
On the Verification of Coordination�

Paul Dechering1 and Izak van Langevelde2

1 Hollandse Signaalapparaten B.V.
P.O. Box 42, 7550 GD Hengelo, The Netherlands

paul@dechering.net
2 Centrum voor Wiskunde en Informatica

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
izak@cwi.nl

Abstract. Scenario-based verification is introduced as a technique to
deal with the complexity of coordination languages, which feature both
data manipulation and concurrency. The approach is exemplified by a
verification study of the software architecture Splice that is used by Hol-
landse Signaalapparaten. A detailed specification of Splice, including
the Ethernet network that Splice is using, is written in the process-
algebraic language µcrl and for a number of selected scenarios the tran-
sition system is automatically generated. For the resulting models, the
properties of deadlock freeness, soundness, and weak completeness are
automatically proven by model checking.

1 Introduction

Coordination languages are designed to facilitate the development of distributed
systems by offering a coherent model of data and control through a clear-cut
interface. However, it is far from obvious that the complex structure of dis-
tributed data and control, so nicely hidden from the coordination programmer,
indeed constitutes the coherent model the programmer has in mind. It is exactly
the combination of distributed data and distributed control which makes the
verification of coordination a difficult problem.

In isolation, both data manipulation and distributed control have been sub-
jected to verification studies. Classical theorem proving approaches [9] were al-
ready, at least theoretically speaking, suitable for proving properties of calcula-
tions in sequential programming languages. Furthermore, the study of concur-
rent systems made possible the verification of complex parallel systems, either
through human theorem proving [11] or through semi-automated verification

� Supported by ORKEST: “Onderzoek naar Randvoorwaarden voor de Konstruktie
van Embedded SysTemen”

Appeared in: António Porto and Gruia-Catalin Roman (Eds.), Proceedings

of COORDINATION 2000, Lecture Notes in Computer Science 1906, pp.335-340,

September 2000, Springer Verlag



techniques like model-checking (see [4] for a recent overview). However, real-life
systems readily exceed the capacities of the human theorem prover, and the role
of data is a well-known cause of the infamous state space explosion. The combi-
nation of existing approaches to bridge the gap between data and concurrency is
a research field of growing interest (for instance, see [12], where the integration
of theorem proving and model checking is discussed), but to date the state of
the art of verification falls short when it comes to realistic coordination.

This paper addresses the verification of coordination by proposing a verifi-
cation technique that lies between model-checking and testing. The idea is to
formally specify the coordination language, but instead of generating one all-
embracing model, which would be astronomically large in size, if not infinite, to
generate and verify models for specific situations. Each of these so-called sce-
narios represents one of the common situations the system may encounter. This
way, each scenario covers a slice of the system’s behaviour and by considering
more and more scenarios the system can be covered more and more.

A test, based on a test case, considers one of the possible courses of actions
the system may execute in this test case. In a concurrent system, with a high
degree of non-determinism, even for one test case a large number of test runs
might not reveal one of those rare error situations. A verification, based on one
scenario, will consider all possible courses of actions the system can execute,
including possibly rare error situations. So, the approach of verifying all possible
variations in system behaviour in isolated test cases is more general than testing,
which covers isolated traces of system behaviour in isolated test cases. On the
other hand, it is less general than model checking, which covers all variations of
system traces for all possible test cases.

The approach of scenario-based verification is exemplified with the coordina-
tion language Splice [1]. A detailed specification of Splice was written in µcrl
[8], a language based on process algebra with data, and transition systems were
generated using the native µcrl tool set. The actual analysis was supported by
the Cæsar/Aldébaran tool set [7].

The paper is organised as follows. Section 2 introduces the coordination lan-
guage Splice and Sect. 3 describes the approach of scenario-based verification
using µcrl. Section 4 describes the properties to be verified and Sect. 5 presents
the verification results. Finally, Sect. 6 evaluates the approach presented. The
full report, including all specifications, of the research presented in this paper is
[6].

2 An Overview of Splice

Splice (Subscription Paradigm for the Logical Interconnection of Concurrent
Engines) was introduced as an architecture for control systems [1]. Non-functional
requirements, e.g. a certain level of fault-tolerance, real-time constraints, adapt-
ability, and concurrency, imposed on this type of systems make the development
of control systems a complex matter, and the solution Splice offers to reduce



this complexity is neatly tucked away behind its programming interface. Thus,
Splice programmers can concentrate on the functional requirements.

The Splice kernel consists of a number of agents connected by a commu-
nication network. Each application running under the architecture is connected
to an agent, which is responsible for the coordination with the other agents. A
Splice system call by an application is processed by its agent, which typically
sends requests over the network to the other agents, gathers responses and man-
ages its local dataspace. Also, if one application does not respond anymore, it
is replicated on another processor, making the system to some extent immune
to processor and network failure. All this is implemented by the Splice agents,
hidden away from the applications which just observe a stable and coherent
environment of coordinated applications.

3 Scenario-Based Verification using µ

The Splice architecture was specified in detail in µcrl [8], a language based
on process algebra with data. The full specification takes up about 54 KB,
which can be found in the full version of this paper [6]. The corresponding
labelled transition system was generated using the µcrl tool set and fed into
Cæsar/Aldébaran [7].

The Cæsar/Aldébaran tool set is used to further analyse the system gen-
erated. First, the system is reduced modulo weak bisimulation, which means that
all non-observable actions, i.e. the interaction between Splice agents and the
network, and all network activity, are abstracted away, finally resulting in a
much smaller transition system. Then, this reduced system is subjected to model
checking. This verification technique consists of checking whether properties, ex-
pressed as a theory in some temporal logic, are satisfied by a transition system,
interpreted as a Kripke structure. The strong point of model checking as a veri-
fication technique is that it can be efficiently automated.

However, even for simple Splice applications, the size of the transition sys-
tem generated already exceeds practical limits by several magnitudes, so some-
how a restriction has to be imposed on the systems tested. The restriction that
underlies the verification technique promoted in the current paper is to verify
the application in certain well-defined situations or ‘scenarios’. A scenario is a
limited environment interacting with the application, for instance by reading
and writing data, or by issueing application commands. Scenarios play the role
in verification that is played by test cases in testing.

Summarising, scenario-based verification using µcrl consists of specifying
both the Splice architecture and the scenarios in µcrl, to generate for each
scenario the labelled transition system of this scenario and the architecture, and
to reduce and model-check the resulting system, to verify the desired properties.



4 The Properties of Splice

The three properties of Splice studied in this paper are deadlock freeness, sound-
ness, and completeness. The first speaks for itself, the second and third state that
everything that can be read has been written and everything that is written can
be read. However, generally the three properties do not hold.

Splice was designed to enable a high level of fault-tolerance, but in excep-
tional circumstances the system might break down. For instance, in the situation
where one Splice component receives data at a higher rate than it can handle,
an internal queue overflows and data is lost. The properties to be verified were
weakened to apply to those situations where no exceptional disasters, flagged by
‘panic’ actions, happen.

Even with this restriction, completeness does not hold in its strong formula-
tion (i.e. “all that is written can subsequently be read”) for a number of reasons.
First, it takes time for the record to be transferred over the network from the
writer to the reader, so only eventually will the reader be able to access this
record. Second, it is possible that the record is overwritten by another record
with the same key, even if this second record was written before the first one.
All that can be guaranteed is weak completeness.

deadlock freeness as long as no ‘panic’ or proper termination occurs the sys-
tem is able to proceed with some action

correctness a record that is read was written in the past
weak completeness as long as no ‘panic’ occurs, it is possible that eventually

a record can be read that was written and not overwritten by another record
with the same key

These formulations are an informal rendering of the properties verified. The
exact specification in temporal logic in the Evaluator [7] syntax is given in [6].

5 Experiments

For the verification of Splice itself, irrespective of any particular application,
the scenarios must cover the characteristics of the architecture by making typical
combinations of API calls. It goes without saying that the number of possible
scenarios is huge, but to give an idea of the principle of scenario-based verifica-
tion, a small number of scenarios consisting of simple combinations of read and
write actions is used.

The scenarios that have been verified all consist of two applications, param-
eterised by: 1) the application reads any or each record that satisfies a query, or
it does not read at all; 2) the application writes or not; 3) the application loops
or not. The six scenarios are summarised in Table 1; the full specifications are
presented in [6].

For each of the scenarios verified, the three properties of deadlock freeness,
soundness, and weak completeness were proven to hold, which presents a modest



Table 1. The verified scenarios with the size of their transition systems and the CPU
time to generate these (The experiments were performed on an 300 MHz MIPS R12000
processor)

application 1 application 2 generation metrics
scenario reads writes loops reads writes loops # generated # reduced CPU time

1 any yes no any yes no 846360 961 6h42m
2 each yes no each yes no 554707 702 4h20m
3 any no yes any no yes 477392 463 3h30m
4 each no yes each no yes 474394 363 3h27m
5 any yes yes any yes yes 4561900 3789 37h38m
6 each yes yes each yes yes 4458013 2471 32h03m

support for the claim that these properties hold in general. This evidence needs
to be strengthened by verifying more scenarios.

An indication of the cost of the scenario-based verification of Splice is pre-
sented in Table 1, which shows for each scenario the size of the transition system
initially generated, the CPU time of the generation process, and the size of the
system after reduction modulo weak bisimulation. Two features of these met-
rics catch the eye. First, transition system generation is expensive for Splice,
even for the simple scenarios considered. Second, the reduction modulo weak
bisimulation, that is abstracting from all internal behaviour, results in a transi-
tion system that is several orders of magnitude smaller. As such, Table 1 nicely
supports the claim that Splice realises complex communications which can be
abstracted from to a relative simple level. However, the size of the transition
system initially generated appears to be a bottleneck in the analysis, since cur-
rently there is no way known to directly generate the smaller reduced system
from the specification. A technique like on-the-fly model checking, used in SPIN
[10], might bring relief, but it is not available in the current setting of the µcrl
tool set.

6 Conclusions and Related Work

Scenario-based verification was introduced as a technique for the verification
of coordination languages. The rationale of the technique is to benefit from
the exactness of formal verification, while avoiding the state space explosion.
The approach was exemplified by the verification of Splice using the process-
algebraic language µcrl, the µcrl tool set, and the Cæsar/Aldébaran tool
set.

Related approaches all focused at Splice at a more abstract level, not aiming
at automated verification, and not including the detailed specification of the
network used in this paper. An operational semantics is defined in [2] and a
process-algebra for Splice is defined in [5]. However, the fact that these models
are less detailed and not geared towards automated verification does not imply
that they are inferior to the approach of the current paper. This is clear from [3],



where manual theorem proving based on an abstract transition relation is used
to establish equivalence results for a number of coordination models, including
the one found in Splice. Conclusions at this level of generality cannot be drawn
with a detailed model as is presented in this paper.

Scenario-based verification is limited in applicability in that the initial gen-
eration of transition systems is a true bottleneck. As was demonstrated in Sect.
5, the size of these increase quickly with the complexity of the scenarios, making
the verification of more interesting scenarios impossible.

The strength of the approach, however, is that it facilitates the sound anal-
ysis of the key features of a coordination language, which is where both formal
verification and testing fall short. For the former, any realistic model is too com-
plex to be analysed formally, while the scope of the latter is limited to isolated
system traces. Scenario-based verification is a golden middle.

References

[1] M. Boasson. Control systems software. IEEE Transactions on Automatic Control,
38(7):1094–1106, July 1993.

[2] M. M. Bonsangue, J. N. Kok, M. Boasson, and E. de Jong. A Software Archi-
tecture for Distributed Control Systems and its Transition System Semantics. In
J. Carroll, G. Lamont, D. Oppenheim, K. George, and B. Bryant, editors, Pro-
ceedings of the 1998 ACM Symposium on Applied Computing (SAC ’98), pages
159 – 168. ACM press, Feb. 1998.

[3] M. M. Bonsangue, J. N. Kok, and G. Zavattaro. Comparing software architectures
for coordination languages. In P. Ciancarini and A. L. Wolf, editors, Proceedings
of Coordination ’99, volume 1594 of Lecture Notes in Computer Science, pages
150–165. Springer Verlag, 1999.

[4] E. W. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

[5] P. Dechering, R. Groenboom, E. de Jong, and J. Udding. Formalization of a Soft-
ware Architecture for Embedded Systems: a Process Algebra for Splice. In Pro-
ceedings of the Hawaiian International Conference on System Sciences (HICSS-
32), Jan. 1999.

[6] P. Dechering and I. A. van Langevelde. Towards automatic verification of
SPLICE. Technical Report SEN-R0015, CWI, May 2000. Available from
http://www.cwi.nl.

[7] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. Cadp (Cæsar/Aldébaran development package): A protocol val-
idation and verification toolbox. In R. Alur and T. A. Henzinger, editors, Pro-
ceedings of the 8th Conference on Computer-Aided Verification, volume 1102 of
Lecture Notes in Computer Science, pages 437–440. Springer Verlag, Aug. 1996.

[8] J. F. Groote. The syntax and semantics of timed µCRL. Technical Report SEN-
R9709, CWI, June 1997. Available from http://www.cwi.nl.

[9] C. Hoare. An axiomatic approach to computer programming. Commun. ACM,
12(10):576–583, Oct. 1969.

[10] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.



[11] Z. Manna and A. Pnueli. Temporal Verifications of Reactive Systems – safety.
Springer Verlag, 1995.

[12] S. Rajan, N. Shankar, and M. Srivar. An integration of model checking with auto-
mated proof checking. In P. Wolper, editor, Proceedings of the 1995 workshop on
Computer Aided Verification, volume 939 of Lecture Notes in Computer Science,
1995.


