
Formal Analysis of TLS

Alberto Calixto and Ra�ul Monroy

Departamento de ciencias computacionales

Tecnol�ogico de Monterrey, Campus Estado de M�exico

Carretera al Lago de Guadalupe, Km. 3.5, Atizap�an, M�exico

00471505@academ01.cem.itesm.mx,raulm@campus.cem.itesm.mx

Abstract. This paper reports on the analysis of the Transport Layer

Security protocol [4], TLS. We have used LOTOS [1] to model TLS, the

�-calculus [15] to express security properties that we wish it to meet

and CADP [5] to conduct formal analysis. Both the speci�cation and

the analysis closely follow Schneider's [14] approach to the veri�cation

of security protocols. We show how we adapted Schneider's approach

and apply it to the analysis of TLS, using di�erent formalisms and proof

methods. We report on the security properties that TLS is proved to

enjoy.

1 Introduction

This paper reports on the analysis of the Transport Layer Security pro-

tocol [4], TLS. TLS builds on the speci�cation of Secure Socket Layer

Protocol [6], SSL, an authentication protocol for client/server applica-

tions, published by Netscape. TLS is used widely and the more security

properties is proved to enjoy the sooner it will become established.

We have used LOTOS [1] to model TLS, the �-calculus [15] to express

security properties that we wish it to meet and CADP [5] to conduct for-

mal analysis. LOTOS, a Language of Temporal Speci�cations, is a process

algebra suitable for modelling and analysing communicating systems. It

is well-established in both industry and academia. LOTOS unites a num-

ber of interesting issues borrowed from leading process algebras. CADP is

an integrated toolbox that o�ers a wide range of methods for modelling,

analysing and simulating LOTOS speci�cations.

Both the speci�cation and the analysis closely follow Schneider's [14]

approach to the veri�cation of security protocols. Roughly, the veri�ca-

tion problem is split into three steps. First, we use LOTOS to model

the behavioural aspects of a communication sub-network, the principals

involved in the authentication process and a spy. Naturally, the princi-

pals deify the message exchange indicated by the protocol under analysis.

The spy is de�ned as powerful as possible and yet he is not supernatu-

ral. Then all these processes are put together using parallel composition;

giving them capabilities of interaction. Second, we brainstorm security

properties and then we express them using a suitable formalism. Finally,

in the third step, both the speci�cation is tested against the properties,

collecting statistics.

1.1 Paper Overview

In the sequel we show the results of our experimentations. First, though,

we provide an abstract, informal description of TLS x2. Next, we outline

Schneider's approach to the veri�cation of authentication protocols x3.

Then, we illustrate how we have adopted Schneider's theoretical model

and apply it to the veri�cation of TLS 4. Finally, following a discussion of

the experimental results obtained throughout our investigations 4.2, We

summarise the lessons drawn from our work 5.

2 TLS Speci�cation: an Overview

TLS aims at providing both privacy and integrity of the information ex-

changed by a client/server application, running over the internet. Rather

than a single, monolithic protocol, TLS is a protocol schema: Users may

set various security parameters so as to suit a set of security requirements.

TLS is both versatile and scalable. However, it is also hard to implement,

let alone analyse. A full analysis of TLS would require one to consider an

unwieldy number of combination of methods. Fortunately, the modular

structure of TLS helps conducting, at least partially, the analysis in terms

of its components.

TLS consists of two protocols: i) record and ii) handshake. Record

is low-level, working on top of a transport layer protocol, such as TCP.

Record controls end-to-end communication. It splits messages into blocks

of �xed, manageable size, encoding them, and optionally compressing

them, previous transmission. Upcoming messages are, in turn, decoded,

optionally decompressed, and then assembled to their original form before

being passed up on to higher entities. So, record aims to encapsulate

higher-level protocols, including handshake.

Handshake aims to set up and terminate a session that allows secure

communication amongst two parties: a client, who requested the session,

and a server. Setting up a session amounts to �xing 6 parameters: the ses-

sion identi�er, the peers' certi�cate, the compression method to be used,

the cipher algorithm, whether or not multiple connections are permitted

and a disposable master secret. The �rst 5 parameters are all low-level:

They vary the run of the protocol but do not add to ful�lling a security

requirement. Handshake is a procedure whereby the client and the server

authenticate each other. Upon success both client and server end up in

possession of the master secret, which is used as a disposable encryption

key. As long as the master secret is uncompromised, the connection will

remain secure. This paper reports on our experiments in the analysis of

Handshake using the CADP toolbox [5].

In the rest of this section, we discuss the abstract speci�cation of

handshake used in our analysis. Our speci�cation is only a subset of

TLS. It omits various possibilities, e.g. some optional messages are here

mandatory. However, we believe it representative as it aims to achieve

the strongest TLS's security goals. Table. 1 illustrates a typical pro-

tocol run. Messages are sent in the order of appearance. The notation

Label:A! B : M is used to convey an interaction, called Label, in which

A sends message M to B, which B receives.

ClientHello Client ! Server : C;Nc; Sidc; P c

ServerHello Server];! Client : S;Ns; Sids; Ps

ServerCerti�cate Server ! Client : Cert(S;Ks
+)

ClientCerti�cate Client ! Server : Cert(C;Kc
+)

ClientKeyExchange Client ! Server : PMSKs+

Certi�cateVerify Client ! Server : fHashfNc;Ns; PMSggKc�

ClientFinished Client ! Server : fHashfM; \ClientFinished00; PggM
ServerFinished Server];! Client : fHashfM; \ServerFinished00; PggM

where M = PRF (Nc;Ns; PMS) and

where P = fPMS;C;Nc; Sidc; P c; S;Ns; Sids; Psg

Table 1. The protocol handshake

At the start, the client, C, contacts the server, S: ClientHello. It sup-

plies a session identi�er, Sidc, a nonce, Nc, and secondary information,

such as cipher algorithm and compression method, Pc. In response, S

sends her nonce, ServerHello. Afterwards, both C and S exchange their

public-key certi�cates, indicated by ServerCerti�cate
1 and ClientCerti�-

cate. The notation fX gK denotes the message encrypted or signed using

1 TLS speci�es that the server's public key is delivered in an X.509v3 certi�cate [2] ,

so as [10], we assume that a spy cannot impersonate the server.

the keyK.K+

A andK�

A respectively stand for agent A's public and private

key.

Next, C generates a fresh, 48-byte random string, called a pre-master-

secret, and sends it to S, c.f. ClientKeyExchange. It later sends an au-

thentication message, Certi�cateVerify, which encrypts the hash of some

session parameters. Now, both server and client compute the master-

secret, M , applying a secure pseudo-random number function, PRF , to

the two nonces and the pre-master-secret. Both client and server will use

the master secret as a symmetric key. To terminate the authentication

process, they exchange a concluding message, which encrypts the hash of

the parameters of the session, together with a string. The content of the

string will be set according to the origin of the sender, c.f. ClientFinished

and ServerFinished.

With this we complete the abstract description of TLS. Now, we dis-

cuss Schneider's approach,[14] y [13], to the veri�cation of security pro-

tocols.

3 Schneider's Approach to Security Protocol Veri�cation

Schneider approaches the study of security protocols in three steps. In the

�rst step, a formal speci�cation of the computer network under analysis

should be provided. The network includes both the principals negotiat-

ing a secure session and a spy. They all communicate through a medium,

which encapsulates lower-level network component, e.g. routers, �rewall,

physical channels and so on. The spy may incur in all sorts of imaginable

computer crimes, such as tampering or impersonation. The principals are

modelled so as to follow the protocol subject to veri�cation. The entire

network is speci�ed using Hoare's process algebra [8], Communicating Se-

quential Processes, CSP. This step outputs a formal model of the protocol,

called a process, which precisely describes the actions of the system, as

well as of its subcomponents.

In the second step, the semantic of the process algebra is used to ex-

press each abstract security requirement. Often, process properties can be

expressed either as a equation, using a suitable notion of process equiva-

lence, or as a logical formula, written in a suitable modal-temporal logic.

Schneider's approach makes use of the trace semantics to processes, which

induces both a useful notion of process equivalence and can express prop-

erties in terms of execution traces.

In the third step formal veri�cation takes place. Often, process alge-

bras can be mechanised with a high level of automation. Schneider has

used FDR [12] to conduct his experimentations. In what follows, we dis-

cuss the �rst two steps further.

3.1 Modelling an Authentication Protocol

Modelling an authentication protocol amounts to modelling a computer

network involving computer nodes and a computer communication net-

work. A computer node may be either a server or a principal, both in-

volved in the authentication process. Also it may be an spy, who en-

dangers any attempt at establishing a secure session. The entire network

is modelled as a compound process, which collects together, via parallel

composition, the communication network and each computer node.

Computer nodes communicate one another only through the commu-

nication network. They all run concurrently. Here is the associated CSP

model:

Node0 Node1 : : : Noden�1 Noden

where P Q denotes a process in which P and Q proceed independently,

without any possibility of interaction.2 Each node is modelled indepen-

dently, according to both the protocol and the role it plays, e.g. a server,

a principal or a spy. By default, the spy is Node0. Except for the spy,

each node has two channels, one is used for input, rec, and the other for

output, trans. Using these channels, each node, Nodei, i 2 f1; : : : ; ng,

interacts with the communication network, Medium:

�
i2f1;::: ;ngNodei

�
trans; recMedium

Let K be a set of channels, then P KQ denotes an agent where P and Q

may proceed independently, but may also interact one another via some

channel in K. is a special case of K, when K is empty. Except for the

spy, a node reads only messages addressed to itself.

To other nodes, the spy is an ordinary node. However, the spy is

capable of altering the conditions of the communication network. He may

intercept, read and send (fake) messages. The spy is given only one extra

channel, out, with which he interacts with the environment in order to

2 Henceforth, we shall use i2IPi for the composition of all processes Pi, i 2 I.

display its knowledge.3 Here is the model of the spy:

Spy(S) = rec?j?i?m! Spy(S)

2 rec?j?i?m! Spy(S [fmg)

2 �INIT[S`mtrans!i!j!m! Spy(S)

2 �INIT[S`mout!m! Spy(S)

Where we have the following observations:

{ � ! P denotes a process that can do � and then become P . � is

an event, involving a channel, fa; b; c; : : : g, input, f?a; ?b; ?c; : : : g, and

output parameters, f!a; !b; !c; : : : g. If the parameter is input, the string

following ? is a variable; otherwise, the string is a concrete expression.

In rec?i?j?m, i; j 2 f0; : : : ; ng and m is any message that is valid

with respect to the protocol under analysis.

{ P2Q disjoins the capabilities of P and Q; as soon as one performs an

action, the other will be dismissed.

{ INIT represents the spy's knowledge before a protocol run; e.g. long-

term keys of compromised agents.

{ Spy o�ers four options:

1. it eliminates a message, rec?j?i?m! Spy(S),

2. it reads a message, rec?j?i?m! Spy(S [fmg),

3. it sends a forged message, �INIT[S`mtrans!i!j!m! Spy(S), and

4. upon request, it displays the knowledge it has gain from a protocol

run, �INIT[S`mout!m! Spy(S).

` models what the spy may infer given both his knowledge and the net-

work traÆc [11, 12]. Given that messages follow either of various speci�c

formats, the spy may forge a message that can be understood by ordinary

nodes.

Medium essentially provides a passive service. It gives computer nodes

the ability to manipulate it in some way, hence making it easy to model

and analyse both protocols and attacks. Medium is de�ned as follows

(initially, B = ;):

Medium(B) = �itrans?i?j?m! Medium(B [fi:j:mg)

2 �i:j:x2Brec!j!i!m! Medium(B � fi:j:mg)

3 Schneider gives the spy three additional channels to enable elimination, interception

and forgery. We think this design decision unnecessary and a source of confusion. So

our model gives the spy the same channels as though he were an ordinary node.

Here is the �nal model of the computer network, Net, at starting point:

Net =
�

i2f1;::: ;ngNodei

�
trans; recMedium(;) trans; recSpy(;)

Now we discuss how to model interesting properties of authentication

protocols.

3.2 Modelling Properties of Authentication Protocols

In CSP, a process is given meaning using a set containing all possi-

ble traces associated with process execution, including the empty trace,

traces(P):

traces(Spy) = fhi; htrans!i!j!mi; htrans!i!j!m; rec!j!i!mi; : : : g

So a property is given as a predicate over traces. Process P enjoys prop-

erty S i� all its traces do, in symbols:

P sat S , 8tr 2 traces(P): S

Often, it is useful to specify properties of traces with respect to a given

set of events. Let K be a set of events, then the projection of trace tr on

K, tr � K, is de�ned as the maximum sub-trace of tr all of whose events

appear in K.

Using the semantics of process, we can cast security properties as

properties over traces. An authentication protocol is said to provide con-

�dentiality for a set of messagesM i� any message of M that is circulating

over the network will be received only by the intended receiver. This is

given by:

Net sat 8m 2M: tr � trans:0:?u:m 6= hi) tr � rec:?u:0:m 6= hi

Equivalently, this property may be expressed as an equation, as follows:

8m 2M: Net rec:?u:0:mStop = Net
trans:0:?u:m
rec:?u:0:m

Stop

where P = Q only if traces(P) = traces(Q), and where Stop denotes the

deadlock process, capable of executing no actions ever.

Authentication is modelled in terms of two sets of events, T and R.

T authenticates R with respect to trace tr i� any one time tr contains

an event e1 2 T , then e1 ought to be preceded by some event e2 2 R, in

symbols:

P sat (T auth R) , P RStop sat tr � T = hi

With this, we complete our revision of Schneider's approach to the veri-

�cation of security protocols. We are now ready to present how we have

adopted his approach to suit CADP and the results of our experimenta-

tions.

4 A CADP Analysis of TLS Using Schneider's Approach

Our experiments closely follow Schneider's approach, only that we use

LOTOS [1] and work within the CADP (Caesar/Ald�ebaran) tool-

box [5]. LOTOS is the process algebra of the International Standard Or-

ganisation (ISO). It inherits theoretical issues from CSP, CCS [9] and

ACP [3]. So a CSP speci�cation can be translated into a LOTOS speci-

�cation with little e�ort. LOTOS speci�cations may be value-passing, as

long as the associated value domains are all �nite. They may manipu-

late complex data structures, described using the well-known theory of

algebraic abstract data types [7].

CADP is an integrated toolbox for specifying, analysing and simulat-

ing communicating systems. It was specially designed to deal with large

case studies. CADP comprehends a wide range of veri�cation methods

and supports communication with other lower-level formalisms. Through-

out our experiments, we use 5 CADP tools:

1. Caesar, to translate a LOTOS speci�cation into a labelled transition

system, portraying its entire behaviour;

2. Caesar.adt, to help Caesar dealing with abstract data types;

3. Ald�ebaran, to prove process equivalence under various notions;

4. Verificator, to test the validity of a �-calculus formula; and

5. Ocis, to simulate protocol execution.

4.1 The TLS model, a Partial Transcript

Our speci�cation di�ers from Schneider's theoretical model, c.f. x3, only

in three aspects: i) parameters range over �nite domains, ii) recursive

computation is disabled, so the protocol can be run only once and iii)

the number of connection resumptions is �xed in advanced. These issues

should not be taken as restrictions: They are all standard, necessary to

guarantee the model is amenable to mechanical analysis.

The full speci�cation of TLS, the analysis we have conducted on it

and the outcome of such analysis are electronically available in the follow-

ing URL: http://research.cem.itesm.mx/raulm/pub/code/tls/ (in

Spanish.) Here we shall just describe important aspects of both the spec-

i�cations and the experiments. To begin with, Table 2 shows the domains

associated with the abstract data types used in our model. Except forMS,

Type Domain

User f0; 1; 2; : : : ; ng

Session f0; 1; 2; : : : ; ng

Parameters fP0; P1; : : : ; Png

Nonce fN0; N1; : : : ; Nng

PMS fPMS0; PMS1; : : : ; PMSng

PublicKey fpubkeyserver; pubkeyclient; pubkeyspyg

PrivateKey fprivkeyserver; privkeyclient; privkeyspyg

Message fClientHello; ServerHello; : : : ; ClientF inished; ServerF inishedg

MS fPRF (n0; n1;m) j n0; n1 2 Nonce and p 2 PMSg

Certi�cate fCert(i; k) j x 2 User and k 2 PublicKeyg

Hashed

�
fHash(n0; n1; i; p) j n0; n1 2 Nonce; i 2 User and p 2 PMSg

[fHash(M;m; : : :) j M 2 MS; m 2 Message; : : : g

Crypted

8<
:
fCrypt(k; P) j k 2 PublicKey and P 2 PMSg

[fCrypt(k;m) j k 2 PrivateKey and m 2 Hashedg

[fCrypt(p;m) j m 2 MS and m 2 Hashedg

Table 2. Type Domains

Certi�cate, Hash and Crypted, they all have straightforward interpreta-

tion. Here we shall look only into MS.MS contains elements of the form

PRF (n0; n1; p), where n0 and n2 are both nonces and p is a pre-master

secret. Notice, however, that PRF on its own is not part of MS.

Medium is as described in x3 except that the set of messages it holds

ought to be �nite:

Medium(n;m;B) =

if n < m then �i trans?i?j?x! Medium(n+ 1;m;B [fi:j:xg)

2 if n > 0 then �i:j:x2B rec!j!i!x! Medium(n� 1;m;B � fi:j:xg)

Notice that, unlike Schneider, we give no special treatment to the spy.

Also notice that while Medium may hold up to m messages, its state,

n, determines its entire capabilities of interaction. Given that it has no

�xed service policy,Medium gives rise to an extraordinary state explosion,

especially when m is set at a large value.

The models associated with both the client and the server are as

expected, following the message communication indicated by TLS. The

model of the client neatly distinguishes two phases: i) the initial, standard

procedure to establish a session and ii) the procedure to recommence a

session. The �rst phase involves both the exchange of messages and the

veri�cation of protocol termination. The client interacts with the system

through three channels, trans, rec and endc. This latter channel is used

only for veri�cation purposes indicating termination of a protocol run.

The server is as the client except that the latter channels is named ends.

Our model gives the server the ability to handle multiple connections.

So we can conduct protocol analysis assuming two or more concurrent

sessions.

Unlike the client and the server, the spy has no �xed model. We change

the spy model according to the property under veri�cation. The root

behind this model decision is that a non sensible model of behaviour may

yield a large number of states that need not be analysed, for they provide

no useful information. Changing the behaviour of the spy, the CADP

framework can be thought of as being a workbench in which we conduct

under control analysis. Here is the standard model of the spy:

Spy(S) = rec?i?j?m!

8<
:
Spy(S [fmg)

2�INIT[S[fmg`xtrans!j!i!x! Spy(S [fmg)

2�INIT[S[fmg`xout!x! Spy(S [fmg)

Notice that unlike Schneider we disable the possibility for message elimi-

nation, as it unnecessarily increases proof workload. Message interception

amounts to message loss, which is handled directly by lower-level proto-

cols, c.f. the protocol record. Naturally, message loss causes the entire

system to deadlock and so we omit it as it does not add to security haz-

ards. To avoid medium ooding, as may occur in Schneider's theoretical

model, the spy cannot introduce any kind of message into the medium

at will. Instead, the spy is assumed to manipulate the messages that go

around the medium only.

The deduction relation, `, is pretty similar to that used by Schneider

except that we explicitly indicate that, according to TLS, the Spy is

assumed not to forge valid certi�cates. Table 3 conveys the de�nition of

the ` relation. There m is any message, k is a symmetric key, k� a public

key and k
+ the corresponding private key. By contrast, k� denotes a key

of any kind. As before, Crypt(k;m) denotes the encryption of message m

using key k, while Hash(m) denotes the hashed message m.

Having discussed the main aspects of our implementation of TLS, we

discuss the conducted analysis.

Axiom De�nition

A1 m 2 B) B ` m

A2 B ` m ^ B ` n) B ` m:n

A3 B ` m) B ` Hash(m)

C1 ` Cert(U;K+
u)) B ` U ^ B ` k

+

K1 ` m ^ B ` k
�
) B ` Cryp(k;m)

K2 ` Crypt(k�; m) ^ B ` k
+

) B ` m

K3 B ` Crypt(k+;m) ^ B ` k
�

) B ` m

K4 B ` Crypt(k;m) ^ B ` k) B ` m

Table 3. Spy's message deduction system

4.2 Analysis and Experimental Results

While versatile, Schneider's approach to protocol veri�cation quickly gives

rise to a state explosion. While in principle one could try to analyse the

weakest protocol con�guration, both hardware and software impose seri-

ous constraints on the number of states that can be analysed. CADP, for

example, cannot handle more than 4�106 states. Within our context, we

found out that the larger con�guration supported by CADP is given by

h6; 2; 2; 2i, a vector conveying the maximum number of nonces, encryption

parameters, pre-master secrets and session resumptions, respectively. In-

creasing either of these �gures will cause system overow. Translating the

protocol description into the associated labelled transition system takes

about 36 Hs. Gettind rid of the spy, the model can be translated in about

100 seconds. The test was run on a 450Mhz Ultra 60, a dual processor

Ultra SPARC machine with 512MB of RAM.

CADP does not provide the trace semantics of FDR. However, it

comes with a number of expressive, powerful logics, including the �-

calculus. We model con�dentiality, c.f. x3, as follows:

Conf(�) = �X: ([�]X ^ [�]ff)

Roughly, this formula means that at the current state � cannot happen,

[�]ff, and that this property will hold in the next state following any

possible trace of execution, [�]X. Put another way, Conf(�) holds only if

� never happens. Clearly, for Conf(�) to be faithful to Schneider's idea

of con�dentiality, � must portray the disclosure of a message that one

wishes the spy will not know about. Tables 4 and 5 show some example

test formula, involving con�dentiality.

Conf(out!Px), where Px 2 Parameters false 1 min

Conf(out!Nx), where Nx 2 Nonce false 1 min

Conf(out!Sx), where Sx 2 Session false 1 min

Conf(out!Pubkey), donde Pubkey 2 Publickey false 2 min

Conf(out!K), where K 2 PrivateKey true 2 min

Conf(out!Px), where Px 2 PMS true 3 min

Conf(out!MSx), where MSx 2MS true 3 min

Table 4. Results about con�dentiality, INIT=;

Conf(out!Px), where Px 2 Parameters false 1 min

Conf(out!N), where N 2 Nonce false 1 min

Conf(out!Sx), where Sx 2 Session false 1 min

Conf(out!K), where K 2 Publickey false 2 min

Conf(out!K), where K 2 PrivateKey-INIT true 2 min

Conf(out!Px), where Px 2 PMS false 3.5 min

Conf(out!MSx), where MSx 2MS false 4 min

Table 5. Results about con�dentiality, INIT=fprivkeyserverg

Here is the formula scheme used to check authentication properties:

Auth(m1;m2) = �X: ([�]X ^ [m2]ff ^ [m1](�Y: [[�m2]Y _ hm2itt]))

Roughly, m2 may not occur unless m1 does. This formula is faithful to

Schneider's interpretation of authentication only if m1 2 T and m2 2 R.

Table 6 show some example test formula, involving authentication. In the

information displayed in Table 6, �i, i 2 f1; : : : ; 5g, appears in Table 7.

Auth(�1; �0) true 1 min

Auth(�0; �1) false 1 min

Auth(�2; �1) true 1 min

Auth(�2; �5) false 1 min

Auth(�4; �3) true 1 min

Auth(�5; �0) false 1 min

Auth(�5; �4) true 1 min

Auth(�4; �5) false 1 min

Table 6. Authentication results

datum

�0 trans !C !S !ClientHello !0 !P0 !n0
�1 rec !S !C !ClientHello !0 !P0 !N0

�2 rec !S !C !ClientCertificate !Cert(C; k+c)

�3 trans !C !S !ClientKeyExchange!Cript(k+s ; PMS0)

�4 trans !C !S !ClientF inished : : :

�5 rec !C !S !ClientF inished : : :

Table 7. Authentication messages

Here is the model of the possibility property stating that some traces

of execution reach the end of a protocol run:

End(�) = �X: (h�iX _ h�itt

Aiming at testing this possibility property, we introduce in our model the

channels ends and endc, see x4. Thus, here, � 2 fends; endcg.

In both cases, INIT = ; and INIT = fprivkeyserverg|see Tables 4

and 5|, we found that:

End(ends) = End(endc) = true

5 Conclusions

We have reported on an analysis of TLS. We have used LOTOS to model

TLS, the �-calculus to express security properties that we wish it to meet

and CADP to conduct formal analysis. Both the speci�cation and the

analysis closely follow Schneider's approach to the veri�cation of security

protocols. We have shown how to adapt Schneider's approach and apply

it to the analysis of TLS, using di�erent formalisms and proof methods.

We report on some security properties that TLS is proved to enjoy.

References

1. ISO. Information processing systems - Open Systems Interconnection { LOTOS

{ A formal description technique based on the temporal ordering of observational

behaviour. ISO 8807, 1989.

2. CCITT. Recommendation X.509: The Directory - Authentication Framework,

1988.

3. J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, 37(1):77{121, 1985.

4. T. Dierks and C. Allen, The TLS Protocol Version 1.0, RFC 2246, January 1999.

5. J. C. Fernandez and H. Garavel and A. Kerbrat and R. Mateescu and L. Mounier

and M. Sighireanu, CADP: A Protocol Validation and Veri�cation Toolbox. In,

R. Alur and T. Henzinger (eds.), Proceedings of the 8th Conference on Computer-

Aided Veri�cation, CAV`96, pp. 437{40, Springer-Verlag, 1996. Lecture Notes in

Computer Science Vol. 1102.

6. A. Frier, P. Karlton, and P. Kocher, The SSL 3.0 Protocol, Netscape Communica-

tions Corp., Nov 18, 1996.

7. J. Guttag, Abstract Data Types and the Development of Data Structures. Com-

munications of the ACM, 20(6):306-404, June 1977.

8. C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

9. R. Milner, A Calculus of Communicating Systems. Prentice-Hall, 1989.

10. L. C. Paulson, Inductive Analysis of the Internet Protocol TLS, Computer Labo-

ratory University of Cambridge, December 1997.

11. A. W. Roscoe, Lecture notes on domain theory, 1986. Oxford University.

12. A. W. Roscoe, Prospects for describing, specifying and verifying Key-exchange

protocols in CSP and FDR, 1994. Formal Systems (Europe) Ltd.

13. S. Schneider, Using CSP for protocol analysis: the Needham-Schroeder Public-Key

Protocol, Technical Report, Royal Holloway, University of London, November 21,

1996.

14. S. Schneider, Security Properties and CSP, IEEE Computer Society Symposium

on Research in Security and Privacy, Oakland, 1996.

15. C. Stirling, An Introduction to Modal and Temporal Logics for CCS. In 1989

UK/Japan workshop on concurrency, pp. 2-20, Springer-Verlag, 1990, Lecture

Notes in Computer Science, v. 491.

