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Abstract

This paper presents an approach which supports verification and model-based adaptation of soft-
ware components and services implemented using Windows Workflow Foundation (WF). First, we
propose an abstract description of WF workflows, and we formalise the extraction of Labelled
Transition Systems from these workflows. Next, verification and adaptation are applied using re-
spectively model-checking techniques and existing model-based adaptation approaches. Last, we
explain how a WF workflow can be generated from an adaptor protocol.

Keywords: Sofware Components, Services, Composition, Model-based Adaptation, WF
Workflows, Model-checking

1 Introduction

Software Adaptation [4,7] is a promising research area which aims at support-
ing the building of component systems by reusing software entities. These can
be adapted in order to fit specific needs within different systems. In such a
way, application development is mainly concerned with the selection, adap-
tation and composition of different pieces of software rather than with the
programming of applications from scratch. Many approaches dedicated to
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model-based adaptation [5,8,16,19,23,25] focus on the behavioural interoper-
ability level, and aim at generating new components called adaptors which are
used to solve mismatch in a non-intrusive way. This process is completely au-
tomated being given an adaptation mapping which is an abstract description
of how mismatch can be solved with respect to the behavioural interfaces of
components. However, most of these approaches are independent of the im-
plementation framework, and few of them relate with existing programming
languages and platforms. To the best of our knowledge, the only attempts in
this direction have been carried out using COM/DCOM [16], BPEL [6], and
SCA components [19].

In this paper, we focus on Windows Workflow Foundation (WF) [24] which
belongs to the .NET Framework 3.0 developed by MicrosoftR©. We have cho-
sen WF because this platform supports the behavioural descriptions of com-
ponents/services using workflows. In addition, the .NET Framework is widely
used in private companies, and makes the implementation of services easier
thanks to its workflow-based graphical support and the automation of the
code generation. More than dealing only with adaptation of WF components,
our approach also allows the verification of such components by extracting ab-
stract descriptions from them and by using model-checking tools. This work
extends and formalises the ideas sketched in [9].

Our approach is summarised in Figure 1. To make the verification and
adaptation possible, in a first stage, abstract behavioural descriptions (La-
belled Transition Systems, LTSs) have to be extracted from WF workflows.
Next, being given a set of LTSs, mismatch detection is computed to check
whether the involved components need adaptation or not. If a mismatch ex-
ists, we apply adaptation techniques that aim at generating an adaptor pro-
tocol/LTS from a mapping. Assessment techniques are then helpful to check
that the adaptor is as expected. If not, another mapping may be proposed.
We emphasise that formal verification of WF components takes place twice:
when detecting mismatch, and when assessing the resulting system (compo-
nents+adaptor). Last, once the designer is satisfied by the abstract adaptor,
the corresponding WF workflow is generated.

The remainder of the paper is organised as follows. We give an overview
of WF, and we define an abstract notation for WF workflows in Section 2.
We present in Section 3 a simple on-line computer sale example, and the WF
components it relies on. Section 4 formalises the extraction of LTSs from
WF workflows. In Section 5, we focus on the verification and adaptation of
WF components based respectively on model-checking techniques and model-
based adaptation. Section 6 presents the encoding of an adaptor LTS into a
WF workflow. In Section 7, the contributions of our approach are compared
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Fig. 1. Overview of our approach for the adaptation of WF components

to related work. Finally, in Section 8, we conclude the paper and present
future work.

2 WF Workflow Notation

In this paper, we present a representative kernel of the WF activ-
ities, namely Code, Terminate, InvokeWebService, WebServiceInput,
WebServiceOutput, Sequence, IfElse, Listen with EventDriven activities,
and While. The reader interested in more details may refer to [24]. We also
introduce a textual and abstract notation for the aforementioned WF activi-
ties.

2.1 WF Overview

WF belongs to the .NET Framework 3.0, and is supported by Visual Studio
2005. The available programming languages to implement workflows in Visual
Studio 2005 are Visual Basic and C#. In this work, C# has been chosen as
the implementation language.

The Code activity is meant to execute user code provided for execution
within the workflow. The Terminate activity is used to finalise the execution
of a workflow. A WF InvokeWebService activity calls a Web service and re-
ceives the requested service result back. If such an invoke has to be accessed by
another component C , it has to be preceded by a WebServiceInput activity,
and followed by a WebServiceOutput activity. Hence, C will interact with this
new service using these two input/output activities that enable and disable the
data reception and sending, respectively, with respect to the invoked Web ser-
vice. WF-based XML Web services require at least one WebServiceInput and
one or more WebServiceOutput activities. The input and output activities are
related, thus each output activity must be associated with an input activity.
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It is not possible to have an instance of WebServiceInput without associated
outputs, as well as having outputs without at least one WebServiceInput.

The Sequence construct executes a group of activities in a precise order.
The WF IfElse activity corresponds to an if-then-else conditional expression.
Depending on the condition evaluation, the IfElse activity launches the exe-
cution of one of its branches. If none of the conditions is true, the else branch
is executed.

The Listen activity defines a set of EventDriven activities that wait for
a specific event. One of the EventDriven activities is fired when the expected
message is received. Last, the While construct defines an activity that is fired
as many times as the While condition is true.

2.2 Abstract Notation for WF Workflows

Here, we define a textual and abstract notation for WF workflows. This no-
tation makes abstract several implementation details. Our proposal considers
as input textual workflows instead of their graphical description. Table 1 for-
malises the grammar for the textual notation of WF activities A, where C ,
Ci are boolean conditions, and I , Ii (inputs), O , Oi (outputs) are parameters
of activities.

A ::= Code executes a chunk of code

| Terminate ends a workflow’s execution

| InvokeWebService(O1,. . . ,On,I) calls a Web service (WS)

| WebServiceInput(I1,. . . ,In) receives data from a WS

| WebServiceOutput(O) sends data to a WS

| Sequence(A1,A2) executes first A1 and then A2

| IfElse((C1,A1),. . . ,(Cn,An),An+1) executes Ai if Ci is true,

or An+1 otherwise

| Listen(E1,. . . ,En) fires one of the Ei branches

| While(C,A) executes A while C is true

E ::=

EventDriven(WebServiceInput(I),A) executes A when I is received

Table 1
Grammar for the abstract notation of WF workflows
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3 Running Example: On-line Computer Sale

This section introduces an on-line computer sale example. It consists of a
system whose purpose is to sell computer material such as PCs, laptops, or
PDAs to clients. As a starting point we reuse two components: a Buyer and
a Supplier . These components have been implemented using WF./NET, and
their workflows are presented in Figure 2.

Supplier Buyer

(  1  ) 

(  2  ) 

(  3  ) 

(  4  ) 

(  5  ) 

(  6  ) 

(  7  ) 

(  8  ) 

(  9  ) 

(  10  ) (  11  ) 

(  12  ) 

(  13  ) 

(  14  ) 

(  15  ) 

s

s

b

b

Fig. 2. WF workflows for the Supplier (left) and Buyer (right) components

First, the Supplier receives a request under the form of two messages that
indicate the type of the requested material, and the max price to pay (type
and price, (1) and (2) respectively in Fig. 2). Then, it sends a response
indicating if the request can be replied positively (reply, (3)). Next, the
Supplier can terminate the session, receive and reply other requests ((4), (5)
and (6)), or receive an order of purchase (buy, (7)). In the latter case, a
confirmation is sent (ack, (8)) emphasising if the purchase has been realised
correctly or not.

The Buyer can submit a request (request, (9) in Fig. 2), in which it
indicates the type of material he/she wants to purchase and the price to pay.
Next, once he/she has received a response (reply, (10)), the Buyer may realise
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another request ((11) and (12)), buy the requested product (purchase and
ack, (13) and (14)), or end the session (stop, (15)).

In both Supplier and Buyer we have split the workflows of Figure 2, pre-
senting them into two parts. On the left-hand side, we show the initial execu-
tion belonging to the first request, and on the right-hand side we present the
loop offering the possibility of executing other requests, performing a purchase
or finalising. We identify the names of certain activities, whose functionality
is the same, with an index (such as type 1 and type 2, or invokeType 1 and
invokeType 2 in Supplier), because WF does not accept activities identified
using the same name. In the Buyer component, the messages with the code

suffix, such as request 1 code, correspond to the execution of C# code. Last,
some WebServiceInput and WebServiceOutput activities may be meaningless
with respect to the component functionality, and appear in the WF workflow
only because WF obliges their presence before and after InvokeWebService

activities. In Figure 2, these activities are identified with tau identifiers.

To illustrate the textual notation defined in Section 2.2, we apply it on
the Supplier WF workflow. We focus on the While construct, and present a
part of the Listen activity it contains. The condition of the While construct
is true because the component loops on requests until it receives an order of
purchase, or until the system stops.

Sequence
( ...,

While
( true,
Listen

( EventDriven
( WebServiceInput(type),

...

),
EventDriven

( WebServiceInput(buy),
Sequence

( InvokeWebService(buy, ack),
Sequence

( WebServiceOutput(ack),
Terminate

)
)

)
)

)
)

Note that we remove in the abstract notation all the suffixes used in the
workflows to distinguish activity names. Last, we recall that in the following
we consider such an abstract description of WF components, as an input (Sec-
tion 4) and output (Section 6) to our verification and adaptation proposal.
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4 Extracting LTSs from WF Workflows

Since we want to reuse existing techniques to make verification and adaptation
of WF components, we have first to extract from the abstract WF notation
the required model, namely Labelled Transition Systems. A LTS is a tuple
(A, S , I ,F ,T ) where: A is an alphabet (set of events or messages), S is a set
of states, I ∈ S is the initial state, F ⊆ S are final states, and T ⊆ S ×A×S
is the transition function. The extracted LTSs must preserve the semantics
of workflows as encoded in WF/.NET Framework 3.0. A formal proof of
semantics preservation between both levels is not achieved yet since WF does
not provide a formal semantics. Our encoding has been deduced from our
experiments using the WF platform. The main ideas of the LTS obtaining
from abstract description of workflow constructs are the following.

• Code is internal and hence interpreted as an internal transition, τ ;

• Terminate corresponds to a final state;

• InvokeWebService corresponds to a sequence of emissions followed by a
reception, WebServiceInput corresponds to a sequence of receptions, and
WebServiceOutput corresponds to an emission;

• Sequence is translated so as to preserve the order of the involved activities.
For this, the final states of the first activity are linked to the initial state of
the second activity using ε transitions;

• IfElse corresponds to an internal choice. This corresponds to as many
τ transitions as there are branches in the IfElse construct (including the
else branch). Each of these τ transitions leads to the initial state of the
corresponding activity;

• Listen corresponds to an external choice. This corresponds to as many
outgoing transitions as there are branches in the Listen construct. These
transitions are labelled with receptions corresponding to the messages that
can be received and target the initial state of the related activity;

• While is translated as a looping behaviour, where the choice between ter-
mination or loop is encoded using internal non-determinism (τ transitions).

Formally, an LTS L = (A, S , I ,F ,T ) can be obtained from a abstract
workflow represented by activity A using function awf 2lts : WF → LTS .
For an LTS L = (A, S , I ,F ,T ), we define X (L) = X for every X in
{A, S , I ,F ,T}. This notation is overloaded for activities: for some activity
A, we define X (A) = X (awf 2lts(A)) for every X in {A, S , I ,F ,T}. Finally,
we use new s to denote the creation of s as a new (fresh) state in the LTSs
we are building. awf 2lts can be defined inductively on the structure of WF
activities as follows:
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Code �→ ({τ}, {new s1, new s2}, s1, {s2}, {s1

τ

→ s2})

Terminate �→ (∅, {new f }, f , {f }, ∅)

InvokeWebService(O1, . . . ,On , I ) �→ ({O1!, . . . ,On !, I ?},
⋃

i∈{0,...,n+1}{new si},

s0, {sn+1}, (
⋃

i∈{1,...,n} si−1

Oi !→ si) ∪ {sn
I?
→ sn+1})

WebServiceInput(I1, . . . , In) �→ ({I1?, . . . , In?},
⋃

i∈{0,...,n}{new si}, s0, {sn},
⋃

i∈{1,...,n} si−1

Ii?→ si)

WebServiceOutput(O) �→ ({O !},
⋃

i∈{0,1}{new si}, s0, {s1}, {s0

O !
→ s1})

Sequence(A1,A2) �→ (A(A1) ∪ A(A2) ∪ {ε}, S (A1) ∪ S (A2), I (A1),F (A2),

T (A1) ∪ T (A2) ∪ {f
ε

→ I (A2) | f ∈ F (A1)})

IfElse((C1,A1), . . . , (Cn ,An),An+1) �→ ((
⋃

i∈{1,...,n+1} A(Ai)) ∪ {τ},

(
⋃

i∈{1,...,n+1} S (Ai)) ∪ {new s}, s ,
⋃

i∈{1,...,n+1} F (Ai),
⋃

i∈{1,...,n+1}(T (Ai) ∪ {s
τ

→ I (Ai)}))

Listen(EventDriven(WebServiceInput(I1),A1), . . . ,
EventDriven(WebServiceInput(In ),An)) �→ (

⋃
i∈{1,...,n}(A(Ai) ∪ {Ii?}),

(
⋃

i∈{1,...,n} S (Ai)) ∪ {new s}, s ,
⋃

i∈{1,...,n} F (Ai),
⋃

i∈{1,...,n}(T (Ai) ∪ {s
Ii?→ I (Ai)}))

While(C ,A) �→ (A(A) ∪ {ε} ∪ {τ}, S (A) ∪ {new s , new f }, s ,F (A) ∪ {f },

T (A) ∪ {s
τ

→ I (A)} ∪ {s
τ

→ f } ∪ {f ′ ε

→ I (A) | f ′ ∈ F (A)})

Once the LTS is constructed, ε transitions are removed [15]. LTS does not
support the description of data expressions, consequently conditions appearing
in While and IfElse constructs are abstracted away while extracting LTS.
Likewise, WebServiceInput and WebServiceOutput activities identified with
tau identifiers (see Fig. 2) are translated as τ transitions in the corresponding
LTS.

Initial and final states in the LTS come respectively from the explicit initial
and final states that appear in the workflow. There is a single initial state that
corresponds to the beginning of the workflow. Final states correspond either
to a Terminate activity or to the end of the whole workflow. Accordingly,
several final states may appear in the LTS because several branches in the
workflow may lead to a final state. Initial and final states are respectively
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depicted in LTSs using bullet arrows and hollow states.

Let us illustrate the extraction of LTSs from abstract WF workflows on
our running example (Figure 3). The messages that appear in the Buyer
LTS come from the output and input parameters that appear in its invoke
activities. As far as the Supplier component is concerned, the invoke activi-
ties are made abstract because they correspond to interactions with external
components (in charge of the material database), and are not of interest for
the composition at hand. Therefore, the observable messages in this case are
coming from the input and output messages surrouding the invoke activities.
All the τ transitions in LTSs are removed using a behavioural equivalence
(τ∗.a reduction [12]) before the adaptation process to favour efficiency and
readability. To identify unambiguously component messages in the adapta-
tion process, their names are prefixed by the component identifier, respectively
b for Buyer , and s for Supplier .

 s:type?  s:price?

 s:reply!

 s:price?  s:type?

 s:buy?  s:ack!

 [while]

 b:request!

 b:reply?

 b:purchase!
 b:ack?

 b:request!

 b:stop!

 [while]

Fig. 3. LTS interfaces of Supplier (top) and Buyer (bottom) components

5 Verification and Model-Based Adaptation in WF

This section presents our approach to verify and compose/adapt WF compo-
nents. Verification techniques are useful in two cases: first, they may help
to identify mismatch situations, and, in a second step, they allow to check if
the adaptor works correctly, since the designer writes the mapping by hand,
therefore it may contain some errors that will be reflected in the adaptor
protocol.

5.1 Detection of Mismatch Cases

First of all, let us introduce verification techniques that can be used to
check component LTSs, and their composition with the adaptor LTS (see
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Section 5.4). All existing model-checking tools that accept automata-based
format as input are good candidates to these checks, namely SPIN [14],
CADP [12] or mCRL2 [13]. In this paper, we illustrate these ideas with CADP
which is a verification toolbox for asynchronous concurrent systems. CADP
allows to deal with very large state spaces, and implements various verifica-
tion techniques such as model checking, compositional verification, equivalence
checking, distributed model checking, etc.

The main idea is to generate the full system using parallel composition
operators available in CADP (or similar tools), and then to reason on the re-
sulting system using mainly visual checking and model-checking of temporal
properties. Model-checking is an automatic technique that efficiently detects
subtle architectural flaws. Classical properties such as liveness or safety prop-
erties can be easily formalised reusing patterns [17], and then checked against
the system model (LTS) using model-checkers, e.g., Evaluator [18] which be-
longs to CADP.

As regards our running example, we first compute the resulting LTS by
composing components Buyer and Supplier and enforcing their interaction
on all messages appearing in both components. The resulting LTS consists
of a single state with no outgoing transitions. This is quite obvious because
both components suffer of mismatch in their first transition (request! in the
Buyer versus type? in the Supplier). Indeed, a study of these LTSs points
out the three following cases of mismatch:

(i) name mismatch: the Buyer may buy the computer using purchase!

whereas the Supplier may interact on buy?;

(ii) mismatching number of messages: the Buyer sends one message for each
request (request!) while the Supplier expects two messages, one indi-
cating the type (type?), and one indicating the max price (price?);

(iii) independent evolution: the Buyer may terminate with stop! but this
message has no counterpart in the Supplier .

5.2 Adaptation Mapping

Now, a mapping should be given to work the aforementioned cases of mismatch
out. ε is used in vectors when some message has no counterpart in a component
(see e.g. Vprice and Vstop bellow). We use vectors that define correspondences
between messages. More expressive mapping notations exist in the literature,
such as regular expressions of vectors [8], but with respect to the example
at hand, vectors are enough to automatically retrieve a solution adaptor. A
possible mapping for our example is as follows:

Vreq = 〈b :request!, s :type?〉
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Vprice = 〈b :ε, s :price?〉

Vreply = 〈b :reply?, s :reply!〉

Vstop = 〈b :stop!, s :ε〉

Vbuy = 〈b :purchase!, s :buy?〉

Vack = 〈b :ack?, s :ack!〉

The name mismatch can be solved by vector Vbuy. The correspondence
between request! and messages type? and price? can be achieved using two
vectors, Vreq and Vprice, where the second contains an independent evolution
of component Supplier . The last mismatch is solved using Vstop in which the
message stop! is associated to nothing.

5.3 Generation of the Adaptor Protocol

Given a set of component LTSs (Section 4) and a mapping (Section 5.2),
we can use existing approaches (here we rely on [8]) to generate the adaptor
protocol automatically. This automation is crucial because in some cases, the
adaptor protocol may be very hard to derive manually.

Figure 4 presents the Adaptor LTS. Since the adaptor is an additional com-
ponent through which all the messages transit, all the messages appearing in
the adaptor protocol are reversed with respect to the ones in the components.
Note first that the adaptor receives the request coming from the Buyer , and
splits the message into messages carrying the type and price information. This
LTS also shows how the termination is possible along the stop? message, and
how the adaptor may interact on different names (purchase? and buy!) to
make the interaction possible.

 b:request?  s:type!  s:price!  s:reply?  b:reply!

 b:request?
 s:type!

 s:price!

 b:stop?

 s:buy!

 b:purchase?

 b:ack!  s:ack?

 [while]

Fig. 4. Adaptor protocol for the case study

5.4 Assessment Techniques

In this last step, we use model-checking techniques to validate the adaptor LTS
generated from the mapping proposed above. First, the LTS corresponding to
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the composition of both components and the adaptor is computed. Synchro-
nisation is made explicit, and both components interact together through the
adaptor. Next, the designer may write some properties to be verified by the
final system. In the rest of this section, we show some examples of μ-calculus
formulas we checked on this system using Evaluator:

(i) a supplier always replies a buyer request
[true* . "b_request"]

mu X. (<true> true and [not ("s_reply")]X)

(ii) a buyer request is always followed by stop, purchase, or request
[true* . "b_request"]

mu X. (<true> true and
[not ("b_stop" or "b_purchase" or "b_request")]X)

(iii) a buyer request is always followed by stop, or purchase
[true* . "b_request"]

mu X. (<true> true and [not ("b_stop" or "b_purchase")]X)

Properties (i) and (ii) are true, whereas the last one (iii) is false, but this
is normal because the system can loop forever on exchanging request/reply
messages. If some properties turn out to be false whereas a positive answer
was expected, it means that the adaptation mapping contains errors that does
not make the system behave as required. In this situation, the mapping must
be corrected and assessment applies again.

6 Generating WF Workflows from LTSs

The last step in our proposal is to generate an abstract workflow from an
adaptor protocol. Formalising the function lts2awf is quite tough, especially
because cycles in the adaptor LTS have to be encoded with While activities
which must preserve the LTS behaviour. Therefore, as a first attempt, we give
in this section some guidelines for this encoding.

First, the initial state of the LTS is encoded as the initial state of the
workflow. Final states are encoded as Terminate activities. The adaptation
process removes all the τ transitions. Then, all the needed pieces of C# code
will be added by hand while refining the abstract workflow into a real WF
workflow.

The translation process derives step by step parts of the abstract work-
flow by focusing on one state of the LTS after the other. We distinguish in
the following the translation of transitions corresponding to message activ-
ities (InvokeWebService, WebServiceInput, WebServiceOutput), and the
generation of structuring activities (Sequence, IfElse, Listen, While). Let
us start with messages, and note that the three rules below have to be ap-
plied in this order to check if the sequence of messages corresponds to an
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InvokeWebService before translating it in separate WebServiceOutput or
WebServiceInput activities:

• a sequence of transitions with labels holding one or several emissions fol-
lowed by a reception is encoded as an InvokeWebService activity;

• one or several transitions with receptions as labels are translated into a
WebServiceInput activity;

• a transition with one emission corresponds to a WebServiceOutput activity.

Now, we focus on the encoding of the LTS structuring into the abstract
workflow:

• a Sequence activity is generated for a sequence of transitions in the LTS
corresponding to two successive message activities, and for which no states
involve more than one outgoing transition;

• if the state of the LTS to be translated involves two or more outgoing
transitions:
· if all the outgoing transitions hold input messages, a Listen activity is

derived,
· otherwise a conditional choice IfElse activity is generated;

• a cycle in an LTS is translated using a While activity. If several cycles loop
on a same state, it corresponds to a single While activity. However if a cycle
in the LTS contains another (local) cycle, this latter will also be translated
as a While activity nested in the outmost one.

Following these guidelines, an abstract workflow has been derived for our
running example that we do not show here for space reasons. Last, this ab-
stract workflow has been refined into a WF workflow (Fig. 5). This refinement
step requires the intervention of the designer, to (i) concretise conditions in
IfElse and While activities, and (ii) add C# pieces of code to get the adaptor
WF component works correctly. Moreover, WF requires addresses of compo-
nents to be specified in invocations. Therefore, to deploy our adapted system,
we have first to update the components workflows to change these addresses
into the adaptor one. However, this can be done automatically.

Finally, we point out that the simple system presented in this paper has
been completely implemented using WF, and the Buyer and Supplier compo-
nents worked as required thanks to the use of the Adaptor component.

7 Related Work

The first group of related work concerns proposals that aimed at applying
adaptor generation approaches to existing implementation platforms. Brogi
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Adaptor

a

a

Fig. 5. WF workflow for the Adaptor component

and Popescu [6] outline a methodology for the automated generation of adap-
tors capable of solving behavioural mismatches between BPEL processes [1].
In their adaptation methodology they use YAWL workflow as intermediate
language. Once the adaptor workflow is generated, they use lock analysis
techniques to check if a full adaptor has been generated or only a partial one
(some interaction scenarios cannot be resolved).

In [6], the authors chose BPEL. Both BPEL and WF languages allow
to design Web services, but WF can also be used to implement any kind of
software component. Their respective platforms make the implementation
easier thanks to their workflow-based graphical support, and the automated
generation of most of the underlying code (XML+Java in BPEL, using Java
Application Server included in Netbeans Enterprise, and XML+C# in WF).
In this work, we have focused on WF because it is an interesting alternative
to BPEL that has not been studied yet. In addition, as a long term purpose,
we want our proposal to benefit to the wide number of people that use the
.NET Framework in private companies around the world. Compared to [6]
our adaptation approach is able to reorder messages in between components
when required.

Inverardi and Tivoli [16] tackle the automatic synthesis of connectors in the
COM/DCOM framework, by guaranteeing deadlock-free interactions among
components. They may also define properties that the resulting system should
verify using liveness and safety properties expressed as specific processes.
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Compared to this proposal, our approach does not only restrict the adaptor
to possible non-deadlocking behaviours [16] but may also address behavioural
adaptation. That comes from the notation and adaptation techniques we rely
on that allows to deal with possibly complex adaptation scenarios, whereas
this approach does not use any mapping language for adaptor specification.

As regards verification of component-based systems, recent approaches
have been dedicated to the verification of software components specified us-
ing LOTOS, LTSs and synchronisation networks [2,3]. These works present
a method and a tool intended to application developers, to build behavioural
models of Fractal components on which properties can be verified using CADP.
In the Web Service area, different works have been dedicated to verifying Web
service description to ensure some properties of systems [10,11,21,22]. Sum-
marising these works, they use model-checking to verify some properties of
cooperating Web services described using XML-based languages (DAML-S,
WSFL, BPEL, WSCI). Accordingly, abstract representations are extracted
from Web service implementations, and some properties may be ensured us-
ing ad-hoc or well-known tools (e.g., SPIN, LTSA). Last, Mouakher et al. [20]
start with a description of components using UML class and state diagrams
that they encode into the B method to use its associated theorem prover,
namely Atelier B or B4free, so as to perform compatibility checks. In a sec-
ond step, they specify adaptors in B, and address their correctness.

Compared to these different proposals, ours focuses on both verification
and adaptation of components. We prefer model checking (instead of theorem
proving with B for instance) because it makes verification steps easier thanks
to a full automation and its adequacy to automata-based models. In addition,
adaptation techniques support the automatic generation of adaptors in case
verification reveals that components cannot be directly reused (the adaptor is
completely specified by hand in [20]).

8 Concluding Remarks

This paper has presented an approach to verify WF components, and in case
they cannot be directly composed, we have sketched how an adaptor protocol
can be generated, and encoded into a new WF component. We have illustrated
the application of our proposal in practice on a simple yet realistic example.
This work is promising because it demonstrates that software adaptation can
be of real interest for widely used implementation platforms such as the .NET
Framework 3.0, and can help the developer in building software applications
by reusing software components or services.

As far as future work is concerned, here is a list of perspectives we will
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tackle to complement our approach:

• extending the set of WF activities considered in our proposal;

• extending our LTS model with respect to these new activities, and keeping
data description at this level;

• formalising both functions awf 2lts and lts2awf to support the automatic
extraction and generation of abstract workfows;

• extending our verification and adaptation proposal to deal with this new
model;

• implementing our traslation functions between LTSs and abstract workflows
in a prototype tool;

• implementing in this tool automatic translators between WF workflows (de-
scribed in XML format) and abstract workflows;

• experimenting the proposal on more complex and realistic examples.

In parallel, we would also like to carry out experiments on the implemen-
tation of adaptors using BPEL and the Netbeans Enterprise platform to com-
pare on precise criteria the adequacy of both platforms to apply adaptation
in practice.
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