
1 

 

Stateless Techniques for Generating Global and Local Test  

Oracles for Message-Passing Concurrent Programs 
 

R. Carver       Yu Lei 

rickhcarver@gmail.com     Dept. of Computer Science and Engineering 

         University of Texas at Arlington,  

         Arlington, Texas 76019 

            ylei@cse.uta.edu 

 

 

Abstract. A test oracle for a concurrent program is a method for checking whether an observed 

behavior of the program is consistent with the program's specification. Abstract specification models for 

message-passing concurrent programs are often expressed as, or can be translated into, a labeled 

transition system (LTS). Stateful techniques for generating test oracles from LTS specification models 

are often limited by the state explosion problem.  In this paper, we present a stateless technique for 

generating global and local test oracles from LTS specification models. A global test oracle uses tests 

generated from a global LTS model of the complete system to verify a global implementation relation 

between the model of the system and its implementation. Global test oracles, however, may require too 

many test sequences to be executed by the implementation. A local test oracle verifies local 

implementation relations between individual component models and their implementation threads. Local 

tests are executed against individual threads, without testing the system as a whole. Verifying the local 

implementation relations implies that a corresponding global implementation relation holds between the 

complete system model and its implementation. Empirical results indicate that using local test oracles 

can significantly reduce the number of executed test sequences. 

 

Keywords: concurrent programs; model-based testing; stateless search; test oracle; test sequences. 

1. Introduction  

A concurrent program contains two or more threads that communicate and synchronize with each 

other to perform some task. Because of their non-deterministic execution behavior, concurrent programs 

are notoriously difficult to test. A test oracle for a concurrent program is a method for checking whether 

an observed behavior of the program is consistent with the requirements or specification. Model-based 

testing uses abstract specification models both as a source of test cases and as a source of information 

for the test oracle.  

Abstract specification models for concurrent programs are often expressed as, or can be translated 



2 

 

into, a labeled transition system (LTS). An LTS models program behavior as a type of state machine. 

Each state in an LTS is an abstraction of a state in the program. Transitions are labeled with the abstract 

program events performed during state transitions.  

Given a specification model M, a test case corresponds to a selected sequence of transitions in the LTS 

representing M. The transition labels of such a sequence define a test sequence. A test oracle can be 

constructed from M as follows: if M accepts a test sequence, then so should a concrete implementation 

CP of M. This implementation relation between M and CP is denoted M ≤ CP [Brinksma 1988; 

Brinksma and Scollo 1986; Brinksma and Scollo 1987; Pitt and Freestone 1990; Tretmans 1999].  

Existing test oracles that are constructed by selecting test sequences from model M have a major 

limitation – while they can check whether the relation M ≤ CP holds, they cannot check whether CP ≤ M 

holds. Relation CP ≤ M says that if M does not accept a test sequence, then neither should CP.  

A second limitation of existing test oracles arises from the potentially huge number of states in the 

LTS representing M. The number of states may be especially large when an interleaving concurrency 

model is used to construct the state space of M. In such a state space, a test sequence corresponds to a 

sequence of states, called an interleaving sequence, in which concurrent transitions are executed one at a 

time, in an arbitrary order. The state space contains one interleaving sequence for each possible order in 

which the concurrent transitions can be executed. The resulting explosion in the number of modeled 

states may prevent a complete state space of M from being built and/or make it impractical to execute 

the implementation with all of the possible test sequences that can be generated from M. 

A different approach to constructing a test oracle is to build multiple, local test oracles. A local test 

oracle verifies a local implementation relation between each individual LTS component model in M and 

its corresponding implementation thread in CP. Local tests are executed against individual threads, 

without testing the system as a whole. The number of local tests generated for an individual thread is 

typically small. Thus, the total number of local tests may be significantly less than the number of global 

tests that can be generated from the complete model.  

A local test oracle can be generated by analyzing a single LTS component model in M. However, 

some of the local test sequences that are generated from a single component may not be allowed in the 

global context of M, which may lead to inconclusive or incorrect test results. For example, a single LTS 

component may allow messages to be received in an order that is not possible if one also considers the 

constraints that the other components in M impose on the order in which messages can be sent. Thus, a 

failure that occurs when a local test is executed may not be possible when the system is executed. 

 Existing techniques for generating local oracles ensure that local oracles are consistent with the 



3 

 

system by considering all of the LTS components in model M when generating a local oracle [Van der 

Bijl et al. 2004; Gotzhein and Khendek 2006; Carver and Lei 2013; Faivre et al. 2007; Kanso et al. 

2012]. These techniques are limited by the potential for state explosion during oracle generation, or by 

the restrictions the techniques impose on the structure of model M such as each state must specify a 

response for every possible modeled input, or model M must contain only two components. 

The salient contributions of this paper are: 

 Test oracles for equivalence checking: We present test oracles for checking the stronger relation M ≈ 

CP, which holds when M and CP accept the same test sequences. Furthermore, we show that this 

equivalence check can be performed using the same test sequences that are generated from M to 

verify the weaker relation M ≤ CP. The test sequences contain additional information that makes it 

possible to compare the non-determinism that is present in M to that in CP, when each of them 

accepts a given test sequence. If CP is more non-deterministic than M, then CP can accept a test 

sequence that M cannot accept. 

 Stateless oracle generation: Stateless techniques for generating global and local test oracles do not 

require any states of model M to be stored, and thus do not require the large amount of memory that 

may be used by stateful techniques. We have adapted that stateless search algorithm in [Lei and 

Carver 2006] to LTS models. This algorithm, is interleaving-free, and guarantees that two test 

sequences never differ only in the order of concurrent events. An embarrassingly parallel version of 

this algorithm can be executed on a cluster of workstations [Carver and Lei 2010a]. This is the first 

time we are aware of that a stateless, interleaving-free search algorithm has been applied to LTS 

models. 

 Local test oracles: Local testing can be used to test implementation threads separately while still 

verifying that the global relation M ≈ CP holds between the complete system model and its 

implementation. Empirical results indicate that using local test oracles can significantly reduce the 

number of test sequences that must be executed against the implementation. 

 Implementation: Our techniques for generating global and local test oracles have been implemented 

using the Modern Multithreading class library [Carver and Tai 2006]. This library contains thread and 

synchronization classes that provide testing and debugging services for multithreaded programs. 

Fig. 1 shows our test automation framework for generating global and local oracles. Tests are 

generated from a model M that specifies a set of LTS component models and their parallel composition. 

Model M may be built by translating a model written in a high-level specification language into a set of 

 



4 

 

 

Figure 1. Test automation framework. 

 

LTS components. We used specification models that were written in the Lotos language [Bolognesi and 

Brinksma 1987] and translated using CADP [Fernandez et al. 1996], in the empirical study reported in 

Section 9. The LTS component models of M are input into the RichTest reachability tool, which outputs 

either a global test oracle for implementation CP or a set of local oracles - one for each thread in CP. A 

deterministic testing tool is used to determine whether CP can exercise the thread interactions specified 

by the global test sequences. A test driver is used to determine whether the interactions specified by the 

local test sequences of a local oracle can be exercised by the corresponding implementation thread. 

To illustrate these contributions and our testing framework, consider an LTS model and Java 

implementation of a well-known distributed mutual exclusion (DME) algorithm [Ricart and Agrawala 

1981]. As reported in Section 9, attempts to build the complete state space of the DME model failed due 

to state explosion. Generating test sequences on-the-fly from the DME model [Tretmans 1999; Tretmans 

and Brinksma 2003] avoids state space construction, but does not reduce the number of interleaving-

based sequences, which we report as more than 72 x 10
33

 sequences. The stateless, global test oracle 

presented in this paper consist of approximately 1.45 billion global test sequences generated from the 



5 

 

DME model, but this is still too many sequences to execute against the DME implementation. Attempts 

to generate local oracles from reduced state space models, as described in [Carver and Lei, 2013], failed 

due to intermediate state explosion. The local oracles presented in this paper use a total of 7,126 local 

test sequences extracted from the 1.45 billion global sequences generated from the DME model. 

Extracting these 7,126 local sequences from the 1.45 billion global sequences and executing the local 

sequences against the individual implementation threads takes considerably less time than generating the 

1.45 billion global sequences and executing all 1.45 billion sequences against the complete 

implementation.  Furthermore, the 7,126 local test sequences can be used to verify that the DME model 

and its implementation accept the same sequences. 

There are several important assumptions associated with our stateless test generation algorithm. The 

first assumption is that the sole source of non-deterministic behavior in an LTS component or 

implementation thread is the non-deterministic order in which the component or thread receives 

messages. The second assumption is that the model is assumed to be closed, i.e., the environment with 

which the implementation interacts is modeled by LTS components in the model. These assumptions are 

discussed in detail in Section 6.  Additional assumptions about the model are discussed in Section 2. 

The remainder of this paper is organized as follows. Section 2 provides background information 

about LTS models and test sequences for concurrent programs. Section 3 describes the execution models 

that we use for stateless searches of LTSs. Section 4 formally defines the global implementation 

relations M ≤ CP, CP ≤ M, and M ≈ CP, and their local counterparts. Section 5 presents an overview of 

the stateless search algorithm in [Lei and Carver 2006]. Sections 6 and 7 show how to use this stateless 

search algorithm to generate global test oracles for relations M ≤ CP and M ≈ CP, respectively. Section 

8 shows how to derive local test oracles for verifying relations M ≤ CP and M ≈ CP. Section 9 reports 

the results of an empirical study on generating global and local oracles. Section 10 surveys related work. 

Section 11 provides concluding remarks and presents our plans for future work. 

 

2. Background 

The stateless test oracle presented in this paper is for concurrent programs that use message passing 

for communication and synchronization. The intended behavior of a message-passing program is 

modeled using an extended LTS model called an annotated LTS [Koppol et al. 2002]. A test sequence of 

a message-passing concurrent program is a sequence of send and receive events, called an SR-sequence. 

In this section, we provide definitions of LTS and ALTS models and SR-sequences. 

 



6 

 

2.1 Labeled Transition Systems (LTS) 

LTS models contain nodes representing the states of a program and labeled edges representing 

transitions from state to state. 

 

Definition 2.1: An LTS is a 4-tuple <Q, E, R, q0>, where Q is a non-empty finite set of states, E is a 

finite set of transition labels, R  QEQ is the transition relation, and q0 is a state in Q denoting the 

initial state. As in CCS [Milner 1989], we assume a set C of channel names exists, and we let the set of 

labels E = C  C , where C  = { a | a  C}.  

For message-passing programs, which synchronize by sending and receiving messages, the labels in 

E encode send and receive events, where e  represents a send event and e a receive event. An LTS may 

contain one or more termination states, which are states without outgoing transitions.  

Fig. 2 shows an LTS with 4 states and 3 transitions. State 0 is the start state and states 2 and 3 are 

termination states. The transition labeled p1 represents a send event, and transitions p2 and p3 represent 

receive events. 

 

Figure 2. LTS model. 

 

In this paper, we assume that each send or receive event in the implementation is expected to appear 

in the LTS model of the implementation. The model may, however, contain “extra” events that are not 

actually implemented. These events, e.g., can be used for specifying and verifying correctness properties 

of the model. We assume that the extra events are removed from the LTS models before test sequences 

are generated from the models. 

We also assume that component models do not contain any unobservable events, called τ (tau) 

events. Tau events can be used to model design decisions that are yet to be made about implementation 

threads. However, we assume that high- and low-level design decisions about the communication and 

synchronization behavior of the components/threads have been made and are reflected in the models 

when testing starts. Our stateless search algorithm does not generate any tau events when test sequences 

are generated.  



7 

 

 

2.2 Annotated Labeled Transition Systems (ALTS) 

The send and receive events in an LTS model are encoded by simple transition labels. Formats that 

have been developed for representing test sequences for implementations encode send and receive 

events with more complex event descriptors [Tai 1985, Tai et al. 1991, Tai and Carver 1996, Lei and 

Carver 2006]. The event descriptors contain implementation information such as the IDs of the sending 

and receiving threads, the operation performed, and the source port of the operation. A port p is a 

communication channel through which messages are sent using p.send() and received using p.receive(). 

Only one thread can receive messages from a given port; this thread is called the owner of the port. 

Koppol et al. [2002] extended the LTS model and the algebraic laws used in CCS to allow 

implementation information, in the form of transition annotations, to be encoded in an LTS.  Their 

extended LTS model is called an annotated labeled transition system (ALTS). As we will show, the 

annotations are used by the stateless search algorithm to generate test sequences. Annotations are also 

used to build an efficient partial-order representation of a test sequence, generate local test sequences, 

and transform an abstract test sequence of the model into a concrete test sequence of the 

implementation.  

 

Definition 2.2: An ALTS is an LTS in which each transition is annotated with information about the 

corresponding implementation event.  Formally, an ALTS is a 5-tuple <Q, E, A, R, q0, N>, where  

 Q is a set of states 

 E is a set of event labels  

 A is a set of annotations 

 R  QE(A)Q is the transition relation 

 q0 is a state in Q denoting the initial state 

 N is an annotation function defined next. 

 

A transition tR has an annotation aA that is determined as follows: 

 A transition labeled with a send event e E is annotated as (Li, Lj, p, op, e) if Li is the ALTS 

executing this transition, Lj is the ALTS that receives the message, and p is the port that is accessed. 

The operation op is synch-send for synchronous message passing and asynch-send for asynchronous 

message passing. The label is e. 



8 

 

 A transition labeled with a receive event eE is annotated as (?, Lj, p, op, e), if Lj is the ALTS 

executing this transition and p is the port that is accessed. The question mark symbol denotes that the 

identifier of the sending ALTS will be determined when this transition is involved in a 

synchronization with a matching send event (see Section 3). The operation op is synch-receive for 

synchronous message passing and asynch-receive for asynchronous message passing. The label is e. 

For readability, a transition (q, f(a), q)  R with label f and annotation a is denoted as '
)(

qq R

af
  , 

with the transition annotation shown in parentheses next to the transition label. The transition can also 

be denoted without specifying label f (or f ), as in 'qq
R

a
 , since the information in annotation a 

includes the label and the operation (send or receive) associated with the transition. The annotation of 

transition t is referred to as t.annotation. The individual fields of a transition annotation can also be 

referenced using dot notation. For example, the source port in an annotation for transition t is referred to 

as t.port. Techniques that have been developed for generating the annotations in an ALTS are described 

below.  

The values for ALTSs Li and Lj in an annotation are handled differently for synchronous and 

asynchronous message passing. When modeling synchronous message passing, the sending and 

receiving ALTSs are modeled as having a direct, synchronous interaction with each other, so the values 

of Li and Lj in an annotation refer to the IDs of the LTSs in the interaction. Fig. 3(a) shows components 

L1, L2, and L3 of a model M. The three boxes give static information about each of components L1, L2, 

and L3. A box has a name that identifies the component and an interface that shows the ports that a 

component uses to communicate with other components. The ALTSs define the dynamic behavior of the 

components. Model M is defined as a composition of its components (L1 | L2 | L3) \ {px_m, py_m}. The 

restriction operator \{px_m, py_m} denotes that only L1, L2, and L3 can synchronize on px_m and py_m, 

i.e., they are not visible to components in the environment of M. Fig. 3(b) shows three implementation 

components P1, P2, and P3 of an implementation CP that implements components L1, L2, and L3 of 

model M. Components P1 and P2 execute send operations to P3. Component P3 executes a select 

statement with two alternatives. The two alternatives allow P3 to receive the messages sent by P1 and P2 

in either order.  

 Since LTS models use synchronous message passing semantics, asynchronous message passing 

must be simulated by using synchronous communication. This is done by having the sending and  



9 

 

 

Figure 3. ALTS models. 

 

receiving ALTSs interact with an ALTS that models a reliable communication medium between them. 

In this case, the values of Li and Lj in an annotation refer to the IDs of the sending and receiving ALTSs, 

respectively, not the medium involved in the synchronous communication. Medium objects model 

implementation ports not threads. Fig. 3(c) shows ALTSs L1 and L2, and an ALTS Medium(L1, L2) that 

is used for sending messages from L1 to L2. ALTS L1 and ALTS Medium(L1, L2) first have a 

synchronous synchronization on px_m_s, which is annotated as an asynch-send event on port px, and 

then Medium(L1, L2) and L2 have a synchronous synchronization on px_m_r, which is annotated as an 

asynch-receive event on port px. The annotations for both events specify L1 and L2 as the sender and 

receiver, respectively.  

In general, we will denote the ALTS component that models the medium between an ALTS Ls and 

an ALTS Lr as Medium(Ls, Lr). ALTS Ls and Medium(Ls, Lr) synchronize on event e_s, while 

Medium(Ls, Lr) and Lr synchronize on event e_r. The annotations map both events to the same 

implementation port p. We assume that an ALTS model of a medium correctly models the behavior of 

an implementation port, based on the guarantees that the communication sub-system or message-passing 

library provides to the programmer about the behavior of ports [Cypher and Leu 1994]. This includes 



10 

 

properties such as message buffering and message ordering. For example, Medium(L1, L2) in Fig. 3(c) 

ensures that a message cannot be received by L2 before it is sent by L1, and that FIFO communication is 

used to pass messages from L1 to L2. 

The events in an ALTS model M may represent message-passing between threads, or they may 

instead represent I/O operations between the threads and their environment, e.g., reading from a 

keyboard, input sensor, or file. Model M thus identifies the inputs that are used to verify the 

implementation relation between M and implementation CP, and also the expected outputs of CP when 

CP is executed with the inputs in M. In the remainder of this paper, we will refer to the I/O values 

specified by M as the inputs and outputs of M, and the possible inputs and expected outputs, 

respectively, of CP. Likewise, if a sequence s of model M contains events that represent input and output 

operations, then the values specified in the input and output events of s are referred to collectively as the 

inputs and outputs of sequence s, denoted inputs(s) and output(s), respectively. We assume that when 

sequence s is used to test CP, the inputs of s are translated into the required input format for CP. An 

input X of implementation CP consists of a sequence of input values for each thread.  

Our test oracles do not require an ALTS model and its implementation to be written at the same level 

of abstraction. Models can be written in specification languages that are problem oriented, not 

implementation oriented [Zave 1984], and in specification styles [Vissers et al. 1988] that express 

solutions using implementation-independent structures. The specification languages need not provide all 

of the implementation details that are provided by programming languages, the latter being concerned 

with issues like efficient execution and opportune code reuse through inheritance.  

Annotation information must be generated in order to create an ALTS model instead of an LTS 

model. The annotation information supplies the implementation details that are needed for test 

execution. Chen and Carver [1996] showed how annotation information can be incorporated into models 

that are written in the Lotos specification language. Transition annotations are automatically computed 

when the Lotos specification is translated into an LTS model. The value passing and matching semantics 

of Lotos ensure that synchronizing events have annotations with matching receiver IDs, ports, and 

labels. The annotation information appears as part of structured transition labels in the resulting LTS. 

This is analogous to the way event descriptors are generated when an implementation is executed. We 

used this approach in the empirical study in Section 9 to create ALTS models from Lotos specifications. 

Refer to Chen and Carver [1996] for details about this approach. 

 

 



11 

 

2.3 SR-sequences of the Implementation 

A test sequence of a message-passing concurrent program is a sequence of synchronized send and 

receive events, called an SR-sequence. A send or receive event refers to the execution of a send or 

receive statement, respectively. 

Let CP be an implementation with concurrent threads {P1, P2, …, Pn}. SR-sequences of CP can be 

totally or partially ordered. 

 

2.3.1 Totally-Ordered SR-sequences of the Implementation 

Information about each synchronization event in a totally-ordered SR-sequence of implementation CP 

is encoded using event annotations, which are analogous to transition annotations.  

 

Definition 2.3: The event annotation for a synchronization event in a totally-ordered SR-sequence of 

implementation CP is (sending thread, receiving thread, port, op, label), where sending thread is the 

thread executing the send event; receiving thread is the thread that receives the message; port is the 

source port, which is owned by the receiving thread; label is a string that encodes the event as described 

below; and op is asynch-send for an asynchronous send event, asynch-receive for an asynchronous 

receive event, and synchronous-synchronization for a synchronization between synchronous send and 

receive events. 

 

Definition 2.4: A totally-ordered SR-sequence of implementation CP is a sequence of send and 

receive events ((sending thread1, receiving thread1, port1, op1, label1), (sending thread2, receiving 

thread2, port2, op2, label2), ….), where (sending threadi, receiving threadi, porti, opi, labeli) denotes the 

i
th

, i>0, event in the SR-sequence.  

 

A totally-ordered SR-sequence may or may not be allowed by the implementation. 

 

Definition 2.5: A totally-ordered SR-sequence Q is feasible for implementation CP with input X if Q 

can be exercised during an execution of CP with input X. (The implementation reads input X from e.g., 

the keyboard, or a file.) 

 

Example 2.1: Two feasible, totally-ordered SR-sequences of implementation CP in Fig. 3(b) are: 



12 

 

 (L2, L3, py, synchronous-synchronization, py_m).(L1, L3, px, synchronous-synchronization, px_m), 

and 

 (L1, L3, px, synchronous-synchronization, px_m).( L2, L3, py, synchronous-synchronization, py_m). 

 

Tools and techniques for determining the feasibility of a totally-ordered SR-sequence for 

implementation CP with input X are described in Section 3.3. 

 

2.3.2 Partially-Ordered SR-sequences of the Implementation 

The test generation technique described in Sections 5 and 6 models the execution of implementation 

CP as a partially-ordered SR-sequence.  

 

Definition 2.6: An event annotation for a send or receive event in a partially-ordered SR-sequence of 

implementation CP has the format (sending thread, receiving thread, port, op, label, j, i), where sending 

thread is the thread that sent the message; receiving thread is the thread that receives the message; port 

is the source port, which is owned by the receiving thread; label is a string that encodes the event as 

described below; i and j are event indices; and op is the operation performed.  

 For a send event s, op is either asynch-send or a synch-send operation; i is the index of send event s, 

indicating that s is the i
th

 event executed by the sending thread; and j is the index of the receive 

event r that is synchronized with send event s, indicating that r is the j
th

 event executed by the 

receiving thread.  

 For a receive event r, op is either asynch-receive or synch-receive; i is the index of receive event r, 

indicating that r is the i
th

 event executed by the receiving thread; and j is the index of the send event 

s that is synchronized with receive event r, indicating that s is the j
th

 event executed by the sending 

thread. 

 

Definition 2.7: A local sequence of thread Pi in CP is a totally-ordered sequence of send and receive 

events ((sending thread1, receiving thread1, port1, op1, label1, j1, 1), (sending thread2, receiving thread2, 

port2, op2, label2, j2, 2), …)  executed by Pi, where (sending threadk, receiving threadk, portk, opk, labelk, 

jk, k) denotes the k
th

, k>0, event in the local sequence. A send (receive) event in a local sequence of Pi 

has Pi as the sending (receiving) thread. 

 



13 

 

Definition 2.8 A local sequence sPi of thread Pi is feasible for Pi with input X if sPi can be exercised 

during an execution of Pi with input X. 

 

A local-testing technique for determining the feasibility of a local sequence for Pi with input X is 

described in Section 8.2. 

 

Definition 2.9: A partially-ordered SR-sequence Q of implementation CP is defined as a tuple (sP1, 

sP2, …, sPi), where sPi, 0 < i ≤ n, is a local sequence of Thread Pi.  

 

Definition 2.10: A partially-ordered SR-sequence Q is feasible for implementation CP with input X if 

Q can be exercised during an execution of CP with input X. 

 

Tools and techniques for determining the feasibility of a partially-ordered SR-sequence for 

implementation CP with input X are described in Section 3.3. 

A feasible partially-ordered SR-sequence can be depicted using a space-time diagram. Fig. 4(b) 

shows an SR-sequence of the synchronous message passing program in Fig. 4(a). The events are named, 

e.g., s1 and r1, and the event annotations appear between parentheses next to the names. The local 

sequence for a thread is simply the send and receive events in the vertical time-line for the thread. 

 

 

Figure 4. Partially-ordered SR-sequence. 

 



14 

 

 If a send event s is synchronized with a receive event r in a feasible SR-sequence, we refer to <s, r> 

as a synchronization pair and say that s is the send partner of r and r is the receive partner of s. Let SP 

be the set of synchronization pairs in an SR-sequence. The synchronization pairs in a feasible SR-

sequence can be derived from the event indices of the send and receive events in the sequence. A receive 

event (sending thread, receiving thread, port, op, label, j, i) indicates that the j
th

 event of the sending 

thread and the i
th

 event of the receiving thread are a synchronization pair. 

The synchronization pairs in a feasible SR-sequence must satisfy certain properties if program 

executions use a message-passing subsystem that has been correctly implemented by the operating 

system or run-time system [Cypher and Leu 1994]:  

SP1: <s,r>  SP  s.i = r.j ˄ r.i = s.j 

SP2: <s,r>  SP ˄ <s,t>  SP  r = t 

SP3: <s,r>  SP ˄ <t,r>  SP  s = t 

Property SP1 ensures that the event indices of the send and receive events in a synchronization pair are 

consistent with each other.  Properties SP2 and SP3 ensure that each event can be paired with at most 

one other event. We assume that the message-passing subsystem in the operating system or run-time 

system has been correctly implemented and thus that these properties hold in every feasible SR-

sequence of an implementation. 

A solid arrow in a space-time diagram drawn between a send event labeled s and a receive event 

labeled r indicates that s and r are a synchronization pair <s,r>. A double-headed arrow represents a 

message passed synchronously from s to r. A single-headed arrow represents an asynchronous message 

from s to r. We will use send(r, Q) to denote the send partner of receive event r, if the send partner 

exists, in an SR-sequence Q. Note that send(r, Q) is undefined if r is not synchronized with any send 

event in Q. 

 

3. SR-sequences of the Model 

 Test oracles are constructed during a stateless search by composing component models to derive an 

SR-sequence that represents a single path through the complete system model. In this section, we define 

totally- and partially-ordered SR-sequences of the model. The format of an SR-sequence of the model is 

the same as that of an SR-sequence of the implementation. This makes the source of an SR-sequence, be 

it a model or an implementation, transparent to the stateless search algorithm. 

 The implementation relations and the test generation techniques presented later consider the SR-

sequences of a model M that is comprised of a set of ALTSs {L1, L2, …, Ln}. To generate SR-sequences 



15 

 

of M, the component ALTSs in M are composed, but the result is an SR-sequence of M, not an 

intermediate or global composite ALTS. Recall that there are no tau transitions in any component 

ALTS, and that we model closed systems, i.e., the environment is modeled as an ALTS. Thus, an SR-

sequence represents a sequence of synchronizations events between the component ALTS models of M, 

which includes M's environment. 

 

3.1 Totally-Ordered SR-sequences of the Model 

Information about each event in a totally-ordered SR-sequence of model M is encoded using event 

annotations. 

 

Definition 3.1: The annotation for an event in a totally-ordered SR-sequence of model M is (sending 

ALTS, receiving ALTS, port, op, label), where sending ALTS is the ALTS executing the send event; 

receiving ALTS is the ALTS that receives the message; port is the source port, which is owned by the 

receiving ALTS; label is a string that encodes the event as described below; and op is asynch-send for an 

asynchronous send event, asynch-receive for an asynchronous receive event, and synchronous-

synchronization for a synchronization between a synchronous send and receive event. 

 

These send and receive event annotations are the same as those used for totally-ordered SR-sequences 

of the implementation. 

 

Definition 3.2: A totally-ordered SR-sequence of model M is a sequence of send and receive events 

((sending ALTS1, receiving ALTS1, port1, op1, label1), (sending ALTS2, receiving ALTS2, port2, op2, 

label2), ….), where (sending ALTSi, receiving ALTSi, porti, opi, labeli) denotes the i
th

, i>0, event in the 

SR-sequence.  

 

A send or receive event occurs when a send transition of one component synchronizes with a 

compatible receive transition of another component. If the synchronization involves a synch-send by  

ALTS La and a synch-receive by ALTS Lb, then La and Lb synchronize directly with each other. Recall 

from Section 2.2 that if La executes an asynch-send to send a message to Lb, or if Lb executes an asynch-

receive to receive a message sent by La, then ALTS Medium(La, Lb) is involved. Component La first 

synchronizes with Medium(La, Lb) on the asynch-send event and then Medium(La, Lb) synchronizes with 



16 

 

Lb on the asynch-receive event. This is modeled by having La and Medium(La, Lb) synchronize on an 

event labeled e_s, and by having Medium(La, Lb) and Lb synchronize on an event labeled e_r. 

 An is-compatible-with relation is defined between send and receive transitions of component ALTSs 

if they have compatible annotations. Compatible send and receive transitions can be synchronized.  

 

Definition 3.3: Compatiblesynch ( ), )()(

dest

aye

sourcedest

axe

source yyxx
bRaR

   iff  

)e(ay)(ax receive,- synchp, ,L ?,e send,- synchp, ,L ,L bba  . 

Definition 3.4: Compatibleasynch-send ( )yy,xx dest
)ay(s_e

sourcedest
)ax(s_e

source )bL,aL(MediunRaR
   iff 

)e_s send,-asynch p, , L?,(ay)e_s send,-asynch p, , L,L(ax bba  . 

Definition 3.5: Compatibleasynch-receive ( )yy,xx dest
)ay(r_e

sourcedest
)ax(r_e

source Rb)bL,aL(MediunR
    iff 

)r_e receive,-asynch p, , L?,(ay)r_e receive,-asynch p,  L,L(ax bb,a   . 

 

Def. 3.3 defines a compatible, synchronous synchronization between sender La and receiver Lb. The 

usual synchronization rule for CCS is used, which requires matching event labels e  and e for the 

synchronized pair of send and receive transitions dest
)ay(e

sourcedest
)ax(e

source yyandxx
bRaR

   . This 

rule is extended to the annotations by also requiring annotations ax and ay to have a matching receiver 

Lb and a matching port p.  This reflects the message-passing semantics of the implementation, which 

requires the sender and receiver to access the same port, for a port that is owned by the receiver. The 

operation types for ax and ay are required to be synch-send and synch-receive, respectively.  

Defs. 3.4 and 3.5 represent an asynchronous send and an asynchronous receive, respectively. ALTS 

Medium(La, Lb) synchronizes with La on the asynch-send and with Lb on the asynch-receive. The event 

labels must match, as usual, and annotations ax and ay must have a matching receiver Lb and a matching 

port p.  The operation types for annotations ax and ay are both required to be either asynch-send or 

asynch-receive. 

 

Example 3.1: In Fig 3(c), ALTS L1 synchronizes with Medium(L1, L2) on compatible transitions  

)10and10(
)2L,1L(MediumR1R

)()(
  

px_m_ssend,-asynchpx,L2,?,px_m_spx_m_ssend,-asynchpx,L2,L1, px_m_s
. The event labels 

px_m_s and px_m_s match, the annotations have a matching receiver L2, a matching port px, and 

matching operation type asynch-send. 



17 

 

 

A function Ann is defined for the annotation that represents a synchronization between two 

compatible send and receive transitions from two local source states to two local destination states. This 

annotation captures the IDs of the sending and receiving components that were synchronized. 

 

Definition 3.6:  

Annsynch ( )yy,xx dest

)ereceive,-synch p, , L?,(e

sourcedest

)esend,-synch p, , L,L(e

source bR

b

aR

ba    def  

(La, Lb, p, synchronous-synchronization,e). 

Definition 3.7: 

Annasynch-send ( )yy,xx dest

)e_ssend,-asynch p, , L?,(s_e

sourcedest

)e_ssend,-asynch p, , L,L(s_e

source )Lb,La(MediunR

b

aR

ba    def  

(La, Lb, p, asynch-send,e_s). 

Definition 3.8: 

Annasynch-receive ( )yy,xx dest

)e_rreceive,-asynch p, , L?,(r_e

sourcedest

)e_sreceive,-asynch p, , L,L(r_e

source Rb

b

)Lb,La(MediunR

ba     

def (La, Lb, p, asynch-receive,e_r). 

 

Def. 3.6 defines the annotation for a synchronous synchronization event that involves components La 

and Lb. The annotation has operation type synchronous-synchronization. The ID of the sending ALTS La 

in the annotation of the send transition is used as the sender ID in the annotation for the synchronous 

synchronization (La, Lb, p, synchronous-synchronization, e).  

Defs. 3.7 and 3.8 define the annotation for an asynchronous synchronization event that involves either 

a sending ALTS La or a receiving ALTS Lb, and an ALTS Medium(La, Lb) that models the medium used 

to send messages from La to Lb. In Def. 3.7, the sending ALTS La executing transition 

dest

se

source xx
aR

 
)e_ssend,-asynch p, , L,L(_ ba  synchronizes with a receive transition 

dest

)e_ssend,-asynch p, , L?,(s_e

source yy
)bL,aMedium(LR

b    of Medium(La, Lb). Both of these events have operation type 

asynch-send in their annotations. In the annotation that represents this synchronization, the event type is 

asynch-send, and the ID of ALTS Lb, not the ID of the medium, is used as the receiving ALTS. In Def. 

3.8, ALTS Medium(La, Lb) executes a send transition dest

re

source xx
R )bL,aMedium(L

ba )e_rreceive,-asynch p, , L,L(_
   that 

synchronizes with a receive transition dest

re

source yy
bR

 
)e_rreceive,-asynch p, , L?,(_ b  of the receiving ALTS Lb. 

Both of these events have operation type asynch-receive in their annotations. In the annotation that 



18 

 

represents this synchronization, the event type is asynch-receive, and the ID of ALTS La, not the ID of 

the medium, is used as the sending ALTS.  The ID of ALTS Medium(La, Lb) is not used in any 

annotations, as it is not mapped to an actual thread in the implementation; rather, ALTS Medium(La, Lb) 

specifies the behavior of implementation port p. 

 

Example 3.2: Continuing Example 3.1, the annotation for the synchronization between L1 and 

Medium(L1, L2) is (L1, L2, px, asynch-send, px_m_1). The ID of the receiving ALTS is L2, indicating that 

this event models an asynchronous send event from L1 to L2. 

 

Recall from Section 2.2 that component ALTS Li of model M is the 5-tuple <Qi, Ei, Ai, Ri, q0i, Ni>, 1 

≤ i ≤ n. 

 

Definition 3.9: A global state g of model M is a tuple <q
1
, q

2
, …, q

n
> where local state q

i
  Qi for 

every }..1{ ni . The initial global state g0 of M is the tuple of initial local states <q0
1
, q0

2
, …, q0

n
>. 

 

A synchronized step from global state g to global state g' in model M is a synchronization between 

two compatible local transitions of ALTS components. A synchronized step modifies the local states of 

the synchronizing components and leaves the states of the other components unchanged. 

 

Definition 3.10: Let La, Lb, and Medium(La, Lb) be component ALTSs of M.  A synchronized step of 

M is a tuple of the form:  

(a) <g, ( )yy,xx dest

)ereceive,-synch p, , L?,(e

sourcedest

)esend,-synch p, , L,L(e

source bR

b

aR

ba    ), g’>, or  

(b) <g, ( )yy,xx dest

)e_ssend,-asynch p, , L?,(s_e

sourcedest

)e_ssend,-asynch p, , L,L(s_e

source )Lb,La(MediunR

b

aR

ba    , g’>,  or  

(c) <g, ( ),
)e_rreceive,-asynch p, , L?,(_)e_rreceive,-asynch p, , L,L(_ b

),(

ba

dest

re

sourcedest

re

source yyxx
RbLbLaMediunR

   , g’>, 

where global state g = <q
1
, q

2
, …, q

n
>, global state g’ = <q

1'
, q

2'
, …, q

n'
>, and the following conditions 

are satisfied for every }..1{ ni :  

For a step of form (a):  

(1) qa
 = xsource,  q

a'
 = xdest,  q

b
 = ysource,  and q

b'
 = ydest 

(2) if i ≠ a and i ≠ b then q
i
 = q

i'
    

(3) Compatible( ),
)ereceive,-synch p, , L?,()esend,-synch p, , L,L( bba

dest

e

sourcedest

e

source yyxx
bRaR

   . 



19 

 

For a step of form (b):  

(1) qa
 = xsource,  q

a'
 = xdest,  q

Medium(La, Lb) 
= ysource, and  q

Medium(La, Lb)'
 = ydest 

(2) if i ≠ a and i ≠ Medium(La, Lb) then q
i
 = q

i'
    

(3) Compatible( ),
),(

bba )e_ssend,-asynch p, , L?,(_)e_ssend,-asynch p, , L,L(_

dest

se

sourcedest

se

source yyxx
LbLaMediunRaR

    

For a step of form (c):  

(1) qMedium(La, Lb)
 = xsource,  q

Medium(La, Lb)'
 = xdest,  q

b
 = ysource, and  q

b'
 = ydest 

(2) if i ≠ Medium(La, Lb) and i ≠ b then q
i
 = q

i'
    

(3) Compatible( ),
)e_rreceive,-asynch p, , L?,(_)e_rreceive,-asynch p, , L,L(_ b

),(

ba

dest

re

sourcedest

re

source yyxx
RbLbLaMediunR

   . 

 A synchronized step from global state g to global state g' involves two transitions, which are either 

(a) synchronous send and receive transitions from La and Lb; (b) send and receive transitions from La and 

Medium(La, Lb) that model an asynchronous send; or (c) send and receive transitions from Medium(La, 

Lb) and Lb that model an asynchronous receive. The local states of the synchronizing components are 

modified (1) and the local states of the other components are unchanged (2). The synchronized 

transitions must be compatible (3). 

 

A feasible SR-sequence of model M is a sequence of synchronized steps between the components in M. 

 

Definition 3.11: A totally-ordered SR-sequence ((Ls1, Lr1, p1, op1, e1), (Ls2, Lr2, p2, op2, e2), …, (Lsk, 

Lrk, pk, opk, ek)) is feasible for model M if there is a sequence g1, g2, …, gk of global states such that for 

every }1..1{  ki :  

<gi, ( )yy,xx dest

)ereceive,-synch p, , L?,(e

sourcedest

)esend,-synch p, , L,L(e

source bR

b

aR

ba    ,gi+1>, or  

<gi,( )yy,xx dest

)e_ssend,-asynch p, , L?,(s_e

sourcedest

)e_ssend,-asynch p, , L,L(s_e

source )Lb,La(MediunR

b

aR

ba    ,gi+1>, or  

<gi,( ),
)e_rreceive,-asynch p, , L?,(_)e_rreceive,-asynch p, , L,L(_ b

),(

ba

dest

re

sourcedest

re

source yyxx
RbLbLaMediunR

   ,gi+1>  

is a synchronized step of M and either 

(Lsi, Lri, pi, opi, ei) = Annsynch( ),
)esend,-synch p, , L,L()esend,-synch p, , L,L( baba

dest

e

sourcedest

e

source yyxx
bRaR

   ,    

or (Lsi, Lri, pi, opi, ei) =  

Annasynch-send( ),
),(

bba )e_ssend,-asynch p, , L?,(_)e_ssend,-asynch p, , L,L(_

dest

se

sourcedest

se

source yyxx
LbLaMediunRaR

   , or  

(Lsi, Lri, pi, opi, ei) = Annasynch-receive( ,
),(

ba )e_rreceive,-asynch p, , L,L(_

dest

re

source xx
LbLaMediunR

   



20 

 

 ( )yy dest

)e_rreceive,-asynch p, , L?,(r_e

source Rb

b   . 

 

Example 3.3: A totally-ordered SR-sequence of model M in Fig. 3(a) is (L2, L3, py, synchronous-

synchronization, py_m).(L1, L3, px, synchronous-synchronization, px_m). The sequence of synchronized 

steps of model M is: 

)011,10,10,000(
3R2R

)m_y()(
  

preceive,-synchpy,L3?,py_mpy_msend,-synchpy,L3,L2,py_m , , 

)112,21,10,011(
3R1R

)px_mreceive,-synchpx,L3,?,(px_m)px_msend,-synchpx,L3,L1,( px_m
   . 

For model M in Fig. 3(c), a totally-ordered SR-sequence that includes the synchronization between L1 

and Medium(L1, L2) and the synchronization between Medium(L1, L2) and L2 is (L1, L2, px, asynch-send, 

px_m_s).(L1, L2, px, asynch-receive, px_m_r). This sequence models a message sent asynchronously 

from L1 to L2 and the corresponding reception of this message by L2. The sequence of synchronized steps 

of model M is: 

)101,10,10,000(
)2L,1L(MediumR2R

s_m_x()(s_
  

psend,-asynchpx,L2,?,px_m_spx_m_ssend,-asynchpx,L2,L1,px_m , 

)112,10,21,101(
3R)2L,1L(MediumR

)px_m_rreceive,-asynchpx,L2,?,(px_m_r)px_m_rreceive,-asynchpx,L2,L1,(px_m_r 
   . 

 

3.2 Partially-Ordered SR-sequences of the Model 

Partially-ordered SR-sequences of the model have the same format as partially-ordered SR-sequences 

of the implementation – there is a local sequence for each ALTS component. 

 

Definition 3.12: An event annotation for an event in a local sequence of an ALTS has the format 

(sending ALTS, receiving ALTS, port, op, label, j, i), where the meanings of the fields are the same as 

those for events in implementation-based local sequences in Def. 2.6. 

 

Definition 3.13: A local sequence of ALTS component Li is a totally-ordered sequence of send and 

receive events ((sending ALTS1, receiving ALTS1, port1, op1, label1, j1, 1), (sending ALTS2, receiving 

ALTS2, port2, op2, label2, j2, 2), ….), executed by Li, where (sending ALTSk, receiving ALTSk, portk, opk, 

labelk, jk,  k) denotes the k
th

, k>0, event in the local sequence. A send (receive) event in a local sequence 

of ALTS Li has Li as the sending (receiving) ALTS. 

 



21 

 

A local sequence of ALTS component Li is feasible for Li if it corresponds to a sequence of 

transitions through Li. 

 

Definition 3.14: Let sLi = ((sending ALTS1, receiving ALTS1, port1, op1, label1, j1, 1), (sending ALTS2, 

receiving ALTS2, port2, op2, label2, j2, 2), … ), be a local sequence of ALTS component Li. Local 

sequence sLi is feasible for Li if Li has a sequence of transitions 

,...,3

a

2

a

1
21

ii Qssss
RiRi

 where state s1 is the start state q0i of Li, and for event (sending 

ALTSk, receiving ALTSk, pk, opk, labelk, jk, k) and transition 1

a k

 kk ss
Ri

, k>0, of Li, one of the 

following conditions is true: 

 opk is a send event and annotation ak = (sending ALTSk, receiving ALTSk, pk, opk, labelk),  

 opk is a receive event and annotation ak = (?, receiving ALTSk, pk, opk, labelk); 

otherwise, local sequence sLi is infeasible for Li.  

 

Note that a receive event (sending ALTSk, receiving ALTSk, pk, opk, labelk, jk, k) in local sequence sLi 

specifies the IDs of both the receiving ALTS and the sending ALTS. Such an event is feasible if 

transition 1k

a

k ss
Ri

k

 of ALTS Li is a receive transition whose annotation ak = (?, receiving ALTSk, 

pk, opk, labelk) specifies the same receiving ALTS as the receive event, but only specifies ‘?’ for the 

sending ALTS, i.e., the ID of the sending ALTS is ignored. Recall that the ‘?’ in the transition 

annotation indicates that the receiver can be synchronized with any sending ALTS that can access port 

pk.  

Note also that only the behavior of component Li is considered when determining the feasibility of a 

local sequence of Li. For an event (sending ALTSk, receiving ALTSk, pk, opk, labelk, jk, k) in a local 

sequence of Li, the event index jk of the thread that synchronizes with Li is ignored. If this event is a 

receive event, then the ID of the sending ALTS is also ignored, as described above.  This means that a 

feasible local sequence of Li may not actually be allowed to occur when the constraints imposed on Li by 

the other component ALTSs in M are considered. Recall that the transition annotations in an ALTS do 

not include event indices. A given transition in an ALTS can appear in many different positions, i.e., 

with many different event indices, in a local sequence of the ALTS.  

The test generation algorithm defined later generates a set of local sequences for each of the ALTS 

components. If two generated local sequences of a component are equivalent, then only one of the 

sequences is used for testing. Two equivalent local sequences of an ALTS component L contain 



22 

 

equivalent events. The fields of equivalent events of L have equal values, except possibly for the event 

indices of the threads that synchronize with L. This means that two equal events of L will both involve 

messages that are exchanged between L and some other ALTS L', but one of the equal events of L may 

be synchronized with the i
th

 event of L' while the other is synchronized with the j
th

 event of L', i≠j. Note, 

however, that the labels of the two equal events of L capture the message values that are exchanged 

between L and L' and these labels must be the same. Hence, L's behavior after a sequence of equal 

events will be the same.  

 

Definition 3.15: Let s1 and s2 be feasible local sequences of ALTS component L, where  

s1 = ,ALTS receiving ,ALTS (sending),i ,j ,label,op ,port ,ALTS receiving ,ALTS ((sending 1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1
 

    .)… ),i ,j ,label ,op2 ,port 1

2

1

2

1

2

1

2

1

2
, and  

s2 = ,ALTS receiving ,ALTS (sending),i ,j ,label,op ,port ,ALTS receiving ,ALTS ((sending 2

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1
 

     ,op2,port 2

2

2

2
,j ,label 2

2

2

2 .)… ),i2

2 .  

Event )i ,j ,label ,op ,port ,ALTS receiving ,ALTS (sending 1
a

1
a

1
a

1
a

1
a

1
a

1
a

, a>0, of s1 is equivalent to event 

)i ,j ,label ,op ,port ,ALTS receiving ,ALTS (sending 2
b

2
b

2
b

1
b

2
b

2
b

2
b

, b>0, of s2 if )2
b

1
a ALTS sendingALTS (sending   

)()))()( 2
b

1
a

2
b

1
a

2
b

1
a

2
b

1
a

2
b

1
a iilabel(label op (op port portALTS receivingALTS receiving  . 

 

Equivalent local sequences of ALTS component L have equivalent events.  

 

Definition 3.16: Let s1 and s2 be feasible local sequences of ALTS component L, where  

s1 = ,op ,port ,ALTS receiving ,ALTS ((sending 1

1

1

1

1

1

1

1
,port ,ALTS receiving ,ALTS (sending),i ,j ,label 1

2

1

2

1

2

1

1

1

1

1

1  

 )  …  ),i ,j ,label ,op2 1

2

1

2

1

2

1

2 , and  

s2 = ,port,ALTS receiving ,ALTS (sending),i ,j ,label ,op ,port ,ALTS receiving ,ALTS ((sending 2

2

2

2

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

1
 

,j ,label ,op2 2

2

2

2

2

2 )  …  ),i2

2
. 

Sequence s1 is equivalent to sequence s2 if event )i ,j ,label ,op ,port ,ALTS receiving ,ALTS (sending 1
k

1
k

1
k

1
k

1
k

1
k

1
k  of s1 

is equivalent to event receiving ,ALTS (sending 2
k )i ,j ,label ,op ,port ,ALTS 2

k

2

k

2

k

2

k

2

k

2

k
 of s2, for all k>0. 

 

Definition 3.17: A partially-ordered SR-sequence Q is defined as a tuple (sL1, sL2, …, sLn), where sLi is 

a local sequence of ALTS Li, 1 ≤ i ≤ n. 

 

If a send event s in local sequence sLi of ALTS Li is synchronized with receive event r in local 

sequence sLj of ALTS Lj, then <s,r> is a synchronization pair. We assume that the synchronization pairs 

in a partially-ordered SR-sequence of the model satisfy properties SP1 – SP3 in Section 2.3.2. The 



23 

 

algorithm in Section 6 for generating an SR-sequence of a model ensures that these properties are 

satisfied. 

 

Example 3.4: Fig. 4(b) shows a partially-ordered SR-sequence of the synchronous message passing 

model in Fig. 4(c) and of the implementation in Fig. 4(a). For the implementation, the sending and 

receiving threads in the SR-sequence are T1 – T4; for the model, the sending and receiving ALTSs in the 

SR-sequence are L1 – L4. 

 

Each synchronization pair in a partially-ordered SR-sequence forms a synchronization event in the 

format defined in Def. 3.1, which defines the format for the synchronization events in a totally-ordered 

SR-sequence. We will refer to these synchronization events as TO-events.  If one of the send or receive 

events in a synchronization pair is executed by an ALTS modeling a medium, then the operation for the 

corresponding TO-event is asynch-send or asynch-receive; otherwise, the operation for the TO-event is a 

synchronous-synchronization between two non-medium ALTSs.  

 

Definition 3.18: Partially-ordered SR-sequence Q = (sL1, sL2, …, sLn) is feasible for model M if there 

exists a total ordering of the TO-events in Q that is consistent with the happened-before relation among 

the events in Q and that is feasible for M.  

 

The happened-before relation in Definition 3.18 is the well-known happened-before causality relation 

formulated by [Lamport 1978]. Intuitively, an event e1 happened-before another event e2 in a sequence 

if e1 could have affected e2. If not e1 happened-before e2 and not e2 happened-before e1, then e1 and e2 

are considered to be concurrent events. The feasible, totally-ordered sequences of M were defined in 

Def. 3.11. There may be more than one feasible total ordering of the TO-events that is consistent with 

the happened-before relation among the events in Q. 

 

Example 3.5: For the partially-ordered SR-sequence in Fig. 4(b) there are 3 synchronization pairs 

<s1,r1>, <s2,r2>, and <s3,r3>. These pairs form the three TO-events (L1, L2, p2, synchronous-

synchronization, p2 ), (L2, L3, p3, synchronous-synchronization, p3 ), and (L4, L3, p3, synchronous-

synchronization, p3). The sequence of TO-events (L1, L2, p2, synchronous-synchronization, p2 ).(L4, L3, 

p3, synchronous-synchronization, p3).(L2, L3, p3, synchronous-synchronization, p3) is consistent with 

the happened-before relation among the events in the SR-sequence in Fig. 4(b) and is feasible for model 



24 

 

M in Fig. 4(c) based on Def. 3.11. The other consistent and feasible sequence of TO-events is (L4, L3, 

p3, synchronous-synchronization, p3).(L1, L2, p2, synchronous-synchronization, p2 ).(L2, L3, p3, 

synchronous-synchronization, p3). 

 As shown later, applying reachability testing to a model M requires us to draw a correspondence 

between events in two different feasible, partially-ordered SR-sequences of the model. The following 

definition shows that two events are equal if their annotations are equal.  

 

Definition 3.19: Let Q and Q' be two feasible, partially-ordered SR-sequences of model M. Let e be 

an event in Q and e' an event in Q'. Events e and e' are equal, denoted as e = e', if the annotations for e 

and e' are identical. 

 

Intuitively, two feasible, partially-ordered SR-sequences of the model are equivalent if their events 

are equal. 

 

Definition 3.20: Two feasible partially-ordered SR-sequences Q and Q’ are equivalent, denoted as Q 

 Q’, if there exists a one-to-one mapping m from the events in Q to the events in Q’ that preserves 

event equality, i.e., m(e1) = e2  if and only if e1 and e2 are equal events. 

 

Since equal events have equal annotations, and the event annotations for the events in an SR-

sequence capture the event labels, the order of events, and the synchronization pairs in the SR-sequence, 

equivalent SR-sequences have events with the same labels in the same partial order, and have the same 

synchronization pairs. 

 

3.3 Model-Based Testing with SR-sequences 

In order to perform model-based testing with SR-sequences, it must be possible to compare the values 

of the messages passed between threads during an execution to the expected values specified as 

transition labels in an ALTS model. Message values for implementation messages are encoded by the 

label fields in the send and receive event annotations. The labels in an ALTS encode the expected 

message values. Different possible message values are represented by different labels, at some chosen 

level of abstraction. For example, in Figs. 3(a) and 3(b), we use the label “px_m” to represent sending or 

receiving message m on port px. The level of abstraction affects the size of the ALTS model and the 

types of errors that can be detected during model-based testing [Carver 1996]. 



25 

 

The Modern Multithreading class library mentioned earlier automatically generates information about 

each send or receive event that is executed by the implementation, including the port name, the 

operation performed, and the IDs of the sending and receiving threads. However, the programmer must 

assist in generating labels for the exercised events. These labels are expected to match the labels that 

appear in the corresponding ALTS models. Event labeling in the Modern Multithreading library is 

performed using special event-labeler objects associated with ports. 

Using programmer-generated event labels introduces the potential for “mapping errors” in the 

implementation. Event-labeler objects can be tested separately using normal testing techniques for 

objects. However, mapping errors that go undetected may allow an incorrect program to pass its tests, or 

cause a correct program to fail. The potential for errors in the generated labels is a limitation of our 

approach to mapping between the model and its implementation. 

As a practical matter, it may be easier to work with totally-ordered SR-sequences than partially-

ordered sequences. Totally-ordered SR-sequences are easier to represent, and it is easier to refer to 

properties like “the last event of a sequence” when the SR-sequence is totally-ordered. Thus, instead of 

dealing with some partially-ordered SR-sequence s, we may instead refer to a totally-ordered SR-

sequence that is consistent with the causal ordering of events in s. 

 

Lemma 3.1: Let s be a feasible, partially-ordered SR-sequence and t be a totally-ordered sequence 

that is consistent with s. Then s is feasible for CP iff t is feasible for CP [Tai and Carver 1996]. 

 

During model-based testing, we may need to determine whether a feasible SR-sequence of model M 

is feasible for implementation CP. 

 

Definition 3.19: Let s be a feasible, totally- or partially-ordered SR-sequence of model M. Sequence s 

is feasible for implementation CP if an execution of CP with input inputs(s) can exercise sequence s and 

produce result outputs(s). 

 

The Modern Multithreading class library contains deterministic testing tools for determining 

whether a specified global SR-sequence s of M is feasible for a given implementation.  Deterministic 

testing uses a “forced execution” of the implementation to determine whether s is feasible. The 

deterministic testing tool used to perform the case studies in this paper is described in [Carver and Tai, 

2006; Carver and Lei 2010a, Carver and Lei 2010b]. The tool allows the global SR-sequence to be in 



26 

 

either total- or partial-order format. The abstract input and output events in test sequence s must be 

translated into concrete inputs and expected outputs of the implementation before the test is executed.    

 

4. Implementation Relations 

Test generation begins with an abstract model M comprised of a set of ALTSs {L1, L2, …, Lm}, and a 

concrete implementation CP of M with concurrent threads {P1, P2, …, Pn}. We assume that a mapping 

exists between the ALTSs in M and the threads in CP, but we allow some flexibility in this mapping. In 

some cases, two or more ALTSs in M may be composed to create a single ALTS that is mapped to a 

thread in CP. In other cases, some ALTSs in M may not be mapped to any thread in CP. For example, M 

may contain an ALTS that models the behavior of a reliable communication medium for which there is 

no equivalent thread in CP. Likewise, M may contain an ALTS that models a component of the 

environment that supplies program inputs. To simplify our presentation, we assume that the number n of 

threads equals the number m of ALTSs and that thread Pi of CP is mapped to ALTS Li of M. We also 

assume the alphabets of event labels for Pi and Li are intended to be the same.  

 

4.1 Implementation Relation M F CP  

The correctness of an implementation CP can be defined in terms of an implementation relation that 

is required to hold between CP and the ALTS model M of CP.  The set of all feasible, finite, partially-

ordered SR-sequences of model M is denoted by FeasibleM. The set of all feasible, finite, partially-

ordered SR-sequences of implementation CP is denoted by FeasibleCP.  

A global implementation relation that is often used for test generation is denoted by M F CP. 

 

Definition 4.1: M F CP def FeasibleM  FeasibleCP. 

 

Relation M F CP requires each feasible sequence s of model M to be feasible for implementation CP. 

However, CP may have feasible sequences that are not feasible for M. This relation indicates that M is 

perhaps incomplete and thus is extended by CP, i.e., CP adds behavior that is not in M, but all of the 

behaviors of M are still allowed by CP [Brinksma 1988; Brinksma and Scollo 1986; Brinksma and 

Scollo 1987].  

 

Example 4.1: For model M in Fig. 3(a), sequence (L2, L3, py, synchronous-synchronization, 

py_m).(L1, L3, px, synchronous-synchronization, px_m) is feasible. There is no feasible sequence of M in 



27 

 

which LTSs L1 and L3 synchronize before LTSs L2 and L3. Implementation CP in Fig. 3(b) allows the 

synchronizations to occur in either order, but relation M F CP still holds. 

 

In Def. 4.1, sequence s is a sequence in FeasibleM, hence the feasible sequences of CP are the 

sequences that can be exercised by CP when CP is executed with inputs modeled by M. Assume M F 

CP holds. If CP were to be executed with an input that is not modeled by M, then CP might exercise a 

sequence that is not feasible for M, but we only consider inputs modeled by M when we verify M F CP. 

In the remainder of this paper, the term “feasible sequences of CP” refers to the sequences of CP that are 

feasible for inputs that are modeled by M. It may also be true that if the alphabets of M and CP were 

revised to, say, model program behavior at a lower level of abstraction, then errors in CP would be 

exposed, preventing relation M F CP from holding. In general, an implementation relation is verified 

with regard to a given level of abstraction in the specification model. A “verified” implementation may 

still contain errors that are masked by the abstractions. 

 

4.2 A Local Implementation Relation for F 

The implementation relation in Def. 4.1 is for the full model M and its implementation CP. In this 

section, we define an implementation relation for an individual thread Pi in CP and the ALTS Li = <Qi, 

Ei, Ai, Ri, q0i, Ni> in M to which Pi is mapped. The definition of a feasible local sequence of ALTS Li 

was given in Def. 3.14. The set of all feasible, finite, local SR-sequences of ALTS Li is denoted by 

FeasibleLi.  

 

As we mentioned in Section 3.2, a feasible local sequence of Li may not actually be allowed to occur 

when the constraints imposed on Li by Li’s environment in M are considered. For example, Li may allow 

two messages to be received in either order, while Li’s environment may require the first message sent to 

Li to be received before the second message sent to Li can be sent. 

 

Definition 4.2: A feasible local SR-sequence tLi of ALTS Li is constrained with respect to model M if 

there exists a feasible, partially-ordered SR-sequence Q = (sL1, sL2, …, sLn) of M such that tLi = sLi. The 

set of constrained sequences of Li with respect to model M is denoted Constrained-Sequences(Li, M), or 

just Constrained-Sequences(Li) when M is understood. 

 



28 

 

Constrained-Sequences(Li) captures the constraints imposed on Li by the other ALTSs in M. 

 

Example 4.2: In Fig. 5, Constrained-Sequences(L2) contains sequence (L1, L2, a, receive, a, 1, 1) and 

sequence (L1, L2, a, receive, a, 1, 1).(L1, L2, b, receive, b, 2, 2). Constrained-Sequences(L2) does not 

contain a sequence that starts with a receive event for port b, even though L2 itself is allowed to execute 

such a receive event first. This is because there is no feasible sequence of M that begins with a 

synchronization between L2 and L1 on port b. 

 

 

Figure 5. Local sequences of an ALTS. 

 

The annotations on the events in a local test sequence sLi specify the interactions that occur between 

Li and its environment when the events in sLi are exercised. If Li exercises a receive (send) event then the 

environment should exercise a matching send (receive) event when the test sequence is executed. An 

environment of Li that interacts as specified by the annotations in sLi is referred to as a conforming 

environment of sequence sLi. 

 

Definition 4.3: A local sequence sLi in Constrained-Sequences(Li, M) is feasible for implementation 

thread Pi if Pi can exercise sequence sLi when Pi is executed with a conforming environment of sLi. 

 

A procedure for checking the feasibility of a constrained, local test sequence for an implementation 

thread is given in Section 8. In this procedure, when determining the feasibility of local sequence sLi for 

the thread Pi that implements Li, synchronizations between Pi and the other threads in CP do not actually 

occur. Instead, a conforming test environment, in the form of a test driver, simulates Pi’s environment in 

CP by supplying the send and receive events that match the (annotated) events executed by Pi in local 

sequence sLi. 

 



29 

 

Theorem 4.1: Let Q = (sL1, sL2, …, sLn) be a feasible, partially-ordered SR-sequence of model M. 

Sequence Q is feasible for implementation CP iff for every }..1{ ni  constrained local sequence sLi is 

feasible for thread Pi. 

Proof: See Section A.1 in the Appendix. 

 

Based on Theorem 4.1, each thread in CP can be tested separately with the constrained local 

sequences of its corresponding ALTS component model, instead of testing all the threads together with 

all the feasible sequences of model M. Accordingly, a local implementation relation was defined in 

[Carver and Lei 2013] for ALTS-Thread pairs (Li, Pi): 

 

Definition 4.4: Li F Pi def for any sequence sLi in Constrained-Sequences(Li): sLi is feasible for Pi. 

 

Local implementation relation Li F Pi is used in the following theorem, which is the basis for local 

testing: 

 

Theorem 4.2:  M F CP iff for every }..1{ ni  Li F Pi. 

Proof: See Section A.1 in the Appendix. 

  

According to Theorem 4.2, the implementation relations between the individual threads in CP and the 

ALTSs in M can be verified separately in order to verify the implementation relation between M and 

CP. Testing each ALTS-Thread pair separately is more efficient in cases where the local sequences of an 

ALTS Li are repeated many times, perhaps even an exponential number of times, in the feasible, global 

sequences of M.  

We point out that our approach is local in the sense that it tests an individual thread Pi separately; 

however, as we will see, our approach derives the constrained local sequences for testing Pi from M not 

Li. Thus, our approach is not local in the stronger sense that it tests an individual thread Pi with test 

sequences that are generated from ALTS Li and only ALTS Li. Note that Li may have feasible local 

sequences that are not constrained. Using these local sequences to test Pi may cause spurious test 

failures — if these local sequences are not feasible for Pi, it does not imply that M F CP is violated. 

Likewise, if these local sequences are infeasible for Pi, as expected, but they cause runtime assertions in 

Pi to fail, or exceptions to be thrown, during test execution, it does not imply that Pi has faults. 

 



30 

 

4.3 Implementation Relation M F CP 

In this section we define two more global implementation relations. The first relation reverses the 

roles that M and CP have in Definition 4.1 [Brinksma 1988; Brinksma and Scollo 1986; Brinksma and 

Scollo 1987; Chung et al. 2001]: 

 

Definition 4.5: CP F M def FeasibleCP  FeasibleM. 

 

Relation CP F M requires each feasible SR-sequence s of implementation CP to be feasible for 

model M. However, M may have feasible sequences that are not feasible for CP. Note that the global 

testing technique in [Lei and Carver 2006] can be used to enumerate all of the feasible, global SR-

sequences of CP and show that these sequences are also feasible for M. Thus, this technique can be used 

to verify CP F M. However, there may still be sequences that are feasible for M but not CP, so M F CP 

may not hold. 

The final implementation relation combines relations M F CP and CP F M [Tai 1985]. 

 

Definition 4.6: M F CP def (M F CP and CP F M). 

 

Relation M F CP requires each feasible sequence Q of M to be feasible for implementation CP, and 

each feasible sequence Q of CP to be feasible for M. By implication, a sequence Q that is infeasible for 

M should also be infeasible for CP, and vice versa.  

 

Example 4.3: Returning to Figs. 3(b) and 3(c), M F CP is not satisfied since the sequence (L1, L3, px, 

synchronous-synchronization, px_m).(L2, L3, py, synchronous-synchronization, py_m) is feasible for CP, 

but not for M. 

 

4.4 A Local Implementation Relation for F 

A local version of relation F can be defined by first defining a local relation for CP F M. This 

relation mirrors the local relation for M F CP in Section 4.2. We first define the set Constrained-

Sequences(Pi), which captures the constraints imposed on thread Pi by the other threads in CP. We then 

define the feasibility of a local sequence in Constrained-Sequences(Pi) with respect to component ALTS 

Li. These definitions appear as Definitions 4.7 and 4.8 in Section A.1 of the Appendix. The Appendix 



31 

 

also contains Theorem 4.3, which shows that if sequence Q = (sP1, sP2, …, sPm) is feasible for CP, then 

local sequence sPi is feasible for ALTS Li if and only if sequence Q is feasible for M, for every }..1{ ni . 

A local version of CP F M can now be defined on Thread-ALTS pairs (Pi, Li). 

 

Definition 4.9: Pi F Li def for any sequence sPi in Constrained-Sequences(Pi): sPi is feasible for Li. 

 

Theorem 4.4: CP F M iff for every }..1{ ni , Pi F Li. 

Proof: See Section A.1 in the Appendix. 

 

The local relations for Li F Pi and Pi F Li are used to define a local relation for F. 

 

Definition 4.10:  Li F Pi def  for every }..1{ ni , Li F Pi and Pi F Li. 

 

The following Theorem shows that the local implementation relation F between the individual 

threads in CP and the component ALTSs in M can be verified separately in order to verify the global 

relation M F CP. 

 

Theorem 4.5:  M F CP iff for every }..1{ ni , Li F Pi. 

Proof: See Section A.1 in the Appendix. 

 

5. Stateless Reachability Testing 

In this section, we provide an overview of the stateless reachability-testing algorithm in [Lei and 

Carver 2006]. This algorithm heretofore has only been applied to concrete implementations. 

Reachability testing assumes that the implementation under test is closed, i.e., that the environment with 

which the program interacts is modeled by part of the implementation.  

 

5.1. Message Races 

Assume receive event r is synchronized with send event s during some program execution. 

Informally, there exists a message race or simply a race between send event s and another send event s’ 

with regard to a receive event r if r could have received the message sent by s’ instead of the message 

sent by s. For example, in the sequence in Fig. 4(b), there exists a message race between send events s2 



32 

 

and s3 with regard to r3, since r3 could have received the message sent by s2 instead of the message sent 

by s3. The send events that have a race with the send event s that is synchronized with r comprise the 

race set of r. 

In order to identify the races in an execution and compute the race set of a receive event, an OpenList 

is computed for each receive event.  

 

Definition 5.1: Let Q be the SR-sequence exercised by an execution of a concurrent program CP with 

input X, where CP uses asynchronous message-passing. The OpenList of a receive event r in Q contains 

a single port, which is the source port of r.  

 

The OpenList of a receive event in a program that uses synchronous message-passing depends on 

whether or not the receive event is a receive-alternative of a selective wait. 

 

Definition 5.2: A receive-alternative is said to be open, and thus selectable, if it does not have a guard 

condition, or if the value of the guard condition is true. Otherwise, the alternative is said to be closed and 

it cannot be selected. 

 

We assume that all of the alternatives of a selective wait are receive alternatives, and that no two 

receive-alternatives access the same port. 

 

Definition 5.3: Let Q be the SR-sequence exercised by an execution of a concurrent program CP with 

input X, where CP uses synchronous message-passing. The OpenList of a receive event r that is a 

receive-alternative of a selective wait is the list of ports that had open receive-alternatives when r was 

selected. The OpenList of a receive event r that does not occur inside a selective wait contains only the 

source port of r.  

 

Definition 5.4: Let Q be the SR-sequence exercised by an execution of a concurrent program CP with 

input X. A send event s in Q is said to be open at r if s.port is in the OpenList of r. 

 

In order to accurately determine all the races in an execution, the program’s logic must be analyzed. 

Detecting races using static analysis is undecidable for arbitrary programs [Bernstein 1966] and is NP-

complete for even very restricted classes of programs, e.g., those containing no branches [Taylor 1983]. 



33 

 

However, for the purpose of reachability testing, we only need to consider a special type of race, called a 

lead race. Lead races can be identified by analyzing the SR-sequence of an execution, i.e., without 

analyzing the program’s logic.  

 

Definition 5.5: Let Q be the SR-sequence exercised by an execution of a concurrent program CP with 

input X. Let s be a send event and r be a receive event in Q such that <s, r> is a synchronization pair. 

Let s’ be another send event in Q. There exists a lead race between send events s’ and s with respect to r 

in Q if s’ and r can be synchronized with each other during an alternative execution of CP with input X 

in which all the events that happen-before s’ or r in Q, as well as the synchronizations between these 

events, are replayed.  

 

Def. 5.5 requires all the events that can potentially affect s’ or r in Q to be replayed, i.e., forced to 

execute in the same order that they were executed in Q. This guarantees that s’ and r can be exercised in 

the alternative execution. In the rest of this paper, a race is assumed to be a lead race unless otherwise 

specified. During reachability testing, a vector timestamp is assigned to each send and receive event. 

The timestamps can be used to determine the happened-before relation between events [Fidge 1988; 

Mattern 1988]. 

 

Definition 5.6: Let Q be an SR-sequence. Let s be a send event and r be a receive event in Q such that 

<s, r> is a synchronization pair. The race set of r in Q, denoted as race_set(r, Q) or race_set(r) if Q is 

implied, is the set of send events in Q that have a race with send event s with regard to r. Formally, 

race_set(r, Q) = {s’  Q | there exists a race between send events s’ and s with respect to r}. 

 

Proposition 1 describes how to compute the race set of a receive event.  

 

Proposition 1: Let Q be an SR-sequence. A send event s’ is in the race set of a receive event r in Q if 

(1) s’ is open at r; (2) not r happened-before s’; (3) if <s’, r’> is a synchronization pair, then r 

happened-before r’; and (4) if a send event s’’ has the same source and destination thread as s’ but 

happened-before s’, then there exists a receive event r’’ such that <s’’, r’’> is a synchronization pair 

and r’ happened-before r’’. 

 

Conditions (2) and (3) in Proposition 1 ensure that changing the sender for receive event r cannot 



34 

 

affect whether send s’ is made or receive r occurs, respectively. Condition (4) reflects the assumed FIFO 

message ordering scheme for asynchronous and synchronous message-passing. That is, since messages 

sent from the same thread to the same port are received in the order that they are sent, the message sent 

by s’ cannot be received by r unless the message s’’ sent earlier was received before r. 

Details about how to compute race sets can be found in [Tai 1997; Lei and Carver 2006]. Basically, 

each of the send events in a given sequence s is visited one-by-one. For each send event snd, if snd is 

received by Threadi, then a search is performed for receive events in sequence s that were executed by 

Threadi and that could receive send event snd based on the ports of the receive events and the happened-

before relation between the events. The complexity of the algorithm for computing race sets is O(D*R), 

where D and R are the total numbers of send and receive events, respectively, in s. The algorithm is also 

O(D+F), where F is the sum of the sizes of the race sets associated with receive events in s, which is 

bounded by O(D*R). 

 

5.2 Race Variants 

A race variant of an SR-sequence Q is a (partially-ordered) prefix of Q in which the outcome of one 

or more races has been changed. The variant represents an SR-sequence that could have been executed 

by CP.  

The formal definition of race variant in Definition 5.7 below references the “control-structure” of an 

event. Informally, the control-structure of event e contains all the events, as well as the synchronizations 

between the events, that could possibly control whether or not event e is executed. Fig. 6 shows a 

sequence Q for an asynchronous message passing execution. Send event s3 happened-before receive 

event r3 since (s3, r3) is a synchronization pair. Receive event r1 also happened-before r3 since T2 

executes r1 before it executes r3. However, there is a subtle distinction between the happened-before 

relation for s3 and r3 and that for r1 and r3. Let R be the receive statement that was executed when r3 

occurred. Then, whether or not statement R is executed, i.e., whether or not r3 occurs, may depend on 

the control exerted by the execution of events s1 and r1, but it does not depend on the execution of s3. 

Therefore, events r1 and s1 are considered to be in the “control-structure” of r3, whereas s3 is not in the 

control-structure of r3. 

Definition 5.7: Let e be an event exercised by a thread T in a sequence Q. Then, the control-structure 

of e in Q, denoted as c-struct(e, Q), is empty if e is the first event exercised by T; otherwise, the control 

structure contains the event f that T exercised immediately before e, and all the events that happen-

before f, including the synchronizations between these events. 



35 

 

 

Figure 6. SR-sequence Q. 

 

Note that the control-structure of a send event s consists of all the events that happened-before s, 

whereas the control-structure of a receive event r may not include all the events that happened-before r.  

As an example, in sequence Q in Fig. 6, c-struct(s3, Q) contains r2 and s2, whereas c-struct(r3, Q) 

contains s1 and r1, but not s3, s2, and r2.  

 

Definition 5.8 [Lei and Carver 2006]: Let Q be a sequence. A race variant V of Q is an SR-sequence 

that satisfies the following conditions: 

(1) There exists at least one receive event r in both Q and V such that send(r, Q) ≠ send(r, V) 

(2) Let r be a receive event in Q and V. If send(r, Q) ≠ send(r, V), then send(r, V) must be in 

race_set(r, Q) 

(3) Let e be a send or receive event in Q. Then, e is not in V if and only if there exists a receive event r 

in Q such that r  c-struct(e) and send(r, Q) ≠ send(r, V). 

 

Note that condition (3) ensures that race variant V is always feasible, i.e., V can be exercised by at 

least one program execution, regardless of the program’s control and data flow. This is because after the 

sending partner of a receive event r is changed, the third condition requires all the events whose 

existence might be affected by this change to be removed from V. This is a conservative approach since 

some of the events that are removed may not actually be affected. 

 

5.3 Reachability-Testing Algorithm 

In this section, we describe and illustrate the stateless reachability-testing algorithm from [Lei and 

Carver 2006]. This algorithm can be applied to programs that use send and receive statements, and also 

to selective wait statements that allow a thread to wait for a message to be sent to any of two or more 

ports.  

 

 



36 

 

5.3.1 Assumptions about the Implementation 

The reachability-testing algorithm requires that two or more executions of a concurrent program with 

the same input and the same SR-sequence always produce the same result. The result of an execution 

includes the output and termination condition of the execution. The possible types of abnormal 

termination include deadlock, exceptions, and assertion violations, among others. When this requirement 

is satisfied, an SR-sequence provides sufficient information for replaying all or part of an execution, 

which is required during reachability testing. 

This requirement would not be satisfied by programs that, e.g., have uninitialized variables, or that 

access memory after it has been de-allocated. These types of memory errors can cause different results 

to be generated for two executions that have the same inputs and the same SR-sequences. If a memory 

error occurs, the error may or may not be detected during execution, and the error may or may not cause 

the execution to fail. In general, the potential for undetected execution errors limits the effectiveness of 

reachability testing and of our approach to verifying an implementation relation between a model and its 

implementation. Various tools and techniques have been developed for detecting memory errors and 

these tools can be used during testing to ensure that pass/fail verdicts are accurately assigned to test 

cases. 

The reachability-testing algorithm explores all of the non-deterministic execution behaviors of a 

program by considering all of the non-deterministic message races in the SR-sequences of the program’s 

executions. Threads that execute select statements of the following types can exhibit non-deterministic 

behavior that is not captured by analyzing the message races in an SR-sequence: select statements that 

make a selection between two send statements, or between a send statement and a receive statement; and 

select statements that make a selection between two receive statements that access the same port. 

However, these types of selections are typically not allowed by implementation-level, message-passing 

constructs, so they are not likely to be encountered in practice. The reachability-testing algorithm 

assumes that selections are made between receive statements only, and that the receive statements in a 

select statement all access different ports. 

For a concurrent program CP that uses send and receive statements and selective wait statements, and 

that satisfies the above assumptions about memory errors and select statements, [Tai et al. 1991] proved 

that the result of an execution of CP with input X is determined by CP, X, and the SR-sequence of the 

execution. 

 

 



37 

 

5.3.2 Algorithm 

Fig. 7 shows the general reachability-testing algorithm from [Lei and Carver 2006]. This algorithm, 

when applied to a concurrent program CP, exercises every feasible, partially-ordered SR-sequence of CP 

with input X exactly once. 

 

 

 

 

 

 

 

Figure 7. Reachability testing algorithm. 

 

We illustrate this algorithm by applying it to program CP in Fig. 8(a). In program CP, thread T2 

receives messages from threads T1 and T3 and sends them each a reply. Fig. 8(b) shows a scenario in 

which reachability testing is applied to CP. 

 

 

Figure 8. A reachability testing scenario. 

 

Reachability testing begins by executing CP non-deterministically, which we assume exercises SR-

sequence Q0 (line 2 in Fig. 7). Procedure GenerateVariants (described below) generates the set of race 

variants of a collected sequence Q, denoted Variants(Q). Each race variant is a partially-ordered SR-

sequence. 

In the first call to procedure GenerateVariants, the race in Q0 between s1 and s2 is identified and the 

outcome of this race is changed to derive race variant V1 of Q0 (line 4 in Fig. 7). That is, V1 is derived by 

changing the send partner of r1 from s1 to s2 and removing event r2. Event r2 must be removed since r2 

might not be executed after r1 receives the message from s2 instead of s1. This emphasizes the point 

ALGORITHM Reachability-Testing (CP: a concurrent program; X: an input of CP) { 
1.     let variants be an empty set; 

2.     collect an SR-sequence Q0 by executing CP with input X non-deterministically; 

3.     let V0 be the special empty variant that contains no events 

4.     variants = GenerateVariants(Q0, V0) 

5.     while (variants is not empty) { 

6.        withdraw a variant V from variants; 

7.        collect SR-sequence Q by conducting a prefix-based test run with V; 

8.        variants = variants  GenerateVariants(Q, V); 
9.     } 

10.} 

 



38 

 

that the variants of SR-sequence Q0 are identified by analyzing Q0, not the source code of program CP; 

hence, it is not possible to know what CP will do after r1 receives a message from s2 instead of s1. 

Variant V1 is used to conduct a prefix-based test run, which forces the events and synchronizations in the 

variant to be replayed and then allows the test run to proceed non-deterministically, i.e., without 

controlling which SR-sequence is exercised (line 7 in Fig. 7). Prefix-based testing with V1 exercises 

sequence Q1. In Fig. 8(b), the sequence Q1 and the variant V1 used to exercise it are shown in the same 

space-time diagram. The events in the variant are the events above the dashed line. No new variants will 

be derived by GenerateVariants from Q1 (line 8), so the reachability-testing process stops. Note that Q0 

and Q1 are all of the (partially-ordered) SR-sequences the example program can possibly exercise. 

 

5.3.3 Computing Variants 

The algorithm used by GenerateVariants to compute race variants can be described as follows. This 

algorithm builds a “race table” for a given SR-sequence Q. Each row of the race table represents a 

unique, partially-ordered, SR-sequence, which is race variant of Q. As an example, Fig. 9 shows an SR-

sequence Q0 and the race table for Q0. 

 

 

Figure 9. SR-sequence Q0 and its race table. 

 

The race table contains columns for receive events r1 and r3, which are the receive events in Q0 whose 

race sets are non-empty. Three variants can be generated for Q0. These variants V1, V2, and V3 are 

represented by rows 1, 2, and 3, respectively, of the race table. The column values indicate how the send 

partners of the receive events are changed to create a variant. For example, for variant V1 represented by 

row 1, the value 0 indicates that the send partner of r1 is left unchanged. The value 1 indicates that the 

send partner of r3 will be changed; the new send partner of r3 will be s4, which is the first (and only) send 

event in the race set of r3. For the variant V3 represented by row 3, the send partners of r1 and r3 are 

changed to s2 and s4, respectively. 

Generating all of the rows of the race table ensures that no variants are missed; however, additional 

work must be done to ensure that no duplicate sequences are generated. For example, a single “color” bit 



39 

 

is stored with each receive event in a variant or sequence. The color of a receive event is initially white. 

The color of an event is changed to black if the event is changed to create a variant, or the event 

happened-before a changed event. The color of a black event is never changed to white. Races for black 

events are ignored by excluding black events from the race table. The reason black events are excluded 

is that changing the send partner of a black event could cause the event to revert to its original send 

partner, causing a sequence to be duplicated. 

Due to space limitations, we refer the reader to [Lei and Carver 2006] for details about procedure 

GenerateVariants. We stress that every row in a race table represents a unique, partially-ordered race 

variant, and no analysis of the source code is required to build a race table. Let R be the set of receive 

events in sequence Q whose race sets are non-empty. The time complexity of the algorithm for variant 

generation is O(|R|
2
 * |V|), where V is the set of race variants for Q. 

 

5.3.4 Complexity and Correctness 

The time complexity of reachability testing is O(n * |Emax|
2 

* |Vmax|), where n is the number of 

possible SR-sequences, |Emax| is the maximum number of events in an SR-sequence, and |Vmax| is the 

maximum number of variants for an SR-sequence. Note that the empirical studies reported in Section 9 

show that reachability testing for ALTSs is 7 – 10 times faster than for real programs, since analyzing 

LTS models has much less overhead than performing controlled executions of real programs. The space 

required for storing an SR-sequence collected during an execution, or for storing a variant of an SR-

sequence, is linear in the length of the sequence. Storage is required for variants that have been 

generated but not executed; however, the number of these variants is typically much smaller than the 

total number of variants. In addition, variants can optionally be stored on disk and accessed using disk 

caching techniques that have low overhead. In the case of the DME program mentioned in Section 1, 

reachability testing exercised 1.45 billion sequences, but the maximum number of variants that needed 

to be stored at any one time was only 1,443.   

 

Theorem 5.1: Given a closed concurrent program CP and an input X, if every execution of CP with 

input X terminates, then algorithm Reachability-Testing exercises every partially-ordered SR-sequence 

of CP with input X exactly once. 

Proof: [Lei and Carver 2006]. 

 



40 

 

If there is an execution of CP that does not terminate because of a cycle in CP’s state space, then CP 

has infinite length SR-sequences, which makes it impossible to exercise every SR-sequence of CP. 

Algorithm Reachability-Testing can still be applied as long as some mechanism is used to ensure that 

every execution of CP terminates. Further discussion about state space cycles and termination appears in 

Section 6.2. 

Reachability testing is implemented in a tool call RichTest [Lei and Carver 2006], which is part of the 

Modern Multithreading class library [Carver and Tai 2006; Carver and Lei 2010b]. A number of other 

verification tools have been developed that, like our RichTest reachability-testing tool, systematically 

explore the state space of a C or Java implementation by controlling its execution. These tools use 

partial-order reduction to avoid exercising redundant interleavings of the same partial ordering of events 

[Godefroid 1997]. Partial-order reduction exploits the commutativity of independent transitions and 

conducts a selective search in which only a subset, called a persistent set, of the enabled transitions in a 

global state are explored.  A comparison between reachability testing and partial order reduction can be 

found in [Carver and Tai 2006]. 

 

6. Using Reachability Testing to Verify M F CP with Global Test Sequences 

In this section, we describe how the stateless reachability-testing algorithm Reachability-Testing 

described in Section 5 can be used to derive a global test oracle for an ALTS model.  

 

6.1 Message Races 

In order to identify the races and compute the race sets of the receive events in an SR-sequence of 

model M, an OpenList is computed for each receive event in an SR-sequence. 

 

Definition 6.1: Let Q be an SR-sequence of M and let r be a receive event that is executed in state s of 

ALTS component L of M. The OpenList of r is a list of annotations, one for each of the transitions of 

state s in L. 

 

The OpenList of r captures the events that ALTS L was willing to execute when r was executed. These 

are simply the transitions of state s. 

 



41 

 

Definition 6.2: Let Q be an SR-sequence of M.  A send event snd in Q is said to be open at r if 

snd.annotation and the annotation for any receive event in the OpenList of r satisfy relation Compatible 

in Defs. 3.3 - 3.5 of Section 3.1. 

 

The definitions of race sets and race variants for an SR-sequence of model M are the same as those 

defined in Sections 5.1 and 5.2 for an SR-sequence of a concrete implementation. 

 

6.2 Restrictions 

In order to apply algorithm Reachability-Testing to a model M of implementation CP, model M must 

be closed, i.e., CP’s environment must be modeled as part of M. Techniques for automatically or semi-

automatically closing an open model or implementation are described in [Colby et al. 1998; Hone at al. 

2002; Hughes and Bultan 2008; Ioustinova et al. 2002; Parizek and Plasil 2007; Tkachuk and Dwyer 

2003]. 

If M has a cycle in its state space, then Reachability-Testing will not terminate when it is applied to 

M. A similar problem is encountered by other test generation techniques that try to generate all the 

possible test sequences of cyclical models. To avoid infinite test suites, some method must be used to 

select a subset of M’s sequences. The resulting test sequences, while sound, cannot be used to verify 

implementation relation M F CP.  

Test selection may be based on, e.g., guidance from the person doing the testing [Information 

Technology 1991; Feijs et al 2002; Tretmans and Brinksma 2003], or coverage criteria [Ammann and 

Offutt 2008]. One common approach is to limit the depth or duration of the state search. In our 

experience, it is not easy to bound the depth or duration of a state search that encounters many cyclic 

paths. Another approach is to modify cyclic model M in order to create an acyclic model M’. Model 

builders can apply their domain knowledge to control precisely how many iterations of the state space 

cycles are to be performed. Test sequences generated from acyclic model M’ can be used to verify 

implementation relations between M’ and a corresponding modified version of implementation CP. In 

the test generation procedures defined below, we assume that model M is acyclic, or has been made 

acyclic, so that the implementation relations defined in Section 4 are verifiable. 

As we mentioned in Section 5.3.1, the reachability-testing algorithm in [Lei and Carver 2006] 

restricts the types of non-deterministic selections that a thread or component ALTS is permitted to make. 

Let s be a state in an ALTS component.  State s must satisfy the following restrictions: 

(R1) If t is a send-transition of state s, then t is the only transition of state s. 



42 

 

(R2) For any two receive-transitions t1 and t2 of state s, t1.annotation ≠ t2.annotation. 

A non-deterministic selection between two send transitions, or between a send and receive transition 

is typically not supported by implementation-level programming constructs. A non-deterministic 

selection in an ALTS component model between two receive transitions that have the same annotation 

corresponds to a select statement in an implementation thread in which there are two receive alternatives 

that access the same port: select p.receive(); or p.receive(); end select. The executed receive events will 

have the same event annotations. We do not find these types of selections to be useful at the 

implementation level and, as we mentioned in Section 5.3.1, they are not allowed by the reachability-

testing algorithm. 

Although these types of non-deterministic selections are not permitted in the component models used 

for test generation, they may be useful earlier in the modeling process, e.g., for modeling design 

decisions that are to be made at some later point in development. Making a design decision amounts to a 

reduction of the non-determinism in the specification model [Brinksma 1988; Chung et al. 2001]. We do 

not discourage this type of design-level non-determinism. It can be used in earlier stages of modeling as 

long as this non-determinism is reduced before the model is used to generate test sequences for the 

implementation threads. This reflects the fact that we expect all of the design decisions for the threads to 

be made before the threads are tested. 

When restrictions (R1) and (R2) are satisfied, the only source of non-determinism in an ALTS model 

is the order in which racing messages are received, and this order is determined by the model and the 

SR-sequence. 

 

Theorem 6.1: Let Q be a feasible, partially-ordered SR-sequence of a model M that is comprised of a 

set of component ALTSs {L1, L2, …, Ln}. Assume that every state in each component ALTS satisfies 

restrictions (R1) and (R2). Then each selection that a component ALTS makes is specified by Q and is 

deterministic. 

Proof: See Section A.2 in the Appendix. 

  

6.3 Generating Global Test Sequences for M F CP 

In this section, we describe the changes that are required in order to apply stateless reachability 

testing to an ALTS model instead of an implementation. The major change is that an SR-sequence is 

generated by composing LTSs instead of by executing threads. Steps 2 and 7 of algorithm Reachability-



43 

 

Testing (Fig. 7) collect an SR-sequence of M.  The SR-sequence collected is generated one 

synchronization step at a time by composing the ALTs of M according to Def. 3.10 of Section 3.1.  

 Fig. 10 shows algorithm GenerateSequence for generating an SR-sequence of M.  The algorithm 

inputs model M and the global starting state startState in M of the SR-sequence to be generated, and 

outputs a partially-ordered SR-sequence Q of M. GenerateSequence begins by finding a compatible pair 

<s,r> of send and receive transitions that are enabled in the startState of the generated sequence. In step 

2 of algorithm Reachability-Testing, the value used for startState will be the global start state of M. The 

annotations for send event s and its compatible receive event r are added to the partially-ordered-ordered  

 

 

 

 

 

 

 

 

Figure 10. Algorithm to generate a partially-ordered SR-sequence of M. 

 

SR-sequence PO, with event indices that reflect the positions of s and r in their respective local 

sequences. The destination state for the synchronized step represented by <s,r> becomes the new 

currentState. GenerateSequence stops when currentState is a termination state of M. Since the SR-

sequence format that is used for ALTS models is the same partial-order format used to represent SR-

sequences of the implementation, no changes are required to procedure GenerateVariants. 

For a variant V generated by GenerateVariants, no prefix-based test run is required to exercise V and 

collect a new SR-sequence of M (line 7 in Fig. 7). Instead, we first identify the local state that each 

component ALTS is in after the last event in V. The local source and destination states of the two 

components involved in each synchronization step of V can be stored and used to identify the local state 

of each component at the end of V. The local states are used to form the global startState of M that is 

passed as an argument to GenerateSequence. Algorithm GenerateSequence generates an SR-sequence 

PO of M that starts in startState. A new SR-sequence of M is collected by appending PO to V.  

 

 

 

ALGORITHM GenerateSequence (M: an ALTS model; 

startState: starting state of generated sequence) { 

1.     let global state currentState = startState; 

2.     let PO be an empty, partially-ordered SR-sequence; 
3.     while (currentState is not a terminal state) { 

4.        synchPair <s,r> = CompatibleTransitions(currentState); 

5.        PO.add(s.annotation, r.annotation); 

6.        currentState = SynchronizedStep(currentState, <s,r>); 

7.     } 

8.     Output PO; 

      9.} 

 



44 

 

7. Using Reachability Testing to Verify M F CP with Global Test Sequences 

Test sequences generated to verify M F CP can also be used to verify M F CP, but some additional 

information is required about each receive event in the test sequences. Section 7.1 gives an overview of 

the required information and how it is used. Section 7.2 presents a test procedure that verifies M F CP 

by verifying M F CP and CP F M. 

 

7.1 Overview 

Recall from Sections 5.1 and 6.1 that two send events s1 and s2 have a race with regard to a receive 

event r if either of the messages sent by events s1 and s2 can be received by event r. The racing send 

events of receive event r are used to compute the race set of r. Refer again to model M in Fig. 3(a) in 

Section 2.2. Model M has a single feasible SR-sequence s: 

 

 SR-sequence s of M: 

 (L2, L3, py, synchronous-synchronization, py_m), race set = {};  

 (L1, L3, px, synchronous-synchronization, px_m), race set = {}. 

 

The race sets of the receive events in sequence s of M tell us the alternative behaviors that M permits 

implementation CP to execute when CP is presented with the inputs and send events in sequence s. In 

this case, the race sets for both receive events in sequence s are empty, indicating that neither receive 

event is permitted to be matched with a different send event.  

Testing CP with sequence s will show that sequence s is a feasible sequence of implementation CP in 

Fig. 3(b). The corresponding SR-sequence executed by CP during testing is: 

 

 SR-sequence s’ of CP: 

 (P2, P3, py, synchronous-synchronization, py_m), race set = {send event from P1 to P3}; 

 (P1, P3, px, synchronous-synchronization, px_m), race set = {}. 

 

The race set of the first receive event in sequence s’ executed by CP is not the same as the race set of 

the first receive event in s. This is because the first receive event in s’ is executed by a selective wait 

statement in P3 that allows P3 to receive its first message from thread P1 instead of P2. The first receive 

event in sequence s is executed by ALTS L3, but L3 does not allow a message from L1 to be received 

first. This difference between the race sets for the first receive events in sequences s and s’ captures the 



45 

 

fact that there is a feasible sequence of CP in which thread P3 starts by receiving a message from P1, but 

this sequence is not in FeasibleM. Based on this difference in the race sets, we conclude that when 

implementation CP is executed with inputs modeled by M, CP can exercise a sequence that is not 

allowed by M, which means that the implementation relation M F CP does not hold. 

 

7.2 A Test Procedure for Verifying M F CP with Global Test Sequences 

A test procedure for verifying global implementation relation M F CP is shown in Fig. 11. Model M 

is assumed to be acyclic so that relation M F CP is verifiable. 

 

 

 

 

 

 

 

 

Figure 11. A global test procedure for M F CP. 

 

The first two steps of procedure TestF are used for checking whether relation M F CP holds.  Step 

(a) is to generate the set FeasibleM of feasible, partially-ordered sequences of M, using the stateless 

reachability-testing procedure described in Section 6.3.  

In step (b1), deterministic testing is performed on CP with test sequence s of FeasibleM. The 

transition annotations are used to translate abstract test sequence s into a concrete, implementation-based 

SR-sequence. The deterministic testing tool described in Section 3.3 is used to determine whether SR-

sequence s is feasible for implementation CP. The test verdict for deterministic testing with global test 

sequence s is assigned in step (b1) as follows: if sequence s is infeasible for CP or CP produces 

unexpected output(s) or terminates abnormally then the test fails else the test passes. If all the sequences 

in FeasibleM pass then relation M F CP holds. 

 

Example 7.1: For model M in Fig. 3(a), FeasibleM contains the sequence (L2, L3, py, synch-receive, 

py_m).(L1, L3, px, synch-receive, px_m). When this sequence is used to test implementation CP in Fig. 

3(b), a verdict of pass will be assigned since this sequence is feasible for CP.  

Procedure TestF: 
(a) Generate FeasibleM. 

(b) For each test sequence s in FeasibleM: 

(b1) Perform deterministic testing on CP with sequence s and inputs(s) 

and assign a test verdict, which is either pass or fail. If CP fails with 

s, then testing halts. 

(b2) Let s’ be the sequence executed by CP that corresponds to s. For each 

receive event r in s: 

Let r’ be the corresponding receive event in s’. If (r.race_set = r’.race_set) 

then assign the verdict pass; else assign fail. If CP fails with s, then a 

failure has been detected and testing halts. 

 



46 

 

 

Assume that the last event of sequence s visits a termination state of M. After CP executes the last 

event in test sequence s, CP may try to execute an additional send or receive event instead of 

terminating. If so then CP can execute a sequence that is not feasible for M and the relation CP F M 

does not hold. To specify the termination behavior of CP, we add event stop to the set A of annotations 

and use stop to denote normal termination. For a totally-ordered sequence s = e1.e2….en, we append stop 

to the end of sequence s. When s = e1.e2….en.stop is used to test thread CP, we check whether CP 

terminates normally after executing event en. If CP does not terminate normally, then the test fails.  

To check CP's termination behavior during deterministic testing, CP’s behavior is monitored after the 

last event in the test. If CP attempts to execute an extra send or receive event, or CP terminates 

abnormally, then the test fails. If CP does not try to execute any extra events, but CP does not terminate 

within some user-specified time-out period, it is assumed that CP will not terminate, and the test fails. 

Otherwise, CP terminates normally and the test passes. 

Step (b2) of procedure TestF is used to check whether relation CP F M holds. This step checks 

whether CP can exercise sequences that are not in FeasibleM, when CP is executed with inputs modeled 

by M and CP terminates normally as expected. Assume testing determines that test sequence s is feasible 

for CP and that CP exercises the corresponding sequence s’ and displays the expected termination 

behavior. Let r be a receive event in test sequence s, and r’ be the corresponding receive event in s’ 

executed by CP. It is possible that when a thread in CP executed receive event r’, this thread was also 

willing to execute some other receive event r’’. Step (b2) compares the race sets of receive events r and 

r’ to determine whether CP can exercise any receive events besides r’, and whether these alternative 

receive events are allowed by M. 

Algorithm Reachability-Testing in Fig. 7 computes a race set for each receive event in a test sequence 

generated from model M during reachability testing. The race sets are used by procedure 

GenerateVariants to generate the variants of each collected sequence. Thus, the race set for each receive 

event in test sequence s is known when implementation CP is executed with test sequence s.  We assume 

that these race sets are included in s. When test sequence s is used in step (b1) to collect sequence s’ of 

CP, an OpenList and race set is computed for each receive event in s’, as described in Section 5.1. 

 

Example 7.2: Fig. 12(a) shows a model M and Fig. 12(b) shows a feasible sequence s of M. The 

OpenLists of the receive events in sequence s are shown in the event descriptors as a list of annotations 

between brackets […]. The only receive event with a non-empty race set is r1. Note that s3 is not in 



47 

 

r2.race_set because s3 is not in the OpenList of r2, and thus s3 is not open at r2. Fig. 12(c) shows 

implementation CP of model M. Fig. 12(d) shows the sequence s’ exercised by implementation CP that 

corresponds to test sequence s of M in Fig. 12(b). In sequence s’, thread P4 executes a selective wait 

statement with open receive-alternatives for ports p1 and p2. The OpenList [p1,p2] for receive event r2’ 

indicates that during execution, when the receive-alternative for p1 was selected, port p2 was also open. 

The race set for r2’ contains send event s3’ whose port p2 is in the OpenList of r2’. 

 

 

Figure 12. Comparing race sets. 

 

In step (b2), the race_sets of receive event r in test sequence s and r’ in sequence s' executed by 

implementation CP are compared as follows: 



48 

 

 If r.race_set  r’.race_set then there is a feasible sequence of CP that is infeasible for M; thus, 

the verdict fail is assigned. 

 If r.race_set  r’.race_set then there is a sequence t in FeasibleM that is infeasible for CP; thus, 

the verdict fail is assigned. Note that this failure will also be detected when t is used to verify 

relation M F CP, since t is feasible for M but not CP. 

 If r.race_set  r’.race_set then the verdict pass is assigned. 

 

Example 7.3: In Fig. 12(d), r2’.race_set = {s3’} but in Fig. 12(b), r2.race_set = { }. Thus, there is a 

feasible sequence of CP that is infeasible for M, and the verdict fail is assigned. 

 

Theorem 7.1. If procedure TestF is performed and all the tests in FeasibleM pass then M F CP. 

Proof: See Section A.2 in the Appendix. 

 

8. Using Reachability Testing to Verify M F CP with Local Test Sequences 

Each SR-sequence generated from model M during reachability testing can be used as a global test 

sequence for testing implementation CP. As reported in Section 9, reachability testing generates 

significantly fewer global (partially-ordered) test sequences than global test generation techniques that 

use an interleaving concurrency model. Still, the number of global test sequences generated by 

reachability testing may be very large. Using local tests may significantly further reduce the number of 

test sequences that must be executed by the implementation. In this section, we describe how 

reachability testing is used to generate local test sequences. 

 

8.1 Generating Local Test Sequences 

The following procedure uses algorithm Reachability-Testing to generate Constrained-Sequences(Li) 

in Def. 4.2 for the ALTSs in acyclic model M. 

 

Procedure ProjectFeasibleSequences: 

1. For each feasible (partially-ordered) sequence s collected during reachability testing of M, project 

s onto Li 1 i  n, to generate a complete local sequence sLi for Li and add sLi to Constrained-

Sequences(Li). When projecting sequence s, event e in s is appended to sLi if e is a send event and 

Li is the sender, or e is a receive event and Li is the receiver.  



49 

 

2. Generate all the non-empty, proper prefixes of sLi and add them to Constrained-Sequences(Li). 

 

In the space-time diagram for sequence s, the local sequence sLi for LTS Li is simply the send and 

receive events in the vertical time-line for Li. 

 

Theorem 8.1: Procedure ProjectFeasibleSequences generates Constrained-Sequences(Li), for 

every }..1{ ni . 

Proof: Algorithm Reachability-Testing generates every possible feasible, partially-ordered, SR-

sequence of M and hence every possible feasible, constrained, local sequence of ALTS Li.  

 

We point out that a simple optimization of procedure ProjectFeasibleSequences is to remove step (2), 

which generates all the non-empty, proper prefixes of the local test sequence sLi generated in step (1). 

These prefix sequences are members of Constrained-Sequences(Li), but they are redundant and can be 

safely ignored during testing. For example, if local test sequence a.b.c is generated, it is not necessary to 

generate prefix sequences a.b and a. The reason being that if sequence a.b.c is feasible for the 

implementation thread, then sequences a.b and a must also be feasible, and there is no need to test the 

prefix sequences separately. 

Recall that when global SR-sequence s is generated from model M during reachability testing, race 

sets are computed for the receive events in s. When s is projected to derive a local sequence for each Li, 

the race set for receive event r in sequence s is retained by r in any local sequences that contains r. 

Another piece of information that must be retained by r is the timestamp for the send event that is 

synchronized with r in sequence s. Recall that timestamps are generated for each event during 

reachability testing in order to determine the happened-before relation among the events.  In Section 

8.2.1, we describe how timestamps for the send events are used during local testing. 

 

Definition 8.1: Two local test sequences s1 and s2 in Constrained-Sequences(Li) are equivalent if the 

i
th

, i>0, events in these sequences are equivalent (Def. 3.16) and, for receive events, have identical race 

sets. 

 

Two local sequences may have equivalent events, but there may be a receive event r that has a 

different race set in sequence s1 than it has in s2. In this case, s1 and s2 are not considered to be 



50 

 

duplicate sequences, and both sequences are included in Constrained-Sequences(Li) and used for local 

testing. 

 

8.2 A Test Procedure for Local Testing 

A local-testing procedure for verifying the local implementation relations defined in Section 4 is 

shown in Fig. 13. Procedure LocalTestF is similar to the global testing procedure in Fig 11, except that 

LocalTestF is applied to each LTS-Thread pair (Li, Pi); thus, LocalTestF uses Constrained-

Sequences(Li) instead of FeasibleM. 

 

 

 

 

 

 

 

Figure 13. A local test procedure for M F CP. 

 

Procedure LocalTestF has two parts. The first part is to generate the sequences in Constrained- 

Sequences(Li) and determine whether the relation Li F Pi holds. This first part of the procedure consists 

of steps (a) and (b1). A stateless procedure ProjectFeasibleSequences for generating Constrained-

Sequences(Li) in step (a) was presented in Section 8.1. In step (b1), thread Pi is executed with a test 

driver to determine the feasibility of local test sequence sLi. The driver provides a conforming 

environment for sequence sLi by supplying the send and receive events that match the events executed by 

Pi in local sequence sLi. That is, whenever sequence sLi has a synchronous or asynchronous, abstract send 

event snd for Pi to execute, then the corresponding concrete event executed by Pi is denoted as snd’ and 

a concrete, synchronous or asynchronous receive event rcv’ is executed by the driver. Likewise, 

whenever sequence sLi has a synchronous or asynchronous, abstract receive event rcv for Pi to execute, 

then the corresponding concrete event executed by Pi is denoted as rcv’, and a concrete synchronous or 

asynchronous send event snd’ is executed by the driver. Note that the execution of a single thread Pi 

interacting with a test driver will be deterministic. If sequence sLi calls for Pi to execute a send or receive 

event, the test driver issues a single matching receive or send event, and no other events are executed by 

the driver unless and until thread Pi executes its expected event.  

Procedure LocalTestF: For each mapped pair (Li, Pi), 1  i  n: 
(a) Generate Constrained-Sequences(Li). 

(b) For each test sequence sLi in Constrained-Sequences(Li): 

(b1) Test Pi with sequence sLi and inputs(sLi) If Pi fails with sLi, testing halts. 
(b2) Let s’Pi be the sequence executed by Pi that corresponds to sLi. For each 

receive event r in sLi : 

Let r’ be the corresponding receive event executed in s’Pi. If 

(r.race_set = r’.race_set) then assign the verdict pass; else assign fail. 

If Pi fails with test sequence sLi, then a failure has been detected and 

testing halts. 

 



51 

 

Procedure LocalTestF can be classified as a gray-box technique  it requires access to the source 

code of the threads, so that the threads can be compiled with the test driver, but test sequences are 

generated from the specification model, not the implementation. Our local-testing technique can be 

implemented without the use of a deterministic testing tool, as the execution of the thread under test and 

the test driver is deterministic. Our global testing technique relies on testing tools that control inter-

thread synchronization in order to force the implementation to deterministically execute global test 

sequences [Carver and Tai 1991; Tai et al. 1991; Tai and Carver 1996]. Gray-box testing is appropriate 

during earlier phases of the life-cycle, when implementation-level (i.e., the code, runtime, or operating 

system) observation and control is available. This allows bugs to be found early, when they are less 

costly to fix. 

Timestamps are generated for the events executed by Pi and the events executed by the test driver. 

The timestamps are needed in order to compute the happened-before relations between these events. 

Note that the timestamp for a send event snd’ that is executed by the test driver is not generated during 

the execution of test sequence sLi. Instead, the timestamp for snd’ is supplied by the receive event in sLi 

that synchronizes with snd. As described in Section 8.1, the supplied timestamp is the timestamp that 

was generated for event snd in the sequence s that was projected to create sLi. This timestamp reflects the 

happened-before relations between snd and the other events in s and thus ensures that the same relations 

are computed between snd’ and the other events executed by the test driver and by thread Pi. 

The test driver must supply concrete message objects for the send events that it executes. The sent 

objects are received by thread Pi when it executes the receive events in test sequence sLi. To assist in this 

process, reachability testing can be applied to implementation CP to capture the message objects that are 

received by Pi. Captured message objects can be stored in a map structure that maps a message label to 

the associated message object of Pi. When the test driver needs to send a message to Pi with a given 

label, it can use the label to retrieve the appropriate message object from the map.  

Note that it is not necessary for reachability testing that is used in this way to exhaustive; reachability 

testing of CP can stop when all or most of the message objects have been seen, or when a user-specified 

time limit is reached. If some message labels are not observed before reachability testing stops, then the 

user must supply the missing objects, possibly by modifying captured objects. The non-exhaustive 

version of reachability testing developed in [Lei et al. 2007] can be used to quickly collect message 

objects. Souza et al. [2011] show how to use static analysis to guide non-exhaustive reachability testing 

so that selected structural coverage criteria, such as executing all send events, are satisfied as early as 

possible. This technique can be applied with non-exhaustive reachability testing to speed up the 



52 

 

collection of message objects from implementation CP. Note that it is not necessary to check whether 

CP issues the correct messages in the correct order during reachability testing. This will be checked 

during local testing. We simply capture the message object associated with each label. This can be 

considered as part of the process to verify that message objects are correctly labeled based on the values 

of the messages.  

The second part of test procedure LocalTestF checks relation Pi F Li. Step (b2) determines whether 

Pi can exercise any sequences that are not in Constrained-Sequences(Li) when Pi is executed with inputs 

modeled by Li. This is done just as it was done in step (b2) of procedure TestF in Section 7.2 — by 

checking the termination behavior of Pi, and comparing the race sets of the receive events executed by Li 

and Pi. Recall that the information maintained for each receive event r in Constrained-Sequences(Li) 

includes the race set of r. Below, we describe how to compute the race set of the corresponding receive 

event r’ executed by Pi during local testing, and how to assign a test verdict based on a comparison of 

the race sets for r and r’. 

 

8.2.1 Race Sets for Receive Events Executed by Thread Pi 

Let sLi be a test sequence in Constrained-Sequences(Li) and s’Pi be the corresponding sequence 

exercised by thread Pi. The race set of receive event r’ in s’Pi is computed using the timestamps for the 

send events executed by the test driver and the OpenList of r’, based on Proposition 1 in Section 5.1. 

This proposition uses the happened-before relation to identify racing send events executed concurrently 

with r’. As described above, the send events are executed by the test driver. The timestamps for these 

send events are obtained from the matching receive event r in sLi and used to compute the happened-

before relations. 

 

Example 8.1: Fig. 14(a) shows a model M and a global sequence s of M (Fig. 14(b)). When s is 

projected to create local sequence sL2 in Fig. 14(c), the timestamps of send events s1, s3, and s4 are 

stored with their corresponding receive events r1, r3, and r4 in local sequence sL2. These timestamps in 

sL2 will show that s1 happened-before s3 and that s3 and s4 are executed concurrently. (In sequence s in 

Fig. 14(b), if there is a path from event e1 to event e2 that follows the direction of the arrows, then e1 

happened-before e2.) Note also that whenever a receive event is executed in sL2 in Fig. 14(c), there is 

only one open port. Consequently, the race sets of all the receive events in sL2 are empty. Fig. 14(d) 

shows an implementation of thread P2 and the local sequence s’P2 (Fig. 14(e)) that is exercised by P2 

when it is tested with local sequence sL2. In sequence s’P2, the timestamps used for send events s1’, s3’,  



53 

 

 

Figure 14. Race sets of receive events in local sequences. 

 

and s4’ executed by the test driver are the timestamps these events had in s. Since the implementation of 

P2 uses a select statement to choose between receive statements for ports p1 and p2, the OpenList for r3 

contains both p1 and p2. In s’P2, r1’.race_set = r4’.race_set = { }, and r3’.race_set = {s4’}. Thus, the 

race sets of r3 and r3’ are different. 

 

8.2.2 Comparing Race Sets of Receive Events in Local Sequences 

Step (b2) in procedure TestF compares the race sets of the receive events executed by Li and Pi. Let s’Pi 

be the sequence executed by Pi that corresponds to sLi. For each receive event r in sLi and the 

corresponding event r’ in s’Pi, if r.race_set  r’.race_set then the verdict pass is assigned; otherwise, fail 

is assigned. Just as for non-local testing, if r.race_set  r’.race_set then there is a feasible sequence of 

Pi that is infeasible for Li. 

 

Theorem 8.2: If procedure LocalTestF is performed and all the tests in Constrained-Sequences(Li) 

receive a verdict of pass then M F CP. 

Proof: See Section A.2 in the Appendix. 

 

Note that when thread Pi is tested with the local sequences in Constrained-Sequences(Li), the tests are 

used to verify that Pi will interact as intended with the other threads in the program. There is no circular 



54 

 

reasoning used in this approach — the other threads are not assumed to be correct when testing Pi, and 

Pi is not assumed to be correct when the other threads are tested. The other threads may have faults that 

would prevent them from correctly interacting with Pi. These faults will be detected when the other 

threads are tested in turn with their local test sequences.  

The sum of the sizes of Constrained-Sequences(Li) over all Li may be a small fraction of the number 

of feasible sequences of M. This is, however, not necessarily the case. For example, if ALTS L is a 

thread that interacts with all the other threads in the system, then each feasible sequence of the system 

might correspond to a different local sequence of L and no reduction will be achieved by using the local 

test sequences in Constrained-Sequences(L) instead of FeasibleM. Such a result is reported in the case 

study in Section 9. The number of partially-ordered test sequences may still be drastically lower than the 

number of totally-ordered sequences. 

 

9. Empirical Study 

We conducted an empirical study on global and local test oracles using the testing framework 

described in Section 1. The study was performed on several versions of the following three models and 

their Java implementations, which were manually developed by the authors. 

 DP: a solution to the dining philosophers problem with up to 9 philosopher threads. Hungry 

philosophers sit in a circle. In order to eat, a philosopher must pick up the two forks beside them – 

one is on their left and one is on their right. Each fork is shared with a neighboring philosopher. All 

the philosophers but one pick up their left fork first, while the “odd philosopher” picks up its right 

fork first. Each philosopher eats once. 

 TDME: a token-based solution to the distributed mutual exclusion problem [Suzuki and Kasami 

1985] with 3 user threads and 1 controller thread. User threads that wish to have exclusive access to 

a shared resource must obtain a special token from the controller thread. Each thread uses the shared 

resource one time. 

 DME: a solution to the distributed mutual exclusion problem [Ricart and Agrawala 1981] in which 

processes communicate using asynchronous message passing. Each process contains three threads. A 

process that requires exclusive access to a shared resource must send requests to all the other 

processes and wait for all the other processes to reply. Requests are time stamped with logical clock 

values so that a winner can be chosen when more than one process makes a request. Each process 

uses the shared resource one time.  



55 

 

All the models and implementations were acyclic. Note that while TDME and DME solve the same 

problem, they have significantly different synchronization behavior. The DP and DME specifications 

were written in Lotos. Component ALTSs of the Lotos specification models were generated using the 

Lotos CADP toolset. Test sequences were generated using the RichTest stateless reachability tool and 

the test procedures described in Sections 6 - 8. We developed our own programs for generating and 

counting local and global test sequences from the ALTS models. The artifacts used in this empirical 

study can be found at [Carver and Lei, 2017]. 

Our objective here is to study the effectiveness of local tests for detecting violations of the 

implementation relations and to compare the number of test sequences generated for local testing to the 

number of sequences generated by other approaches.  

Table I summarizes the results of test sequence generation. For models DP and DME, we use DP-i 

and DME-i to indicate that there were i philosophers and i processes, respectively, in the models. For 

each of the models, Table I shows: 

(1) The number of states and transitions in the global ALTS model (column 2). Global ALTSs were 

generated using standard interleaving semantics and then minimized modulo strong equivalence in 

order to remove redundant sequences. The resulting global ALTSs contained no internal events. 

(2) The number of global test sequences generated (columns 3 and 4). Global test sequences were 

generated using two different methods, which are described below. 

(3) The number of local test sequences generated (column 5).  

We attempted to build a global ALTS model of DME-4 using incremental and non-incremental 

reachability analysis; however, the ALTS model could not be built due to state explosion. We also tried 

to use the distributor tool in [Fernandez et al. 1996] to construct the global ALTS model of DME-4 on a 

compute cluster of 53 workstations, but there was still not enough available memory (approx. 100GB). 

The size of the global state space reported for DME-4 is the number of states and transitions that had 

been visited when memory was exhausted. The number of states remaining to be visited was still 

growing on most of the workstations. 

Global test sequences were generated using two different methods. The first method reports the 

number of unique, totally-ordered, global sequences generated from the global ALTS models (column 3 

of Table I). This is the number of global sequences that can be generated when concurrent events are 

modeled by enumerating their possible interleavings. We used a dynamic programming procedure to 

count the number of complete, totally-ordered sequences, from the initial state to a termination state, in 

 



56 

 

Model Global ALTS model 

(states/ transitions) 

#Totally-

ordered 

sequences 

#Partially-

ordered 

sequences 

#Local test 

sequences 

TDME 192 / 348 67,894 30 33 

DP-2 18 / 20 4 2 6 

DP-3 76 / 126 238 6 9 

DP-4 322 / 712 94,526 14 12 

DP-5 1,364 / 3,770 108,549,484 30 15 

DP-6 5,778 /  19,164 21.7 x 10
10

 62 18 

DP-7 24,476 / 94,710 9.1 x 10
14

 126 21 

DP-8 103,682 / 458,512 6.9 x 10
18

 254 24 

DP-9 439,204 / 2,185,074,  82.3 x 10
21 

510 27 

DME-3 367,733 / 1,403,821 72.2 x 10
33 

4,032 315 

DME-4 >264,471,486 / 1,199,776,000 > 72.2 x 10
33

 1,455,667,200 7,126 

Table I. Test sequence generation. 

 

the ALTS models. The first time a state s is encountered, the procedure computes the number of totally-

ordered sequences from state s to a termination state. For each subsequent encounter of state s, the 

procedure does not re-compute the number of totally-ordered sequences from s to a termination state; 

rather, the procedure uses the number computed the first time state s was encountered.   

Since the global ALTS model of DME-4 could not be constructed, we can only report that DME-4 

has at least as many totally-ordered sequences as DME-3, although the actual number would be a great 

deal larger. The counting procedure counted, but did not generate, the totally-ordered sequences. 

Generating all of the totally-ordered sequences would be prohibitive for the larger models, as we could 

only generate on the order of 10
8
 sequences per day. 

The second method for counting sequences reports the number of global sequences generated by 

RichTest. This appears in Table I as the number of unique, partially-ordered, sequences (column 4). 

This number is considerably smaller than the number of totally-ordered sequences. 

Local test sequences were generated using RichTest and the testing procedure described in Section 8. 

We point out that since every transition in a local test involves the thread under test, no two transitions 

in the same local test sequence are concurrent. This guarantees that no two local sequences differ only in 

the order of concurrent events, the same as for partially-ordered test sequences.  

Table I (column 5) shows that the number of local test sequences was significantly less than the 

number of totally-ordered sequences generated from the global models for all but the smallest model, 

and was significantly less than the number of partially-ordered sequences generated for eight out of 

eleven of the models. Local tests were generated for TDME, the DP models, and DME-3 in under 4 



57 

 

seconds each. The time for DME-4 is discussed below. Executing the local tests against all of the 

implementation units took only a few seconds. 

The number of local test sequences generated for model DP with P philosophers and P forks is 

always 3P. By way of comparison, a complete DP model has 2
P
 – 2 unique partially-ordered sequences 

and considerable more totally-ordered sequences. For small numbers of philosophers, fewer partially-

ordered sequences were generated than local sequences. 

For the DME-3 model, a total of 315 local test sequences were generated for the nine implementation 

threads of the three processes. There are three threads per process. One thread sends and receives request 

and reply messages when it tries to enter the critical section, one thread processes request messages 

received from the other processes and sends them reply messages, and one thread is used to synchronize 

the first two threads. The global DME-3 model has 4,032 partially-ordered global sequences and 72.2 x 

10
33 

totally-ordered, global sequences.  

We measured the adequacy of the local test sequences generated for DME-3 by using mutation 

testing. Each mutation introduced a single change in the DME implementation that was intended to 

simulate a programming error. Examples of a mutation include replacing the relational operator “>=” 

with the operator “>”, replacing one variable with another from the same scope, and deleting an entire 

statement. A mutation creates a communication/synchronization error in the implementation such as 

making a given send or receive statement impossible to execute, causing a send or receive statement to 

be executed under the wrong conditions, or sending a message to the wrong process or with the wrong 

message value. Local test-sequences detect and reject mutants by causing the behavior of the original 

DME implementation to differ from the mutant. This is called killing the mutant. Mutants were 

generated using the traditional mutation operators and the Java-based mutation tool Java [Ma et al. 

2005]. Some of the mutants created were functionally equivalent to the original program, which means 

that they would always generate the same outputs and exercise the same feasible sequences as the 

original program. It is not possible to find test cases that can kill these mutants. Thus, functionally 

equivalent mutants were identified by manual inspection and deleted, which left 190 mutants. We then 

developed local test drivers and applied local testing to the nine implementation threads in DME-3. Each 

of the 190 DME mutants was killed by the local tests. 

The global DME-4 model has 1,455,677,200 partially-ordered, global sequences but only 7,126 local 

test sequences were generated for the twelve implementation threads. The local sequences for the DME-

4 model were generated by applying (distributed) reachability testing to DME-4 on a cluster of 

workstations [Carver and Lei 2010a]. During distributed reachability testing, different sequences are 



58 

 

exercised concurrently by different workstations, achieving a nearly linear speedup over sequential 

reachability testing. Running distributed reachability testing on 175 of the cores available in a cluster of 

53 multi-core workstations required 13.5 hours to exercise all 1,455,667,200 unique partially-ordered 

sequences of the DME-4 model, and generate the 7,126 local test sequences needed to verify relation M 

F CP.  

As we mentioned above, a global ALTS model could not be built for DME-4 due to state explosion.  

This prevented us from verifying the correctness of the DME-4 model using stateful verification 

techniques. Thus, during stateless reachability testing, we verified the following property of the DME-4 

model: every process enters the critical section and there is never more than one process in a critical 

section at a time. This property was checked for each global sequence that was generated from the 

DME-4 model during reachability testing. 

Note that distributed reachability testing can also be applied to the Java DME-4 implementation to 

generate all of the sequences allowed by the implementation. These sequences can be used to verify 

relation CP F M. However, applying reachability testing to the implementation takes approximately 10 

times longer to complete than applying reachability testing to the ALTS model. Fortunately, this is not 

needed since, based on Theorem 4.5 both M F CP and CP F M, and hence M F CP, can be verified 

using the 7,126 local test sequences generated from the DME-4 model. We are not aware of any 

technique for directly generating local tests from an implementation to verify relation CP F M. 

For the TDME model, a total of 33 local test sequences were generated for the four implementation 

threads. The global TDME model has 30 partially-ordered, global sequences and 67,894 totally-ordered, 

global sequences. Thus, the number of local test sequences was lower than the number of totally-

ordered, global sequences but slightly higher than the number of partially-ordered, global sequences. In 

TDME, most of the interactions are between the user threads and the controller thread, the result being 

that the number of local sequences of the controller thread is the same as the number of unique, 

partially-ordered, global sequences in the model. Since each of the three user threads has a single local 

test sequence, the total number of local tests sequences is 3 more than the number of partially-ordered 

global sequences. 

For comparison, we applied the local testing technique presented in [Carver and Lei, 2013] and 

described in Section 10 to the four models. Briefly, this technique composes the component ALTSs in M 

to construct a reduced model that captures the intended interactions between a single component and the 

other components in the model. The reduced model is built by applying standard equivalence-based 



59 

 

reductions algorithms to the ALTSs during compositions. The reduced model for a single component is 

typically much smaller than the global ALTS model for M.  

The numbers of local tests derived using this stateful technique were the same as the numbers 

reported in Table I for TDME, the DP models, and DME-3.  However, the stateful technique takes 

longer to generate local tests. For example, it takes close to 5 minutes to generate local tests for DME-3 

using the stateful technique, but only 4 seconds using stateless reachability testing. The stateful 

technique was not able to generate thread interaction models for DME-4, due to state explosion. This 

was true even when incremental reachability analysis techniques were used on the compute cluster of 53 

workstations. Distributed, stateless local testing avoids the high storage costs associated with 

interleaving concurrency models, while achieving linear speedup, which enabled it to check correctness 

properties and generate local tests from the DME-4 model. 

Finally, we discuss the threats to the validity of our case study. The main threat to external validity is 

the degree to which the subject programs are representative of true practice. The programs studied were 

small in terms of lines of code, but they represent complex, classical synchronization patterns and they 

illustrate the range of test sequence reduction that can be achieved by local testing. The threat to external 

validity can be reduced by conducting experiments on more programs.  The main threat to internal 

validity is the possibility that errors were made in generating and counting the test sequences. The 

partially-ordered sequences were generated and counted using the RichTest tool in [Lei and Carver 

2006]. Local sequences were generated and counted by code that we developed, which was carefully 

tested. The results of local testing agreed with the results in [Carver and Lei, 2013], which were 

generated using different tools. The totally-ordered sequences were counted using a dynamic 

programming algorithm, whose implementation was carefully tested.  

 

10. Related Work  

In this section, we review related work on deriving test oracles from formal models of concurrent 

systems. We focus on models that are expressed as, or can be translated into, labeled transition systems.  

We first note that test sequences can also be generated by analyzing an implementation’s structure 

[Yang and Chung 1992; Yang et al. 1998] or its runtime behavior [Godefroid 1997; Kim et al. 1996]. 

Model-based and implementation-based testing are complementary approaches, in that certain faults 

may be detectable when using an implementation-based approach but not when using a model-based 

approach, and vice versa [Mouchawrab et al. 2011]. For example, the implementation-based 

reachability-testing tool in [Lei and Carver 2006] can exercise every path of a concurrent program with a 



60 

 

given input, but it cannot directly detect “missing paths”, i.e., paths that are allowed by the specification 

but not allowed by the implementation. 

We also note that there has been work in the area of local or compositional model checking [Flanagan 

and Vardi 1997]. The basic idea is to infer global properties of the whole system from the results of 

verifying individual components. This typically requires the user to provide an assumption about the 

interaction between the component being checked and the rest of the system. Our local testing technique 

generates test sequences from a model of the whole system. In addition, our test generation technique 

does not perform any model-checking on the implementation or the abstract model. Model checking is 

complementary to our work ─ the abstract model may be verified using model checking before the 

model is used to generate tests for the concrete implementation. 

 

10.1 Conformance Testing 

Most existing model-based test oracles for concurrent systems are based on a finite state machine 

(FSM) model such as an I/O automaton [Lynch and Tuttle 1989] or I/O state machine [Phalippou 1994], 

or they use an LTS model [Barr et al. 2015]. Since LTS models that have a finite set of states can be 

converted into FSM models and vice versa [Broy et al. 2005], oracles developed for one type of model 

can also be applied to the other. These oracles have been developed mainly in the context of 

conformance testing for protocol implementations. Protocols are often modeled as communicating 

sender and receiver components, each of which is implemented as a single process that is tested 

separately. 

The implementation under test (IUT) conforms to specification model M if and only if the output 

responses of the IUT and M to each test sequence coincide [Dorafeeva et al. 2010; Lee and Yannakakis 

1996]. When M is a single deterministic finite state machine, a test is performed by providing the IUT 

with a sequence of inputs selected from M, called a test sequence. Test sequence generation methods for 

finite state machines are compared in [Endo and Simao 2012]. These methods differ on the assumptions 

they make about the model and the implementation [Dorafeeva et al. 2010; Lee and Yannakakis 1996]. 

The “oracle” part of protocol conformance testing can be viewed as checking, e.g., that the output 

produced by the IUT on a given transition T matches that predicted by M, or that the state reached in the 

IUT after transition T corresponds to the state prescribed by M [Baresi and Young 2001]. 

Another approach to conformance testing is to define a required implementation relation between the 

IUT and its model. Examples of such relations include ioco [Tretmans 1999], conf, and testing 

equivalence [Pitt and Freestone 1990], and there are many others. The implementation relation captures 



61 

 

the ways in which the states and transitions of the IUT are allowed to differ from the states and 

transitions of the model. Tests are generated to detect differences that are not allowed by the 

implementation relation. The ioco relation is described below. 

In general, conformance-testing techniques are black-box techniques. Black-box techniques encounter 

problems when they are applied to non-deterministic systems. During black-box testing, non-

deterministic implementation events are unobservable and uncontrollable, which produces inconclusive 

test results. As we mentioned in Section 8.2, our global and local testing techniques are a form of gray-

box testing. Tests are selected from the specification, and implementation-level observation and control 

is used to address the problems caused by non-determinism.   

Another problem with conformance testing techniques is that the composite FSM and LTS models are 

often based on the interleaving model of concurrency, which was described in Section 1. This creates an 

explosion in the number of modeled states, making it impossible to store the entire state space in 

memory. Along a different line, several stateful techniques [Jard 2002; Ponce de Leon et al. 2013; 

Ulrich and Chanson 1995; Ulrich and König 1997] have been developed for generating global test 

sequences from true-concurrency state-space models. In such models, a global test sequence is a partial 

order of transitions in which concurrent transitions are left unordered. True-concurrency models can 

significantly reduce the number of test sequences, but they may still be large. Our global, stateless, test 

generation technique also generates partially-ordered sequences, but it does not require any state-space 

models to be built.  In addition, our stateless technique can be used to generate local sequences for 

individual threads. As the case study shows, the total number of local sequences may be significantly 

smaller than the total number of global sequences, even when an interleaving-free approach is used to 

generate global sequences. 

 

10.2 Compositional Conformance Testing 

Several compositional conformance-testing techniques have been developed. Testing is performed 

individually on implementation components with test sequences generated from the corresponding 

individual specification components. Van der Bijl et al. [2004] showed how to perform compositional 

testing based on the ioco implementation relation. (Roughly, an implementation and its specification are 

ioco conformant if the implementation can never produce an output that cannot be produced by its 

specification after the same trace.) They determined sufficient conditions under which the ioco 

conformance of each of two LTS component implementations to their respective LTS component 

specification models leads automatically, without any additional testing, to the ioco conformance of the 



62 

 

system implementation to the system specification. The condition that is relevent to this paper is that 

both component LTS specification models are input enabled. An LTS is input enabled if each state 

specifies a response for every possible modeled input.  It is also assumed that each implementation 

component is input enabled.  

Gotzhein and Khendek [2006] presented a compositional technique for testing protocol 

implementations that can be modeled as the composition of two input enabled, deterministic FSMs. Each 

of the two implementation components is tested separately using traditional black box testing methods. 

When the two components pass their local tests, test sequences are generated to detect composition 

faults in the code used to connect the input/output queues of the components. The test sequences for the 

connection code are generated without building the global FSM, and do not repeat the local test 

sequences already performed on the two components. The local-testing technique that we presented in 

this paper can be applied to models with more than two components, and if the local tests are passed, no 

separate integration tests are required. 

An important issue with local and compositional testing is whether a component model specifies the 

exact set of inputs that can be received in a particular state. The compositional techniques in [Gotzhein 

and Khendek 2006] and [Van der Bijl et. al. 2004], as described above, require each individual 

component model to be input enabled  each state must specify a response for every possible modeled 

input. One problem with this requirement is that some inputs may be impossible in certain states, and it 

is not clear what response should be specified for an impossible input (see Example 4.2 in Section 4.2) 

In addition, manually identifying the impossible inputs of a state in a component is difficult when the 

possible inputs depend on complex interactions among two or more other components.  

Another problem with this requirement occurs when some inputs are available, i.e., messages have 

been sent, and their availability is not an error, but receiving and responding to these inputs is not 

allowed in a certain state, e.g., a request for a resource has been sent, but the request is not allowed to be 

received when no resources are available. It is not clear how to specify in an input enabled model that 

certain available inputs are not allowed to be received or responded to. Our local-testing technique does 

not require LTS models to be input enabled, nor does it require implementation threads to have all inputs 

enabled in all states. The LTS model of an individual thread is permitted to contain states that allow 

inputs that are impossible in a global context, or that disallow inputs that are available. Impossible inputs 

are not a problem in our framework; the process used to generate tests implicitly identifies impossible 

inputs and prevents them from being included in the local test sequences that are generated. 



63 

 

The stateful local oracles presented by the current authors in [Carver and Lei, 2013] are constructed 

by building a thread interaction model for each thread in the implementation and deriving test sequences 

from these models. A thread interaction model is an annotated labeled transition system (ALTS) that 

captures the intended interactions between a single LTS L and the other LTSs in system model M. The 

number of states and transitions in a thread interaction model are typically much smaller than those in a 

global, stateful representation of model M. A thread interaction model for L is constructed using a series 

of equivalence-based reductions in an incremental manner, i.e., without building the global state space 

for M. Some empirical results about this process were presented in Section 9.  

 Although thread interaction models are typically very small, they are stateful models and cannot be 

constructed in cases where intermediate state explosion causes the reduction process to fail. In this 

paper, neither a stateful, global model of M nor a reduced, stateful model of M is constructed. Instead, 

paths of transitions through individual component models are analyzed to generate a sequence of 

synchronized send and receive transitions (SR-sequence) through model M. In addition, while the 

technique in [Carver and Lei 2013] only considers the relation M F CP, the technique in this paper can 

be used, with the same number of test sequences, to verify M F CP and the stronger relation M F CP, 

using either global or local test sequences.   

A local, stateful, approach to model inference and implementation testing is presented in [Groz et al. 

2008]. In this approach, the system is executed with selected test inputs and the resulting execution 

traces observed for the system are used to infer FSM component models. Static, stateful reachability 

analysis is performed on the inferred component models to explore all of the possible execution 

interleavings and detect potential system errors such as unspecified receptions, livelocks, and races. 

Note that stateful reachability analysis is not feasible when the number of states is too large. The 

empirical results in Section 9 showed that our stateless approach might succeed in cases where stateful 

approaches exhaust memory. 

Symbolic execution [King 1975] can be used to derive a symbolic execution tree, which describes all 

of the possible system executions in a symbolic way. Symbolic execution has also been used for 

component-based testing [Faivre et al. 2007; Kanso et al. 2012]. The focus is to prevent the generation 

of test sequences that are allowed by a component model, but that are not feasible in the context of the 

whole system. The technique in [Kanso et al. 2012] supports the compositional technique presented in 

[Van der Bijl et al. 2004] and described above, but using relation cioco, which is a slight adaption of the 

ioco relation. In addition, the specification models are not required to be input enabled.  



64 

 

A work closely related to ours is [Koppol et al. 2002], which presents a gray-box testing technique for 

generating test sequences from reduced ALTS models. A reduced state space for an ALTS model M is 

generated using incremental reachability analysis and a special ALTS reduction algorithm that stores 

information about the paths that are pruned from the unreduced state space of M. Each test sequence 

generated from a reduced ALTS corresponds to a complete path through the unreduced state space of the 

model.  The generated test sequences can thus be used for global testing of the complete system. This is 

in contrast to our approach in which test sequences can also be generated for local testing of a single 

thread.  

Also presented in [Koppol et al. 2002] are several local coverage criteria. Test sequences that satisfy 

these criteria can guarantee a level of coverage for the global model without ever having to build the 

global ALTS of the model. Satisfying these local coverage criteria verifies neither the implementation 

relation M ≤ CP nor the relation CP ≤ M. However, these local coverage criteria could be used with our 

local testing technique when verifying the implementation relations requires too many local sequences 

to be executed  local tests can be executed while the local coverage criteria are measured to determine 

when to stop testing. 

 

11. Conclusion 

We presented a stateless technique for generating global and local test oracles for concurrent systems 

that are modeled as annotated labeled transition systems. Correctness is defined in terms of an 

implementation relation that is expected to hold between a model M of the system and its 

implementation CP. The implementation relation used in this paper is that M and CP allow the same 

sequences M  CP. We showed that this relation can be checked by adding a small amount of 

information to the test sequences that are used to verify the weaker relation M ≤ CP. 

A global test oracle can be used to verify a global implementation relation using global test 

sequences. Local implementation relations were also defined. Local relations exist between the 

individual component models and their implementation threads. We showed how to verify a global 

implementation relation by using local test oracles to separately verify each local relation. The novelty 

of our local test oracles is that the individual implementation threads are tested separately, without 

testing the system as a whole. This may enable a large reduction in the number of program executions 

that are required during testing. In addition, this localizes errors to a single implementation thread when 

a local test fails. Empirical studies confirmed that non-local testing with partially-ordered test sequences 

requires significantly fewer implementation executions than interleaving-based, global testing 



65 

 

techniques, and that local testing may require significantly fewer implementation executions than global 

testing. 

Our global and local test oracles are generated using the stateless reachability testing algorithm in 

[Lei and Carver 2006]. This is the first time we are aware of that a stateless, interleaving-free search 

technique has been applied to LTS models for generating test oracles. Implementation relations can be 

verified for models that are acyclic and closed. The test oracles do not require any state space models to 

be built or states to be stored. Thus, test oracles generated by our technique typically require less 

memory than oracles generated using stateful techniques. However, since states are not stored, it is 

impossible to recognize states that have already been visited during a stateless search, which may 

increase the time needed for generating test sequences.  

Models for large, complex programs may admit a very large number of test sequences. Hence, a 

general limitation of our technique is that the test sequences required to verify an implementation 

relation might take too much time to generate and execute. If this is the case, then stateless reachability 

testing can be used to generate test sequences from the model while structural coverage criteria are 

measured against the implementation to determine when to stop testing [Souza et al. 2015; Zhu 1996]. 

We are currently working on an extension to our stateless reachability-testing algorithm that would 

allow all of the local test sequences of a model to be generated without generating all of the global, 

partially-ordered sequences of the model. This could significantly reduce the effort required for using 

stateless reachability testing to verify local implementation relations. 

 

References 

AMMANN, P., OFFUTT, J., 2008. Introduction to software testing. Cambridge University Press. 

BARESI, L. AND YOUNG, M., 2001. Test oracles. Univ. of Oregon, Dept. Comput. Inform. Sci., 

Eugene, OR, SA. Tech. Rep. CIS-TR-01-02. [Online]. Available: 

http://www.cs.uoregon.edu/~michal/pubs/oracles.html. 

BARR, E., HARMAN, M., McMINN, P., SHABAZ, M., AND YOO, S., 2015. The oracle problem in 

software testing: a survey. IEEE Trans. Softw. Eng., 41(5):507-525. 

BERNSTEIN, A., 1966. Analysis of programs for parallel processing. IEEE Transactions on Electron. 

Comput. 15(5), pp.757 – 763. 

BOLOGNESI, T., AND BRINKSMA, E., 1987. Introduction to the ISO specification language LOTOS. 

Comput. Networks ISDN, Volume 14, Issue 1, 1987, pp. 25–59. 

http://www.cs.uoregon.edu/~michal/pubs/oracles.html


66 

 

BRINKSMA, E., 1988. A theory for the derivation of tests. in: S. Aggarwal, K. Sabnani, eds., Protocol 

Specification, Testing and Verification, VIII, pp. 63-74.  

BRINKSMA, E., SCOLLO, G., 1986. Formal notions of implementation and conformance in LOTOS. 

Rept. No. INF-86-13, Twente University of Technology, Department of Informatics, Enschede, The 

Netherlands. 

BRINKSMA, E., SCOLLO, G., AND STEENBERGEN, C., 1987. Process specification, their 

implementations and their tests. in: G.v. Bochmann, B. Sarikaya, eds., Protocol Specification, Testing 

and Verification, VI, pp. 349-360. 

BROY, M., JONSSON, B., KATOEN, J. P., LEUCKER, M., AND PRETSCHNER, A., ed., 2005. 

Model-based testing of reactive systems. Lecture Notes in Computer Science 3472. Springer-Verlag. 

CARVER, R., 1996. Testing abstract distributed programs and their implementations. J. Syst. Softw., 

Special Issue on Software Engineering for Distributed Computing, June 1996. 

CARVER, R., AND LEI, Y., 2010a. Distributed reachability testing. Concurrency Computat., Pract. 

Exper., Volume 22, Issue 18, pp. 2445-2466. 

CARVER, R., AND LEI, Y., 2010b, A Class Library for Implementing, Testing, and Debugging 

Concurrent Programs. Int. J. Softw. Tools Technol. Transf.: Vol.12, No. 1 (2010), Page 69-88. 

CARVER, R., AND LEI, Y., 2013. A modular approach to model-based testing of concurrent programs. 

Proc. International Conference on Multicore Software Engineering, Performance, and Tools 

(MUSEPAT), August. 

CARVER, R., AND LEI, Y., 2017. Artifacts and programs for the case study, http://barbie.uta.edu/wp-

content/uploads/2017/07/STVRFiles.zip.  

CARVER, R., AND  TAI, K.C., 1991. Replay and testing for concurrent programs. IEEE Software, pp. 

66-74. 

CARVER, R., AND TAI, K.C., 2006. Modern multithreading: implementing, testing, and debugging 

multithreaded Java and C++ Pthreads/Win32 programs. Wiley. http://www.cs.gmu.edu/~rcarver/ 

ModernMultithreading. 

CHEN, J., AND CARVER, R., 1996. Selecting and mapping test sequences from formal specifications 

of concurrent programs.  Proc. of the High-Assurance Systems Engineering Workshop, October pp. 

112-119. 

CHUNG, I.S., KIM, B.M., AND KIM, H.S., 2001. A new approach to deterministic execution testing 

for concurrent programs. IEICE Trans. Inf. Syst. Vol. E84-D, No.12, pp. 1756-1766. 

http://barbie.uta.edu/wp-content/uploads/2017/07/STVRFiles.zip
http://barbie.uta.edu/wp-content/uploads/2017/07/STVRFiles.zip


67 

 

COLBY, C., GODEFROID, P., and JAGADEESAN, L. J., 1998. Automatically closing open reactive 

programs. Proc.1998 ACM SIGPLAN Conference on Programming Language Design and 

Implementation, pp. 345-357. 

CYPHER, R. and LEU, E., 1994. The semantics of blocking and non-blocking send and receive 

primitives. Proc. Eighth International Parallel Processing Symposium, pp. 729-735. 

DORAFEEVA R., EL-FAKIH K., MAAG, S., CAVALLI, A., and YEVTUSHENKO, N., 2010. FSM-

based conformance testing methods: A survey annotated with experimental evaluation. Inf. Softw. 

Technol. 01/2010; 52:1286-1297. 

ENDO, A.T., AND SIMAO, A., 2012. Experimental comparison of test case generation methods for 

finite state machines. Proc. IEEE Fifth Int. Conference on Software Testing, Verification and 

Validation, pp. 549 – 558. 

FAIVRA, A., GASTON, C., AND Le GAIL, P., 2007. Symbolic model based testing for component 

oriented systems. Testing of Software and Communicating Systems. Lecture Notes in Computer 

Science Volume 4581, pp. 90-106. 

FEIJS, L.M.G., GOGA, N., MAUW, S., TRETMANS, J., 2002.Test selection, trace distance and 

heuristics. Proc. IFIP 14th Int. Conference on Testing Communicating Systems - TestCom, pp. 267-

282. 

FERNANDEZ, J., GARAVEL, H., KERBRAT, A., MATEESCU, R., MOUNIER, L., AND 

SIGHIREANU, M., 1996. CADP: A protocol validation and verification toolbox. Proc. 8th 

Conference on Computer-Aided Verification, pp. 437-440. 

FIDGE, C. J., 1988. Timestamps in message-passing systems that preserve the partial ordering. Proc. 

11th Australian Computer Science Conference (ACSC'88), pp. 56–66. 

FLANAGAN C., and M. VARDI, 1997, Thread modular model checking. Proc. COMPOS'97, Lecture 

Notes in Computer Science, Vol. 1536, pp. 381 – 401. 

GODEFROID, P., 1997. Model checking for programming languages using verisoft. Proc. 24th ACM 

Symposium on Principles of Programming Languages, pages 174-186, Paris. 

GOTZHEIN, R., AND KHENDEK, F., 2006. Compositional testing of communication systems. 

TestCom 2006, LNCS 3964, pp. 227-244. 

GROZ, R., LI, K., PETRENKO, A., SHAHBAZ, M., 2008. Modular system verification by inference, 

testing and reachability analysis. Testing of Software and Communicating Systems, Lecture Notes in 

Computer Science Volume 5047, pp. 216-233. 

http://link.springer.com/book/10.1007/978-3-540-73066-8
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://cm.bell-labs.com/who/god/public_psfiles/popl97.ps
http://link.springer.com/book/10.1007/978-3-540-68524-1
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558


68 

 

HONE, P., YASSINE, M., and Sofiène, T., 2002. Environment synthesis for compositional model 

checking. pp. 70-75, 2002. 

HUGHES, G., and BULTAN, T., 2008. Interface grammars for modular software model checking. IEEE 

Trans. Softw. Eng., vol. 34, no. 5, pp. 614-632. 

Information Technology, 1991. Open systems interconnection, conformance testing methodology and 

framework. International Standard IS-9646. ISO, Geneve. 

IOUSTINOVA N., SIDOROVA,  N., and STEFFEN, M., 2002. Closing open sdl-systems for model 

checking with DTSpin. LNCS Volume 2391, pp. 157-177. 

JARD, C., 2002. Principles of distributed test synthesis based on true-concurrency models source. Proc. 

IFIP 14th International Conference on Testing Communicating Systems XIV, pp. 301-316. 

KANSO, B., AIGUIER, M., BOULANGER, F., AND GASTON, C., 2012. Testing of component-based 

systems. Proc. Software Engineering Conference (APSEC), pp. 300-305. 

KIM, M.C., CHANSON, S.T., KANG, S.W., AND SHIN, J.W., 1996. An approach for testing 

asynchronous communicating systems. 9th Int’l Workshop on Testing of Communicating Systems; 

Darmstadt, Germany. 

King, J.-C., 1975. A new approach to program testing. Proc. of the Int. Conference on Reliable software, 

21-23:228–233. 

KOPPOL, P.V., CARVER, R.H., AND TAI, K.C., 2002. Incremental integration testing of concurrent 

programs. IEEE Trans. Softw.Eng., Vol. 28, No. 6. 

LAMPORT, L., 1978. Time, clocks, and the ordering of events in a distributed. system. Comm. ACM, 

21, 7 (July), pp. 558-565. 

LEE, D., and YANNAKAKIS, M., 1996. Principles and methods of testing finite state machines-a 

survey. Proc. of the IEEE, Vol. 84, Issue 8, pp. 1090 – 1123. 

LEI, Y., AND CARVER, R.H., 2006.  Reachability testing of concurrent programs. IEEE Trans.Softw. 

Eng., Volume 32, No. 6, pp. 382-403. 

LEI, Y., CARVER, R.H., KACKER, R. AND KUNG, D, 2007. A combinatorial testing strategy for 

concurrent programs. J. Softw. Test. Verif. Rel., Vol.17, Issue 4,  pp. 207-225. 

LYNCH N.A., AND TUTTLE, M.R., 1989. An introduction to Input/Output automata. CWI Quarterly, 

2(3):219–246. 

MA, Y.-S., OFFUTT, J, AND KWON, Y.-R., 2005, Java: an automated class mutation system. J. 

Softw. Test. Verif. Rel., 15(2):97-133. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6462021
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lee,%20D..QT.&searchWithin=p_Author_Ids:37280605000&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html


69 

 

MATTERN, F., 1988. Virtual time and global states of distributed systems. Proc. Workshop on Parallel 

and Distributed Algorithms, pp. 215–226. 

MILNER, R., 1989. Communication and concurrency. Prentice-Hall. 

MOUCHAWRAB, S., BRIAND, L., LABICHE, Y., DI PENTA, M., 2011. Assessing, comparing, and 

combining state machine-based testing and structural testing: a series of experiments. IEEE Trans. 

Softw. Eng., 37(2):161-187. 

PARIZEK, P., and PLASIL, F., 2007. Specification and generation of environment for model checking 

of software components. Proc. Formal Foundations of Embedded Software and Component-Based 

Software Architectures (FESCA 2006), ENTCS, Vol. 176, Issue 2, pp. 143-154. 

PHALIPPOU, M., 1994. Executable testers. In Omar Rafiq, editor, Proc. 6th International Workshop on 

Protocol Test Systems (IWPTS 1993), volume C-19 of IFIP Transactions, pages 35–50, Pau, France. 

PITT, D.H., AND FREESTONE, D., 1990. The derivation of conformance tests from LOTOS 

specifications. IEEE Trans. Softw. Eng., 16(12):1337–1343. 

PONCE de LEON, H., HAAR, S., and LONGUER, D., 2013. Unfolding-based test selection for 

concurrent conformance. Testing Software and Systems, Lecture Notes in Computer Science, Vol. 

8254, pp. 98-113. 

RICART, G., AND AGRAWALA, A.K., 1981. An optimal algorithm for mutual exclusion in computer 

networks. Comm. ACM, 24, 1 (January), pp. 9-17.  

SOUZA, SIMONE, SOUZA, PAULO, MACHADO, MARIO, CAMILLO, MARIO, SIMAO, 

ADENILSO AND ZALUSKA, Ed, 2011. Using coverage and reachability testing to improve 

concurrent program testing quality. Proc. 23rd Int. Conference on Software Engineering and 

Knowledge Engineering, pp. 207-212. 

SOUZA, S. R. S., SOUZA, P. S. L., BRITO, M. A. S., SIMAO, A. S., AND ZALUSKA, E. J., 2015. 

Empirical evaluation of a new composite approach to the coverage criteria and reachability testing of 

concurrent programs. Software Testing Verification & Reliability, Vol. 25, Issue 3, pp. 310-332. 

SUZUKI, I., AND KASAMI, T., 1985. A distributed mutual exclusion algorithm. ACM Trans. Comp. 

Syst., 3(4): 344-349. 

TAI, K.C., 1985. On testing concurrent programs. Proc. COMPSAC 85, pp. 310-317. 

TAI, K.C., 1997. Race analysis of traces of asynchronous message-passing programs. Proc.17
th

 

International. Conference on Distributed Computing Systems, pp. 261-268. 

TAI, K.C., AND CARVER, R.H., 1996. Testing of distributed programs. Chapter 33 of Handbook of 

Parallel and Distributed Computing, ed. by A. Zoyama, McGraw-Hill, pp. 955-978. 

http://dsrg.mff.cuni.cz/~plasil/
http://link.springer.com/book/10.1007/978-3-642-41707-8
http://link.springer.com/bookseries/558


70 

 

TAI, K.C., CARVER, R.H., AND OBAID, E., 1991. Debugging concurrent Ada programs by 

deterministic execution. IEEE Trans. Softw. Eng., 17(1):45-63. 

TAYLOR, R.N., 1983. A general-purpose algorithm for analyzing concurrent programs. Comm. ACM, 

26(5), pp. 362-376. 

TKACHUK, O., AND DWYER, M.B., 2003. Automated environment generation for software model 

checking. Proc.18th International Conference on Automated Software Engineering, pp. 116—129. 

TRETMANS, J., 1999. Testing concurrent systems: a formal approach. Lecture Notes in Computer 

Science; Vol. 1664, Proc. 10th International Conference on Concurrency Theory, pp. 46 - 65. 

TRETMANS, J., AND BRINKSMA, E., 2003. TorX: Automated model-based testing. Proc. First 

European Conference on Model-Driven Software Engineering, pp. 31-43. 

ULRICH, A., CHANSON, S., 1995. An approach to testing distributed software systems. Proc. Fifteenth 

IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification XV, pp. 

121 – 136. 

ULRICH, A., AND KÖNIG, H., 1997. Specification-based testing of concurrent systems. Formal 

Description Techniques and Protocol Specification, Testing and Verification, 17. T. Mizuno, et al. 

(Eds.). 

VAN DER BIJL, M., RENSINK, A., AND TRETMANS J., 2004 Compositional testing with ioco. 

FATES 2003, LNCS 2931, pp. 86-100. 

VISSERS, C, SCOLLO, G., AND VAN SINDEREN, M., 1988. Architecture and specification style in 

formal descriptions of distributed systems. (Invited) In: Proc. IFIP WG6.1 Eighth International 

Symposium on Protocol Specification, Testing, and Verification, pp. 189-204. 

YANG, C., SOUTER, A.L., AND POLLOCK, L.L., 1998. All-du-path coverage for parallel programs. 

International Symposium on Software Testing and Analysis, pp. 153-162. 

YANG, R.D. AND CHUNG, C.G., 1992. A path analysis approach to concurrent program testing. 

Information and Software Technology, 34(1):43-56. 

ZAVE, P., 1984. The operational versus the conventional approach to software development. Comm. 

ACM, 27, 2 (February) pp. 104 - 118. 

ZHU, H. 1996. A formal analysis of the subsume relation between software test adequacy criteria. IEEE 

Trans. Softw. Eng. 22(4):248–255. 

 

 

 



71 

 

Appendix 

A.1 Definitions and Proofs for Section 4 

Theorem 4.1: Let Q = (sL1, sL2, …, sLm) be a feasible, partially-ordered SR-sequence of model M. 

Sequence Q is feasible for implementation CP iff for every }n..1{i  constrained local sequence sLi is 

feasible for thread Pi. 

Proof: Recall that when the feasibility of local sequence sLi for thread Pi is determined, 

synchronizations between Pi and the other threads in CP do not actually occur. Instead, a conforming 

test environment simulates Pi’s environment in M by supplying the send and receive events that match 

the (annotated) events executed by Pi in local sequence sLi. In addition, local sequence sLi of ALTS Li is 

a local sequence of global sequence Q that is feasible for M. Thus, the constrained local sequences of Li 

capture the constraints that are imposed on Li’s behavior by the other ALTSs in M.  

For the only-if part, if the threads in CP are able to execute feasible sequence s of M, which includes 

all the events in all the local sequences of s and the synchronizations between threads as specified by the 

events of s, then thread Pi is also able to exercise the events in local sequence sLi when a conforming test 

environment supplies any matching synchronizations that are needed by these local events according to 

the synchronizations in s. 

For the if part, the question is whether the specific thread synchronizations in sequence s must be 

feasible if all the local sequences sLi of s are feasible. By way of contradiction, assume sLi is feasible for 

thread Pi, 1  i  n but sequence s is not feasible for CP. Then there is an event e that is one of the 

(possibly many) events that can be the first event in sequence s. An event e is one of the first infeasible 

events in sequence s if no event in s that happened- before e is infeasible. Intuitively, an event e1 

happened-before another event e2 if e1 can potentially affect e2 [Lamport 1978].The possible first events 

are executed concurrently. There are three cases in which event e in sequence s can be infeasible: 

Case 1: Event e is an asynchronous send event executed by thread P: Since e is a non-blocking send 

event, the only way for e to be infeasible is for thread P to be unable to execute e, but this contradicts the 

assumption that local sequence sP is feasible. 

Case 2: Event e is an asynchronous receive event executed by thread P, where C is the thread 

executing the asynchronous send e’ synchronized with e. Note that since e can be synchronized with e’, 

events e and e’ must be concurrent events, which means that both e and e’ are possibly one of the first 

infeasible events in s. Case 1 shows that send event e’ cannot be infeasible in s. In order for receive 

event e to be infeasible in s, at least one of the following must be true: 

(a) P is unable to execute receive event e, but this contradicts the assumption that sP is feasible. 



72 

 

(b) P can execute receive event e, and C can execute send event e’, but e’ and e cannot synchronize 

with each other. However, this contradicts the assumption that sequence s is feasible for M, as e’ and e 

must be synchronizable (i.e., have matching ports and labels) in order for s to be feasible in M. 

Case 3: Event e is an synchronous-synchronization event, where C is the thread executing the 

synchronous send es for e and U is the thread executing the synchronous receive er for e. In order for e to 

be infeasible, at least one of the following must be true: 

(a) Thread C is unable to execute es because thread C cannot execute a send event. But this 

contradicts the assumption that local sequence sC is feasible. 

(b) Thread U is unable to execute er because thread U cannot execute a receive event. But this 

contradicts the assumption that local sequence sU is feasible. 

(c) Thread C can execute send event es and thread U can execute receive event er, but es and er 

cannot synchronize with each other.  But this contradicts the assumption that sequence s is feasible for 

M, as es and er must be synchronizable (i.e., have matching ports and labels) in order for s to be feasible 

in M.   ⁪ 

Theorem 4.2: :  M F CP iff for every }n..1{i  Li F Pi. 

Proof: For the only-if part, Theorem 4.1 says that if a feasible sequence Q = (sL1, sL2, …, sLm) of M is 

feasible for CP, then local sequences sLi of Q are feasible for the individual threads Pi of CP, 1in. It 

follows directly from this that if all the feasible sequences of M are feasible for CP, then all of the 

constrained local sequences of Li, 1in, are also feasible for the individual threads Pi of CP.  

For the if part, assume relation Li F Pi, 1in, holds but relation M F CP does not. Then there is an 

event e that is one of the (possibly many) events that can be the first event in some feasible sequence Q 

= (sL1, sL2, …, sLm) of M that is not feasible for CP. (An event e is one of the first infeasible events in Q if 

no event in Q that happened-before [Lamport 1978] e is infeasible. The possible first events are 

executed concurrently.) Assume that e is executed by ALTS Lj. Sequence sLj is a local sequence of Lj 

that is not feasible for Pi due to e, but we are assuming Lj F Pj. This is a contradiction that proves the 

theorem.   ⁪ 

 

Definition 4.7: A feasible, local SR-sequence tPi of thread Pi is constrained with respect to program 

CP if there exists a feasible, partially-ordered SR-sequence Q = (sP1, sP2, …, sPm) of CP such that tLi = 

sLi. The set of constrained sequences of Pi with respect to program CP is denoted Constrained-

Sequences(Pi,M), or just Constrained-Sequences(Pi) when CP is understood. 



73 

 

 

Definition 4.8: Let sequence tLi = (sending thread1, receiving thread1, port1, op1, label1, j1, 1), 

(sending thread2, receiving thread2, port2, op2, label2, j2, 2), … , be a local sequence in Constrained-

Sequences(Pi,CP). Local sequence tPi is feasible for Li if Li has a sequence of transitions 

,Qs...,sss ii3

a

2

a

1 Ri

2

Ri

1  where state s1 is the start state q0i of Li, and for event (sending threadk, 

receiving threadk, pk, opk, ek, jk, k) and transition 1k

a

k ss
Ri

k

 , k>0, of Li, one of the following 

conditions is true: 

 opk is a send event and annotation ak = (sending threadk, receiving threadk, pk, opk, ek),  

 opk is a receive event and annotation ak = (?, receiving threadk, pk, opk, ek); 

otherwise, tPi is infeasible for Li.  

 

Theorem 4.3: Let Q = (sP1, sP2, …, sPm) be a feasible, partially-ordered SR-sequence of CP. Then 

sequence Q is feasible for M iff, for every }n..1{i  constrained local sequence sPi is feasible for ALTS 

Li.

Proof: Sequence Q (sPi) is feasible for M (Li) if Q (sPi) corresponds to a sequence of synchronized 

steps (transitions) through M (Li). For the only-if part, if the LTSs in M can be synchronized to create a 

sequence of synchronized steps through M that corresponds to Q = (sP1, sP2, …, sPm), then there is a 

sequence of transitions through Li that corresponds to local sequence sPi. 

For the if part, the question is whether the synchronizations in the synchronized steps of sequence Q 

must be feasible for M if each local sequence sPi of Q is feasible for Li. Suppose e is one of the (possibly 

many) first infeasible events in sequence Q. There are three cases in which e can be infeasible: 

Case 1: Event e is an asynchronous send event performed by ALTS L: Since e is a non-blocking send 

event, the only way for e to be infeasible is for ALTS L to be unable to perform e, but this contradicts 

the assumption that local sequence sP is feasible for L. 

Case 2: Event e is an asynchronous receive event executed by ALTS L, where C is the ALTS 

performing the asynchronous send e’ synchronized with e. In order for e to be infeasible, at least one of 

the following is true: 

(a) L is unable to execute receive event e, but this contradicts the assumption that sP is feasible for L. 

(b) L can perform receive event e, but the send partner e’ for e cannot synchronize with e. But this 

contradicts the assumption that Q is feasible for M, as e’ and e must be synchronizable (i.e., have 

matching labels) in order for Q to be feasible in M. 



74 

 

Case 3: Event e is a synchronous-synchronization event, where C is the ALTS performing the 

synchronous send es for e and U is the ALTS executing the synchronous receive er for e. In order for e to 

be infeasible, at least one of the following must be true: 

(a) ALTS C is unable to perform es because ALTS C cannot execute a send event. But this 

contradicts the assumption that local sequence sC is feasible for C. 

(b) ALTS U is unable to perform er because ALTS U cannot perform a receive event. But this 

contradicts the assumption that local sequence sU is feasible for U. 

(c) ALTS C can perform send event es and ALTS U can perform receive event er, but es and er 

cannot synchronize with each other.  However, this contradicts the assumption that Q is feasible for M, 

as es and er must be synchronizable (i.e., have matching ports and labels) in order for Q to be feasible in 

M.   ⁪ 

Theorem 4.4: CP F M iff for every }n..1{i  Pi F Li. 

Proof: For the only-if part, Theorem 4.3 says that if a feasible sequence Q = (sL1, sL2, …, sLm) of CP is 

feasible for M, then local sequences sLi of Q are feasible for the individual ALTSs Li of M, 1in. It 

follows directly from this that if all the feasible sequences of CP are feasible for M, then all of the 

constrained local sequences of Pi are also feasible for the individual ALTSs Li of M, 1in.  

For the if part, assume relation Pi F Li holds but relation CP F M does not. Then there is an event e 

that is one of the "first" events in some feasible sequence Q = (sL1, sL2, …, sLm) of CP that is not feasible 

for M.  (An event e is one of the first infeasible events in Q if no event in Q that happened-before 

[Lamport 1978] e is infeasible. The first events are executed concurrently.) Assume that e is executed by 

thread Pj. Sequence sPj is a local sequence of Pj that is not feasible for Li due to e, but we are assuming 

Pj F Lj, which is a contradiction.   

        ⁪ 

Theorem 4.5: M F CP iff for every }n..1{i  Li F Pi. 

Proof: Theorem 4.5 can be rewritten as M F CP and CP F M iff for every }n..1{i  Li F Pi and Pi F 

Li. From Theorem 4.2, M F CP iff for every }n..1{i  Li F Pi. From Theorem 4.4, CP F M iff for 

every }n..1{i  Pi F Li. This proves the Theorem.  

    

 

         



 

75 
 

A.2 Proof of Theorems 6.1, 7.1, and 8.2 

Theorem 6.1: Let Q be a feasible SR-sequence of a model M that is comprised of a set of component 

ALTSs {L1, L2, …, Ln}. Assume that every state in each component ALTS satisfies restrictions (R1) and 

(R2). Then each selection that a component ALTS makes is specified by Q and is deterministic. 

Proof: SR-sequence Q = (sL1, sL2, …, sLn), where sLi, 0 < i ≤ n, is the totally-ordered sequence of send 

and receive events that occurred on ALTS Li. Assume Q specifies that an event e is executed by some 

component ALTS Li and assume that e is executed in state s of component Li. The selection made by Li 

depends on event e: 

 Event e is a send-transition t of state s: Based on restriction (R1) (in Section 6.2), since t is a send-

transition of state s, t is the only transition of s. Thus, the selection made by component Li is 

deterministic. 

 Event e is a receive-transition t1 of state s that has annotation t1.annotation: Based on restriction 

(R1), all of the transitions of state s are receive-transitions. Based on restriction (R2), for any other 

receive transition t2 of s, t1≠t2, t1.annotation ≠ t2.annotation. Thus, the selection made by component 

Li is deterministic. 

 

Theorem 7.1 deals with relation M F CP, which requires that relations M F CP and CP F M both 

hold. Step (b1) of procedure TestF in Fig. 11 verifies relation M F CP. Recall that for each test 

sequence s of M, step (b1) shows that s is feasible for CP by using a controlled execution of CP with s. 

Assume the corresponding feasible sequence executed by CP is s’. Sequences s and s’ execute the same 

events, have the same synchronization pairs of send and receive events, and have the same space time 

diagrams. This also means that the same happened-before relations exist between the events in sequence 

s and between the corresponding events in s’. 

 To prove Theorem 7.1, we must prove that relation CP F M is also verified by procedure TestF. We 

first present two lemmas about the send events executed by CP. The first lemma considers whether non-

determinism during the execution of s’ can enable CP to execute a different event when it executes some 

send event in s’. 

 



 

76 
 

Lemma A.2.1: Assume that CP has executed all the events in s’ that happen-before send event snd. 

When CP executes send event snd in s’, CP cannot exercise any other event. 

Proof: In Section 5.3.1, we assumed that the only source of non-determinism during an execution is 

the order in which racing messages sent by two or more threads are received by the receiving thread. In 

particular, we assumed that the implementation language of CP does not allow a non-deterministic 

selection between two different send statements or between a send and a receive statement. Thus, when 

CP executed snd there was no other send or receive statement that CP could have executed. The value of 

the message sent at snd is deterministic and is completely determined by the events that happen-before 

snd in s’. Thus, when CP executes send event snd in s’, CP cannot exercise any other event.  

   

When CP executes a receive event, the message received and port accessed partially depends on non-

deterministic races between the send events that are available to be received.  

 

Definition A.2.1: Let Q be a feasible sequence of model M or implementation CP and rcv be a 

receive event in Q. The set of available send events for rcv, denoted rcv.available_sends, is defined in 

the same way as the race_set of rcv in Proposition 1 of Section 5.1, except that condition (1) is dropped, 

i.e., send event snd is not required to be open at rcv.  

 

Since set available_sends for receive event rcv in Q may contain send events that are not open, and 

hence are not in the race set of rcv, rcv.race_set is a subset of rcv.available_sends. 

 

Lemma A.2.2: For each receive event r in feasible sequence s of M and the corresponding receive 

event r’ in feasible sequence s’ of CP, r.available_sends = r’.available_sends. 

Proof: We show that if r.available_sends contains send event snd then r’.available_sends must 

contain the corresponding event snd’. The same argument can be used to show that if r’.available_sends 

contains send event snd’ then r.available_sends must contain the corresponding event snd.  

By way of contradiction, assume that r.available_sends contains send event snd but that the 

corresponding event snd’ is not in r’.available_sends. Then snd satisfies conditions (2) – (4) in 

Proposition 1 in Section 5.1 for r, but snd’ does not satisfy at least one of conditions (2) – (4) for r’. 

Thus, at least one of the following must be true: 



 

77 
 

(!2)  r’ happened-before snd’ in sequence s’ (while not r happened-before snd in sequence s) 

(!3)  snd’ is synchronized with d’ in sequence s’ but not r’ happened-before d’ in s’ (while snd is 

synchronized with d in sequence s and r happened-before d in s) 

(!4)  there is a send event snd2’ that has the same source and destination as snd’ and that happened-

before snd’, but there does not exist a receive event r2’ such that snd2’ is synchronized with r2’ 

and r2’ happened-before r’. (On the other hand, there is a send event snd2 that has the same source 

and destination as snd and that happened-before snd, but there exists a receive event r2 such that 

snd2 is synchronized with r2 and r2 happened-before r.) 

Note that each of these conditions requires the events in sequences s and s’ to be different, or the 

synchronization pairs in s and s’ to be different, or the happened-before relations among the events in s 

to be different from the happened-before relations among the events in s’. However, since s is feasible 

for M and s’ is feasible for CP, s and s’ execute the same events; and s and s’ have the same 

synchronization pairs and space time diagrams; and the same happened-before relations exist between 

the events in s and between the corresponding events in s’. This is a contradiction that proves the lemma.

      ⁪ 

Lemma A.2.2 says that when CP executed receive event r’ in s’, the available sends for r’ were the 

same as the available sends for the corresponding receive event r in s. Recall that an available send on 

port p can be received only if port p is open (i.e., if CP can execute a receive statement that accesses port 

p), and an available send for r’ that is open is in the race set of r’. Therefore, if the send events that can 

be matched with r’ are different from the send events that can be matched with r, this difference should 

be reflected in the race sets of r’ and r. We use this to prove Theorem 7.1. 

 

Theorem 7.1: If procedure TestF is performed and all the tests in FeasibleM receive a verdict of pass 

then M F CP. 

Proof: Let v’ be a variant (see Definition 5.8) of s’ that is created by changing a receive event r’. 

Recall that v’ is a sequence of events that CP can execute instead of s’, given the inputs of s’ and the 

available sends for the receive events in s’. From Section 2.2, the inputs of s’ are the values specified in 

the input events of s’. Variant v’ is said to be invalid if the corresponding sequence v is infeasible for M.  

Theorem 7.1 says that v’ cannot be an invalid variant of s’ if r.race_set = r’.race_set; otherwise v’ 



 

78 
 

represents a sequence of events that is feasible for CP but not for M, meaning that CP allows an extra 

behavior.  

Assume by contradiction that variant v’ is invalid and that r.race_set = r’.race_set. Then by the 

definition of variant in Definition 5.8, the send event snd’ matched with r’ in v’ must be different from 

the send event matched with r’ in s’.  Furthermore, since v’ is invalid, it must be impossible for the 

corresponding receive event r in sequence s to be matched with the corresponding send event snd in s. 

However, the fact that snd’ can be matched with r’, but snd cannot be matched with r, means that snd’ is 

in r’.race_set but snd is not in r.race_set. This contradicts the assumption that r.race_set = r’.race_set, 

which proves the theorem.     ⁪ 

 

Theorem 8.2: If procedure LocalTestF is performed and all the tests in Constrained-Sequences(Li) 

receive a verdict of pass then M F CP. 

Proof: Based on Theorem 7.1, race sets can be compared during global testing to verify relation M F 

CP. For each receive event in a global test sequence and the corresponding receive event in the sequence 

exercised by the implementation, a pass/fail verdict is assigned based on the equality of the two race 

sets. Here we show that the verdicts assigned using global and local test sequences will be the same.  

Let s be a global sequence s of M and sLi be a local sequence that is projected from s. Assume receive 

event r appears in sLi, which means that r also appears in s. Then the race set for r in sequence s is the 

same as the race set of r in sLi. This is because the race set of r in sequence s is retained by r in sLi when 

s is projected to create sLi.  

Now let s’ be the global sequence exercised by CP that corresponds to sequence s of M, and s’Pi be 

the local sequence exercised by Pi that corresponds to local sequence sLi. We have just shown that a 

receive event r that is in sequence s and sLi, has the same race set in s and sLi. Thus, if the verdicts 

assigned by global and local testing are different, it must be because the corresponding receive event r’ 

executed by the implementation has different race sets in s’ and s’Pi. We show that this is not possible. 

Assume by way of contradiction that r’ has different race sets in s’ and s’Pi. Then one or both of the 

following must be true: 

(1) receive event r’ has a different OpenList in s’ and s’Pi. However, the OpenList of r’ depends only 

on the events executed by Pi that happen-before r’, and these events are the same in s’ and s’Pi. 



 

79 
 

(2) the happened-before relations among the send events sent to Pi are different in s’ and s’Pi. 

However, if snd’ is a send event in s’ that is sent to Pi, then the timestamps for event snd’ in s’ and for 

event snd’ executed by the test driver are the same, since the timestamps for the send events in sequence 

s are saved and used by the test driver when s’Pi is executed. 

Thus, neither (1) nor (2) can be true, which is a contradiction that proves the theorem. 


