
Automated Reverse Engineering using Lego R©

Georg Chalupar1, Stefan Peherstorfer1, Erik Poll2, and Joeri de Ruiter2

1University of Applied Sciences Upper Austria
2Radboud University Nijmegen, The Netherlands

Abstract
State machine learning is a useful technique for automat-
ing reverse engineering. In essence, it involves fuzzing
different sequences of inputs for a system. We show that
this technique can be successfully used to reverse engi-
neer hand-held smartcard readers for Internet banking,
by using a Lego robot to operate these devices. In par-
ticular, the state machines that are automatically inferred
by the robot reveal a security vulnerability in one such
a device, the e.dentifier2, that was previously discovered
by manual analysis, and confirm the absence of this flaw
in an updated version of this device.

1 Introduction

Finite state machines (a.k.a. finite automata) are a very
useful formalism to model the behaviour of systems. For
security-sensitive systems, they can be used to confirm
that actions can only be carried out in the correct order,
e.g. that some security-sensitive action is only possible
after a successful PIN code check. Implementing a secu-
rity protocol inevitably involves the implementation of
a state machine that checks that messages are only ac-
cepted in the correct order. This makes state machine
learning a very useful technique that can be used to au-
tomatically reverse engineer implementations of security
protocols, with the view to find security flaws or confirm
their absence. The vulnerabilities that can be discovered
using this technique are the ones that occur when per-
forming actions in an unexpected order, e.g. performing a
security sensitive operation before having entered a PIN
code.

This paper discusses the use of state machine learn-
ing to reverse engineer smartcard readers for Internet
banking, more in particular different versions of the
e.dentifier2, a USB-connected smartcard reader that a
customer operates using his bank card and PIN code.
The smartcard reader has a keyboard for the user to enter

his PIN code and buttons to cancel or confirm Internet
banking transactions. A security vulnerability was dis-
covered in this device by a manual analysis of the USB
communication between the PC and the device and the
communication between the device and the smartcard.
The vulnerability could be exploited by injecting mali-
cious USB traffic [6]. Goal of this research was to see if
we could automate such an analysis. To be able to learn
the behaviour of the reader, we therefore constructed a
Lego robot, controlled by a Raspberry Pi, that can oper-
ate this keyboard. Controlling all this from a laptop, we
then could use LearnLib [15], a software library for state
machine inference, to learn the behaviour of readers. We
show that the state machine that can be learned using
Lego robot reveals the presence of the security flaw, and
shows that the flaw is no longer present in the new ver-
sion of the device.

2 Background

This section describes the Internet banking devices we
analysed, and the state machine learning technique used
for this.

2.1 The e.dentifier2
The e.dentifier2 is a hand-held smartcard reader with a
small display, a numeric keyboard, and OK and Cancel
buttons (see Figure 1). It is used for Internet banking
in combination with a bank card and a PIN code. The
device can be connected to a PC by USB or used without
USB connection. The analysis in this paper concerns the
USB-connected mode.

Like most card readers used for online banking, both
the connected and unconnected modes of the e.dentifier2
appear to be based on EMV-CAP, a proprietary stan-
dard by MasterCard, which in turn is based on the EMV
standard [10] implemented in most bank cards. The be-
haviour of EMV-CAP readers for Internet banking has

1

Figure 1: The e.dentifier2

been largely reverse engineered [9, 19]. In more detail,
during an EMV-CAP transaction, two MACs (Message
Authentication Codes) are generated by the bank card
using a secret key that is shared with the bank. Usu-
ally, a bit filter is then applied on the first MAC and the
Application Transaction Counter of the card to get an 8
digit number used to confirm the transaction. However,
the e.dentifier2 is slightly different from the devices dis-
cussed in [9, 19], as some additional transformation is
performed in the device before the confirmation code is
returned.

When the device is used without USB connection, the
user has to copy numeric challenges shown on the bank
web page onto the reader, after he inserted his bank card
and typed in his PIN code. The display then shows a
response, which is based on the response of the bank
card, that has to be entered in the web page to confirm
the transaction.

When the device is used with a USB connection, it is
controlled by the browser using JavaScript via a plugin.
The user then does not need to manually copy numeric
challenges and responses, and more detailed (alphanu-
meric) information is given on the display of the device,
in particular details of any bank transfer being approved.
In principle, this is more secure, as it provides WYSI-
WYS (What-You-Sign-Is-What-You-See): the user can
understand what transaction he is approving. When the
user only sees meaningless random challenges, he can
easily be misled by Man-in-the-Browser attacks. Unfor-
tunately, a vulnerability in the device means that user ap-
proval of transactions – by pressing the OK button on the
device – could actually be by-passed by malware send-
ing USB commands at unexpected stages of the protocol
[6].

After discovery of the vulnerability, a new version
of the device was released. We used both the old

and the new version in order to see if such flaws can
be automatically discovered. To be precise, we used
e.dentifiers with version numbers F/W 01.02 H/W C

Dec 19 2007 18:39:42 and F/W 01.05 H/W C Feb

7 2012A 14:54:39; this firmware version is shown on
the display if the button 5 is pressed while a smartcard is
inserted.

2.2 LearnLib

The behaviour of our target – the e.dentifier2 device –
can be modelled as a Mealy machine. Mealy machines
are deterministic finite automata (DFAs), which produce
an output on every state transition.

A Mealy machine M is specified by the tuple
〈I,O,S,s0,δ ,λ 〉, consisting of the input alphabet I, the
output alphabet O, the states S, the initial state s0 ∈ S,
the transition function δ : S× I→ S, and the output func-
tion λ : S× I→ O. We define input and output symbols
as elements of I and O and input and output strings as
elements of I∗ and O∗.

We use LearnLib [15] to learn the Mealy machine im-
plemented by the e.dentifier2. LearnLib uses a version
of Angluin’s L∗ algorithm [4] optimised for Mealy ma-
chines. In the L∗ algorithm, a learner infers a Mealy
machine with the help of a teacher, who is assumed to
know the Mealy machine we want to learn.

In essence, this is done by randomly trying different
sequences of inputs, and observing the output; if in-
cluding an input makes a difference in subsequent in-
put/output responses, it is inferred that this input must
have caused an internal state change.

In more detail, this is done by creating a hypothesis
and iteratively refining it in a two-step process:

• First, the learner chooses input strings and obtains
the output strings produced by the target from the
teacher using so called output queries. This way, it
tries to discover different states using distinguish-
ing strings, i.e. suffixes that produce different out-
puts for different states. For each discovered state,
the algorithm stores an access sequence, i.e. an in-
put string that reaches this state from the initial
state. When every input symbol in every known
state results in a transition to another known state,
the model is consistent and a hypothesis automaton
is generated.

• Next, the learner sends an equivalence query to the
teacher to check whether the hypothesis is equal to
the target automaton. If this is not the case, the
teacher replies with a counter example, i.e. an in-
put string which results in different outputs for the
target and the hypothesis automaton.

2

The learner takes a suffix of the counter example as
additional distinguishing sequence, which will lead
to a new state in the next round and updates the
model to produce the correct result for the counter
example. The learning process continues as long as
the teacher is able to find a difference between the
hypothesis and the target.

We have to provide LearnLib with an input alphabet
consisting of abstract input symbols. These input sym-
bols are translated by our software to real USB and robot
commands, which we will discuss in more detail in Sec-
tion 4.1. The responses returned via the USB connection
are translated back into abstract output symbols before
being returned to LearnLib.

When it comes to answering equivalence queries,
there are two possibilities. In a white-box setting, the
teacher is assumed to know the internal implementation
of the target, so that he can simply see if the hypoth-
esis automaton is correct. In a black-box setting, the
teacher cannot access the internal implementation; then
the teacher can only resort to black-box testing of the
target to see if he can observe a difference, in what is
essentially a form of model-based testing.

In our case, where we do not know the implementa-
tion of the e.dentifier2, we have to resort to the latter
approach. Note that in such a black-box setting, equiv-
alence queries cannot be answered with certainty: there
may be differences between our hypothesis and the real
implementation that do not show up in the finite num-
ber of tests that we run. For example, we cannot ex-
clude the possibility that if we keep repeating some input
many times, the real implementation will do something
different than our hypothesis automaton on the millionth
time. The automaton that is ultimately inferred might
only show a subset of the actual behaviour. To approxi-
mate equivalence checking of the teacher, we use either
the random walk method or Chow’s W-method [8] as
provided by LearnLib. For the random walk method,
LearnLib will try to verify a hypothesis by generating
random input traces and checking the corresponding out-
puts from the device against the hypothesis. The maxi-
mum number of traces is given, just like a minimum and
maximum trace length. The W-method can guarantee
that given an upper bound on the number of states, the
correct state machine is found. This does come at a cost
of a possibly much longer running time compared to the
random walk method.

From a security perspective, it means that we cannot
hope to discover carefully hidden backdoors in an imple-
mentation. Still, as our experiments with the e.dentifier2
confirm, we can hope to find accidental mistakes in the
program logic.

3 Setup

To learn the state machine of the e.dentifier2, as input
alphabet we use the USB commands that are sent to the
e.dentifier2 from the PC, plus the keyboard actions of
pressing OK, pressing Cancel, or entering the PIN code.
The output alphabet is the set of USB responses that are
sent back to the PC.

We could also have included the output to the display
and the output to the smartcard as observable outputs of
the device, but it turns out that the USB responses are in-
formative enough to successfully infer the state machine
of the device.

3.1 Lego Robot

We did not want to physically open the e.dentifier2 but
decides to interact with it through the normal keyboard.
This meant we needed a robot that actually presses the
buttons on the device. By using Lego motors, we found a
cheap and flexible solution (see Figure 2). We use a small
gear on the motors to move a Lego bar via a toothed rack.

The robot needs to be able to enter PIN codes and
press OK and Cancel. We used a PIN with 4 times the
same digit, so that only one ‘finger’ is needed to enter the
PIN. In total, we then only needed three fingers and three
Lego motors to move them up and down.

We choose a Raspberry Pi to actuate the motors as it
offers some GPIO (General Purpose Input/Output) pins
which are easy to program and, like the Lego motors, it
is also powered by 5 Volt. Additionally, the Raspberry Pi
contains a USB port, which we use to communicate with
the e.dentifier2, and an Ethernet port, which is used to
control the Raspberry Pi from the PC running LearnLib.

When setting the timing for moving the fingers up and
down, there is the risk that on long test runs, taking sev-
eral hours and thousands of key presses, errors in the tim-
ing would accumulate and cause the fingers not to press
down enough. We therefore set the time for moving the
finger down a small fraction too long, so that we are cer-
tain that the buttons are always pressed down completely.

In order to control the motors, some electronic cir-
cuitry between the Raspberry Pi and the motors is
needed. To keep the setup as simple as possible, a so
called H bridge is used for this, rather than building our
own circuitry. An H bridge controls the direction of the
current and thus the direction in which the motor turns.
The Texas Instruments SN754410 ICs used each pro-
vide two H bridges. Each motor is controlled using one
H bridge, which is connected to two GPIO pins on the
Raspberry Pi.

The e.dentifier2 has to be reset after each LearnLib
query. For this, we spliced the USB cable to take out the
power wire, and then used another H bridge to be able to

3

Figure 2: Our Lego robot is capable of pressing three buttons on the e.dentifier2. The learning setup includes the Lego
robot, circuitry to power the engines, and a Raspberry Pi that interacts with the e.dentifier2 and controls the engines.

turn the USB power supply on and off.
In our experiments, we used a smartcard that we pro-

grammed ourselves to provide the required EMV sup-
port. An advantage of this was that we could fix some
of the behaviour of the card, and make it produce iden-
tical responses for each EMV request. A real bank card
has an Application Transaction Counter (ATC), which is
included in the MAC and increased after each request,
and the resulting change in the output would have to be
filtered out to learn the state machine with LearnLib.

3.2 Software

We created a small program in Java on top of LearnLib
(based on the one used in [2]) to create output queries
and build a model from the responses. For the equiva-
lence checking, we used either the random walk method
or the W-method. To create reproducible results we used
a static seed for the random number generator. The in-
put alphabet consists of command names that represent
either USB messages or commands for the Lego robot.
A class implementing the Oracle interface answers out-
put queries by sending the commands to a script on the
Raspberry Pi over a TCP socket. This script controls the
motors and resets the device. Additionally, it sends the
USB commands to the e.dentifier2 using the PyUSB li-
brary.

Especially in longer experiments, we experienced
problems with non-deterministic behaviour due to, for
example, buttons not always correctly being pressed. To
counter this, we made use of an alternative version of
the software using majority voting were all queries are
executed twice. If the results are different, the query is
executed a third time and this output is given if it is equal
to one of the first two outputs. If all three outputs are

different, the software will throw an exception.

4 Experiments

4.1 Input and Output Symbols
We based the input symbols on the USB commands dis-
covered by previous reverse engineering [6] (for their
byte values, see Table 1 in Appendix A). A normal trans-
action starts with the SHIELD command, after which the
e.dentifier2 displays the logo of the bank (a “shield”)
three times. Next, INSERT_CARD sets the language
(in our case “EN” for English) and waits until the bank
card is inserted. The PIN command causes the de-
vice to ask for the PIN and send it to the card. After
that, SIGNDATA sends binary data to be included in the
cryptogram. The DISPLAY_TEXT command encodes
a text to be included in the cryptogram, that is shown
on the screen and has to be confirmed by the user with
the OK button. Finally, GEN_CRYPTOGRAM tells the
e.dentifier2 to get a cryptogram from the smartcard.

In addition to these USB commands, the input sym-
bols ROBOT_OK and ROBOT_CANCEL instruct the
robot to press the OK or Cancel button respectively. To
accelerate the learning process by keeping the number in-
put symbols and states low, we defined some input sym-
bols that combine two or more inputs.

• COMBINED_INIT consists of SHIELD followed
by INSERT_CARD;

• COMBINED_DATA combines SIGNDATA and
DISPLAY_TEXT;

• COMBINED_PIN translates to the PIN USB com-
mand plus the robot pressing four times a digit fol-
lowed by the OK button.

4

Moreover, we added the option to automatically issue
the COMBINED_INIT command after every reset of the
e.dentifier2.

We used the USB responses (see Table 2 in Ap-
pendix A) of the e.dentifier2 as output symbols for the
learning process. The smartcard communication and
messages on the screen were not observed.

After a robot action or sending a USB command, the
Raspberry Pi waits 1 second for a response via USB.
We assumed that USB messages are sent in chunks of
8 bytes, as indicated in [6]. Although the USB re-
sponses seem to encode whether more chunks will be
sent, our script attempts to read data via USB until no
more data is received for 1 second. While our smart-
card is programmed to always send the same cryptogram,
the USB responses to the GEN_CRYPTOGRAM com-
mand can vary because the e.dentifier2 manipulates the
cryptogram based on the data supplied by SIGNDATA
and DISPLAY_TEXT. Therefore, we classify every mes-
sage starting with 0103031900000 (in case of the old
e.dentifier2) or 0103031b00000 (in case of the new ver-
sion) as a cryptogram. Optionally, we distinguish an
EMPTY_CRYPTOGRAM which is the response when
neither SIGNDATA nor DISPLAY_TEXT has been sent
before the cryptogram is requested.

4.2 Learning Parameter and Timings
At the beginning of every input sequence, the e.dentifier2
has to be reset to an initial state. Since resetting in-
cludes waiting for 0.5 seconds before powering down to
ensure that all previous operations have finished, 3 sec-
onds before powering it again to ensure that it is com-
pletely reset, and 2 seconds to wait for the device to
start, this takes on average 5.6 seconds. ROBOT_OK and
ROBOT_CANCEL take on average 2.5 seconds, because
the robot waits for 1 second before pressing the button
(to ensure the e.dentifier is ready to accept a button af-
ter the last command), then it takes the robot 0.4 seconds
to press the button and the Raspberry waits for 1 second
to receive a response via USB. USB commands take on
average 1.1 seconds which is mostly due to the timeout
when waiting for a response. Since COMBINED_INIT
and COMBINED_DATA consist of two USB commands,
they take twice as long as a single USB command. COM-
BINED_PIN includes a USB command and 5 button
presses (4 PIN digits followed by OK) which results in
an average duration of 4.4 seconds.

We first learned models using coarser-grained com-
bined actions, and then we learned more detailed models
using more fine-grained actions:

• First, we learned a coarse-grained model where
COMBINED_INIT is performed after every reset
and with a reduced input alphabet consisting

of COMBINED_DATA, COMBINED_PIN,
ROBOT_OK, and GEN_CRYPTOGRAM.
Moreover, we did not distinguish between the
EMPTY_CRYPTOGRAM and other CRYP-
TOGRAM responses in this setup. The learner
generated a model with 3 states for the old version
of the e.dentifier and 4 states for the new version
using 85 and 65 output queries respectively. The
equivalence checking with 50 random queries
with a length of 4 or 5 input symbols for each
model could not find a counterexample. The whole
process took 45 and 30 minutes respectively.

These coarse models, shown in figures 3 and 4, al-
ready have enough detail to show the flaw in the old
version and reveal differences between the old and
new version.

• Next, we learned a more detailed model for the
new version using a simple reset and the com-
mands COMBINED_INIT, COMBINED_PIN,
ROBOT_CANCEL, ROBOT_OK, SIGNDATA,
DISPLAY_TEXT, and GEN_CRYPTOGRAM
as input alphabet. This time we distinguished
between the EMPTY_CRYPTOGRAM and other
CRYPTOGRAM responses. After equivalence
checking found counterexamples for two hypothe-
sis models, the final model with 8 states has been
verified with 500 random queries with a length of
6 or 7 input symbols. In total, 578 output queries
and 894 queries for equivalence testing have
been performed and the process took 7:15 hours.
For a more extensive test using the test harness
implementing majority voting with equivalence
queries of length 10 to 15 and a maximum of 1000
equivalence queries, the random walk method took
almost 23 hours for 580 membership and 1091
equivalence queries. Using the same setup, we
ran the W-method for a maximum of 8 states,
which took about 88 hours. In this period, 578
membership queries and 7530 equivalence queries
were executed to determine the final model.

5 Results

Figure 3 shows the generated state diagram of the
old version of the e.dentifier2. The normal path
through the application in case of this input alphabet is:
COMBINED_PIN, COMBINED_DATA, ROBOT_OK,
GEN_CRYPTOGRAM. It is also possible to get a
cryptogram with the combination COMBINED_PIN,
GEN_CRYPTOGRAM, which is an empty cryptogram.

The security vulnerability discussed in section 2.1
occurs in the state waiting for confirmation, where
it is possible to get a cryptogram without pressing

5

the OK button for the transaction with the follow-
ing inputs: COMBINED_PIN, COMBINED_DATA,
GEN_CRYPTOGRAM, leading to the state unconfirmed
cryptogram.

The state diagram of the new version (see figure 4)
of the e.dentifier2 does not have this additional state un-
confirmed cryptogram. The device thus misses this (su-
perfluous) state which causes the security vulnerability.
This shows that the vulnerability present in the old ver-
sion is fixed. The only paths through the application that
lead to a valid cryptogram are the legitimate ones that are
expected.

To generate a more detailed state model, we refined
the inputs as described in section 4. This leads to more
states and paths as shown in figure 5. In this state di-
agram, the COMBINED_INIT command is used inde-
pendently from the RESET command which leads to
several uninitialised states. As visible in the model,
the initialised state and the error state are almost the
same, except that pressing the OK or the CANCEL but-
ton gives different behaviour. After COMBINED_PIN,
both states end up in the PIN verified state. The nor-
mal way through the application from the PIN verified
state is: SIGNDATA, DISPLAY_TEXT, ROBOT_OK
and then back to the initialised state by generating a
cryptogram with GEN_CRYPTOGRAM. By repeating
the DISPLAY_TEXT and the ROBOT_OK command,
more text can be added to the signed data for the cryp-
togram. This is necessary if the user should confirm more
text than fits on the display. Additionally, in the ready to
sign state it is possible to add data for the cryptogram
with the SIGNDATA command. The COMBINED_PIN
leads to the PIN verified state, no matter if the current
state is the waiting for confirmation or the ready to sign
state. In the waiting for confirmation state, the user is
prompted to confirm the data on the display. If the Can-
cel button is pressed, the e.dentifier2 is reset to the ini-
tialised state as expected.

The fact that there are the states uninitialised1 and
uninitialised2 shows that there is still some strange be-
haviour but at least it is not possible to generate a cryp-
togram by bypassing the confirmation of the user. Also,
the error state and the initialised state could be combined
to one state.

When looking at the more detailed model of the old
device1, we not only discovered the known bug but also
additional strange behaviour. The COMBINED_INIT
command does not seem to influence a regular protocol
run (COMBINED_PIN, SIGNDATA, DISPLAY_TEXT,
ROBOT_OK and GEN_CRYPTOGRAM). It is possible
to start with a protocol run before issuing the COM-
BINED_INIT command and issue this command at any

1Available from http://www.cs.ru.nl/~joeri

point before GEN_CRYPTOGRAM is executed. This
will still result in a valid cryptogram and the device still
displays the text and asks for the PIN code as usual.
There is however no response returned over the USB line
yet before the COMBINED_INIT command. This be-
haviour is no longer present in the new device.

6 Model checking

We easily converted the models, that result from the auto-
mated learning process, to the Aldebaran file format for
labelled transition systems. These files were then used
as input for the CADP model checker to automatically
search for possible vulnerabilities [11]. As the models
get increasingly complex when learning with a large in-
put alphabet, it becomes difficult to review them manu-
ally. Model checkers can then be very helpful to verify
security properties. However, coming up with all the se-
curity properties that need to be checked and specifying
them correctly is not a trivial task.

7 Non-Deterministic Behaviour

One problematic issue in our experiments was dealing
with non-deterministic behaviour of the system under
test. LearnLib cannot cope with non-deterministic be-
haviour, and will fail to terminate if it encounters non-
determinism.

In one instance, non-determinism was traced to one
of the buttons of the e.dentifier2 keyboard intermittently
malfunctioning, namely the digit button used to enter the
PIN code, probably due to it having been pressed thou-
sands of times by our robot. We solved this by switching
to a different digit for the PIN code.

More problematic was non-deterministic behaviour on
the old e.dentifier2 that showed up in some tests. Ran-
domly, there are 8 unexpected bytes, usually at the end of
an expected response or between two different expected
USB responses. This additional byte sequence normally
looks similar to this one: 0281010100000000. The new
e.dentifier2 shows no such behaviour, which leads to the
conclusion that there was not only a security bug fix but
also an update of the USB part of the firmware. The byte
sequence might be some error code of the old USB stack.
The Python script on the Raspberry Pi was modified to
filter out such ‘error’ bytes to learn the state machine for
the old e.dentifier2.

8 Future Work

Additionally, it would be interesting to investigate
whether more messages are implemented by the
e.dentifier2, how message parameters are handled, and

6

Initialised

PIN verified

Waiting for confirmation Unconfirmed cryptogram

COMBINED_DATA / LONG_ERROR || LONG_ERROR
GEN_CRYPTOGRAM / LONG_ERROR

ROBOT_OK / TIMEOUT

COMBINED_PIN / OK GEN_CRYPTOGRAM /
CRYPTOGRAM

COMBINED_PIN / OK
ROBOT_OK / TIMEOUT

COMBINED_DATA / OK || TIMEOUT COMBINED_PIN / OK
ROBOT_OK / OK

COMBINED_DATA /
LONG_ERROR || LONG_ERROR

ROBOT_OK / OK

COMBINED_PIN /OK

GEN_CRYPTOGRAM /
CRYPTOGRAM

COMBINED_DATA / LONG_ERROR || LONG_ERROR
GEN_CRYPTOGRAM / LONG_ERROR

Figure 3: The learned result of the old version of the e.dentifier2. The initial state is marked with a double ellipse.
For readability, multiple transitions between the same pair of states with different labels have been merged to one
transition with these different labels separated by “||” (e.g. OK || TIMEOUT).

Initialised

PIN verified

Waiting for confirmation

COMBINED_DATA / LONG_ERROR || LONG_ERROR
GEN_CRYPTOGRAM / LONG_ERROR
ROBOT_OK / TIMEOUT

COMBINED_PIN / OK GEN_CRYPTOGRAM / CRYPTOGRAM

COMBINED_PIN / OK
ROBOT_OK / TIMEOUT

COMBINED_DATA / OK || TIMEOUT COMBINED_PIN / OK
ROBOT_OK / OK

COMBINED_DATA / LONG_ERROR || LONG_ERROR
GEN_CRYPTOGRAM / LONG_ERROR

Figure 4: The learned result of the new version of the e.dentifier2.

7

Reset

Initialised

PIN verifiedReady to sign

Waiting for confirmation

Uninitialised 1

Uninitialised 2

Error

Other / TIMEOUT

COMBINED_INIT / INIT_OK

COMBINED_PIN / TIMEOUT

USB Commands / LONG_ERROR
Robot Commands / TIMEOUT
COMBINED_INIT / INIT_OK

COMBINED_PIN / OK
Robot commands / TIMEOUT
COMBINED_PIN / OK

GEN_CRYPTOGRAM / EMPTY_CRYPTOGRAM
COMBINED_INIT / INIT_OK

SIGNDATA / OK

DISPLAY_TEXT /
TIMEOUT

ROBOT_OK / OK
COMBINED_PIN / OK

ROBOT_CANCEL /
SHORT_ERROR

USB Commands / LONG_ERROR
COMBINED_INIT / INIT_OK

SIGNDATA / OK
Robot commands / TIMEOUT

COMBINED_INIT / INIT_OK
GEN_CRYPTOGRAM / CRYPTOGRAM

COMBINED_PIN / OK

DISPLAY_TEXT / TIMEOUT

Other / TIMEOUT
GEN_CRYPTOGRAM / TIMEOUT

COMBINED_INIT / INIT_OK DISPLAY_TEXT/ TIMEOUT

USB commands / TIMEOUT

ROBOT_CANCEL / SHORT_ERROR

ROBOT_OK / TIMEOUT
COMBINED_PIN / TIMEOUT

COMBINED_INIT / INIT_OK

USB commands / LONG_ERROR
COMBINED_INIT / INIT_OK

COMBINED_PIN / OK

ROBOT_OK / OK
ROBOT_CANCEL / SHORT_ERROR

Figure 5: The learned result of the new version of the e.dentifier2 with a larger input alphabet using the W-method for
8 states.

determine whether other vulnerabilities exist as well.
This could be done by fuzzing USB messages, for which
our setup could be used as a basis by providing a state
machine that can be used to perform targeted fuzzing.

The same approach could be applied to analyse other
tamper resistant devices that need input via buttons, not
only for automated learning but also, for example, when
fuzzing or looking for weak random number generators.
It would, for example, be interesting to apply automated
learning techniques to ATMs or Point-of-Sale terminals
given the complexity and potential for trouble with these
devices [14, 5].

9 Related work

State machine learning can be seen as an automatic re-
verse engineering approach or as an advanced fuzzing
technique. As a fuzzing technique, it provides a next step
beyond protocol fuzzing [13, 1]: in protocol fuzzing, the
contents of (fields in) messages are fuzzed, in state ma-
chine learning the order of messages is fuzzed. State ma-
chine learning has been used for network protocol anal-
ysis, to find flaws in implementations of known proto-
cols [17] but also to reverse engineer unknown proto-
cols (e.g. of botnets [7]). Reverse engineering of net-
work protocols has also been used to simulate services
for use in honeypots [12]. It has also proved capable of
reverse engineering smartcard implementations of bank

cards [2] and electronic passports [3]. This work on ap-
plying state machine learning to authentication tokens
that use a smartcard is in a sense a logical next step. Note
that state machine learning has been used on far more
complex software systems, e.g. software in photocopiers
[18], resulting in automata with thousands of states.

A Lego robot was used as an offensive technology
before to test the security of touch-based authentication
[16].

10 Conclusions

Using the LearnLib standard software library for state
machine learning and our Lego robot, we can automat-
ically reverse engineer the state machines of smartcard
readers for Internet banking.

The state machines obtained for the different versions
of the e.dentifier2 device immediately reveal differences
between different versions, and can be used to spot the
security flaw in the older version. Despite the fact that
our Lego robot is rather slow, it can learn this differ-
ence within 45 minutes per device. The state machines
obtained for the new version of the e.dentifier2 show
that the security vulnerability has been fixed there. This
confirms the usefulness of state machine learning as a
technique to automatically finding security flaws in these
type of devices.

8

As the set-up is fully automated, it can be used to per-
form very thorough tests to look for unwanted behaviour;
here we can learn more detailed behaviour, for example
to check for the presence of insecure or unneeded be-
haviour in the newer, patched version. Of course, there
are limits to what can be done with such automated state
machine inference: we cannot hope to find well-hidden
malicious backdoor, but we can expect to find accidental
flaws in the programming logic.

Although the new device does not contain the old flaw,
the more detailed state machine obtained for the new de-
vice (see Figure 5) is still surprisingly complex. To re-
duce the potential for things going wrong (as they clearly
have done in the past), we wonder whether it would not
be better, already from the early design phase, to try and
keep the protocol state machine as simple as possible.

Apart from confirming the security fix in the new ver-
sion of the e.dentifier2, the differences in presence of
non-deterministic behaviour between the old and new
version suggest that the new firmware not only contains
the security fix but also improvements in the USB driver,
as the new version now longer generates intermittent er-
rors in the USB traffic.

References
[1] Code archive of the Sulley Fuzzing Framework. https://

github.com/OpenRCE/sulley.

[2] AARTS, F., DE RUITER, J., AND POLL, E. Formal models of
bank cards for free. In Software Testing, Verification and Valida-
tion Workshops (ICSTW), 2013 IEEE Sixth International Confer-
ence on (2013), pp. 461–468.

[3] AARTS, F., SCHMALTZ, J., AND VAANDRAGER, F. Inference
and abstraction of the biometric passport. In International Sym-
posium on Leveraging applications of formal methods, verifica-
tion, and validation (ISoLa’10) (2010), pp. 673–686.

[4] ANGLUIN, D. Learning regular sets from queries and counterex-
amples. Inf. Comput. 75, 2 (1987), 87–106.

[5] BARISANI, A., BIANCO, D., LAURIE, A., AND FRANKEN, Z.
Chip & PIN is definitely broken. Presentation at CanSecWest Ap-
plied Security Conference, Vancouver 2011. More info available
at http://dev.inversepath.com/download/emv, 2011.

[6] BLOM, A., DE KONING GANS, G., POLL, E., DE RUITER, J.,
AND VERDULT, R. Designed to fail: A USB-connected reader
for online banking. In 17th Nordic Conference on Secure IT Sys-
tems (NordSec 2012) (2012), vol. 7617 of LNCS, Springer.

[7] CHO, C., SHIN, E., SONG, D., ET AL. Inference and analysis
of formal models of botnet command and control protocols. In
Proceedings of the 17th ACM conference on Computer and Com-
munications Security (2010), ACM, pp. 426–439.

[8] CHOW, T. Testing software design modeled by finite-state ma-
chines. IEEE Transactions on Software Engineering 4, 3 (1978),
178–187.

[9] DRIMER, S., MURDOCH, S., AND ANDERSON, R. Optimised to
fail: Card readers for online banking. In Financial Cryptography
and Data Security (2009), vol. 5628 of LNCS, Springer, pp. 184–
200.

[10] EMVCO. EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 1-4, 2008. Available at http://emvco.
com.

[11] GARAVEL, H., LANG, F., MATEESCU, R., AND SERWE, W.
CADP 2010: A toolbox for the construction and analysis of
distributed processes. In Proc. TACAS’11 (2011), vol. 6605 of
LNCS, Springer, pp. 372–387.

[12] KRUEGER, T., GASCON, H., KRÄMER, N., AND RIECK, K.
Learning stateful models for network honeypots. In Proceedings
of the 5th ACM Workshop on Security and Artificial Intelligence
(New York, NY, USA, 2012), AISec ’12, ACM, pp. 37–48.

[13] MULLINER, C., GOLDE, N., AND SEIFERT, J.-P. SMS of
Death: From Analyzing to Attacking Mobile Phones on a Large
Scale. In USENIX Security Symposium (2011).

[14] MURDOCH, S., DRIMER, S., ANDERSON, R., AND BOND, M.
Chip and PIN is Broken. In Symposium on Security and Privacy
(2010), IEEE, pp. 433–446.

[15] RAFFELT, H., STEFFEN, B., BERG, T., AND MARGARIA, T.
LearnLib: a framework for extrapolating behavioral models. Int.
J. Softw. Tools Technol. Transf. 11 (2009), 393–407.

[16] SERWADDA, A., AND PHOHA, V. V. When kids’ toys breach
mobile phone security. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security (2013),
CCS ’13, ACM, pp. 599–610.

[17] SHU, G., HSU, Y., AND LEE, D. Detecting communication pro-
tocol security flaws by formal fuzz testing and machine learning.
In Formal Techniques for Networked and Distributed Systems -
FORTE 2008 (2008), vol. 5048 of LNCS, Springer, pp. 299–304.

[18] SMEENK, W., JANSEN, D., AND VAANDRAGER, F. Applying
automata learning to embedded control software. In submission.,
2013.

[19] SZIKORA, J.-P., AND TEUWEN, P. Banques en ligne: à la dé-
couverte d’EMV-CAP. MISC (Multi-System & Internet Security
Cookbook) 56 (2011), 50–62.

9

A USB Commands and Responses

SHIELD 02 09 00 00 00 00 00 00

INSERT_CARD 01 03 01 02 00 00 00 00
00 02 65 6e 00 00 00 00

PIN 01 03 04 00 00 00 00 00

SIGNDATA

01 03 05 16 00 00 00 00
00 06 00 00 00 00 00 00
00 06 00 00 00 00 00 00
00 06 00 00 00 00 00 00
00 04 00 00 00 00 00 00

DISPLAY_TEXT

01 03 05 46 00 00 00 00
00 06 01 44 42 65 74 61
00 06 6c 65 6e 20 20 20
00 06 20 20 20 20 20 20
00 06 20 31 20 74 72 61
00 06 6e 73 61 63 74 69
00 06 65 28 73 29 20 20
00 06 45 55 52 20 31 2e
00 06 30 30 30 2c 30 30
00 06 20 20 20 20 20 42
00 06 65 76 65 73 74 69
00 06 67 20 6d 65 74 20
00 04 4f 4b 20 20 74 20

GEN_CRYPTOGRAM 01 03 06 00 00 00 00 00

Table 1: USB commands sent to the e.dentifier2.

CRYPTOGRAM

01 03 03 1b 00 00 00 00
00 06 80 01 1d cd 29 7f
00 06 6f 1e 10 a5 00 03
00 06 04 00 00 00 00 00
00 06 00 00 00 00 00 00
00 03 ff 01 05 00 00 00

CARD_INSERTED 02 81 01 00 00 00 00 00

INSERT_OK 01 03 01 01 00 00 00 00
00 01 01 01 00 00 00 00

LONG_ERROR 01 03 08 01 00 00 00 00
00 01 25 01 00 00 00 00

SHORT_ERROR 01 03 07 00 00 00 00 00

OK 01 03 02 00 00 00 00 00

Table 2: USB responses of the e.dentifier2.

10

