation) the I/O-IMC obtained

from the composition of the two I/O-IMC picked in Step 2
and the hiding of the output signals in Step 3.

5) Go to Step 2 if more than one I/O-IMC is left, otherwise
go to Step 6.

6) Analyse the aggregated CTMC.

The choice of I/O-IMCs made in step 2 is important as it influ-
ences the size of the generated state-space during the intermediate
steps. If no non-determinism is present in the DFT model, then
the algorithm yields a CTMC. However, in some cases where
non-determinism arises, the result is a continuous-time Markov
decision process, which can be analyzed by computing bounds
on the performance measure of interest [2].

9Note that this algorithm is amenable to parallelization.
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VIII. TOOL SUPPORT

In this section we describe the CORAL [6] tool chain which
supports our DFT analysis methodology. The tools presented in
this section use the CADP tool-set [15] for many operations on
I/O-IMCs, such as composition, aggregation and CTMC analysis.
Before discussing the various tools in detail we will first give an
overview of the tool chain.

Tool chain overview. Figure 17 shows an overview of the tool
chain for our DFT analysis methodology. The user must supply

DFT (ext.
Galileo
format)

Composition
script

Mission
times Unreliability

DFT elements
I/O-IMCs
repository

I/O-IMC
models

I/O-IMC
model

CTMC
model +

goal state

dft2bcg composer

dft eval

SVL bcg labels SVL acyc min

bcg transient

CORAL

Key: Uses CORAL
component

CADP
component Data

Fig. 17. An overview of the CORAL tool chain.

the following input: the DFT in a file using the Galileo format, a
composition-script denoting the order of composition used in the
compositional aggregation phase and the mission times for the
unreliability analysis. .

A DFT can be analyzed by performing the following three
steps, which are elaborated below.

1) Call the dft2bcg tool with as input the DFT file in extended
Galileo format10,

2) Call the composer tool with as input a composition script,
and

3) Call the dft eval tool with as input a number of mission-
times. The dft eval tool then calculates the unreliability
of the system modeled by the original DFT for the given
mission-times. It generates a CTMC model describing the
exact failure distribution of the system if there is no non-
determinism.

Generating I/O-IMC models: dft2bcg. The dft2bcg tool gener-
ates a number of I/O-IMC models that describe the behaviour of a
given DFT. To be more exact, each of the I/O-IMCs describes one
element in the DFT (see Section V). These I/O-IMC models are

10The standard Galileo format is extended to allow complex spares and
dependent events

stored in binary coded graph (BCG) format supported by CADP.
The dft2bcg tool uses a number of script verification language
(SVL) scripts to generate BCG files. These scripts are interpreted
by the SVL tool, which is part of the CADP tool set, to perform
generation, parallel composition, hiding and minimization of BCG
files. dft2bcg also uses the bcg labels tool of the CADP tool-set
which allows the renaming of the actions of an I/O-IMC.

The dft2bcg tool performs the following steps to generate the
I/O-IMC models:

1) Parses the DFT input file,
2) Checks the validity of the DFT (i.e. syntactic check),
3) Calls the SVL tool to generate I/O-IMC models with

generic action names (f1, f2, . . .) using the DFT SVL
scripts, and

4) Calls the bcg labels tool to create the I/O-IMC models by
renaming the generic actions to the specific actions derived
from the names of the DFT elements.

All generic models generated in step 3 are stored in a DFT
repository for reuse in later calls of the dft2bcg tool. For instance
if we need three different 3-input AND-gates we can simply use
the same generic 3-input AND gate, renaming it differently in
step 4 of the dft2bcg tool. The repository also holds a number of
basic I/O-IMC models which are used to generate the models of
all DFT elements.

Compositional aggregation: composer. We have seen above
that the dft2bcg tool generates a number of I/O-IMC models.
The composer tool uses as input these I/O-IMC models and
a composition script supplied by the user. The composition
script describes the order in which the I/O-IMC models should
be composed. The composer tool executes the commands in
the script, composing the I/O-IMC models into a single I/O-
IMC model which represents the stochastic behaviour of the entire
DFT. Our choice of composition script is based on heuristics,
such as maximizing the number of transitions that will be hidden
and minimizing the number of actions that are not synchronized.
After each composition the resulting I/O-IMC model is minimized
using the acyc min tool [12]. The acyc min tool minimizes acyclic
(except for self-loops with input-actions) I/O-IMCs with respect
to weak bisimulation for I/O-IMCs (see Section III).

Calculating measures: dft eval. In many cases the stochastic
behaviour of the system described by a DFT can be modelled
as a CTMC. To be more specific: if there is no non-determinism
present in the DFT model of the system the I/O-IMC generated in
our approach reduces to a CTMC. See Section II-A for a detailed
discussion on the occurrence of non-determinism in DFT analysis.
The dft eval tool first reduces the I/O-IMC representation of the
DFT into a CTMC and then invokes the CADP tool bcg transient
to find the unreliability of the DFT for a set of mission-times
supplied by the user.

IX. CASE STUDIES

We have assessed the efficiency of our compositional aggre-
gation approach by performing nine case studies from different
application areas. We analyzed a cascaded PAND system (CPS),
two versions of a cardiac assist system (CAS), five versions of
a fault tolerant parallel processors (FTPP), and finally a pump
system with inherent non-determinism. We systematically com-
pare our results (using the CORAL tool) to the Galileo DIFTree
tool [14] results, see Table I for an overview. Here, the number
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of states/transitions corresponds to the largest I/O-IMC or CTMC
encountered during analysis. All experiments were run on an
AMD Athlon XP 2600+ running at 1.9 GHz with 1 GB memory.

The cascaded PAND system. This system, taken from [7] and
shown on Figure 18 (left), illustrates the enhanced modularity of
our methodology compared to Galileo DIFTree. In fact, given that
the top node of the tree is a PAND dynamic gate, Galileo DIFTree
can only consider the tree as a whole when generating/solving
its corresponding CTMC. In our compositional aggregation ap-
proach, we realize that there are independent modules, in particu-
lar A, C, and D are all identical (all BEs have a failure rate equals
to 1) and independent modules. In fact it suffices to generate and
aggregate the I/O-IMC of one of these three modules and reuse
the result, given some renaming of signals, for the remaining two
modules. In this way, A, C, and D have each an aggregated I/O-
IMC of 7 states only. The CTMC generated by Galileo has 4113
states. This result is to be compared with the largest I/O-IMC of
113 states obtained during the compositional aggregation.

A B

C D

CPUs

CS SS

P B

Motors

MS MA MB

Pumps

PA PS PB

Fig. 18. DFTs for CPS (left) and CAS (right) case studies

A1 A2 A3

2/3

AS

B1 B2 B3

2/3

BS

C1 C2 C3

2/3

CS

D1 D2 D3

2/3

DS

N1

A1 B1 C1 D1

N2

A2 B2 C2 D2

N3

A3 B3 C3 D3

N4

A4 B4 C4 D4

Fig. 19. DFT for the FTPP-4 case study

Case Approach Max # Max # of Unreliability Time
study of states transitions (time = 1) (sec)
CPS Galileo 4113 24608 0.00135 490

CORAL 133 465 0.00135 67
CAS Galileo 8 10 0.65790 1

CORAL 36 119 0.65790 94
CAS-PH CORAL 40052 265442 0.112826 231
FTPP-4 Galileo 32757 426826 0.01922 13111

CORAL 1325 13642 0.01922 65
FTPP-5 CORAL 43105 643339 0.00306 309
FTPP-6 CORAL 1180565 22147378 0.000453 1989
FTPP-C CORAL 653303 12220653 0.02136 1806
FTPP-A Galileo 32757 426826 0.0167 13111

CORAL 19367 154566 0.0167 240
NDPS CORAL 61 169 [0.00586, 266

0.00598]

TABLE I
RESULTS OF THE CASE STUDIES.

The cardiac assist system. This system, taken from [5] and
shown in Figure 18 (right), consists of a three separate modules
(i.e. CPU, motors, and pump units). Table II shows the failure
rates of the various components. In addition, B is a warm spare

with a dormancy factor α = 0.5, and MB and PS are cold spares
(i.e. α = 0). During analysis, Galileo DIFTree modularizes the
DFT into three independent modules (namely CPU, motors, and
pump units) and generates a separate CTMC for each one of
them. The biggest CTMC has 8 states. The CTMCs’ results are
then combined (through the top OR gate) using BDDs. Using the
compositional-aggregation approach, and without modularization,
the biggest I/O-IMC encountered has 36 state. The results of CAS
are summarized in Table I. Here, clearly Galileo outperforms
CORAL because it uses modularization which has not been
implemented yet in CORAL. If we switch off modularization in
Galileo (i.e. generate a single CTMC for the whole system) then
it produces a CTMC with 85 states.

To illustrate the possibility of using phase-type distributions
we have modified the CAS case study by replacing BEs with
PHBEs (case CAS-PH). In this case all basic events occur after
a delay governed by an Erlang distribution with four phases and
the same expectation as the exponential delay from the CAS case
study (for instance, PHBE CS is governed by a 4-phase Erlang
with rate parameter 0.8 instead of an exponential distribution with
rate 0.2). For the passive delay of warm spare B we also use an
Erlang distribution with four phases and the same expectation as
the passive exponential delay.

Component CS SS P B MA MB MS PA PB PS
Rate 0.2 0.2 0.5 0.5 1 1 0.01 1 1 1

TABLE II
FAILURE RATES FOR CAS.

The fault tolerant parallel processors. This system, taken from
[5], consists of 16 processors divided into 4 logical groups. In
each group, a processor is used as a shared cold spare. A network
element (NE) physically connects 1 processor in each group
(thus there are 4 NEs) to the rest of the system. The failure
of an NE makes the 4 processors connected to it unavailable
(i.e. essentially failed). The requirement is to have at least two
processors operational in each group. The DFT is shown in
Figure 19, where the processors are denoted with Ai,Bi,Ci,Di

and the network elements with N. All network elements have a
failure rate equals to 0.017, and all processors have a failure rate
equals 0.11. The four spare processors are cold spares (i.e. α = 0).

To illustrate even further the state-space explosion problem, we
took the FTPP system and made it larger by considering 5 (FTPP-
5) respectively 6 (FTPP-6) processors in each group. For these
case studies the Galileo tool runs out of memory. The (FTPP-C)
case study is an extension to the FTPP system where each of
the processors (e.g. A1) is replaced by a complex element which
consists of an OR-gate with two inputs: a BE ‘CPU’ and a spare
gate ‘memory’ with primary BE ‘M1’ and cold spare BE ‘M2’.
All these BEs have failure rate 0.11. No results are available
from Galileo DIFTree as this kind of extended DFTs can not be
handled by Galileo. It is interesting to investigate how dependent
the success of the compositional aggregation technique is on the
symmetries in the DFT models. In the case study FTPP-A we
have therefore considered a variant of the FTPP case study where
almost all basic events have different rates. The rates used are
given in Table III. We see that indeed the models encountered are
larger by a factor of 15, but still the computational time required
is manageable at under 5 minutes.

Non-deterministic pump system (NDPS). This case study il-
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BE Rate BE Rate BE Rate BE Rate BE Rate
N1 3.4 A1 5.5 B1 11 C1 6.6 D1 7.7
N2 2.9 A2 7.7 B2 15.4 C2 99 D2 11
N3 2.4 A3 14 B3 28 C3 16 D3 22
N4 1.7 A4 18 B4 36 C4 22 D4 30

TABLE III
FAILURE RATES FOR FTPP-A. RATES ARE SCALED UP BY A FACTOR 105 .

lustrates how we deal with non-determinism in DFT models.
The I/O-IMC model of the DFT is generated as usual and then
converted into a CTMDP following [17]. This CTMDP is then
analyzed using the MRMC [19] tool to obtain maximum and
minimum unreliability. The DFT is a simple pumping system
with five pumps: main pumps A and B, auxiliary pumps C, D

and spare auxiliary pump E (see Figure 20). BE A has rate 0.05

and BE B has rate 0.1; BEs C and D both have rate 0.2 and
BE E has rate 0.3 with dormancy α = 0. Finally BE X has rate
0.002. This DFT is non-deterministic since C and D may fail
at the same time due to their dependence on BE X. It is then
undetermined whether spare E replaces C or D. We can see that
the maximum and minimum unreliabilities are not far apart, this
is caused by the low probability of the ‘problematic’ BE X.

X

A B

C D E

Fig. 20. DFT for NDPS case study
X. CONCLUSION AND FUTURE WORK

In this paper we have formalized the syntax and semantics
of DFTs and introduced a DFT analysis framework based on
I/O-IMCs, increasing the DFT modularity both at the analysis
level and the model-building level. We have also demonstrated
the ease with which one can define new DFT elements and
provided examples of such extensions. Finally, we have built
a prototype tool for analysing DFTs named CORAL and run
some experiments to compare our methodology and results to
the Galileo DFT tool.

Areas of future research include: (1) From a process algebra
point of view, we would like to achieve even more drastic state-
space reduction using more suitable aggregation techniques. (2)
Adapt the I/O-IMC approach to other formalisms, such as the
Architecture Analysis and Design Language [1]. A first step
towards this goal has been made in [4].
Acknowledgements: We thank Holger Hermanns and the anony-
mous reviewers of this paper for their helpful comments.

REFERENCES

[1] As-2 Embedded Computing Systems Committee. Architecture analysis
& design language (AADL), January 2009. Number: AS5506, Revision:
A.

[2] C. Baier, H. Hermanns, J. P. Katoen, and B. R. Haverkort. Effi-
cient computation of time-bounded reachability probabilities in uniform
continuous-time markov decision processes. Theor. Comput. Sci.,
345(1):2–26, 2005.
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APPENDIX I
PROOFS

A. Theorem 1.1

For weak bisimilarity on an I/O-IMC P , ≈P , we find:

1) ≈P is a weak bisimulation on P and it is the largest weak
bisimulation on P .

Proof: We now prove that for any I/O-IMC P ≈P is the
largest weak bisimulation on P . In the following we refer to ≈P

simply as ≈. To do this we must prove that ≈ is an equivalence
relation by proving that it is reflexive, symmetric and transitive.
The proofs for reflexivity and symmetry are quite simple, but the
proof for transitivity is somewhat more complex.

For any I/O-IMC P it is trivial that the identity relation IdP is a
weak bisimulation. For any state s in SP we find that (s, s) ∈ IdP

and thus s ≈ s. In other words ≈ is reflexive. If s ≈ t then
there is a weak bisimulation R with (s, t) ∈ R. Because R is an
equivalence relation we also find that (t, s) ∈ R and so t ≈ s.
We now find that s ≈ t implies t ≈ s. This means that ≈ is
symmetric.

Let R1 and R2 be two weak bisimulations on P and let R1R2
∗

be defined as their recursive composition:

R1R2
∗ = {(s, t) | ∃n ∈ N, x1, ..., xn ∈ S·

(s, x1) ∈ R1 ∪R2 ∧ ... ∧ (xn, t) ∈ R1 ∪R2}

Because R1 and R2 are equivalence relations it is trivial that
R1R2

∗ is reflexive and symmetric. From the definition of R1R2
∗

we can also immediately deduce that it is a transitive relation.
We will now prove that R1R2

∗ is a weak bisimulation relation.
Recall that if (s, t) is in R1R2

∗ then there exist a series of states
x1, ..., xn such that they are stepwise related through either R1

or R2: sRix1Rix2...xnRit where Ri is R1 or R2. We find that
for any action a ∈ Aall

P with s
a

=⇒s′ there is an x′
1 with x1

a
=⇒x′

1

and (s′, x′
1) ∈ R1 ∪R2. This in turn means that there is an x′

2

with x2
a

=⇒x′
2 and (s′, x′

2) ∈ R1 ∪R2. So we find a series of
states x′

1, ..., x′
n, t′ such that (s′, x′

1) ∈ R1 ∪R2 ∧ ... ∧ (x′
n, t′) ∈

R1 ∪R2. Thus t
a

=⇒t′ with (s′, t′) ∈ R1R2
∗, which means that

the first clause of Definition 4 holds. To prove that the second
clause holds we must first consider the equivalence classes of
R1R2

∗.
From the definition we know that R1 ⊆ R1R2

∗ and R2 ⊆

R1R2
∗. This means that any equivalence class of R1R2

∗ is
exactly the union of one or more equivalence classes of R1 and
it is also exactly the union of one or more equivalence classes
of R2. So for any equivalence class C of R1R2

∗ we find that
there is a set C′

1, C′
2, ...C′

n of equivalence classes of R1 and a set
C′′

1 , C′′
2 , ...C′′

m of equivalence classes of R2 with n, m > 0 such
that:

C = C′
1 ∪C′

2 ∪ ...∪C′
n = C′′

1 ∪C′′
2 ∪ ...∪C′′

m

It is trivial that this also holds for the internal backwards closure
of an equivalence class of R1R2

∗:

Cint = C′int
1 ∪C′int

2 ∪ ...∪C′int
n = C′′int

1 ∪C′′int
2 ∪ ...∪C′′int

m

For a state s we find that it’s equivalence class for R1R2
∗:

[s]R1R2
∗ contains all states t such that (s, t) ∈ R1R2

∗. Because
(s, t) ∈ R1 implies (s, t) ∈ R1R2

∗ we find that [s]R1
⊆ [s]R1R2

∗

and similarly [s]R2
⊆ [s]R1R2

∗ . Because equivalence classes are
disjoint we now find that if an equivalence class of R1R2

∗:
C �= [s]R1R2

∗ then C ∩ [s]R1
= ∅ and also C ∩ [s]R2

= ∅.
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Let (s, t) ∈ R1R2
∗ and let there be a s′ such that s=⇒s′ and s′

is stable. If (s, t) ∈ R1 ∪R2 then the second clause of Definition 4
holds. Otherwise there exists an x1 such that (s, x1) ∈ R1 ∪R2,
so either (s, x1) ∈ R1 or (s, x1) ∈ R2. For the first case we
find that there is an x′

1 such that x1=⇒x′
1 and x′

1 stable and
γM(s′, C′int) = γM(x′

1, C′int), for all equivalence classes C′

of R1 except [s′]R1
. For the second case we find that there is

an x′
1 such that: x1=⇒x′

1 and x′
1 stable and γM(s′, C′int) =

γM(x′
1, C

′′int), for all equivalence classes C′′ of R2 except [s′]R2
.

So we find that there is always an x′
1 such that x1=⇒x′

1 and
x′
1 stable and γM(s′, Cint) = γM(x′

1, Cint), for all equivalence
classes C of R1R2

∗ except [s′]R1R2
∗ . Note that the equivalence

classes [s′]R1
and [s′]R2

must be contained in [s′]R1R2
∗ and not

in any other equivalence class of R1R2
∗. The same holds for the

pairs (x1, x2), (x2, x3), ..., (xn, t), so in the end we find that the
second clause of Definition 4 holds for R1R2

∗ so R1R2
∗ is a

weak bisimulation.
If we now have that s ≈P x and x ≈P t then there exist

two weak bisimulations R1 and R2 such that (s, x) ∈ R1 and
(x, t) ∈ R2. Then (s, t) ∈ R1R2

∗ and because R1R2
∗ is a weak

bisimulation on P we find that s ≈P t which means that ≈P is
an equivalence relation.

Because ≈P is the union of all weak bisimulations on P it is
trivial that ≈P itself is a weak bisimulation now that we have
proved that it is an equivalence relation. That ≈ is the largest
weak bisimulation on P follows immediately from its definition.

B. Theorem 1.2 and 1.3

Weak bisimilarity is substitutive with parallel composition.

P1 ≈ P2 implies P1||P3 ≈ P2||P3

P1 ≈ P2 implies P3||P1 ≈ P3||P2

Proof: We now prove that weak bisimilarity is substitutive
with parallel composition. Let P1 and P2 be I/O-IMCs with
identical action signatures, let P be their union and let x ≈P y.
This means that there is a weak bisimulation R on P such that
(x, y) ∈ R. We now define the relation R′ as follows:

R′ = {(x‖z, y‖z) | (x, y) ∈ R ∧ z ∈ SP3
}

Because R is an equivalence relation on P it is trivial that R′ is
also an equivalence relation on P ||P3.

Let (s‖u, t‖u) ∈ R′, then (s, t) is in R. Now let s‖u
a

=⇒s′‖u′

with a ∈ Aall. This means that there exist s′′‖u′′ and s′′′‖u′′′ such
that s=⇒s′′, u=⇒u′′, s′′‖u′′ a

−→s′′′‖u′′′, s′′′=⇒s′ and u′′′=⇒u′.
From the definition of parallel composition we can deduce
that s′′‖u′′ a

−→s′′′‖u′′′ implies that one of the following holds:
s′′

a
−→s′′′ ∧ u′′′ = u′′ ∧ a ∈ A(P )∧ a /∈ A(P3) or u′′ a

−→u′′′ ∧ s′′′ =

s′′ ∧ a ∈ A(P3) ∧ a /∈ A(P ) or s′′
a
−→s′′′ ∧ u′′−→u′′′ ∧ a ∈

A(P ) ∧ a ∈ A(P3). In other words either s
a

=⇒s′ ∧ u=⇒u′ ∧ a ∈

A(P ) ∧ a /∈ A(P3) or u
a

=⇒u′ ∧ s=⇒s′ ∧ a ∈ A(P3) ∧ a /∈ A(P )

or s
a

=⇒s′ ∧ u=⇒u′ ∧ a ∈ A(P ) ∧ a ∈ A(P3). Because
(s, t) ∈ R we find that there is a t′ with (s′, t′) ∈ R such
that: t

a
=⇒t′ ∧ u=⇒u′ ∧ a ∈ A(P ) ∧ a /∈ A(P3) or u

a
=⇒u′ ∧

t=⇒t′ ∧ a ∈ A(P3) ∧ a /∈ A(P ) or t
a

=⇒t′ ∧ u=⇒u′ ∧ a ∈

A(P ) ∧ a ∈ A(P3). From the definition of parallel composition
we now know that: t‖u

a
=⇒t′‖u′ and from the definition of R′ we

know that (s′‖u′, t′‖u′) is in R′. This means that the first clause
of Definition 4 holds for R′.

From the definition of R′ we can deduce that it has the
following equivalence classes:

S/R′ = {{x‖y | x ∈ C} | C ∈ SP /R, y ∈ SP3
}

Because (s, s′) ∈ R if and only if ∀u ∈ SP3
· (s‖u, s′‖u) ∈ R′

we find that for an equivalence class [s‖u]R′ : [s‖u]R′ = {s′‖u |

s′ ∈ [s]R}.
Now let (s‖u, t‖u) ∈ R′ with s‖u=⇒s′‖u′ and s′‖u′ stable and

let C be an equivalence class of R′ with C �= [s′‖u′]R′ . From the
definition of parallel composition we know that this means that
s=⇒s′ and u=⇒u′ and both s′ and u′ stable. We know that each
equivalence class of R′ is derived from an equivalence class of
R and a state in SP3

. Let D be that equivalence class of R and
let y be that state. So C = {s‖y | s ∈ D} and u′ = y implies
D �= [s′]R. Note that if u′ �= y, s′‖u′ cannot be in C. Now we
find the following for the internal backward closure of C:

Cint = {x′‖y′ | ∃x‖y ∈ C · x′‖y′=⇒x‖y}

= {x′‖y′ | ∃x ∈ D · x′=⇒x ∧ y′=⇒y}

If we now look at the cumulative rate of s′‖u′ to Cint we find:

γM(s′‖u′, Cint)

=
X

{|λ | ∃x ∈ D · s′
λ
−→Mx′ ∧ x′=⇒x ∧ u′=⇒y|} +X

{|λ | ∃x ∈ D · u′ λ
−→My′ ∧ s′=⇒x ∧ y′=⇒y|}

=
X

{|λ | ∃x ∈ D · s′
λ
−→Mx′ ∧ x′=⇒x ∧ u′ = y|} +X

{|λ | ∃x ∈ D · u′ λ
−→My′ ∧ s′ = x ∧ y′=⇒y|}

(Because s′ and u′ are stable)

=

8>>>><
>>>>:

γM(s′, Dint) + γM(u′, {y}int) , if u′ = y ∧ s′ ∈ D

γM(s′, Dint) , if u′ = y ∧ s′ /∈ D

γM(u′, {y}int) , if u′ �= y ∧ s′ ∈ D

0 , if u′ �= y ∧ s′ /∈ D

=

8><
>:

γM(s′, Dint) , if u′ = y ∧ s′ /∈ D

γM(u′, {y}int) , if u′ �= y ∧ s′ ∈ D

0 , if u′ �= y ∧ s′ /∈ D

(Because u′ = y implies D �= [s′]R.)

Because (s, t) ∈ R we know that s=⇒s′ and s′ stable imply that
there is a t′ such that t=⇒t′ and t′ stable with (s′, t′) ∈ R11 and
γM(s′, Dint) = γM(t′, Dint) for every equivalence class D of R

except [s′]R. It is furthermore trivial that s′ and t′ are in the same
equivalence class of R. We now conclude that:

γM(s′‖u′, Cint)

=

8><
>:

γM(s′, Dint) , if u′ = y ∧ s′ /∈ D

γM(u′, {y}int) , if u′ �= y ∧ s′ ∈ D

0 , if u′ �= y ∧ s′ /∈ D

=

8><
>:

γM(t′, Dint) , if u′ = y ∧ t′ /∈ D

γM(u′, {y}int) , if u′ �= y ∧ t′ ∈ D

0 , if u′ �= y ∧ t′ /∈ D

(Because s′ /∈ D implies that D �= [s′]R.)
= γM(t′‖u′, Cint)

11Because (s, t) ∈ R and s=⇒s′ there is a y such that t=⇒y and (s′, y) ∈
R. For this pair clause 1 and 2 of weak bisimulation must hold once more.
Eventually we will find t′ this way.
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So clause two of Definition 4 holds for R′. For any state z ∈ SP3

we find that if (x, y) ∈ R then (x‖z, y‖z) ∈ R′ and since R′ is a
weak bisimulation x‖z ≈ y‖z thus proving Theorem 1.2. We find
a similar proof for Theorem 1.3 because parallel composition is
completely symmetric. This then proves that weak bisimilarity is
substitutive with parallel composition.

C. Theorem 1.4

Weak bisimilarity is substitutive with hiding.

P1 ≈ P2 implies hide a1, ..., an in P1 ≈ hide a1, ..., an in P2

Proof: Let P1 and P2 be I/O-IMCs with identical action
signatures, let P be their union. Then if P1 ≈ P2 there is a weak
bisimulation R on P such that ∀s ∈ SP1

· ∃t ∈ SP2
· (s, t) ∈ R.

Let B ⊆ AV (P ) = {a1, . . . , an} be a subset of the visual actions
of P and let R′ be a binary relation defined as follows:

R′ = {(hide B in s, hide B in t) | (s, t) ∈ R}

It is trivial that R′ is an equivalence relation on hide B in P .
Let hide B in s

a
=⇒hide B in s′. From the definition of hiding

we can immediately deduce that there exists an n ∈ N with n ≥ 0,
a series of states x1, ..., xn and a series of actions b1, ..., bn ∈ B

such that:

s
b1=⇒x1

b2=⇒...xk
a

=⇒xk+1...
bn−1

=⇒xn
bn=⇒s′

Because (s, t) ∈ R we find a series of states x′
1, ..., x′

n−1 such
that:

t
b1=⇒x′

1
b2=⇒...x′

k
a

=⇒x′
k+1...

bn−1
=⇒x′

n
bn=⇒t′

It follows that hide B in t
a

=⇒hide B in t′ so the first clause of
Definition 4 holds for R′.

Let hide B in s=⇒hide B in s′ and hide B in s′ stable. This
means that there is an n ∈ N, a series of actions b1, ..., bn

and a series of states x1, ..., xn such that s
b1=⇒x1...xn=⇒s′ with

b1, ..., bn ∈ B. For t we then find the same series of actions and
a weakly bisimilar set of states. We particularly find an x′

n such
that (xn, x′

n) ∈ R. Because xn=⇒s′ and s′ stable we find a t′

such that x′
n=⇒t′ and t′ stable with γM(s′, D) = γM(t′, D) for

all equivalence classes D of R except for [s′]R and (s′, t′) ∈
R. Because hide B in s′ is stable s′ and t′ have no outgoing
transitions labelled with an action in B.

From the definition of R′ we see that its equivalence classes
can be defined as follows:

{{hide B in x | x ∈ D} | D ∈ S/R}

Note that for any state x in S we find that [hide B in x]R′ =

{hide B in y | y ∈ [x]R}.
Let C be an equivalence class of R′ with C �= [hide B in s′]R′

and let D be the corresponding equivalence class of R, thus
D �= [s′]R. We now find the following for the cumulative rate

of hide B in s′ to Cint:

γM(hide B in s′, Cint)

= {|λ | ∃(hide B in x′) ∈ S, (hide B in x) ∈ C ·

hide B in s′
λ
−→M

hide B in x′ ∧

hide B in x′=⇒hide B in x|}

= {|λ | ∃(hide B in x′) ∈ S, x ∈ D ·

hide B in s′
λ
−→M

hide B in x′ ∧

hide B in x′=⇒hide B in x|}

= {|λ | ∃x′ ∈ S, x ∈ D · s′
λ
−→Mx′ ∧

hide B in x′=⇒hide B in x|}

= γM(s′, Dint+)

Here Dint+ = {x′ | ∃x ∈ D · hide B in x′=⇒hide B in x}.
Note that Dint+ ⊇ Dint. For some n ∈ N let E1, ..., En be the
equivalence classes of R that can reach D with a number of weak
transitions labelled with actions in B or with a weak move (note
that this means that D itself is always in E1, ..., En). In other
words we find that:

∀Ex · (∀e ∈ Ex · ∃m ∈ N, f1, ..., fm ∈ S, b1, ..., bm ∈ B·

m ≥ 0 ∧ e
b1=⇒f1...fm−1

bm=⇒fm ∧ fm ∈ D)

When we hide the set of actions B in the states of the equiva-
lence classes Ex we find that they move internally to states in
equivalence class C. Note that because hide B in s′ is stable
and C �= [hide B in s′]R′ , [s′]R can not be in E (that would
either mean that hide B in s′ moves internally to a state in C

making it unstable or that hide B in s′ is in C but this is not
possible because C �= [hide B in s′]R′ ). So Dint+ =

S
Ei

Eint
i .

Now we find that γM(s′, Dint+) = γM(t′, Dint+) (Recall that
we found earlier that γM(s′, D) = γM(t′, D) for all equivalence
classes D of R except [s′]R which is not in E). In the same way
we showed that γM(hide B in s′, C) equals γM(s′, Dint+), we
can now show that γM(t′, Dint+) equals γM(hide B in t′, Cint).
This proves that the second clause of Definition 4 holds for R′.
This means that hide B in s ≈ hide B in t when s ≈ t and thus
weak bisimilarity is substitutive with hiding.
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