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Abstract The modal logic FULL is designed to capture strong bisimulation over early
symbolic transition systems (STSs) for full LOTOS. It provides a compact way
of expressing and verifying properties involving both data and transitions. In
this paper we present a restricted prototype implementation of a model checker
for LOTOS for queries written using the FULL logic. The model checker is
developed within the CADP package using XTL.
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1. INTRODUCTION

Model checking (Clarke et al., 1999) has proved to be a valuable verifica-
tion method in recent years, and the size of systems which can realistically
be verified is constantly increasing. However, there is still much room for
improvement, and many techniques have been proposed to increase the state
space of verifiable systems, including symmetry (Emerson and Sistla, 1993),
abstraction (Clarke et al., 1994) and symbolic methods (Burch et al., 1994). A
particular problem is the inclusion of data in systems, since this can often lead
to infinite state space. Typically this is dealt with by restricting the size of the
data type. An alternative approach is to deal with data symbolically (Hennessy
and Lin, 1995; Calder and Shankland, 2001). The state space is reduced by
grouping transitions according to the kind of data passed, or the properties of
that data. Thus, instead of investigating a single transition for every data value,
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groups of transitions are formed and verification is performed at the level of
the groups.

Previous work (Calder et al., 2001a; Calder et al., 2001b) has established a
formal framework for the symbolic interpretation of LOTOS behaviours. The
formal description technique LOTOS (ISO:8807, 1988) was chosen due to its
popularity and applicability to a wide range of applications (e.g. protocols and
services (Ajubi et al., 1989), distributed systems (Pecheur, 1992), and as a se-
mantics for higher level languages such as feature descriptions (Turner, 1998)
and use-case maps (Amyot et al., 2000)). Further, there are well established
tools such as CADP (Fernandez et al., 1996) for reasoning about LOTOS be-
haviours. LOTOS is particularly amenable to the symbolic approach because
it allows the description of process flow of control as well as allowing data to
be passed between processes. Such data can affect the process flow of control
and therefore cannot simply be ignored in verification.

On top of the symbolic interpretation of LOTOS an equivalence relation (Calder
and Shankland, 2001) and a modal logic called FULL (Calder et al., 2001a)
have been defined. The logic provides a way of expressing properties in-
volving both data and transitions. Currently tools are being developed to sup-
port reasoning in all parts of the framework, including model checkers for the
logic (Bryans et al., 2001b; Robinson and Shankland, 2001). As an interim
step, a prototype of the model checker has been implemented within CADP
using XTL (Mateescu and Garavel, 1998), a functional-type programming lan-
guage allowing description of computation over graphs. This approach has
limitations. The underlying semantics of CADP is not symbolic therefore the
prototype is necessarily limited. The logic remains unchanged syntactically,
but its expressive power is reduced since only properties over finite data types
can be expressed. So, here we do not exploit the main advantage of our sym-
bolic framework, which is to represent infinitely branching systems by finitely
branching ones. However, the advantage of the approach is integration with
a range of verification tasks already implemented in CADP, and the ability to
experiment with the logic at an early stage.

The purpose of this paper is to present the XTL implementation of FULL,
illustrate the sorts of symbolic properties (albeit over processes which have a
concrete representation in CADP) which can be expressed and verified auto-
matically, and discuss the ongoing plans for symbolic reasoning about LOTOS
behaviours. We begin by introducing the CADP toolkit, summarising the main
capabilities of interest to us. In Section 3 we present an overview of the logic
FULL. We assume the reader is familiar with Full LOTOS, or at least process
algebra. A more detailed introduction may be found in (Calder et al., 2001a),
where we discuss further the effects on the logic of the restrictions imposed
by CADP. The main section of the paper is devoted to the implementation of
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modal operators with data using XTL. Finally we evaluate the success of this
experiment, and present directions of ongoing and future work.

2. CADP

The CAESAR/ALDEBARAN development package (CADP) is a versatile
multi-functional tool offering many different formal verification techniques,
from interactive simulation through to compositional verification based on re-
finement. It is based around a common format for explicit Labeled Transition
Systems (LTSs), known as Binary Coded Graphs, or BCGs. In particular, it
accepts Full LOTOS as an input formalism, and offers a model-checking al-
gorithm for expressions written in eXecutable Temporal Logic, or XTL. The
BCG basis of CADP is finite and therefore all processes handled by CADP
must use finite datatypes of up to 256 values.

XTL is a functional-type programming language designed to allow an easy,
compact representation of common temporal logic operators. They are eval-
uated over LTSs encoded as BCGs. XTL provides low level operators which
access the states, labels, and transitions of the LTS, and also operators to de-
termine the successors and predecessors of states and transitions. A number of
modal logics (eg. HML (Hennessy and Milner, 1985) and CTL (Clarke et al.,
1999)) have already been successfully encoded within XTL. CADP is there-
fore an ideal tool within which to build a prototype model checker for FULL,
although the finite basis of BCGs means that we will not be able to exploit the
full expressive power of the logic. This is discussed in more detail in the next
section.

3. THE LOGIC FULL

The FULL logic was designed as part of an ongoing research project (DIET
website, 2000) to develop a framework for reasoning about Full LOTOS, i.e.
the processes and the data. In this section we present an informal introduction
to the symbolic logic FULL.

The syntax of FULL is based on a variant of HML (Stirling, 1989), with
quantifiers over data added. It is made up of two parts. The first set of for-
mulae, ranged over by

�
, applies to closed terms. The second set, ranged

over by � , applies to terms with a single free variable, as would arise from
a LOTOS process with a single parameter. (The extension to multiple free
variables is straightforward.)

Definition 1 Syntax of FULL
� ����� ���	��

�������	��

�������������������������

� �"!�#%$��&�����'!(#%$����)���+*,#-$��&�)��� *,#%$��.�
� ����� !�#0/��1�2*,#0/��
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where
�

is some Boolean expression,
�����������
	���


,
$�����������


,
�

is the set
of gate names, i is the internal event,

�
is the exit event and

#
denotes a variable

name.
The simple event operators are taken from HML (Stirling, 1989) and are

well known.
�������

: it is possible to do an � event (and then satisfy
�

), and

�������
: after every � event,

�
is satisfied. (May hold vacuously.)

In this logic, the novel operators are the four quantified modal operators.
They are formed as combinations of the modes

� �
and

� �
and the quantifiers!

and
*

:
�"!�#%$��

,
�'!�# $��

,
�+*,#-$��

and
� *,# $��

. For each of these combination
operators the meaning is determined using the quantifier to range over the value
(
#

) being passed, and the mode to refer to the gate (
$
) at which it is being

passed. For simplicity, we assume that a single data value is passed at a gate.
The extension to multiple data offers at a gate is straightforward.

To introduce and illustrate these operators, we consider the example of the
process � in Figure 1, which is taken from the introductory paper (Calder et al.,
2001a). This illustrates a number of the capabilities of the FULL logic.

When encoding the process � within CADP, we used the library NUM10.lib,
which gives the natural numbers from 1 to 10 and offers the operators ��� , ���
and ��� ( � 	�� and

�
). This allows the finite BCG representation of � given in

Figure 2. As noted above, the data type may have up to 256 values, but 10
makes the example easier to present.

Informally, the formula
�"!�#�� ���

is satisfied by a process if it can perform
some transition with data

#
at a � gate, and the subsequent process satisfies the

formula
�

. For example, the formula
�"!�# �)�2�"! �
#$#

is satisfied by the process
� , because there are values of

#
(in particular: 4, 5 and 9) which can lead to a

state satisfying
�"! �
#$#

.
The formula

�+*,#�� ���
is satisfied by a process if all the values that

#
can

take have at least one � transition that leads to a process that satisfies
�

. For
example, the formula

�+*,#�� �2�"% �
#$#
is satisfied by the process � , because every#

value has a possible � transition leading to a state satisfying
�"% �
#
#

.
The formula

�'!�# ��� �
is satisfied by a process if there is some value that

#
can take, and every time the process performs a � transition with that value, the
subsequent state satisfies

�
. For example, the formula

�'!�# ��� �"% �
#
#
is satisfied

by the process � , because if
# �'&(	�)*	�+*	�,*	�-*	/.�	�0

or
&�1

then it is always possible
to perform an

%
action afterwards.

The formula
� *,# ��� �

is satisfied by a process if for every possible value of#
, every � transition leads to a state satisfying

�
. For example, the formula� *,#�� �32��"% �
#$# �1�"! �
#$#/4

is satisfied by the process � , because every possible
transition leads to a state which can either perform an 5 or a 6 action.
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�����������	��

�����������	�����������
���
�� ��!��"�#%$'&�(
����)	*,+���-.��-/���0���

���1�32546-.�6-7�����8�
���1�� ��!��"�#%$'&�(
����9�:1+���-1;���-/�<�����=������-/�����8��>
���1�32�+?-.�6-7�����8�
���1�� ��!��"�#%$'&�(
���@�%*,+���-.��-/���0���
���1�32�A?-.�6-7�����8�

�<B�C��	�����

Figure 1. process 
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The logic is presented more completely in (Calder et al., 2001a), where it
is defined formally in terms of symbolic transition systems as derived from
LOTOS (Calder and Shankland, 2001). In order to determine the meaning
of the logic (normally defined over symbolic transition systems) over Binary
Coded Graphs, an equivalent interpretation of the logic over labelled transition
systems is used. (See Appendix.) There is a direct mapping between BCGs and
LTSs. The equivalence of the two definitions of the logic is shown in (Bryans
et al., 2001a).

The expressivity of the logic may be considered to be parameterised by the
number of values of the data types used. For this prototype, CADP restricts us
to using data types with only 256 values, therefore the expressivity of the logic
is clearly restricted, since when interpreted over a symbolic transition system
an infinite number of data types may be considered.

In practice, this restriction may not affect the verification process. It may be
that only 256 distinct values are required to distinguish processes and proper-
ties. If this where not a possibility, then CADP would be almost useless as a
verification tool.

As soon as more than 256 values may be used in one branching point the
logic of the prototype can no longer be used to distinguished processes which
can be distinguished by FULL.

Another consideration is efficiency. A symbolic transition system allows
many (possibility infinitely many) transitions to be represented finitely (pos-
sibility by just one transition). If a data variable can have 256 values, CADP
will construct a BCG with 256 corresponding transitions, and all of these tran-
sitions must be explored when verifying properties. Therefore more work has
to be done than in the symbolic case, in which the same transitions may be
represented by just one transition.

4. IMPLEMENTING FULL WITHIN XTL

We show in this section how to implement the simple modal operators (
� $��

and
� $��

) and the quantified modal operators (
�'!(#%$��

,
�"!�# $��

,
� * #%$��

and
�+*,#-$��

)
within the XTL language. The boolean operators

�
,
�

and � have direct trans-
lations within XTL and are not shown here.

In XTL, a formula is associated with the largest set of states which satisfy
it. Since the BCGs are finite these sets of states are necessarily finite.

To illustrate some useful XTL constructs, we begin with the simple modal
operators, involving no data.

Simple modal operators

The
�������

operator has two parameters, the simple gate name
�

and the for-
mula

�
. To represent the gate

�
we use the labelset

�
, and the formula

�
is
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represented by the set of states ����� . Any state � will satisfy this operator,
provided at least one of the outgoing edges of � is labelled

�
, (i.e. ���
	���
��

����������� ��������������
��! �"#	$�%�'& �)(���&*� �+" �����)���#,+" ), and the resultant
state of that edge satisfies the formula

�
(i.e. �-
 ��.����)
/� �
" ���0�)��� �21+	�" ).

We define
�������

as 3546,7�-,98 ��1+	�" within XTL by

����:#3546,��;,��<& ��(0��&����)
98 ��1+	=�>��
���
������)
+"*�<��
 �)
�������
@?A  B�C�$
 �)
��ED�10�2.��
����	���
�� �F�G�2����� ���0�)���H�)��
��! 0"@	6�

�I& ��(0��&*� �
" ���������@,
" �)���/�-
 ��.����)
/� �
" ���0�)��� �21+	�"
�)����J��)�
	���

�LK

�)����J����2:

Note here that any labelset
�

and any stateset �M�0� will be acceptable to 3546, ,
but that to remain true to the FULL definition,

�
should be a single label rep-

resenting the simple event
�
, and the stateset �M��� should represent the FULL

formula
�

. This stateset can be supplied as the result of a nested function.
For example, the formula

��� �2��� �
#$#
would be implemented as 3546,7�/�N8O3+4$,7�P(Q8


�
+"�" , where 
�
 represents all states that satisfy true, i.e. all states.
The

��� ���
operator has the same two parameters, the gate name

�
and the

formula
�

. A state � will satisfy this operator, provided for any appropriately
labelled outgoing edges of � , the resultant state of that edge satisifies the for-
mula

�
. This may be vacuously true if no edges are appropriately labelled. The

differences from the implementation of
��� ���

are therefore the use of :��2. ��&�&
instead of ���
	���
�� , and 	6��R�&�	)��� instead of �)��� . Again, although BOX takes a
set of labels

�
and a set of states ����� , �

should be a single label representing
the simple event

�
, and the stateset �M��� should represent the FULL formula

�
.

We define
�������

as S�T�U7�-,98 �21+	�" within XTL by

����:@S�T)U��;,��<& ��(0��&����)
98 ��1+	=�>��
���
������)
+"*�<��
 �)
�������
@?A  B�C�$
 �)
��ED�10�2.��
:��2. ��&�& ���V������� ���0�)��������
��W 0"@	$�

���I& ��(0��&X� �
" ���0�)���@,
"@	6��R
&�	)���X�-
 ��.����)
/� �
" ���0�)��� �21+	�"�"
������J2:���.���&�&YK

�)����J����2:

Quantified modal operators

The quantified modal operators are the ones which allow us to refer to the
data part of Full LOTOS.

To understand the implementation of a particular quantified modal operator,
we begin by considering a general formula Z[� 2.# 	 $ 4 � , where Z[� is one of
the four quantified modal operators, y is a variable of type ytype and

$
is a gate
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name, of type ytype. We deconstruct
�

into a form
���0� ��


, where
���

contains
all the restrictions on the variable

#
, and

� 

contains none of them.

The interpretation of each operator over a BCG can be understood as match-
ing a particular pattern in the matrix of reachable states, as shown below.

�����	��

�����
Outgoing transitions

G!1 G!2 G!3 G!4 G!5 G!6 G!7 G!8 G!9 G!10
P1 T T T T o o o o o o
P2 o o o F o o o o o o
P3 o o o o T o o o o o
P4 o o o o T o o o o o
P5 o o o o o T T T T T
P6 o o o o o o o o o F

Figure 3. Matrix representing the process 
 and
��

�����

The matrix in Figure 3 is formed from the BCG (Figure 2) of process � ,
where the headers of the columns are the labels of the outgoing transitions
from the initial state, and the labels on the rows are all the reachable states
from the initial state.

For a particular label and state, the relevant position in the matrix can have
one of three labels:

T: a transition marked with this label can reach this state, and
� 


holds,

F: a transition marked with this label can reach this state, but
� 


does
not hold, or

o: a transition marked with this label cannot reach this state.

The pattern on the matrix is then determined solely by
�)


, i.e. the part of the
formula which is not concerned with the variable

#
. Similar matrices can be

built for other process states and other FULL formulae
�

.
The formula

���
, which contains all the restrictions on

#
, determines which

columns need to be considered when evaluating the complete formula
��� � ��


.
The validity of different FULL operators can be related to different patterns
within the matrix.

As an example, let us consider the formula
2.# ��� 4����"% �
#$#

, so
���

is2.# ��� 4
and

��

is
�"% �
#$#

. We will consider prefixing this by each of the four
modal operators in turn.

�"!�# �)���
needs just one place in the matrix to be labelled � . But since

our example is
2.# ��� 4 ���"% �
#$#

then this place must be in the
�����

column, because in every other column the formula
2.# ��� 4

is not true.
�'!�# �����

needs one column in the matrix which contains only the letters
� and � in order to hold. But our specific example restricts this to the
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�����
column, and it therefore does not hold. If instead we had

�
defined

as
2.# � ,�4 � �"% �
#$#

the formula
�'!�# �����

would be true.
�+*,# �)���

needs at least one � in every column in order to hold. Allowing�
to restrict

#
, although syntactically possible, makes the whole formula

immediately false because the quantifier ranges over all possible values
of

#
. Clearly, formulae such as

�+* #�� � 2.# ��� 4
must be false, since

#
can

have values other than 4. However, the formula
�+* # �)���)


holds.
� *,# �����

needs no � s anywhere in the table in order to hold. Again,
restricting

#
in

�
immediately forms a false formula. In this case, since

the table contains Fs, no formula
� *,# �����

holds. But if we constructed
the table

��
 � �"% �
#
# � �"! �
#
#
then

� *,# ��� ��

would hold.

IMPLEMENTATION In order to interpret Z � 2.# 	/� 4 � within XTL, we
will break

�
into

��� � ��

as described above. There will be no other vari-

ables in
�

because any variables will have been bound in a previous step.
Each of the implementations of the quantified modal operators will receive

two parameters: a labelset
�

which (loosely) corresponds to the combination
of the gate

$
and the formula

� �
, and a stateset ����� which corresponds to the

formula
��


. The implementation will return the set of all states which satisfy
the operator. A formula is satisfied by a process if the initial state is in this
returned set.

Whereas for the simple modal operators we assumed the labelset was in fact
a singleton (to conform with FULL syntax), for the quantified modal operators
the labelset will typically not be a singleton. Although in FULL we write a
symbolic expression such as

�'!(# �����
this has to be expanded by XTL into a

concrete set of labels. We use the (built in) XTL macro ����, � ,7�;,
" to generate
the labelset of the actions which satisfy the predicate , . For example, all

#
actions possible at a � gate are therefore evaluated as ����, � ,7�������Q����
���R��0" ,
yielding the set

A	� ��

� � 8 � ��
�� � 8 � ��
�� � 8������28 � ��

��� � K . This labelset is
then supplied to the implementation of a quantified modal formula.

This is the point at which the restrictions placed on our implementation of
the FULL model checker by the BCG implementation become evident. If we
were adhering strictly to the semantics as expressed in the Appendix, then the
labelset could be infinite (ranging across all values of the data type). Using the
BCG representation we quantify over finite types.

The labelset may also encode
� �

. To restrict
#

to values which satisfy
� �

we use ����,*� ,7�������Q����
���R��LD�1��2.�� ��� " . The type ��
���R�� can be a simple
XTL type, or one of the types created for the LOTOS process. If we wish
to use a created type we need to be careful to provide C implementations for
the constructors and operators within the type definition, and to reiterate these
within the � ��
0& file. In our example the CAESAR compiler identifies the
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NUM10 values as integers, and we can use 	6��
�������. in the XTL queries. But
if we used the strings �)�0� , 
�D�� , ... etc. instead, then the compiler would
implement these as character strings, and we would be forced to provide a C
function to convert these back to NUM10 values within the � ��
�& file.

���������
	
A state � will satisfy this operator, provided there is some out-

going edge in
�

which hits the target set �M�0� (i.e. ����	��$

� �F�G�2����� �����)���
����
��W 0" ). In matrix terms, finding one � anywhere would be sufficient, pro-
vided

�
made no restrictions on

#
. Otherwise the � would have to be in one

of the columns to which
#

was restricted. This additional constraint is imple-
mented wholly by the use of the � ��, � ,N��� ��� � ��
��2R0� D�10��.�� � � " expression
in generating a restricted labelset. See Section 5 for an example of this sort of
formula. We can define

�"!(#�� ���
within XTL as

����:#354$,*����, � �-,F�V& �)(���&�����
 8 ��1+	=�>��
���
������)
+" �<�$
 �)
����)��
 ?A  %�<�$
 ��
��YD�1��2.��
�)�
	��$

� ����������� ��������������
��! �"@	$�

�I	�: &��)(0��& � �
" ���������#,

210�)�/�;
 ��.�����
7� �+" ���������/� �21+	�"�"
��&����Y:���&����
�)����J�	�:
"
������J�����	���
��EK

�)����J2���2:
The XTL definition above is a reasonably direct translation of the semantics

of
�"!�#�� ���

as given in the Appendix. The 	�: statement corresponds to finding
one T in the matrix (with the right sort of label).

���
������	
A state � will satisfy this operator, provided there is some label �

in
�

( ���
	���
�� � �>&��)(���&������)���#, ) such that every outgoing edge labelled
with � hits the target set �M�0� (the :��2. ��&�& expression with nested 	�: ). That
is, there is a whole column in the matrix containing only the letters � and � .
The ��&���� 
�.2�0� implements the fact that this operator can be vacuously true
if there is a label � in

�
which is not assigned to any outgoing edge, i.e. the

corresponding column contains only the letter � . We define
�'!�# ��� �

within
XTL as

����:@S�T�U*����, � �-,F�V& �)(���&�����
 8 ��1+	=�>��
���
������)
+" �<�$
 �)
����)��
 ?A  %�<�$
 ��
��YD�1��2.��
�)�
	��$

� � �<&��)(0��&����0�)���@, 	$�

� :��2. ��&�& ���G�2����� ���0�)��� �)��
��! �"@	$�
	�: &��)(0��&*� �
"L? �

210���H
 �2.����)
/� �
" ���������=� �21
	�"
��&��)� 
�.2���



11

�)����J�	�:
�)����J2:��2.���&�&�"

������J�����	���
��EK
�)����J����2:

It is harder to see a correspondence between the semantics of this operator
as expressed in the Appendix and the XTL implementation above. The finite
BCG semantics means that we effectively translate an expression of the form�'!�#�� � �

into
� $ & ��� � � $*) ��� � / / / � � $ &�1	���

, where each value of the data
type yields a corresponding hardwired

� �
operator.

��� � ���
	
To implement the universally quantified operators we rely on the

duality of
!

and
*

, and
� �

and
�(�

, as pointed out in (Calder et al., 2001a). In
XTL, ����
�� �21+	�" is the complement of the set ��1+	 . We define

�+*,# �)�
as

����:#3546,�,���, �=�-,��<& �)(���&�����
 8 ��1+	=�<��
���
������)
+" �<�$
 �)
����)��
 ?
�0�)
��;S�T)U � ��, � �;, 8 �0��
�� �21
	�"�"�"

�)����J����2:

taking advantage of the fact that ���
$ 2��+*,# �)� � 4

is
�'!�# ���

���
$ 2"� 4

.

� � � ��� 	
We define

� *,#�� � �
as

���2:@S�T�U�,���,*� �;,F�V&��)(0��&��)��
98 �21
	=�C�$
 �)
����)��

" �<��
���
������)
 ?
�0�)
��-3+4$, � ��,*�=�;, 8 �0��
�� �21
	�"�"�"
������J2����:
taking advantage of the fact that ���

$ 2�� *,# ����� 4
is
�"!(# �)�

���
$ 2"� 4

.

5. THE MODEL CHECKER

To model check a LOTOS process within CADP using the FULL logic, we
use the macro  ),*� , defined as

� ����.��@ ),*������1+	�" ?
���
4
	*��J���T���
7�C	�: �21+	 	6���2&�������� 	$�+	$
 
�1��)�B� ����� �
"

��&���� ����, �� �
"
������J�	�:�"

������J�� ����.��
This accepts a formula �M�0� and prints TRUE if the initial state of the process
is included in the stateset representing �M��� , and FALSE otherwise.

We can then model check a process using� ��
0&L
�����
�� ��
0& R�.���������� � (����
The file R�.����)����� � (���� is the output from the ������� �2.�� �2�2
 and � �������2. com-
ponents of the CADP tool. These take a LOTOS specification and produces a
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Binary Coded Graph(BCG). The file 
����$
�� ��
�& contains a series of  ),*� com-
mands. For convenience, SAT commands can also take a text parameter, which
is returned with the model checker output. This is optional, but such comments
can serve as a reminder of the formula being tested.

Examples

Here we use again the process � from Section 3.

1 The query is it possible for process � to perform a G!4 action? which is
captured as � � � �"!(#�� �/2.# ��� 4

using FULL, is written

 ),*�N� ��� � � �$��� � ��?���"$
�
 � � 8
�G3546, ����, � ������, ��J�,7� � ��� �W	6��
��2���). D�1��2.�� ��?��
" 8$� � ���
"�"�"

and because � ����,*� ,7�������Q�W	$��
������2.LD�1��2.�� ��?��
"�" evaluates to
� � 
�� �

the formula becomes

	�:#3546, ����, � � A � � 
�� � K 8 � � ����"@	$���2&��������#4
	
4�� 
�1��)� ����� �
��&��)� ��,*�� ��

������J�	�:

and for 3546, ����, � � A � � 
�� � K 8 � � ����" to be true for process � , the ini-
tial state simply needs one outgoing G!4 action. This is clearly true (see
Figures 2 and 3), so the output is

� � � �
��� � ��?��
"$
�
 � �������
2 The query for all values

#
, is it possible to do a G!y action followed by

an H action? which is written as � � � �+*,# �)�2�"% �
#
#
using FULL, is

expressed as

 �,��7� �	� � � �
��� � 5
�)
�
Q� � 8
�P354$,�,���, �N� ����, ��J),7� � ���Q�W	6��
��)����.�" 8 �-3+4$,7� ����, ��J),7� 5+" 8$� � ���
"�"�"�"�"

The parameter � ����, � ,7� � ���Q�W	6��
�������.
" evaluates to the set

A	� � 

� � 8 � � 
�� � 8 � � 
�� � 8 � � 
�� � 8 � � 
�� � 8� � 
�
 � 8 � � 
�� � 8 � � 
�� � 8 � � 
�� � 8 � � 
 � � � K

the restriction to ten elements coming from the process � , which is lim-
ited to the library NUM10.lib. This means every transition possible for
� must be considered. The operator

�+*,# �)�
requires that each label is on
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a transition leading to at least one state where the formula
�

is true. This
is true here (see Figure 3, one � in every column), and so the output is

� � � �
��� � 5
�)
�
 ��� � ���

3 The query for all values
#

, after any G!y action is it possible to do an H
action? is written within FULL as � � � � *,# ��� �"% �
#
#

and is expressed
as

 �,��7� ��� � � �
��� � 5
�)
�
Q� � 8
�VS�T�U�,���, �N� ����, ��J),7� � ���Q�W	6��
�������.
"582�P354 ,7��� ��,*��J�,7� 5+"58 � � � ��"�"2"�"�"

The parameter ����, � ,7� � ��� �W	6��
��2����.
" generates the full list of possible
transitions again, but this time the query fails, because, for example, it is
possible to take a transition labelled

�����
to a state which only permits a

K action. It doesn't matter that there is a successful G!4 transition which
can subsequently perform an

%
action.

The reasonably direct translation from FULL to XTL can be seen from these
simple examples. The only tricky part is the need to provide requirements on
a value

���
to the point at which that value is introduced.

6. CONCLUSIONS AND FURTHER WORK

We have successfully implemented a model checker for the FULL logic over
LOTOS (with data), and we are planning to extend this work in a number of
directions.

We have modelled the Remote Procedure Call case study (Broy et al., 1996;
Hardy, 2000) using LOTOS within CADP, and performed some simple queries
on it using FULL. We have yet to fully explore this example.

The FULL logic cannot as yet express mu-calculus type queries (Kozen,
1983) with infinitely repeating patterns, but we are currently working on ex-
tending the logic in this direction. Further, for ease of presentation, the FULL
logic is currently limited to single data values being passed at gates, and for
practical use it would be preferable to allow multiple data values. For example,
if � ��� � � (0����&������7�W	$��
������2. was a gate, we would like to be able to identify
all labels that matched ��
 
�.2��� ��� � � 	$��
��2���2. . Implementing the mu-calculus
operators in XTL should be straightforward, but currently expressing pattern
matching queries within XTL is not feasible.

The CADP toolkit provides a very accessible way of building a prototype
model checker, and we are very pleased with the results obtained. However the
BCG graphs are only ever finitely branching, because the LOTOS processes are
restricted by the datatypes used. In order to reason about symbolic aspects of
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FULL allowing infinite data types we are considering two other approaches:
theorem proving (using the Ergo tool) (Robinson and Shankland, 2001) and
rewriting logic (Bryans et al., 2001b). Much interesting work on combining
theorem proving and model checking is available (Rajan et al., 1995; Joyce
and Seger, 1993), and rewriting logic, while a comparatively recent technique,
has already been successfully used to implement a number of simple model
checkers (Verdejo and Marti-Oliet, 2000). These techniques also have the ad-
vantage of allowing integration of reasoning about data and reasoning about
processes.
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Appendix: The FULL logic definition
We give here the semantics of the logic, defined inductively over concrete labelled transition

systems. It is assumed that vars � ����� vars � ��� ���	�
, i.e. the variables of the transition system

and the variables of the logical formula are disjoint.
First we define

��
 � �
, denoting that a closed term

�
satisfies a closed modal formula

�
. The

relation is defined inductively over the syntax of the logic by the equations of Definition 2.
The last two rules of the definition where

�
is an open term relate the (single) free variable of

the parameterised transition system to the (single) free variable of a quantified logical property.
The remaining part of the property is evaluated using the earlier

��
 � �
definitions.

Definition 2 Semantics of FULL over a labelled transition system
Given any closed term

�
, the semantics of

��
 � �
is given by:

��
 ��

=


�� ���
��
 � ���������

=
��
 � ���

and
��
 � ���

��
 � � ��� � �
=
��
 � � �

or
��
 � � �

��
 � ��� � �
= there is a

���
s.t.
������ ���

and
����
 � �

��
 ��� �! �
= whenever

������ � �
then

� � 
 � �
��
 � �#"%$�& � �

= for some value ' , for some
���

,
�)(+*��� �,�

and
����
 � �-� '%. $/ 

��
 � �102$�& � �
= for all values ' , for some

� �
,
� (+*�2� � � and

� � 
 � �-� '%. $/ 
��
 ��� "3$�&! �

= for some value ' , whenever
� (4*�2� � � then

� � 
 � �-� '%. $/ 
��
 ��� 0�$�&! �

= for all values ' , whenever
�5(4*��� ���

then
���6
 � �-� '%. $/ 

Given any term
�

with one free variable 7 the semantics of an open formula,
��
 ��8

, is given by:

��
 �9"%$�: �
= for some value ' ,

�4; *=<�>�? 
 � �-� '%. $/ ��
 �@02$�: �
= for all values ' ,

�4; *+<A>�? 
 � �-� '%. $/ 

For a more complete explanation of the logic, consult (Calder et al., 2001a).


