
Formal Framework for Automated Analysis and
Verification of Distributed Reactive Applications

Sarah Chabane
LIMOSE Laboratory,

Université M’hamed Bougara
Boumerdes, Algeria

chabane.sarah@univ-boumerdes.dz

Rabea Ameur-Boulifa
LTCI, Télécom ParisTech, Université Paris-Saclay

rabea.ameur-boulifa@telecom-paristech.fr

Mohamed Mezghiche
LIMOSE Laboratory,

Université M’hamed Bougara
Boumerdes, Algeria

mohamed.mezghiche@yahoo.fr

ABSTRACT

As applications become more and more complex, concur-
rency and communication play increasingly important roles
in the design process. In particular, highly distributed appli-
cations demand truly scalable communication architectures.
There is a real need for reliability and constructivity in the
design of such systems. The use of a bottom-up strategy,
supported by abstraction and proofs, allows scalable modeling
and verification of behavioral properties, and facilitates the
derivation of robust systems. The purpose of our research is to
produce scalable solutions facilitating the systematic design of
complex, reactive, and distributed systems that are guaranteed
correct by construction.

I. INTRODUCTION

Systems tend to be increasingly constructed from dis-
tributed, and loosely coupled independent units which reduces
the development effort. Component-based design is a new
paradigm which introduces these possibilities and new chal-
lenges. Indeed, component-based development has become
an established approach for mastering design complexity and
enhancing reusability. In several domains, in particular in
signal processing and telecommunication, the design process
usually uses existing components. Systems are designed as the
composition of interconnected, and inherently parallel compo-
nents. The individual components are designed independently,
or retrieved from a library of reusable components.

On the other hand, nowadays the application of formal
methods in industrial development projects is gaining matu-
rity. The use of formal methods and exhaustive verification
techniques are suitable solutions to prove consistency, improve
reliability and to achieve the ”100% correctness” requirement
of systems. Indeed, the applications should comply to a
wide spectrum of dependable requirements, such as power
and performance requirements. However, exhaustive formal
verification is extremely difficult at best and, quite often
absolutely unfeasible without assumptions on applications.
It requires a completely new formal and disciplined design
methodology. Model checking techniques [10] have proved
their efficiency by providing automatic proofs and producing
counterexamples. However, they still fail to scale up. Abstrac-
tions and model reduction are known techniques for handling

more complex systems. As a consequence, the verification is
performed on models that are correct approximations of the
original one.

To overcome the current limitations of verification tech-
niques, many of the commonly used methods combine a
component-based approach with verification methods. Com-
positional verification can be expressed as collections of
components (processes) composed in parallel. In its simplest
form, it consists in replacing each component or a group of
components by a single component which is simpler than
the original process, but still preserving the properties to be
verified on the whole system.

However to combine the results of such specialized tech-
niques and to foresee the impact of various inter-dependencies
on the overall system design remains a real challenge. The sys-
tem construction problem involves basically how to compose
possibly heterogeneous components to ensure their correct
interoperation and to preserve a given set of requirements.
The solution requires correct-by-construction design, which
are design rules and disciplines for building correct systems
from correct components.

Our goal is to produce scalable solutions facilitating the
correct-by-construction design of complex and distributed re-
active systems that are both highly dependable and available.
Specifically, we aim to assist engineers in their design task.
In this paper, we propose a rigorous framework to architect,
design and build dependable distributed reactive systems,
based on reuse and composition of components. Our frame-
work intends to improve practices by using the correct-by-
construction approach for reactive system design.

I/O-automata formalism [18] are used to model the behavior
of reactive components, systems or applications. In [9] we used
the formalism of I/O-automata to model synchronous dataflow
systems, called SR-models. Therefore, we defined novel rules
for composing SR-models that ensure composability, and guar-
antee correct composition of dataflow systems. Our framework
is based on the practical implementations of SR-models, and
the novel composition rules.

The rest of this paper is organised as follows: we provide in
Section II an overview of the proposed approach for the spec-
ification and verification of reactive applications. This section
is then followed by a general presentation of reactive systems,

Fig. 1: Approach for analysis applications

and their specification I/O-automata language in III. Section
IV surveys a case study. In Section V we present existing
frameworks that dealt with component-based approach and
formal methods. Section VI concludes the paper and discusses
the limitations as well as possible directions of our futures
work.

II. FRAMEWORK

Figure 1 illustrates the proposed approach to help automate
the systematic design and verification of reactive systems.
The figure highlights the relevant steps towards fulfilling the
construction of correct system from independent components
that can be automatically verified. Our framework consists
mainly of two parts:
• Model construction: this activity consists in splitting the

application into multiple basic components. Each compo-
nent is characterized by its own parameters. Concerning
the data flow applications, the relevant parameters are
latency and memory. The latency is the delay required to
process a single data from input to output. The memory
is the storage capacity of the component. This activity is
also concerned with the model generation of the various
structures: the models of basic components and the model
of the complete application. Our model relies on the
synchrony hypothesis; we use classical means to represent
synchrony I/O-automata [18] that we extend to take into
account the features of streaming applications, especially
telecommunication applications.

• Verification: this activity carries out analysis on the
global model generated from model constructor. As our
main objective is to automatically build systems that are
”correct-by-construction”, we need automated methods to
prove the correctness of the system with respect to its
specification or, at least, to search for the presence of
certain errors. Model-checking technique appears to be an
appropriate method for the automatic analysis of systems.
When the analysis fails, it provides a counterexample
which is a detailed example of how the system violates
the property being checked. Such information can provide
valuable feedback to the developer; it allows him to

easily understand and possibly fix the problem with the
system. For this, we use the CADP toolbox [15] for model
checking. It offers a wide range of functionalities among
which model checking and equivalence checking can be
used.

• The notion of substitutability and reusability is central
in our approach. To ease the activities of design and
verification, the idea is to reuse components that have
been designed and verified previously in other settings or
projects, and which have been stored in a library. Such
an ability is highly relevant, it improves the practice of
development and product time to market, and it helps to
ensure sound system adaptation and system quality.

III. MODELING

A. Distributed reactive systems

The term distributed refers to autonomous components that
run on the same environment and interact between them by
message passing. We focus on synchronous communication
where a clock drives the execution and is distributed through-
out a circuit. the components communicate by handshaking
policy. The design of Synchronous-Reactive system (SR-
system for short) is based on the synchronous style, in which
all components react simultaneously and instantaneously at
each tick of a global clock.

A SR-system interacts with another by exchanging data.
During an execution of a SR-system, the system may consume
data from input, and produce data on output. The systems
we considered produce and consume a fixed number of data
items per firing, and each output depends on one input data
items. SR-systems are described by two parameters: latency
and memory. The latency is the delay required to process
a single data from input to output. It is expressed in time
units, a suitable unit can be chosen at implementation level
depending on the target. The memory is the maximum amount
of information that can be stored, i.e, storage capacity of the
system.

B. SR-Model: a formalism for expressing SR-system

One of the widely used models for specifying reactive,
distributed systems is Input/Output labelled transition systems
(I/O-automata for short) [18]. Their use was motivated by the
fact that reactive systems are parallel systems by nature. So, it
is natural to model such systems as sets of parallel automata
that interact to achieve intended behaviour. An I/O-automaton
is defined formally:

Definition 1 (I/O-automata): An I/O-automaton is a tuple
〈S, s0,Σ,→〉 where:
• S is a set of states.
• s0 ∈ S is the initial state.
• Σ is a finite set of actions where Σ = {i/o, i/ō, ī/o, ī/ō}.
• →⊆ S × Σ× S is the transition relation.
Each transition has a label representing an execution step

of the system, consisting of an instantaneous action to be exe-
cuted when the transition is fired. Any transition (s, l, s′) ∈→
is denoted s l−→ s′.

The set Σ consists of input/output events executed at each
cycle of the clock. The events are tested for their presence
i and o or their absence ī and ō. Intuitively, i/o means an
input and an output occur simultaneously; i/ō means an input
occurs, but no output occurs; ī/o means no input occurs but
output occurs; and ī/ō no input and no output occur.

We define an SR-model as an I/O-automaton that satisfies
all the SR-system semantic conditions as mentioned above.

The semantics of SR-models is quite standard; it satisfies the
synchrony hypothesis and supports the interactivity of com-
ponents with their environment: it satisfies determinism and
receptiveness properties. The determinism ensures that for all
states of the automaton, there exists at most one transition for
each action. The receptiveness ensures the interaction between
the system and its environment. Input from its environment
is never blocked by a system. Symmetrically, output from a
system is never blocked by its environment. An SR-model
satisfies the following additional behavioural conditions that
describe when and how the model reacts, according to the
value of inputs and its current state.

• The model accepts data from the environment as long as
it has storage capacity.

• The data wait the duration of the latency before output.
• Firing a transition corresponds to a unit of time elapsed.

The latency is calculated by counting the number of
transitions.

• Once the data is ready to go out, the model has the choice
of outing or waiting.

Before giving the definition of SR-models, we introduce
some notation. We will use π = s0s1s2 . . . to denote a path
in an I/O-automaton A, a finite or infinite sequence of states
starting from the initial state. |π| ∈ N denotes the length of
π, and for a position i < |π| we define a path fragment from
position i as π[si] = s0 . . . si, and π[si, sj] a path fragment
from position i to position j as π[si, sj] = si . . . sj . We denote
Π(s) the set of all path fragments π[s]. To count the number of
transitions matching a given label α, we define the following
function:

τ(si, α, si+1) =

{
1 if (si, α, si+1) ∈→
0 otherwise

Given a state s we denote by m(s) the number of data
stored within the component at this state. It is calculated by
the sum of consumed data until this state (transitions labelled
by i/ō), minus the total of outputted data (transitions labelled
by ī/o) from s0 to the state s. More formally:

m(s) =

pre(s)∑
si=s0

τ(si, i/ō, si+1)−
pre(s)∑
si=s0

τ(si, ī/o, si+1)

where pre(s) refers to a previous state of the state s.
Let us denote in1(s) as the function that returns the starting

state of the first sampled data (of the first transition labelled by
i/β from s0 to the state s). We denote by lfst(s) the function
that computes the number of transitions elapsed between the

state s and the state of consumption of the first data.

lfst(s) = |π[in1(s), s]|

Definition 2 (SR-Model): Given an SR-system with param-
eters M and L the corresponding SR-model is an I/O-automata
A = 〈S, s0,Σ,→〉 such that ∀s ∈ S the following hold:

• (∃s′, s′′ ∈ S.s l−→ s′ ∧ s l′−→ s′′ ⇒ l 6= l′)

• (∃s′ ∈ S.s ī/ō−−→ s′)

• (m(s) < M⇒ (∃s′.s i/β−−→ s′)

• (lfst(s) = L⇒ (∃s′.s α/o−−→ s′)

• (lfst(s) < L⇒ @s′ ∈ S.s α/o−−→ s′)

This definition formalizes the behavioural semantics of SR-
systems.

Example 1: Consider an SR-system with M=2 and L=2, the
corresponding automaton is depicted graphically in Figure 2.

〈 〉start 〈1〉 〈2; 1〉

〈2〉

ī/ō

i/ō

ī/ō

i/ō

ī/ō

i/o

ī/o

ī/ō

i/o

i/ōī/o

Fig. 2: SR-model of system having M = 2, L = 2

For convenience, each state of the automaton is annotated
with a time-stamp corresponding to the number of consumed
samples, and for each sample, the amount of time spent
waiting for the output. The initial state 〈〉 corresponds to the
starting state of the component. In this state, the memory
is empty, the system can fire two transitions labeled: (̄i/ō)
expressing passive waiting, or (i/ō) expressing reception of a
sample and leading to another state 〈1〉. State 〈1〉 can accept
in its turn an input i/ō leading to 〈2; 1〉, or can wait actively in
state 〈2〉 (until the maximum latency is reached). Note that an
output action can occur only from states 〈2〉 and 〈2; 1〉 (when
period of latency is reached) and in both cases the systems
can continue waiting ī/ō. State 〈2; 1〉 corresponds to a full
component and from this state the system cannot accept any
more samples.

C. Composition

Hierarchical component models, like I/O-automata, allow
the specification of new components, based on the composition
of others. Such a compositional approach is very convenient
for design activity. As introduced in [2] parallel composition
of a set of I/O-automata [2] A1 . . .An, denoted A1‖ . . . ‖An
is defined formally as:

Definition 3 (Composition): Composition of I/O-automata
A1 = 〈S1, s01 ,Σ,→1〉 and A2 = 〈S2, s02 ,Σ,→2〉 is the
following I/O-automata: A1‖A2 =〈S1 × S2, (s01 , s02),Σ,→〉

with S1 × S2 the set of states, Σ the set of labels, (s01
, s02

)
the initial state and → is given by the following rules:

→,

(s1, s2)
α/β−−→ (s′1, s

′
2) if (s1

α/o−−→ s′1∧s2
i/β−−→ s′2)

∨ (s1
α/ō−−→ s′1∧s2

ī/β−−→ s′2)
undefined otherwise

where α = i or α = ī and β = o or β = ō
According to this definition the composition of I/O-

automaton models is based on hand-shaking policy. How-
ever, this is not the behavioural semantics for communication
between SR-systems. The resulting SR-models obtained by
applying the composition rules (given in Definition 3) do not
satisfy semantic conditions of SR-systems, in particular deter-
minism condition (as it shown in [9]). Thus the composition
correctness is not guaranteed.

Towards correct-by-construction SR-system: We defined
in [9] new rules for SR-models composition. These rules
extend I/O-automata composition so that it preserves the
semantics of SR-systems. In order to give the extended com-
position rules, we introduce a priority operator, denotedf, it
will be used to specify the priority of a rule over others when
there are multiple rules which could be applied at the same

time. Typically, the operation
R1

f
R2

means if both rules R1

and R2 are applicable we apply R1, otherwise we apply R2.
We also introduce a predicate seq(s1, s2), that takes a state of
two components and it returns whether the flow between the
components is steady.

seq(s1, s2)⇔ ¬(m(s1) < L1 ∧m(s2) > L2)

Indeed, it depicts the configuration where the second com-
ponent is willing to deliver outputs (m(s2) > L2). Whereas,
the first component can freeze due to the lack of data ready
for going out m(s1) < L1. These configuration form a bubble
that propagates from the first component to the second.

We denote by A+m its extended SR-model with an increase
of memory storage capacity by an amount of memory equal
to m. Therefore, the storage capacity of the component goes
from M to M + m.

Definition 4 (SR-models composition): Consider two
SR-systems C1 and C2 with parameters M1, L1 and M2,
L2, respectively. The composition of the corresponding
SR-models A1 = 〈S1, s01 ,Σ,→1〉 and A2 = 〈S2, s02 ,Σ,→2〉
is the SR-model A+m1

1 ‖A+m2
2 = 〈S1 × S2, (s01

, s02
),Σ,→〉

with S1 × S2 the set of states, Σ the set of labels, (s01
, s02

)
the initial state and → is given by the following rules:
(s1, s2)

α/β−−→ (s′1, s
′
2)if (s1

α/o−−→ s′1∧s2
i/β−−→ s′2) ∧ seq(s′1, s

′
2)

f
(s1

α/ō−−→ s′1∧s2
ī/β−−→ s′2)

undefined otherwise
It is interesting to notice that the composition of the two

SR-models is defined on their extended versions A+m1
1 ‖A+m2

2

such that:
m1 =

{
min(L1 − M1, M2) if M1 < L1

0 otherwise

m2 =

{
L2 − M2 if M2 < L2

0 otherwise

Intuitively, the composition rules behave roughly as basic
rules I/O-automata rules except that a transfer between two
SR-models is allowed only if the resulting composite state
guarantees sequentiality in data flow. Note the use of the
operator priority: when both rules are applicable the transfer
takes precedence.

Proving correctness: We use bisimulation equivalence to
prove the behavioural equivalence between the resulting model
obtained from the composition of two SR-models and the SR-
model of the corresponding component. The formulation of
the bisimulation equivalence introduced by [22]:

Given two I/O-automata A1 = 〈S1, s01
,Σ,→1〉 and A2 =

〈S2, s02
,Σ,→2〉 a relation R ⊆ S1 × S2 is a bisimulation if

whenever (s1, s2) ∈ R then the following hold :

• if s1
l−→ s′1 then there is an s′2 such that s2

l−→ s′2 and
(s′1, s

′
2) ∈ R

• if s2
l−→ s′2 then there is an s′1 such that s1

l−→ s′1 and
(s′1, s

′
2) ∈ R

Intuitively, two automata are bisimilar if there exist a
relation between their associated states: if they match each
other’s actions (input/output events). In this sense, each of the
systems cannot be distinguished from the other by an observer.

IV. CASE STUDY : IDCT APPLICATION

We sketch here a signal processing application illustrating
our approach. The Discret Cosine Transform (DCT) and
Inverse DCT (IDCT) [21] applications are widely used in
science and engineering, especially in digital signal setting.
Most image and audio compression algorithms use these
compression standards, typically MP3, JPEG, MPEG, H26x
algorithms. Inspired from [19] we study in this paper the
Inverse Discret Cosine Transform (IDCT), that can be found
in numerous devices: DVD players, satellite or cable set-top
boxes. This application reverses the coding process. It takes
the compressed data and reconstructs an approximation of the
original data stream [20].

A. Interface

IDCT is synchronous data-flow application, the operations
are performed at one clock per sample. The application
provides interfaces that can receive and provide data in
formats suitable for coding standards. Mathematically, IDCT
divides the image into 8×8 sub-set of non-overlapping blocks,
producing two-dimensional output signal of 8 rows and 8
columns (8-by-8 matrices). The computation is performed by
calculating a product of the corresponding two-dimensional
vectors, producing a sequence of data. The data are written
and read synchronously.

B. Architecture

Figure 3 (at the top) shows the functional model of IDCT
application. The figure depicts a generic IDCT algorithm

i1
INR1

o1 i2
ACCU1

o2 i3
POST1

o3 i4
TRSP

o4 i5
INR2

o5 i6
ACCU2

o6 i7
POST2

o7 i8

Internal architecture of IDCT

i1
PIPELINE

RefinementAbstraction

o6 i7
POST2

o7 i8

Fig. 3: Pipelined IDCT

in which a decoder reconstructs the image through a series
of cascaded functional components. As shown, the model
consists mainly of four components: ”normalization” operation
using quantization table, ”accumulation” operation, ”post-
processing” operation and matrix ”transposition” operation
denoted respectively INR, ACCU, POST, and TRSP. The
system has only one TRSP component, it needs two pairs of
each the others to operate. All components consume/produce
samples per clock cycle. For the sake of simplicity, and without
losing generality, we limit matrix size to (2×2) instead of
(8×8). Memory capacity and latency of each components are
the following:

1) INR component consumes one sample and produces one
sample per clock cycle. Its storage capacity is 2 sample
items and its latency is 2 units of time (M = 2 and L = 2).
Notice that SR-model corresponding to INR component
is the one given in the Figure 2.

2) ACCU component consumes one sample and produces 2
samples per clock. In our model we abstract a vector of
2 input data as one input. Its storage capacity is 1 sample
item and its latency is 2 units of time (M = 1 and L = 2).

3) POST component consumes 2 samples and produces one
sample. Its storage capacity is 1 sample item and its
latency is 2 units of time (M = 1 and L = 2).

4) TRSP component consumes 1 sample and produces 1
sample. Its storage capacity is 4 samples and its latency
is 2 units of time (M = 4 and L = 2).
Note that the storage capacity does not depend only on
the the size of the memory but also the length of input
samples.

C. Pipelined IDCT

Besides formal verification capabilities, the proposed frame-
work supports the reusability and the substitutability between
components. Components can be replaced with either an
updated or a refined version without disrupting the correctness
of the system. Referring to our case study (see Figure 3), the
idea is to replace the six first components by a single com-
ponent called PIPELINE, such that the global system meets
the requirements of the initial one. Naturally, the memory
storage (resp. latency) of the composite component, in this
case PIPELINE, is the sum of the the memory storage (resp.
latency) of all its corresponding sub-components. Thus the
parameters of PIPELINE component are: M = 11 and L = 12.

The size of all SR-models of IDCT components are sum-
marized in the table below.

SR-model Number of states Number of edges
AINR 4 11
AACCU 3 6
APOST 3 6
ATRSP 6 19
APIPELINE 4095 12272
AIDCT 16369 49003

The following table gives at each stage of the composition
the size of the resulting models of IDCT’s components .

SR-model States Edges
AINR‖AACCU 15 40
AINR‖AACCU‖APOST 57 151
AINR‖AACCU‖APOST‖ATRSP 256 767
AINR‖AACCU‖APOST‖ATRSP‖AINR 1024 3071
AINR‖AACCU‖APOST‖ATRSP‖ 4095 12272

AINR‖AACCU

AINR‖AACCU‖APOST‖ATRSP‖ 16369 49003
AINR‖AACCU‖APOST

APIPELINE‖APOST 16369 49003

Notice that the size of resulting model, in terms of the
number of states/transitions, grows with the parameters of
the composition. Notice also that the size of the initial IDCT
model and pipelined version is the same.

We developed in Ocaml programming language, a tool
which implements the algorithm of construction of an SR-
model from a component characterized by its parameters. We
implemented in the tool the composition rules. By using the
CADP model checker [15], we validated the correctness of
the result. We used this tool to check that for each test-case
the composition result of different SR-models is bisimilar the
expected one. All verification pass various test-cases.

V. RELATED WORK

In recent years component-based development has become
an established approach. There exist a fully component-based
methodology and supporting tools for the development of
software systems such as Fractal [7], GCM [4], or VerCors
[16] or of real-time embedded systems such as Think [12],

Ptolemy [11], BIP [3]. However, there are only a few that have
a theoretical framework that allows reasoning about composi-
tionality, especially about formal modelling and verification of
component-based systems. Among the works dedicated to the
component-oriented behavioural verification that we are aware
of, we cite SOFA [8], Kmelia [1], STSLib [13], BIP [3], and
Vercors [17]. While these frameworks and design tools allow
powerful compositional reasoning on distributed systems, they
are not dedicated to analysis of reactive applications. Nonethe-
less, there is research trying to extend these frameworks for
analysis synchronous systems, for instance in [6], authors
extend BIP models for enforcing analysis of a particular
class of synchronous systems. From the rigorous reactive
system design point of view, there are several tools that are
supplied for synchronous design and validation of embedded
systems. For example, Scade tool-suite [5] is widely used
for specifying and programming critical reactive applications
in the areas of avionics, energy or transport. However, these
tools take as input designs specified using high-level languages
such as LUSTRE, ESTEREL, or ZELUS/Lucid languages
and compilers/tranlators are then used to convert the design
into well-suited low level language models, e.g. finite state
machines, Kahn process networks, Petri nets. Moreover, they
do not inherently support a component-based approach, where
the cost of redesigning the components (or replacing by a
better component) is essential. The work closest to what we
present is that presented in [14]; the authors propose a gen-
eral methodology for designing safety distributed embedded
system; However, the practical use of the approach requires
some expertise in the SIGNAL clock calculus and skills in
polychronous design.

VI. CONCLUSION

In this paper, we proposed a framework for analyzing
data-flow applications. The framework provides support for
component-based development of data-flow and streaming
applications: applications where the processing can depend on
the number of objects and the duration of the treatments. The
contribution is the definition of a behavioural model for such
applications. To cope with complexity and to take advantage
of reusability, our solution advocates building applications
in a compositional manner. Furthermore, the framework is
based on formal models that allows specification and analysis
of developed applications. It provides a tool for specifying
individual components, and rules for composing them so as
to guarantee by construction the correctness of the assembly.
We describe IDCT application in its detailed and simplified
versions, as an example to demonstrate the correctness of our
composition rules. This first effort led to specification and
analysis of a real life application and to a proof-of-concept
tool. Our future work will focus on further experimental
validations of our proposal. Although comparative measures
showing the equivalence between composition results and
expected results succeeded, we think a proof of the equivalence
will be a nice improvement.

REFERENCES

[1] Pascal André, Gilles Ardourel, and Christian Attiogbé. Composing
Components with Shared Services in the Kmelia Model. In 7th
International Symposium on Software Composition, SC’08, volume 4954
of LNCS. Springer, 2008.

[2] A. Arnold. Finite transition systems. Semantics of communicating
sytems. Prentice-Hall, 1994.

[3] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz,
Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous
Component-Based System Design Using the BIP Framework. IEEE
Software, 28(3):41–48, May 2011.

[4] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto,
Vladimir Getov, Ludovic Henrio, and Christian Pérez. GCM: A Grid
Extension to Fractal for Autonomous Distributed Components. Annals
of Télécommunications, 64(1–2):5–24, 2009.

[5] Gérard Berry. SCADE: Synchronous Design and Validation of Embedded
Control Software, pages 19–33. Springer Netherlands, Dordrecht, 2007.

[6] Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling
synchronous systems in BIP. In Proceedings of the Seventh ACM
International Conference on Embedded Software, EMSOFT ’09, pages
77–86, New York, NY, USA, 2009. ACM.

[7] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and
Jean-Bernard Stefani. An Open Component Model and Its Support in
Java, pages 7–22. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[8] Tomás Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing
Advanced Features in a Hierarchical Component Model. In Proceedings
of SERA 2006, IEEE CS, pages 40–48, Aug 2006.

[9] S. Chabane, R. Ameur-Boulifa, and M. Mezghiche. Rethinking of
I/O-Automata Composition. In 12th Forum on specification & Design
Languages (FDL 2017), Verona, Italy, September 2017.

[10] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[11] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia R. Sachs, and Yuhong
Xiong. Taming Heterogeneity - the Ptolemy Approach. Proceedings
of the IEEE, 91(1):127–144, January 2003.

[12] Jean-Philippe Fassino, Jean-Bernard Stefani, Julia L. Lawall, and Gilles
Muller. Think: A software framework for component-based operating
system kernels. In Proceedings of the General Track of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’02, pages
73–86, Berkeley, CA, USA, 2002. USENIX Association.

[13] Fabrı́cio Fernandes and Jean-Claude Royer. The STSLib project:
Towards a formal component model based on STS. Electronic Notes
in Theoretical Computer Science, 215:131–149, 2008.

[14] Abdoulaye Gamatié and Thierry Gautier. The signal synchronous
multiclock approach to the design of distributed embedded systems.
IEEE Transactions on Parallel & Distributed Systems, 21:641–657,
2009.

[15] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001.
European Association for Software Science and Technology Newsletter,
4:13–24, Aug 2002.

[16] Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan. A
Framework for Reasoning on Component Composition, pages 1–20.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[17] Ludovic Henrio, Oleksandra Kulankhina, and Eric Madelaine. Integrated
Environment for Verifying and Running Distributed Components. In
Proc. International Conference on Fundamental Approaches to Software
Engineering (FASE 2016), LNCS. Springer, 2016.

[18] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI
Quarterkly, 2:219 – 246, 1989.

[19] R. Pacalet M. Baclet and A. Petit. Register transfer level simulation.
Research Report LSV-04-10. Laboratoire Spécification et Vérification.
ENS de Cachan. France, May, 2004.

[20] Jari Nikara, Jarmo Takala, David Akopian, Jukka Saarinen, and Jaakko
Astola. Pipelined architecture for inverse discrete cosine transform. In
10th European Signal Processing Conference, EUSIPCO 2000, Tampere,
Finland, September 4-8, 2000, pages 1–4, 2000.

[21] K.R. Rao and P. Yip. Discrete cosine transform: Algorithms, advantages,
applications. Academic Press Professional, Inc, 1990.

[22] Christensen . S, Hüttel . H, and Stirling. C. Bisimulation equivalence is
decidable for all context-free processes. Information and Computation,
121:143–148, 1995.

