
 364 

USING LOTOS IN WORKFLOW SPECIFICATION 

Vincenza Carchiolo, Alessandro Longheu, Michele Malgeri  
Dipartimento di Informatica e Telecomunicazioni - Facoltà di Ingegneria – Università di Catania 

Viale Andrea Doria, 6 - I95125 Catania – Italy – Phone: +39-095-738-2359 
E-mail : { Vincenza.Carchiolo, Alessandro.Longheu, Michele.Malgeri } @ diit.unict.it 

Keywords: Workflows, Formal description techniques 

Abstract Complexity of business processes is getting higher and higher, due to the rapid evolution of market and 
technologies, and to the reduced time-to-market for new products. Moreover, it is also essential to check 
workflow (WF) correctness, as well as to guarantee specific business rules. This can be achieved using specific 
tools within workflow management systems (WFMS), but a formal approach (mathematical-based) is a more 
effective methodology. Formal description techniques (FDT) based on process algebra allow both to formally 
describe WF at any level of abstraction, and to formally verify properties as correctness and business rules. In 
this paper, we apply FDT in production workflows specification using the LOTOS language. In particular, we 
first show how most recurrent WF patterns can be described in LOTOS, then showing an application example of 
how WFs can be defined based on LOTOS patterns.  

1 INTRODUCTION 

Modern business processes are increasing in their 
complexity due to the global competition, which 
determines the rapid evolution of both market and 
technologies, also reducing the available time-to-
market for new products. 

This scenario makes a critical factor for the success 
of a company the effective use of information 
technology for business process management.  

Even if Workflow Management (WF) (Cichocki, 
1998)(Leymann, 1999) technologies significantly 
improve business automation, many high-value (e.g. 
safety critical) business processes needs a more formal 
approach for specification and verification of 
workflows (e.g. absence of deadlock, abnormal 
termination, or satisfaction of specific business rules). 

Current WF Management Systems (WFMS) 
actually offer some mechanism to specify the flow of 
control (Lawrence, 1997), but a complete formal 
approach is generally not present, mainly due to the 
application-oriented nature of WFMS tools. 

The idea of using formal techniques (Clarke, 1996) 
in workflow specification comes from this gap 
between processes and tools used to manage them. It is  

 
 
indeed important that mapping the requirements on to 
a given implementation is not error-prone, e.g. 
introducing errors or unexpected behaviours due to an 
incomplete or ambiguos specification. Formal 
techniques based on process algebra allow both to 
provide a formal workflows specification and to 
perform a verification about some desired properties.  

In this paper, the application of formal techniques 
to workflow specification is considered. In particular, 
since we want to exploit to what extent formal 
techniques can be effectively used to specify a generic 
workflow, we consider WF patterns (Van der Aalst, 
2000-2), (Van der Aalst, 2000-1), i.e. most recurrent 
pre-defined schemas specifying the flow of sequence. 
Since a generic workflow is defined using such basic 
building blocks, it is significant to provide their formal 
specification, in order to allow the application of FDTs 
in as many cases as possible. 

The application of FDT to workflow specification 
is more interesting since such techniques are not 
currently extensively adopted within WF context. 

In this paper, we focus on the LOTOS language 
(ISO, 1988), an FDT based on process algebra used for 
the design and validation of distributed systems.  



USING LOTOS IN WORKFLOW SPECIFICATION 
 

 365 

2 WORKFLOW AND PATTERNS 

A workflow is the abstraction of a real-world business 
process (Leymann, 1999). WFs aim at defining the 
process logic, i.e. a process description made in terms 
of working steps, also known as activities, which are 
the atomic operations to be performed. The control 
flow is the activities execution sequence,and represents 
paths joining activities, including the conditions that 
define which paths have to be taken if more branches 
comes out from an activity (split) or go into an activity 
(join). Due to the central role of process logic, it is 
important to provide an effective WF specification 
methodology, in order to easily and rapidly specify 
even complex workflows. To meet these requirements, 
in (Van der Aalst, 2000-2) a systematic analysis over 
several different real workflow requirements has been 
conducted, in order to determine which most recurrent 
sequences of activites are generally used, arranging 
them into patterns. Such patterns represent the 
abstraction of activities sequences (Riehle, 1996), and 
are composed when defining new workflows. Patterns 
are grouped into basic control flow, e.g. simple 
sequence, split, or join of activites; advanced control 
flow, where multiple active branches and 
synchronization are considered; structural patterns, 
e.g. loops; temporal and state-based patterns; inter-
workflow synchronization patterns. 

3 LOTOS FOR WF MODELING 

The choice of LOTOS language for workflow 
modeling comes from considering the most two 
commonly used FDTs classes (Clarke, 1996). i.e. 
FDTs using temporal logic to express the properties a 
system should have (CTL,  LTL), and FDTs in which 
specification is made in terms of a high-level model of 
the system (First-order predicate logic, CSP, UNITY). 

When specifying a system, both FDT classes can 
be used, though while the former simply provide a set 
of system properties (i.e. requirement-based 
approach), the latter specifically concerns the system’s 
behavioural semantics, i.e. considering the execution 
order of all operations performed by the system, 
providing them in an event-based fashion; this makes 
the second class of FDTs more suitable to evaluate the 
workflows and their behaviour.  

Among FDT belonging to the second class, we 
choose the LOTOS language (ISO, 1988)(Quemada, 
1987) for its subsystems composition support. Besides, 
LOTOS naturally supports concurrency, making it 
possible to model systems made up of various parts 
which evolve in parallel, a situation typically present 
in workflow models. Finally, LOTOS is widely used 
in system design context; this guarantees the use of a 
standardized technique, whereas several graphical 
tools, as well as libraries, are currently available for 
LOTOS, thus providing more flexibility for workflow 
modelers. 

LOTOS (Language Of Temporal Ordering 
Specification) (ISO, 1988) is an FDT used for the 
description of concurrent and/or distributed systems 
(Bolognesi, 1987).Its basic idea is that the system is 
viewed as a black-box which interacts with the 
environment by means of events, whose occurrence is 
described by LOTOS behavioural expressions. The 
language has two components: the description of 
processes behaviour (Milner, 1980)(Hoare, 1985) and 
the description of its data structure and expressions 
(Mahr, 1985). Here we focus on LOTOS behavioural 
part, which is suitable for WF specification (control 
flow). In LOTOS a system is described in terms of 
processes; the system itself may consist of a hierarchy 
of processes (subprocesses) which interact with each 
other and with the environment. The atomic forms of 
interaction with the outside world are called events. 
The syntax of a process in LOTOS  is: 

   process <process-identifier> <parameter-list> 
:=  

    <behaviour-expressions> 
   endproc 
where: <process-identifier>  is the name to be 

assigned to the process; <parameter-list> is the list of 
events through which the process can interact with the 
environment; <behaviour-expressions> are LOTOS 
expressions which define the behaviour of the process. 
A special process (stop) models a inactive process. A 
detailed specification of LOTOS operators used 
throughout this paper can be found in (ISO, 1988). 



ICEIS 2003 - Information Systems Analysis and Specification 
 

 366 

 
4 WF PATTERNS WITH LOTOS 

As mentioned in sec.1, our goal is the use of LOTOS 
to improve WF specification; since a generic workflow 
can be defined through patterns, we consider LOTOS 
patterns description. In (Longheu, 2001), all patterns are 
described; here we focus on a restricted set of patterns 
used to provide a real case example (sec. 5). 

The integration of patterns and FDTs allows on one 
hand to provide workflow modelers with a set of 
useful predefined schemas to easily and rapidly 
specify the flow of sequence, while on the other it 
guarantees correctness and verification of business 
rules over that specified sequence.  

The proposed approach is schematized in Fig. 1: 
LOTOS-based patterns can be functionally viewed as a 
database from which basic elements are retrieved, and 
subsequently properly arranged to build workflow 
specification from given requirements. The 
composition can be easily performed thanks to 
LOTOS subsystems composition support, while 
LOTOS concurrency support allows to model parallel 
activities, a situation typically present in workflows.  

Then, the specification is formally validated thanks 
to the availability of several LOTOS tools. The 
resulting WF can finally be instantied or further 
revised. 

To populate a LOTOS patterns database, in the 
following we consider a set of patterns, which are 
informally described and formally specificated with 
LOTOS. Note that a finite set of activites will be used 
in specifications to model different patterns; this is 

simply to allow faster simulation of patterns, i.e. it 
does not affect the generality of patterns. In the 
following, emphasys is given to synchronization 
related issues, effectively supported by LOTOS. 

AND-Split pattern models the concurrent 
execution of a set of activities (B,C,D) which run 
independently (no synchronization is actually 
required), all after the completion of a main activity A.  

The LOTOS specification in Fig. 2 contains the 
activity A, followed by concurrent activities B, C, D; 
note that each activity is mapped onto a LOTOS 
process, even if this is not mandatory, rather the high 
abstraction provided by LOTOS allows to model with 
a process both a group of activities, as well as single 
details of a single activity, according to the required 
level of specification. 

Note that the process in the workflow sense should 
not be confused with LOTOS processes: while the 
former is used to indicate the set of activities 
performed by a company (see sec. 2), the latter is the 
abstraction provided by LOTOS to model any set of 
operations, as stated proviously. 

Besides, based on the same principle of abstract 
black-boxes, no internal details of each activity are 
actually given, in order to provide patterns 
specification valid for a general workflow; when 
needed, however, it will be possible to go into further 
details for one or more activities by simply modeling 
them with LOTOS subprocesses, following a top-
down approach. 

Note that in the AND-Split pattern the absence of 
synchronization leads to the absence of interaction 
points among processes B, C, D; this is achieved 
through the interleaving operator ||| (sec. 3.2). 

specification AND_SPLIT_MODEL 
[begin_A,end_A,begin_B,end_B,begin_C,end_C,begin_D,end_D]: exit 
behaviour 
 (i;A[begin_A,end_A])  |  [end_A]  |  ANDSPLIT[end_A,begin_B,begin_C,begin_D]  |    
 [begin_B,begin_C,begin_D]  |  (  B[begin_B,end_B]  |||  C[begin_C,end_C]  |||  D[begin_D,end_D]  ) 
where 
  process AND_SPLIT[end_a,begin_b,begin_c,begin_d]: exit:= 
  DISPATCH[end_a] >>  ( (i;DISPATCH[begin_b])  |||  (i;DISPATCH[begin_c])  |||  (i;DISPATCH[begin_d]))  
    where      process DISPATCH [event]: exit:= event;exit  endproc 
  endproc 
endspec 
 
specification AND_SPLIT_MODEL (alternative) 
[begin_A,end_A,begin_B,end_B,begin_C,end_C,begin_D,end_D]: exit 
behaviour 
 A >> ( B ||| C ||| D ) 
where  
  process A [begin_A,end_A]; exit := ... 
  process B [begin_B,end_B]; exit := ... [similarly, process C and D are defined] 

Figure 2: And-Split pattern 

Figure 1: Schema of proposed approach 



USING LOTOS IN WORKFLOW SPECIFICATION 
 

 367 

Finally, note that the AND-Split is a composition 
of activities which will end just when all its activities 
(i.e., B, C, D) will terminate. 

The process specified in Fig. 2 aims at highlight 
the presence of AND_SPLIT pattern. However, 
LOTOS allows to adopt more specification styles, 
according to the aspect which needs to be highlighted, 
always providing the guarantee that all these 
specifications are formally equivalent. In the same Fig. 
2, the pattern is specified in a simplified alternative 
form, aiming at highlight the sequence of activities 
rather than their synchonization. 

XOR-split pattern describes the common 
situation in workflows when, based on control data 
and/or on external decisions, a specific path is chosen 
over a set of possible paths. Referring to Fig. 2 (the 
difference with And-Split is just in behaviour), the first 
activity (A) is executed, and then just an activity over 
a set of activities (B,C,D) will be executed, depending 
on the result of a condition.  

Note that, as for AND-Split pattern, the description 
is made with a finite set of activities, but it can easily 
generalized to a larger set (i.e. A1…An instead of 
B,C,D). The LOTOS specification  of XOR-Split 
pattern is shown in Fig. 3; the use of parallel operator 
after the XORSPLIT process at the beginning of 
specification imposes a parallelism in a situation in 

which it is not really required. Such specification 
actually just aims at highlight patterns by modeling 
them as independent modules used to compose a 
workflow. To show how LOTOS allows different 
styles of specification, in Fig. 3 we propose the same 
pattern in a slightly different style, though keeping 
highlighted the XORSPLIT process; note in figure just 
modified parts of the specification are shown. 

Milestone pattern (Jablonski, 1996) describes the 
situation in which a given activity is enabled just if a 
specified set of conditions (milestone) has been 
reached and not expired yet. For instance, an activity 
A may be enabled just if an activity B has been 
finished and a third C has not started yet; from a 
temporal ordering point of view, this means A can be 
enabled only within the interval after the execution of 
B and before C starts. 

As an example, consider the complaints 
management workflow, shown in Fig. 4. A complaint 
is made by a person and registered, then a form to be 
filled is sent to that person while at the same time the 
complaint is evaluated. If the form is returned within 
two weeks, it will be examined, otherwise it will be 
discarded. Meanwhile, the complaint is evaluated and 
a decision whether to consider it or not is made, but 
the execution of this decision is anyway delayed until 
the response about the form has been provided. If 

specification XOR_SPLIT_MODEL 
[begin_A,end_A,dec,decision,begin_B,end_B,begin_C,end_C,begin_D,end_D]: exit 
library      BOOLEAN,NATURAL endlib 
behaviour 
(i;A[begin_A,end_A,dec,decision])  |  [decision]  |  XORSPLIT[begin_B,begin_C,begin_D,decision]  | [begin_B,begin_C,begin_D]  |  (  B[begin_B,end_B]
 []  C[begin_C,end_C]  []  D[begin_D,end_D] ) 
where 
  type three is sorts nat opns 
     2(*! constructor *),   3(*! constructor *),   4(*! constructor *): -> nat 
  endtype  
  process XORSPLIT[begin_b,begin_c,begin_d,decision]: exit:=     decision?d:nat; 
     (([d=2]->i;DISPATCH[begin_b])  []  ([d=3]->i;DISPATCH[begin_c])  []  ([d=4]>i;DISPATCH[begin_d]) ) 
  endproc 
  process A [begin_A,end_A,dec,decision]: exit:=  begin_A;  dec?d:nat;  end_A;  decision!d;  exit  endproc 
endspec 
 
specification XOR_SPLIT_MODEL (alternative) 
 ... 
behaviour 
   (i;A[begin_A,end_A,decision])  |  [decision]  |  XORSPLIT[decision]  >>  accept d:nat in 
   (  ([d=2]->B[begin_B,end_B])  []  ([d=3]->C[begin_C,end_C])  []  ([d=4]->D[begin_D,end_D])  ) 
where 
  process XORSPLIT[decision]: exit(nat):=  decision?d:nat;  exit(d)   endproc 
  process A [begin_A,end_A,decision]: exit(nat):=  begin_A;  decision?d:nat;  end_A;  exit(d)   endproc 
endspec 

Figure 3: Xor-Split patterns 

Figure 4: Milestone pattern 



ICEIS 2003 - Information Systems Analysis and Specification 
 

 368 

indeed the timer has been expired, no processing is 
performed, and the complaint will be discarded, 
otherwise the decision is considered. If this decision is 
negative, the complaint will be discarded again, 
whereas if a positive response comes from the 
decision, the processing of the complaint will occur, 
following a cycle until its termination; at that time, the 
complaint will be stored into archives (dismissed). The 
activity COMPLAINT_PROCESSING, which 
processes the complaint, uses the milestone pattern, 
obtained through a combination of an AND-Split with 
a XOR-Split. Indeed, the process based on this pattern 
must wait for the completion of a set of activities, i.e. 
TWO_WEEKS_TIMER, FORM_EVALUATION, 
and PROCESSING_REQUEST. The last is a dummy 
activity used to separate the state checking activity 
from the real complaint processing (performed by 
COMPLAINT_PROCESSING). The MILESTONE 
process is used to determine if 
COMPLAINT_PROCESSING will be actually 
executed; if not, it will select the next activity 
RECORD (store into the archive).  The milestone 
pattern will be used in sec. 5. 

Messaging communication pattern (Fig. 5) 
describes the situation when information are 
exchanged between different activities, which are 
generally considered belonging to distinct workflows: 
a message is sent from a sender in a workflow to a 
receiver in another workflow. In this pattern there is 
only one sender and one receiver, so neither of them 
needs to be explicitly named, and no information about 
destination must be placed inside messages; if more 
receivers are present, simultaneous messages 
communication from the sender would have place, 
while if more senders are present with one receiver, 
this should synchronize all incoming messages. These 
situations are described in two additional patterns 
(bulk messages sending/receiving, see (Van der Aalst, 

2000-1) for details). The fact that messages are sent 
from only one sender to only one receiver is modeled 
through the scopem event, which is shared between the 
two workflows and allows to synchronize sending and 
receiving operations, actually performed by SENDER 
and RECEIVER activities. 

5 APPLICATION EXAMPLE 

In this section all patterns introduced in sec. 4 will be 
interconnected together in order to present a real 
application example. Note that the composition of 
patterns is naturally provided by LOTOS, as specified 
in sec. 3 (subsystems composition support); using this 
feature it will be possible to use patterns to create even 
complex workflows.  

The example considered is that described in 
milestone pattern (sec. 4.3), i.e. the workflow for 
processing a complaint inside a company. Referring to 
Fig. 4, patterns needed to model this flow of control 
are AND-Split, XOR-Split, and Milestone. 

We focus in particular on the MILESTONE 
process based on the milestone pattern, which is used 
to definitively decide about the actual processing of 
the complaint; it then represent a deadline for the 
COMPLAINT_PROCESSING activity. This activity 
should then ask the MILESTONE about the current 
state by sending it a signal; based on the response, 
COMPLAINT_PROCESSING will wait, terminate or 
execute. Actually, the implementation of this 
behaviour is slightly different. Indeed, when the 
COMPLAINT_PROCESSING activity will be 
executed, it will also involved (see Fig. 5) in a loop, 
modeled with LOOP activity, therefore the readability 
could be affected. To avoid this, we decided to 
separate the task of asking the MILESTONE about the 
current state from the actual processing of the 

specification MESSAGING_COMMUNICATION_MODEL 
[begin_workflow1,end_workflow1,begin_workflow2,end_workflow2,scopem,processing,preparation, send_message,
receive_message,evaluate]:exit 
behaviour 
WORKFLOW1[begin_workflow1,processing, send_message,scopem,end_workflow1]  |  [scopem]  | 
WORKFLOW2[begin_workflow2,preparation,scopem,receive_message,evaluate,end_workflow2] 
where 
  process WORKFLOW1 
  [begin_workflow1,processing,send_message,scopem,end_workflow1]: exit:= 
   begin_workflow1;processing; SENDER[send_message,scopem]  >>  end_workflow1;exit 
  where 
     process SENDER [send_message,scopem]: exit:=  send_message;  scopem;  exit   endproc 
  endproc 
  process WORKFLOW2 
  [begin_workflow2,preparation,scopem,receive_message,evaluate,end_workflow2]: exit:= 
   begin_workflow2;preparation;  RECEIVER[scopem,receive_message]  >>  evaluate;end_workflow2;exit 
  where 
    process RECEIVER [scopem,receive_message]: exit:=  scopem; receive_message; exit  endproc 
  endproc 
endspe

Figure 5: Messaging communication pattern 



USING LOTOS IN WORKFLOW SPECIFICATION 
 

 369 

complaint, so two dummy activities are introduced, i.e. 
PROCESSING_REQUEST and NO_PROCESSING, 
simply used to carry the decision about the complaint 
evaluation up to the MILESTONE. In this way, the 
specification is easier since we simply have to wait for 
two results (modeled with AND-Split in Fig. 5), and 
based on them decisions are taken (modeled with 
XOR-Split in the same figure). The complete 
specification for complaints processing is presented in 
(Longheu, 2001). 

Note that, as mentioned in previous sections, 
different styles could be adopted when providing a 
specification; here, we decided to highlight the use of 
patterns as independent modular units used to compose 
the workflow. To evaluate the specification described 
above, as well as the single patterns, we performed a 
simulation using the CADP tool (Fernandez, 
1996)(Garavel, 1997). For simulation purposes, some 
parts of the specifications has been simplified, for 
instance using a reduced number of activities in AND-
Split and XOR-Split patterns, as mentioned in sec. 4. 
Using the CADP toolbox, we verified the correctness 
of specification, and some basic properties (e.g. the 
absence of deadlock and livelock). 

6 CONCLUSIONS 

In this paper, the application of formal techniques for 
workflow specification has been considered. The 
LOTOS language has been used to describe some 
workflow patterns, which can be considered 
representative for most workflow scenarios. Such 
patterns have been described and interconnected 
together to build a real workflow application example. 
Main considerations that comes from our attempt of 
using FDTs (in particular LOTOS) in workflow 
context are: 
LOTOS is suitable for workflow specification, thanks 
to its features of systems composition support, 
concurrency support, and large availability of tools. 
LOTOS allows to adopt different styles for the 
specification of workflow, in order to highlight a 
specific desired characteristic. 
LOTOS is a simple yet powerful technique, since on 
one hand no significant effort is needed to describe 
process and their interconnection to build a control 
flow, whereas formal correctness and/or specific 
business rules can be verified using LOTOS tools. 
Several future issues must be addressed. First, to 
improve simulation results, on one hand performing a 
simulation over all patterns (Longheu, 2001), whereas 

mechanisms to evaluate workflow specific properties 
(Leymann, 1999) should be developed. 
Finally, another important issue is the definition of 
business rules through FDTs, in order to allow 
workflow modelers to add any needed constraint over 
their workflow with the guarantee it can be formally 
satisfied. 

REFERENCES 

Bolognesi, 1987. Introduction to the ISO Specification  
Language LOTOS. Computer Networks and ISD 
Systems, (14) 25-59.  

Clarke, 1996. Formal Methods: State of the Art and Future 
Directions. CMU Computer Science Technical Report 
CMU-CS-96-178.  

Cichocki, 1998. Workflow and process automation: 
Concepts and Technology, Kluwer. 

Fernandez, 1996. CADP, Protocol Validation and 
Verification Toolbox.  

Garavel, 1997. CADP, Status, Applications, and       
Perspectives. 

Hoare, 1985. Communicating Sequential Processes.      
International Series in Computer Science, Prentice-Hall.  

ISO, 1988. Inform. Processing Systems, OSI, LOTOS, IS-
8807 - A Formal Description Technique Based on the 
Temporal Ordering of Observational Behaviour.  

Jablonski, 1996. Workflow Management: Modeling      
Concepts, Architecture, and Implementation. 
International    Thomson Computer Press. 

Lawrence, 1997. Workflow Handbook. Workflow 
Management Coalition. John Wiley and Sons. 

Leymann, 1999. Production Workflow: Concepts and         
Techniques. Prentice Hall. 

Longheu, 2001. Specification and simulation of Workflow 
patterns through Formal Methods, Technical Report 
DIIT-01-447. 

Mahr, 1985. Fundamentals of Algebraic Specifications. 1 
EATCS Monogr. on Comp. Science, Springer-Verlag. 

Milner, 1980. Calculus of communicating systems. LCNS 
92, Springer-Verlag.  

Quemada, 1987. Introduction of Quantitative Relative Time 
into LOTOS. Workshop on Protocol Specification, 
Testing and Verification, VII North Holland. 

Riehle, 1996. Understanding and Using Patterns in         
Software Development. Theory and Practice of Object        
Systems, 2 (1):3-13. 

Van der Aalst, 2000-1. Advanced Workflow Patterns. In 
Proceedings Seventh IFCIS - CoopIS. 

 Van der Aalst, 2000-2. Workflow Patterns. BETA Working 
Paper Series, WP 47, Eindhoven University. 


