
1

An Eclipse-based Editor to Support LOTOS
Newcomers

Giuseppe De Ruvo, Antonella Santone
Department of Engineering, University of Sannio, Benevento, Italy

e-mail: {gderuvo@unisannio.it, santone@unisannio.it}

Abstract—We present ELOTON, an Eclipse-based Editor to
help people who want to approach the Language of Temporal
Ordering Specification (LOTOS). LOTOS is a Formal Description
Technique standardized by ISO for the design of concurrent
and distributed systems, and in particular for OSI services and
protocols. LOTOS has been widely used for the specification of
large data communication systems. It is mathematically well-
defined and expressive: it allows concurrency, non-determinism,
synchronous and asynchronous communications. CADP is a
popular toolbox that supports high-level descriptions written
in LOTOS, among others. Unluckily, there not exists an user
interface suitable for newcomers in formal methods. Thus, many
people encounter many obstacles in using formal methods and
in particular model checking due to the lacking of user-friendly
tools. We argue that ELOTON, thanks to its rich text editor and
visualization features might involve a major number of users
coming from various disciplines. Our tool serves as a graphical
front-end for CADP.

Keywords-Model Checking, LOTOS, CADP, Formal Verifica-
tion Tools, Eclipse RCP

I. INTRODUCTION AND RELATED WORK

Formal methods are a collection of mathematical methods
that allow one to verify correctness of the model of the system
in early design phases. Among these methods, model checking
[1] is a rather successful one. Basically, model checking allows
to automatically prove whether a model of the system at the
suitable level of abstraction satisfies a given specification.
Before we can apply model checking, we have to formalize the
model of the system and its specification, i.e. the requirements
the system should satisfy. The process of model checking
returns yes/no answers reflecting the correctness of the system
being analysed. In more detail, in the case of negative answer,
we can follow the bad trace, which does not satisfy the
requirement. Therefore, model checking is also useful for
correcting the model.

The development and application of formal methods and in
particular model checking has been highlighted in connection
with a variety of disciplines such as business process man-
agement [2], biology [3], collaborative knowledge [4], human
automation interactions and aeronautics [5], among others.

On the one hand several formal specification languages
exist, as for example CCS [6], LOTOS [7], Promela [8]. On
the other hand, there are many model checkers developed in
the world using the above specification languages (see next
Section).

There are different works to improve the user experience
with model checking tools. VIP [9], the Visual Interface

to Promela (VIP) tool is a Java based graphical front end
to the Promela specification language and the SPIN model
checker. It provides a graphical v-Promela editor supporting
point and click editing of v-Promela structure diagrams and
hierarchically nested state machines. The editor incorporates
syntax checking to warn the user about incorrect use of v-
Promela graphical syntax. Storage and retrieval of models is
made possible using Java serialization. The tool also has a
fully integrated v-Promela compiler which generates Promela
code. There also are other works on improving the support to
Spin [10][11].

MCMAS [12] is an Eclipse-based tool which supports speci-
fications based on CTL, epistemic logic (including operators of
common and distributed knowledge), alternating Time Logic,
and deontic modalities for correctness. The GUI guides the
user to create and edit ISPL programs by performing dynamic
syntax checking with an additional ANTLR parser. The GUI
also provides outline view, text formatting, syntax highlight-
ing, and content assist automatically. Morevoer, MSCMAS
provides facilities to display counterexamples. The authors of
MCMAS employed Graphviz1 to represent graphs.

Tribastone et al. [13] designed an Eclipse plug-in to support
the creation and analysis of performance models, from small-
scale Markov models to large-scale simulation studies and
differential equation systems. Performance Evaluation Process
Algebra (PEPA) [14] is a concise formal language for high-
level quantitative modelling. The tool enables Markovian
steady-state analysis, stochastic simulation, and ODE analysis
of PEPA models.

Yokoyama et al. [15] extend the functions of Java
PathFinder [16], a software model checker to verify executable
Java bytecode programs, and propose a graphical user interface
with a high degree of usability. One of the key features of their
GUI is a variable-value-based graph abstraction that allows
users to focus upon an aspect they are interested in. It also
has an intuitively easy-to-use interface for users to input linear
temporal logic (LTL) formulae as a program specification
based on the Specification Pattern System.

Arcaini et al. presented NuSeen [17], an eclipse-based en-
vironment for NuSMV [18], with the aim of helping NuSMV
users. The tool mainly focuses in easing the use of the NuSMV
tool by means of graphical elements. They also integrated
a model advisor for NuSMV models to perform automatic
review of NuSMV models, with the aim of determining if a

1http://www.graphviz.org



2

model is of sufficient quality, where quality is measured as the
absence of certain faults [19].

Writing a complex model, it is not a trivial task when there
is no assistance for the designer or “formalist”. It may be
even worse for newcomers in formal methods and in particular
model checking.

In this paper, we are interested in investigating the kind
of user interface that might help a non-expert user in taking
advantage of formal specifications and verification techniques.
Nowadays formal methods still encounter many obstacles in
being widely used and accepted, and we believe that the kind
of human interface they usually provide does play a main role
in this difficulty.

CADP [20] is a popular toolbox for the design of asyn-
chronous concurrent systems. It supports high-level descrip-
tions written in various languages, mainly LOTOS.

Thus, our contribution is the implementation of ELOTON
(Eclipse-based editor for LOTOs Newcomers), which provides
a graphical front-end to CADP verification environment, mak-
ing this tool usable to people who are not specialists in model
checking. More precisely, our goal is two fold:

1) to help the user in writing LOTOS specification, the input
specification language of CADP;

2) to help the user to pinpoint the error, when the verification
fails, “exploding” on demand each node of the graph
representing the behaviour of the system to be verified.

We have chosen CADP since, as stated in [20], it provides
an unique combination of the following four features that no
other tool presently offers:

• the tool supports not only model-checking but also equiv-
alence checking which, beyond being standard practice in
hardware verification, plays a crucial role for component-
based systems and compositional verification.

• the tool supports distributed verification, i.e. it can use the
computing power and memories of a cluster of machines,
rather than a single machine;

• the modelling language of the tool support concurrency,
i.e. it has some built-in notion of asynchronous parallel
composition;

• the modelling language support user-defined (possibly
unbounded) data types such as records, unions, lists, etc.

Furthermore, CADP toolbox is designed in a modular way
and puts the emphasis on intermediate formats and pro-
gramming interfaces (such as the BCG and OPEN/CAESAR
software environments). In this fashion, the CADP tool can be
combined with other tools and adapted to various specification
languages.

The remainder of this paper is organized as follows. First,
in the next section we give an overview of model checking
tools. In Section III we present our tool, ELOTON. Finally,
Section IV deals with conclusions and new ideas for further
work.

II. MODEL CHECKING AND TOOLS

As the size of software increases, it becomes increasingly
difficult to perform testing. This is particularly important
in systems where the reliability of the software cannot be

compromised. Such concerns have motivated the software
industry to consider alternative techniques for software ver-
ification, especially those based on formal proofs [21]. Thus,
in the recent years large research effort has been devoted
to develop formal approaches to the design and analysis of
critical systems. To reason formally about real-world systems,
tool support is necessary; consequently, a number of tools
embodying various analysis have been developed. As stated
in [20], there are many model checkers developed in the
world. All provide a support for automatically answering the
verification question: does a system sys satisfy a property ϕ?
To implement such a tool, the verification question must be
formulated more carefully by fixing:

1) a precise notation for defining systems;
2) a precise notation for defining properties; and
3) an algorithm to check if a system satisfies a property.

To cope with the first problem, several specification languages
have been developed. Some tools use process algebras as, for
example, CCS [6], LOTOS [7], CSP [22]. The second problem
can be solved using a temporal logic as, for example, the mu-
calculus logic [23], CTL [24]. For the last problem, several
algorithms exist. The most used verification methodology
is model checking [1]: the property that the system must
satisfy, expressed in some temporal logic, is checked on a
finite structure representing the behavior of the system. If we
specify the system by means of a process algebra program,
like LOTOS, this structure is a labeled transition system, i.e.,
an automaton whose transitions are labeled by event names.
The transition system represents all possible executions of the
program. To check a property, model checking explores every
possible state that the system may reach during execution. If
the system does not satisfy the property, a description of the
execution sequence leading to the state is reported to the user.
Many bugs such as deadlock and critical section violations
may be found using this approach.

The main drawback of model checking is that it is not
scalable to very large systems unless the model is very
abstract. The number of states in the finite state representation
increases exponentially with the number of variables (“the
state explosion”). For this problem several approaches have
been developed. Among them, reduction techniques based
on symbolic model checking techniques [25], partial order
techniques [26], [27], compositional techniques [28], [29],
[30], abstraction approaches [31], [32] and heuristic-based
approaches [33], [34], [35].

Another drawback of model checking is that it operates
only on models. Thus, writing a model becomes one of the
key problems in model checking. On the other hand, the
main advantage of using model checking is that it is fully
automatic. Furthermore, model checking tools give an error
trace for each error path in the program. This can help in
locating and correcting the error in the system. However,
long counterexample prevents the comprehension of the fault.
Therefore, in this paper, we are interested in investigating the
kind of user interface that might help a non-expert user in
taking advantage of both formal specifications and verification
techniques.



3

Fig. 1: ELOTON’s components

One of the most popular formal verification environment is
CADP [20], which includes LOTOS as specification language.
Being a process algebra specification language CADP can
also perform equivalence checking, i.e. process algebras can
be used to describe both implementations of processes and
specifications of their expected behaviors. Therefore, they
support the so-called single language approach to process
theory, that is, the approach in which a single language is
used to describe both actual processes and their specifications.
An important ingredient of these languages is therefore a
notion of behavioral equivalence. One process description,
say sys, may describe an implementation, and another, say
spec, may describe a specification of the expected behavior.
This approach to program verification is also sometimes called
implementation verification. This is also a reason for choosing
to make more user-friendly CADP.

III. ELOTON - ECLIPSE EDITOR FOR LOTOS
NEWCOMERS

In this paper we present ELOTON, an Eclipse-based editor
to support LOTOs Newcomers. Its main purpose is to help peo-
ple who are not aware of formal methods and model checking
to write specifications and easily proceed with verification.
ELOTON is an Eclipse RCP application, as explained in the
following. We did not develop an Eclipse-plugin, because we
also do not want to “scare” people unfamiliar with Eclipse
including its standard (and not required in this case) features.

A. Rich-client Application

Under the tooling platform of Eclipse 2 is the Eclipse RCP
(Rich Client Platform). This is a generic platform for running
applications. The Eclipse IDE happens to be one of such
application. The Eclipse RCP addresses complex application
scenarios that span the spectrum from thin to rich clients and
from enterprise and business-oriented systems to scientific and
data management scenarios.

Rich clients support a high-quality end-user experience for
a particular domain by providing rich native User Interfaces
(UIs) as well as high-speed local processing. Rich UIs support
native desktop metaphors such as drag and drop, system

2http://www.eclipse.org

clipboard, navigation, and customization. When done well, a
rich client is almost transparent between end users and their
work - fostering focus on the work and not the system. The
Eclipse RCP platform is the best way to build rich-clients
because such rich-feature is inherent in the Eclipse platform
itself.

B. Features

Our tool is made up of an editor and a view to visualize
automata generated by written specifications. The editor pro-
vides auto-completion, syntax highlighting and error marking
features, supported by an Eclipse custom builder setting up
on top of CADP’s CAESAR compilers. Instead, the view
adds new understanding capabilities in order to enhance the
layout conveyed to the user. ELOTON’s distinctive features
are presented in the following with the aid of screenshots.
Figure 1 shows ELOTON’s main components. Component
Xtext provides the editor and definitions for language LOTOS.
Component Builder is basically a wrapper to call the external
CADP’s CAESAR compilers. It is necessary to set Preferences
to locate CADP. Graphs can be depicted after the creation of
one (or more) “.bcg” returned by CADP. Note that component
Graph Visualization works using only the “.bcg” file. Thus, it
does not share the same meta-model created by Xtext, as can
be seen in the figure.

1) Syntax Highlighting and Auto-completion: formal spec-
ifications are text which have to be written in a file. Helpers
such as code highlighting and auto-completion elevate the
capabilities of textual editors significantly.

Almost any programming language has an editor with
aforementioned capabilities or even an IDE with more support.
Unfortunately, as far as we know, there not exists an IDE or
just an editor for backing people who model in LOTOS. This
is a main problem mostly for newcomers, where a newcomer
in LOTOS might also be an expert software engineer or
developer. Moreover, if the file is composed of hundreds lines,
difficulties arise for experts too.

Figure 2 shows an example project with the popular AL-
TERNATING BIT PROTOCOL specification coming from
CADP’s demos. Keywords and comments are highlighted by
the editor and the code is well formatted without additional
effort. Looking at bottom-left of the figure is also possible



4

Fig. 2: ELOTON - syntax highlighting plus markers to show errors

to find an Outline to easily navigate trough processes. In-
stead, auto-completion capabilities assist the user proposing
keywords (specification, behaviour, process, etc.), gates - if
defined, process names and so on. Furthermore, there is a
basic template for newcomers that provide initial specification
- something like specification something ... with symbols,
process and endproc and endspec.

Xtext3 provides ELOTON’s syntax highlighting, auto-
completion and template capabilities. Xtext is a framework
for development of programming languages and domain spe-
cific languages. It covers all aspects of a complete language
infrastructure, from parsers, over linker, compiler or interpreter
to exhaustive excellent Eclipse IDE integration.

2) Error Marking: another important feature of ELOTON
is the error marking. Indeed, after setting CADP environment
variable, it is possible to compile without using the Command
Line Interface. Errors are given with useful markers and sorted
in the Problems view to better understand what is going on.
Figure 2 highlights a simple error: a different number of gates
declared, i.e. process TRANSMITTER is missing gate PUT.
Another error might arise when writing gates which do not
exist, forgetting to close an important construct e.g. process,
missing keywords and so on.

A marker is like a yellow sticky note stuck to a resource.
On the marker we can record information about a problem
(e.g., location, severity) or a task to be done. Or we can
simply record a location for a marker as a bookmark. Users
can quickly jump to the marked location within a resource.

3https://www.eclipse.org/Xtext

The Eclipse platform API itself defines methods for creating
and managing markers, setting marker values, and extending
the platform with new marker types.

3) Automata Visualization: ELOTON also offers visualiza-
tion capabilities. BCG graphs representing automata generated
by CADP are created in the Full Graph View of this RCP
application. The user is able to view, zoom and arrange the
generated graphs according to his own needs. There are four
types of layout available, as shown in Figure 3. Notwith-
standing, when there are too many nodes even this kind of
visualization is useless. In fact, nodes overlap and actions are
hard to understand and locate on the graph.

4) On Demand Creation of Automata: When the generated
graph is puzzling automata cannot supply any kind of infor-
mation due to confusion. This is a big matter when we do
model checking and we want to analyse the counterexample
to pinpoint the source of the error. Most of the time, long
error paths can prevent an easy comprehension of the fault.
ELOTON proposes the on demand creation of automata,
allowing to generate nodes on specific paths. The graphs look
prettier and clearer and provide enough information to the user.
It is also possible to add a chosen node or action: ELOTON
will add all the necessary nodes and arcs to accomplish that
task. Figure 4 shows the on demand feature.

Automata Visualization features are made possible thanks
to Zest. Eclipse Zest is a visualization toolkit for graphs. It
is based on SWT/Draw2D. Zest supports the viewer concept
from JFace Viewers and therefore allows to separate the model
from the graphical representation of the model. Zest also
provides a set of graph layout managers. A graph layout



5

Fig. 3: ELOTON - visualization of automata

Fig. 4: ELOTON - on demand creation choosing a specific path



6

manager determines how the nodes (and the arrows) of a graph
are arranged on the screen. Filters, to define which nodes and
connections should be displayed, can be used too.

IV. CONCLUSIONS AND FUTURE WORK

We have presented ELOTON, a tool to help people who
write LOTOS formal specifications and perform verification
with model checking.

Our tool is an Eclipse RCP application that uses frameworks
Xtext and Zest, among others. We provide a rich text editor
with syntax highlighting, auto-completion, templates and error
marking capabilities. Furthermore, we supply two views to
manage the creation of the automata from LOTOS models.
On the one hand, users are able to visualize the generated
graph choosing from four types of layouts. On the other hand,
ELOTON offers on demand creation and insertion of nodes
and actions to follow a specific path when the graph has too
many nodes which prevent a clear representation. We argued
that aforementioned facilities are a crucial point especially
for newcomers and might also be a way to involve people
using formal methods, in particular model checking. Many
researchers or students would explore new interesting areas
mixing various disciplines. We plan to improve ELOTON and
add new features to enhance the user experience and add more
semantic rules to improve the content assist before a public
release. An editor to write properties to be verified is also
needed. The possibility to do equivalence checking within
ELOTON (using for example CADP’s bisimulator) must be
integrated in order to take advantage of our visualization
environment.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[2] A. Santone, V. Intilangelo, and D. Raucci, “Application of equivalence
checking in a loan origination process in banking industry,” in Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2013 IEEE 22nd International Workshop on, 2013, pp. 292–297.

[3] A. Santone, L. Cerulo, and M. Ceccarelli, “Infer gene regulatory
networks from time series data with formal methods,” 2013 IEEE
International Conference on Bioinformatics and Biomedicine, vol. 0,
pp. 115–120, 2013.

[4] G. De Ruvo and A. Santone, “A novel methodology based on formal
methods for analysis and verification of wikis,” in Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE), 2014 IEEE
23nd International Workshop on, June 2014.

[5] M. Bolton, R. Siminiceanu, and E. Bass, “A systematic approach
to model checking human-automation interaction using task analytic
models,” Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 41, no. 5, pp. 961–976, Sept 2011.

[6] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[7] T. Bolognesi and E. Brinksma, “Introduction to the iso specification
language lotos,” Computer Networks, vol. 14, pp. 25–59, 1987.

[8] G. J. Holzmann, The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[9] M. Kamel and S. Leue, Vip: A visual editor and compiler for v-promela.
Springer, 2000.

[10] T. Kovše, B. Vlaovič, A. Vreže, and Z. Brezočnik, “Eclipse plug-in
for spin and st2msc tools-tool presentation,” in Proceedings of the 16th
International SPIN Workshop on Model Checking Software. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 143–147.

[11] B. De Vos, L. C. L. Kats, and C. Pronk, “Epispin: An eclipse plug-in for
promela/spin using spoofax,” in Proceedings of the 18th International
SPIN Conference on Model Checking Software. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 177–182.

[12] A. Lomuscio, H. Qu, and F. Raimondi, “Mcmas: A model checker for
the verification of multi-agent systems,” in Computer Aided Verification.
Springer, 2009, pp. 682–688.

[13] M. Tribastone, A. Duguid, and S. Gilmore, “The pepa eclipse plugin,”
SIGMETRICS Perform. Eval. Rev., vol. 36, no. 4, pp. 28–33, Mar. 2009.

[14] J. Hillston, PEPA: Performance enhanced process algebra. University
of Edinburgh, Department of Computer Science, 1993.

[15] S. Yokoyama, H. Sato, and M. Kurihara, “User-friendly gui in software
model checking,” in Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on, 2009, pp. 468–473.

[16] K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” International Journal on Software Tools for Technology
Transfer, vol. 2, no. 4, pp. 366–381, 2000.

[17] P. Arcaini, A. Gargantini, and P. Vavassori, “Nuseen: an eclipse-based
environment for the nusmv model checker,” in Eclipse-IT 2013:
Proceedings of VIII Workshop of the Italian Eclipse Community.
Eclipse Italian Community, September 2013. [Online]. Available:
http://arxiv.org/abs/1310.2464

[18] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[19] P. Arcaini, A. Gargantini, and E. Riccobene, “A model advisor for nusmv
specifications,” Innovations in systems and software engineering, vol. 7,
no. 2, pp. 97–107, 2011.

[20] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “Cadp 2011: a toolbox
for the construction and analysis of distributed processes,” STTT, vol. 15,
no. 2, pp. 89–107, 2013.

[21] A. Calvagna and E. Tramontana, “Combinatorial validation testing of
java card byte code verifiers,” in Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), 2013 IEEE 22nd International
Workshop on, June 2013, pp. 347–352.

[22] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359576.359585

[23] C. Stirling and D. Walker, “Local model checking in the modal mu-
calculus,” Theor. Comput. Sci., vol. 89, no. 1, pp. 161–177, 1991.

[24] J. Bohn, W. Damm, O. Grumberg, H. Hungar, and K. Laster, “First-
order-ctl model checking,” in FSTTCS, 1998, pp. 283–294.

[25] K. L. McMillan, Symbolic model checking. Kluwer, 1993.
[26] P. Godefroid, Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer, 1996, vol. 1032.

[27] A. Santone and G. Vaglini, “Partial order interpretation of a mu-calculus-
like temporal logic,” in ICSOFT, 2013, pp. 233–238.

[28] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” in LICS. IEEE Computer Society, 1989, pp. 353–362.

[29] A. Santone, “Automatic verification of concurrent systems using a
formula-based compositional approach,” Acta Inf., vol. 38, no. 8, pp.
531–564, 2002.

[30] A. Santone, G. Vaglini, and M. L. Villani, “Incremental construction of
systems: An efficient characterization of the lacking sub-system,” Sci.
Comput. Program., vol. 78, no. 9, pp. 1346–1367, 2013.

[31] A. Santone and G. Vaglini, “Abstract reduction in directed model
checking ccs processes,” Acta Inf., vol. 49, no. 5, pp. 313–341, 2012.

[32] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–
1542, 1994.

[33] A. Santone, “Heuristic search + local model checking in selective mu-
calculus,” IEEE Trans. Software Eng., vol. 29, no. 6, pp. 510–523, 2003.

[34] S. Gradara, A. Santone, and M. L. Villani, “Delfin+: An efficient
deadlock detection tool for ccs processes,” J. Comput. Syst. Sci., vol. 72,
no. 8, pp. 1397–1412, 2006.

[35] ——, “Using heuristic search for finding deadlocks in concurrent
systems,” Inf. Comput., vol. 202, no. 2, pp. 191–226, 2005.


