
Automated Analysis of Industrial Workflow-based Models

Mario Cortes-Cornax
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000

Grenoble France

Ajay Krishna
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG,

F-38000 Grenoble France

Adrian Mos
Naver Labs Europe, Meylan, France

Gwen Salaün
Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG,

F-38000 Grenoble France

ABSTRACT

Modelling and governance of business processes are important

concerns in companies all over the world. By better understanding

business processes, different optimizations are made possible, con-

cretely resulting into potential efficiency gains, cost reductions and

improvements in agility. The use of formal specification languages

for the modelling of business processes paves the way for different

kinds of automated analysis. Such analysis can be used to infer

properties from the modelled processes that can be used to improve

their design. In this paper, we particularly explore two important

classes of verification, namely verification of behavioural properties

using model checking techniques and data-based analysis using

SAT solving. Those verifications are fully automated by using differ-

ent tools such as the CADP verification toolbox and the Z3 solver.

We illustrate our approach on a real-world case study.

CCS CONCEPTS

• Applied computing → Business process modeling; • Soft-

ware and its engineering → Formal software verification; •

Theory of computation → Logic and verification;

KEYWORDS

Business process management, SAT, Validation, Data

1 INTRODUCTION

A business process is a collection of structured activities fulfilling a

precise goal. Business process management is of prime importance

in companies, because they have realized that, by modelling and

then mastering their own processes, several improvements could be

achieved resulting in time and money savings. Although modelling

is necessary to make those optimizations possible, it is unfortu-

nately not enough. Beyond process modelling, there is a need for

formal checking that automatically allows one to analyze a process

under development or already deployed, and detect whether this

process satisfies some precise functional or non-functional require-

ments. Such verification techniques are helpful to identify possible

bottlenecks, missing services or incorrect behaviours. This may

then lead to the refinement of the process being analyzed.

In this work, we chose to consider Mangrove [18] for modelling

purposes. Mangrove is a meta-model that allows domain specific

process languages to be mapped to standard workflow languages,

making it easier for non-technical users to design business processes

in an intuitive way. Mangrove was used for modelling realistic

processes at Xerox1 as we will show in this paper with a case study.

Given a Mangrove model, we study two kinds of analysis here :

the behavioral and the data-based analysis. The first one aims at

verifying whether the model satisfies a certain temporal property

(e.g., a certain task is never executed after another one). Model

checking techniques are used for this analysis. Another kind of

behavioural analysis verifies two versions of a process (before and

after modification for instance). This is useful to check whether

an evolution of a given process respects certain behaviour (a new

functionality is present and occurs when expected for example). The

aforementioned analysis is achieved using equivalence checking

techniques. The data-based analysis looks at the control flow graph

that can be derived from the Mangrove model, and check whether

all parts of the process are reachable or not. This check is achieved

using static analysis of the workflow. Both kinds of verification are

automated reusing existing tools (the CADP toolbox [10] and the

Z3 solver [2], respectively). Model transformations from Mangrove

are developed in order to fill the gap between the industrial process

models and the input languages of those tools.

The rest of this paper is organized as follows. Section 2 introduces

the Mangrove meta-model. Sections 3 and 4 present the behavioural

verification techniques and the data-based analysis, respectively.

In Section 5 our approach on an industrial case study is illustrated.

Section 6 reviews related work and finally, Section 7 concludes the

paper.

2 PROCESS DEFINITION MODELS

Mangrove [18] is a generic process description meta-model that

relies on the Eclipse Modelling Framework. It unifies business pro-

cesses and Service Oriented Architecture (SOA). It provides be-

havioural support to a domain definition in order to define the

necessary steps in a process focusing on preserving the connection

between the common elements of business processes and archi-

tectural constructs such as services. It facilitates domain specific

design by establishing concept mappings between domain related

concepts and process activities.

In the approach supported by Mangrove and used in the sce-

nario illustrated in the case study, processes are defined using a

combination of inter-related meta-models. The first one, Domain

Meta-model (DomainMM), is mainly used to specify domain-specific

behaviour (i.e., activity types) and data. There is one instance of

this per application domain. For example, our case study deals with

1This work was carried out when Mario Cortes-Cornax and Adrian Mos were working
at the former Xerox Research Center Europe (XRCE) in Meylan (France), which became
Naver Labs.



the Document processing domain, which includes behavioural ac-

tivities such as scanning, optical character recognition (OCR) and

several kinds of quality controls.

The second meta-model, Common Meta-model (CommonMM), is

used to define the actual processes and their flow of control, includ-

ing connections to services. It can be seen as a simplified version

of BPMN that connects behaviour (process flows, conditions) and

domain definitions (types of behaviour elements, forms and data).

A specific implementation of the CommonMM derived from the

Mangrove open-source project.

In this paper, we focus on process modelling (supported by the

Mangrove CommonMM). The verification approach presented in

the next sections deals with the behavioural description of these pro-

cesses. On the left hand side of Figure 1 some excerpts of processes

are given. Notice that the notation relies on steps and conditional

sequence flows whereas gateways (i.e., control flow) are implicitly

defined. Mangrove models are transformed to the Process Interme-

diate Format (PIF), which is the input of the analysis tools. PIF and

the transformation patterns are described in the next section.

Figure 1: Mangrove to PIF transformation patterns

It is important to note that since the DomainMM and the Com-

monMM are connected, more complex verifications can leverage

this relationship and produce rich domain-specific insights that

can help non-technical stakeholders understand the advantages

and limitations of various process models in their domain termi-

nology. The connection is realised through model links between a

small number of elements. Of particular importance for this are the

DSActivityType and DSService elements in DomainMM. They cor-

respond to domain specific activity types (behaviour) and service

definitions. They have individual unique IDs. These IDs are used

to make the connection with their flow-oriented elements from

the CommonMM: the Step that corresponds to the execution of an

activity and the Service that corresponds to the call of a reusable

service. Steps are interconnected through Transition elements. In

addition, the flows are managed at branching points by forking

several TransitionUnderCondition elements. Data and forms are au-

tomatically managed by analysing Mangrove processes and the IDs

of their various elements, and by extracting the relevant domain

counterparts. Connections between data inputs and outputs are

realised based on the types of connected behavioural and service

elements. Similarly, forms are displayed based on their occurrence

in the domain in the scope of Step instances being executed in the

Mangrove process.

More information about these meta-models and their intended

usage in enterprise settings can be found in [18].

3 BEHAVIOURAL VERIFICATION

In this section, a model transformation from Mangrove to the Pro-

cess Intermediate Format (PIF) is first presented, and this enables

behavioural analysis using the CADP toolbox.

3.1 From Mangrove to PIF

Process Intermediate Format (PIF) [21] is a pivotmodel for workflow-

based notations. A transformation from Mangrove to PIF is pro-

posed in this work, because PIF is supported by the automated

analysis techniques that are presented later in this section. The PIF

scheme is described in Figure 2, which illustrates its main concepts

in a meta-model.

As mentioned before and illustrated in Figure 1, the key ele-

ments of Mangrove meta-model that we focus on are Steps and

Conditional Sequence Flows. Mangrove simplifies convergence and

divergence of paths by eliminating gateways. Instead of gateways,

Mangrove relies on conditions to determine the flow. Condition

expressions are evaluated for each flow and tokens are sent across if

the condition expression evaluates to true. Based on the evaluation

of condition expressions, Mangrove flows can be transformed into

a PIF gateways. PIF captures the workflow as a set of Nodes and

Sequence Flows. Nodes are further classified by their type attribute.

Gateways and Tasks are the most commonly used node types. Gate-

ways are further classified as Join and Split gateways depending

on whether they converge or diverge.

Mangrove to PIF transformation patterns are shown in Figure 1.

Each Step in Mangrove is translated as a Task in PIF. Mangrove

models identify outgoing flows from a Step as Source transitions

and incoming flows as Target transitions. The Mangrove to PIF

transformations of events and gateways are the following:

Start Event. If there is no target transition for a step, then that

Step behaviour is equivalent to a Start event followed by a Task

End Event. If there is no source transition for a step, then that

Step is a precursor to End event.

XOR Split Gateway. When a step has multiple source transitions

and each transition has a condition associated with it, all the con-

dition expressions are evaluated using SAT techniques. If these

expressions evaluate to true as an XOR clause (CondX ⊕ CondY ),

which means that they are mutually exclusive, then the transfor-

mation is identified as an XOR split.

2



Figure 2: PIF meta-model

OR Split Gateway. This is similar to the XOR pattern as all the

condition expressions of source transitions are evaluated. However,

in that case, their evaluation shows that the conditions are not

exclusive. They evaluate to true as an OR clause (CondX ∨CondY )

transforming to an OR split.

AND Split Gateway. This pattern is pretty straightforward. If

there are multiple source transitions for a step and none of them

have a condition expression associated with it, then the behaviour

is similar to an AND split gateway.

Merge patterns can exist if there are multiple target transitions

for a Step. These transitions are transformed to Join gateways

in PIF. The type of Join gateway is determined by the preceding

Split gateway in the workflow. If the split preceding the join is

an Exclusive split (XOR Split), then the ensuing merge pattern is

identified as XOR Join Gateway by a pile mechanism. Similarly,

merge corresponding to an OR Split and an AND Split is treated as

OR Join Gateway and AND Join Gateway, respectively. AND Join

Gateway synchronises on all incoming flows before proceeding

with outgoing flow.

When a model-to-model transformation is performed, the ques-

tion of semantics preservation arises. As Mangrove does not pro-

pose a formal semantics, this correspondence is difficult to estab-

lish. However, since PIF semantics relies on the LNT process alge-

bra [14, 21], our approach allows us to give an implicit semantics

to Mangrove by translation to PIF.

3.2 Behavioural Analysis

PIF is supported by the VBPMN platform [14, 21], which connects

PIF to the CADP toolbox. This is achieved by translating a PIF

process into LOTOS New Technology (LNT) code that is one of the

input specification languages of the CADP toolbox [10]. The CADP

toolbox can be reused for generating an LTS (Labelled Transition

System). The latter describes all the executions of the workflow

starting from the initial state, using a set of states, transitions and

labels. Labels correspond to the steps in theMangrovemodel. CADP

is also used for verifying the two following classes of properties on

LTS models obtained from Mangrove proces models:

• Functional verification aims at checking properties of interest

such as the existence of deadlock/livelock states or the satis-

faction of safety and liveness properties. In the latter case,

since the properties depend on the input process, they have

to be provided by the analyst, who can reuse well-known

patterns for properties such as those presented in [8].

• Process comparison takes as input two process models, a com-

parison relation and possibly additional parameters for the

relation. Several evolution relations can be used. Conserva-

tive evolution ensures that the observational behaviour is

strictly preserved. Inclusive evolution ensures that a subset

of a process behaviour is preserved in a new version of it.

Selective evolution allows one to focus on a subset of the

process tasks. It is also possible to have VBPMNwork up-to a

renaming relation over tasks. If the two input process models

do not fulfil the constraints of the chosen evolution relation,

a counterexample indicating the source of the violation is

returned. This helps the process analyst in supporting the

refinement into a correct evolved version of a process model.

4 DATA-BASED ANALYSIS USING SAT

In the former section, the use of model and equivalence checking

techniques are proposed to verify workflow behaviour. The LTS

generated using these techniques is an over approximation consist-

ing of all possible executions and it is not the exact representation

3



of the workflow behaviour. This is caused by the fact that the veri-

fication does not take into account data information encoded in the

workflows, which would make certain possible execution paths in-

valid. Workflow models like Mangrove and BPMN have conditions

encoded in sequence flows. If these conditions are evaluated, we can

easily identify if the corresponding execution path is feasible. As

these models can be viewed as a control flow graph, a static analysis

of the model can be performed by encoding condition expressions

as satisfiability constraints. Satisfiability (SAT) and satisfiability

modulo theories (SMT) [3, 4] can be applied to check if the execu-

tion paths are satisfiable. Satisfiability theory is based on solving

propositional formulas. It works on the premise that a formula is

satisfiable, if there exists a set of values that evaluate to true. We

opted to build satisfiability constraints, rather than evaluating con-

dition expressions step by step programmatically, as it allows us to

leverage the power of high-performance SMT solvers like Z3 [2] to

solve large sets of condition expressions. Note that we have already

used these techniques in Section 2 in order to check whether a split

pattern transforms to an XOR or OR split gateway.

Figure 3 shows aMangroveworkflowwith two instance variables

age and expense (exp for short) and their condition expressions. Us-

ing model checking techniques, we can generate all possible execu-

tions without considering those conditions. Suppose the dataset un-

der consideration has expense values in the range 124 < exp < 679

, we can refine the earlier over-approximate model, by discarding

the bottom half of the workflow. This optimisation might not seem

significant for small workflows, but for large workflows, especially

with many OR gateways, when behaviour becomes too complex,

refining it helps to understand the model better. Another benefit

from refining is that we can eliminate “false negatives” in verifi-

cation (i.e., we might detect anomalies in parts of the workflow,

which would not be executed for the given dataset). Respecting

the execution semantics, data in Figure 3 can be expressed as a

propositional formula as follows:

((exp ≥ 100) ∧ (aдe > 30 ∨ aдe = 35 ∨ aдe < 40))

∨¬(exp ≥ 100)

Figure 3: Workflow with data

In our approach, the input dataset is added as an initial con-

straint. Starting from the first Step in the workflow, constraints

are incrementally added and removed as condition expressions are

encountered. As the formula is updated, its satisfiability is checked -

if the result is satisfiable, we proceed further, otherwise, the state is

marked as infeasible and we backtrack to see if any other diverging

path is satisfiable. Once we have identified infeasible flows, we

generate an updated PIF model, which can serve as new input for

behavioural verification (Section 3).

The constraint building process can be illustrated using an input

dataset. For the input dataset exp = [125, 678] and aдe = [45, 90], af-

ter the execution of Start Event, the following propositional formula

would be generated:

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90)) (i)

Further, as we traverse the Exclusive gateway conditions, we obtain

another constraint, in addition to formula (i). Thus the two formulas

are as follows:

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90) (ii)

∧(exp ≥ 100))

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90) (iii)

∧(exp < 100))

Clearly, formula (iii) is not satisfiable, thus we can identify Task

2 as infeasible for the input data set. So, we can build on formula

(ii), which is satisfiable, and following propositional formulas can

be derived:

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90) (iv)

∧(exp ≥ 100) ∧ (aдe > 30))

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90) (v)

∧(exp ≥ 100) ∧ (aдe = 35))

((exp ≥ 125 ∧ exp ≤ 678) ∧ (aдe ≥ 45 ∧ aдe ≤ 90) (vi)

∧(exp ≥ 100) ∧ (aдe < 40))

Similarly, if we solve (iv), (v) and (vi) for satisfiability, only (iv),

is satisfiable, so we can mark Task 4 and Task 5 as infeasible. The

proposed incremental approach can be extended to large workflows.

Here, we have illustrated our approach using an input dataset.

We can also check the feasibility of execution of Steps in Mangrove

by taking only the conditions as constraints (infinite domains). By

adding the input dataset as a constraint, we are just restricting the

domain of the instance variables to a finite value.

5 CASE STUDY

In this section, a real-world Mangrove model is described and we

illustrate how automated analysis can be performed using our ap-

proach. The context of this (simplified) use-case is the document

treatment process aiming at scanning and extracting information

from physical documents submitted by clients using optical char-

acter recognition (OCR) and sent it back to clients after treatment.

The OCR process is illustrated in Figure 4. When the physical docu-

ment is scanned a numerical image of the document is created. The

OCR transforms the image into actual text, numbers or images. It

4



is also able to identify the main sections of the document. Finally,

the keyword extraction identifies important information based on

predefined rules (e.g., the most repeated word, all the numbers

followed by a euro symbol or names).

Figure 4: Optical character recognition

Now let us focus on the whole process introduced in Figure 5.

When a document is received, it is scanned and then goes through

an OCR analysis. After the OCR, a control is performed in order to

verify the treatment quality relying on a predefined quality indi-

cator (qInd). This quality indicator is defined as a process variable,

which is set by the OCR’s output. It aggregates information about

the brightness of the document, the number of extracted sections

or the confidence in the extracted amounts, and scales it from 0

to 100. Three possible thresholds led to exclusive paths: 1) if qInd

=< 75 then the OCR will be rejected. The rejection is logged and

the process loops (maximum twice) to scan again; 2) if qInd >= 96

then the quality is considered enough to execute a parameterized

keyword extraction and finally transfer the scanned file as well as

the extracted information back to the client; and 3) if qInd > 75 and

qInd < 96 then a video coding process is performed consisting in a

manual verification and validation of the extracted information. A

worker verifies on a screen whether the extracted information ac-

tually corresponds to the text or numbers of the scanned document.

After these manual steps, the keyword extraction and transfer can

be performed. Note that the expected quality of service is negotiated

with the client through service level agreements.

Figure 5: Process 1 - Document processing use-case

Figure 6 proposes an evolution of the process in Figure. 5. The

first process has to be improved introducing a rejection treatment

just after the reception. Indeed, some documents can be automati-

cally rejected before performing the whole process (e.g., non regis-

tered type of documents). The treatment and consistent notification

avoids unuseful effort, which could just be detected once the pro-

cess has completed. Note that there are three levels of rejection

after an automatic process: 1) if rej = 0 then the document is not

rejected; 2) if rej= 1 then there is an immediate rejection; and 3)

if rej = 2 then a manual verification is needed, which led to the

normal path (Scan Document) or a rejection. We will show on these

two versions of the Mangrove process how evolution and property

verification as well as data-based analysis are useful.

Behavioural verification. Process 1 (Figure 5) and 2 (Figure 6)

can be compiled using CADP into LTS models as shown in Figures 7

and 8. Given a process, the corresponding LTS exhibits all possible

executions of that process. The generated LTS takes into account

the conditions involved. Since the multiple source transitions have

mutually exclusive conditions, the generated LTS has diverging

paths. These three exclusive paths are present in the LTS (Figure 8)

after TreatRejection. When checking for evolution and comparing

these models, we first note that the extended workflow does not

strictly preserve the previous execution scenarios. This behavioural

analysis returns a counterexample, as shown in Figure 9, which

indicates a path highlighting the difference between the twomodels.

This information is useful, particularly when the models are large

with plenty of possible execution scenarios. As far as automated

analysis is concerned, various modes of evolution checking can be

used depending on the user needs [21].

The aforementioned LTSs are also used to automatically verify

the reachability from one step to another step in the process. As

the process shows several possible paths and therefore executions,

a designer may need an extra help in order to validate a proposed

evolution. For instance, an important verification aims at checking

that all the rejections produced in the second workflow are notified

to the client. It can be checked using property based functional

verification. Figure 10 shows a path returned by the model checker

where this property is violated. By taking a closer look at the path,

the analyst can see that after rejection, the path ends up by a suc-

cessful transfer of files. Further, the analyst can either decide that a

rejection notification was not necessary in that case, or can update

the workflow to avoid an execution where a rejection is decided

whereas the behaviour terminates succesfully.

Data-based analysis. The verification has focused so far on

the workflow behaviour. In addition, SAT based analysis can be

performed to look more carefully at data (conditions) and further

optimize the execution scenarios. In the process given in Figure 6,

it is possible that a particular input dataset is of registered type

(rej = 0) and of high quality (qInd ≥ 96). For this dataset, SAT

based analysis would simplify the workflow behaviour to a much

simpler LTS as shown in Figure 11. SAT analysis would result in

the following constraints being unsatisfiable:

((rej = 0 ⊕ rej = 1 ⊕ rej = 2) ∧ (qInd ≤ 75))

((rej = 0 ⊕ rej = 1 ⊕ rej = 2) ∧ (qInd > 75 ∧ qInd < 96))

It is worth noting that without executing the process workflow,

through static analysis, we can identify infeasible paths. This in-

formation can be valuable for resource scheduling. In the second

version of our workflow, given in Figure 6, the top part (video cod-

ing) and the bottom part (OCR rejection treatment) are not executed,

and the corresponding resources can thus be freed.

5



Figure 6: Process 2 - Use case with rejection treatment evolution

Figure 7: LTS of process 1

6 RELATEDWORK

Several works have focused on providing formal semantics and

verification techniques for business processes using Petri nets,

process algebras, or abstract state machines, see, e.g., [5–7, 11–

13, 16, 17, 20, 22, 25, 26]. The main difference in this paper is that

we do not only support automated analysis of specific properties but

also other kinds of verification (comparison, data-based analysis).

As far as process comparison is concerned, in Chapter 9 of [23],

the authors study the migration of processes, and from that point

of view define several notions of evolution, migration, and refactor-

ing. We propose off-line analysis techniques and do not propose a

solution for applying these changes at runtime. In [24], the authors

address the equivalence or alignment of two process models. To

do so, they check whether correspondences exist between a set of

Figure 8: LTS of process 2

activities in one model and a set of activities in the other model.

They consider Petri net systems as input and process graphs as

low-level formalism for analysis purposes. Their approach relies on

the identification of regions (set of activities) in each graph that can

6



Figure 9: Evolution counterexample

Figure 10: Property verification: Path without rejection no-

tification

Figure 11: Reachable path LTS

match with respect to an equivalence notion. ADDiff [15] proposes

a semantic differencing operator for activity diagrams. As a result,

ADDiff performs a semantic comparison and outputs a set of diff

witnesses, each of which is an execution trace that is possible in

the first activity diagram and is not possible in the second. This

solution uses search and fixpoint algorithms whereas we rely on

equivalence checking and concurrency theory principles.

As far as data-based analysis is concerned, in [9], the authors

propose a translation of BPMN into logic with a special focus on

data objects and data-based decision gateways. They provide new

mechanisms to avoid structural issues in workflows such as flow

divergence by introducing the notion of well-formed BPMN pro-

cess. Their approach aims at avoiding incorrect syntactic patterns

whereas we propose automated analysis at the semantic level.

[19] focuses on the analysis of choreography models. The main

property of interest in that context is called conformance and aims

at checking whether the distributed implementation and the chore-

ography behave identically. The authors mainly focus on data de-

scription. Their approach supports choreographies extended with

conditions and relies on SMT solving for conformance checking.

Decision Model and Notation (DMN) is a recent OMG standard

for modelling decisions in an interchangeable format. DMN can be

used into workflow-based notations for representing conditions.

In [1], the authors propose a formal semantics of DMN decision

tables, a notion of DMN table correctness, and algorithms that

check the detection of overlapping rules and missing rules. These

algorithms have been implemented in the DMN toolkit and vali-

dated through empirical evaluation. Our modelling language for

describing decisions is different than DMN since we have to handle

infinite domains, justifying our choice of SMT solving.

7 CONCLUSION

This paper studies the crucial issue of business process modelling

and analysis. As modelling language, we have opted for a workflow-

oriented domain-specific language (Mangrove), which is simple

and expressive enough for dealing with the basic constructs of

processes without considering implementation details. Regarding

verification, we have focused on that question from a functional

point of view. Two kinds of verification techniques are proposed for

Mangrove, namely behavioural analysis and data-based verification.

They are helpful in analysing the behaviour of a process model

in order to identify possible errors such as violated properties or

unreachable paths. The detection of such erroneous behaviours

may lead to possible improvements in the subsequent versions of

the process. In order to automate these checks, we rely on model

transformation and the reuse of existing verification frameworks,

implementing model/equivalence checking techniques and static

analysis. Focusing on an industrial case study, we illustrate how

our approach can be used in practice for comparing formally two

versions of a process. Our main perspective for future work is to

deal with non-functional properties such as execution time, cost

analysis or optimal resource allocation.

REFERENCES
[1] D. Calvanese, M. Dumas, U. Laurson, F. Maria Maggi, M. Montali, and I. Teinemaa.

2016. Semantics and Analysis of DMN Decision Tables. In Proc. of BPM’16 (LNCS),
Vol. 9850. Springer, 217–233.

[2] L. De Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Proc. of
TACAS’08 (LNCS), Vol. 4963. Springer, 337–340.

[3] L. De Moura and N. Bjørner. 2011. Satisfiability Modulo Theories: Introduction
and Applications. Commun. ACM 54, 9 (2011), 69–77.

7



[4] L. de Moura, B. Dutertre, and N. Shankar. 2007. A Tutorial on Satisfiability
Modulo Theories. In Proc. of CAV’07 (LNCS), Vol. 4590. Springer, 20–36.

[5] G. Decker and M. Weske. 2011. Interaction-centric Modeling of Process Chore-
ographies. Information Systems 36, 2 (2011), 292–312.

[6] R.M. Dijkman, M. Dumas, and C. Ouyang. 2008. Semantics and Analysis of
Business Process Models in BPMN. Inf. Softw. Technol. 50, 12 (2008), 1281–1294.

[7] F. Durán and G. Salaün. 2017. Verifying Timed BPMN Processes Using Maude.
In Proc. of COORDINATION’17 (LNCS), Vol. 10319. Springer, 219–236.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 1999. Patterns in Property Specifi-
cations for Finite-State Verification. In Proc. of ICSE’99. ACM, 411–420.

[9] N. El-Saber and A. Boronat. 2014. BPMN Formalization and Verification using
Maude. In Proc. of BM-FA’14. ACM, 1–8.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. 2013. CADP 2011: A Toolbox
for the Construction and Analysis of Distributed Processes. STTT 2, 15 (2013),
89–107.

[11] M. Güdemann, P. Poizat, G. Salaün, and A. Dumont. 2013. VerChor: A Framework
for Verifying Choreographies. In Proc. of FASE’13 (LNCS), Vol. 7793. Springer,
226–230.

[12] M. Güdemann, P. Poizat, G. Salaün, and L Ye. 2016. VerChor: A Framework for
the Design and Verification of Choreographies. IEEE Trans. Services Computing
9, 4 (2016), 647–660.

[13] F. Kossak, C. Illibauer, V. Geist, J. Kubovy, C. Natschläger, T. Ziebermayr, T.
Kopetzky, B. Freudenthaler, and K.-D. Schewe. 2014. A Rigorous Semantics for
BPMN 2.0 Process Diagrams. Springer.

[14] A. Krishna, P. Poizat, and G. Salaün. 2017. VBPMN: Automated Verification of
BPMN Processes. In Proc. of IFM’17 (LNCS), Vol. 10510. Springer, 323–331.

[15] S. Maoz, J. O. Ringert, and B. Rumpe. 2011. ADDiff: Semantic Differencing for
Activity Diagrams. In Proc. of SIGSOFT/FSE’11. ACM, 179–189.

[16] A. Martens. 2005. Analyzing Web Service Based Business Processes. In Proc. of
FASE’05 (LNCS), Vol. 3442. Springer, 19–33.

[17] R. Mateescu, G. Salaün, and L. Ye. 2014. Quantifying the Parallelism in BPMN
Processes using Model Checking. In Proc. of CBSE’14. ACM, 159–168.

[18] A. Mos and M. Cortes-Cornax. 2016. Business Matter Experts do Matter: A
Model-Driven Approach for Domain Specific Process Design and Monitoring. In
Proc. of BPM Forum’16 (LNBIP), Vol. 260. Springer, 210–226.

[19] H. N. Nguyen, P. Poizat, and F. Zaïdi. 2012. A Symbolic Framework for the
Conformance Checking of Value-Passing Choreographies. In Proc. of ICSOC’12
(LNCS), Vol. 7636. Springer, 525–532.

[20] P. Poizat and G. Salaün. 2012. Checking the Realizability of BPMN 2.0 Chore-
ographies. In Proc. of SAC’12. ACM, 1927–1934.

[21] P. Poizat, G. Salaün, and A. Krishna. 2016. Checking Business Process Evolution.
In Proc. of FACS’16 (LNCS), Vol. 10231. Springer, 36–53.

[22] I. Raedts, M. Petkovic, Y. S. Usenko, J. M. van der Werf, J. F. Groote, and L.
Somers. 2007. Transformation of BPMN Models for Behaviour Analysis. In Proc.
of MSVVEIS’07. 126–137.

[23] M. Reichert and B. Weber. 2012. Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer.

[24] M. Weidlich, R. M. Dijkman, and M. Weske. 2012. Behaviour Equivalence and
Compatibility of Business Process Models with Complex Correspondences. Com-
put. J. 55, 11 (2012), 1398–1418.

[25] P.Y.H. Wong and J. Gibbons. 2008. A Process Semantics for BPMN. In Proc. of
ICFEM’08 (LNCS), Vol. 5256. Springer, 355–374.

[26] P.Y.H. Wong and J. Gibbons. 2008. Verifying Business Process Compatibility. In
Proc. of QSIC’08. IEEE, 126–131.

8


