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Abstract. This article presents several related
methods for drawing traces. First, it is shown
how to draw traces uniformly at random in
large models composed of several components.
Then a method for drawing traces according
to a given coverage criterion is presented, to-
gether with a notion of randomised coverage
satisfaction. These methods rely on combina-
torial algorithms, based on a representation of
the model by an automaton or by a product
of several automata, synchronised or not. We
report several experimental results on random
generation of traces in large transition systems,
and on statistical testing of C programs.
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1 INTRODUCTION

1 Introduction

Methods based on randomness seem attractive
for testing large programs or checking large
models. However, designing efficient random meth-
ods, i.e. methods that have a good and assess-
able fault detection power, is far from being ob-
vious: the underlying probability distribution
must be carefully designed if one wants to en-
sure a good coverage of the program or model,
or of potential fault locations, and to quantify
this coverage.

In this article we describe a set of methods
for drawing paths in graphs either uniformly, or
with a coverage criterion as target. We present
two applications of these methods: a first one
to the exploration of very large labelled transi-
tion systems (LTS); a second one to structural
testing of C programs, where the considered
graph is the control graph.

A classical way to explore large graphs at
random is random walk.

To perform a random walk in a graph G, it
is sufficient to have a representation of it that
allows to generate algorithmically, for any ver-
tex v, the set of successors of v.

The following function Random Walk uses
such a representation to generate a random
path of length n and to check if this path leads
to the detection of some fault. We make the
simplifying assumption that there is a reliable
verdict that detects when a fault is reached
during the execution of the random walk.

Random Walk
Input: graph G, vertex(v0), n
Output: samples a path π with origin v0 of
length n and detects if there is a fault on π
– if v0 is faulty then return 1 else 0
– for i = 0, . . . , n − 1, vi+1 is chosen uni-

formly among the successors of vi in G.
– if vi+1 is faulty then return 1 else 0

A drawback of this approach is that the
probability distribution that it induces on the
paths of the model is a priori unknown: it de-
pends on the topology of the graph. For in-
stance, if we do a classical random walk of
length 3 in the model described in Figure 1,
then the probability of each path is unbalanced:
P (b; e; j) = 0.5×0.5×0.5 = 0.125 and P (a; c; f) =
0.5. However, a uniform random sampling of
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Fig. 1: The case of irregular topology.

length 3 balances the probability of each path:
P (b; e; j) = P (a; c; f) = 0.2.

By using the method of Karp and al. [22],
we could approximate the fault detection prob-
ability with approximation techniques for count-
ing problems. However, this method is not prac-
ticable for the exploration of paths with very
low probabilities, thus for the detection of faults
that they contain.

In this paper, we first go one step further
by using results of Flajolet and others (see Sec-
tion 3.1) that make it possible to efficiently
draw paths uniformly at random in large graphs.

A second idea is to combine coverage cri-
teria and randomness, introducing a notion of
coverage-guided random exploration. What does
it means for a random exploration method to
take into account a coverage criterion? Let EC(G)
be the set of elements characterised by a cov-
erage criterion C for a given graph G. The sat-
isfaction of this coverage criterion C by some
random exploration of the graph G is char-
acterised by the minimal probability qC,N (G)
of covering any element of EC(G) when draw-
ing N paths. This definition corresponds to a
notion of randomised coverage satisfaction. It
makes it possible to assess and compare ran-
dom exploration methods with respect to a cov-
erage criterion.

Moreover, it leads to the idea of maximis-
ing the minimal probability qC,N (G) of covering
any element of EC(G) when drawing N paths.

The paper is organised as follows. After this
introduction, Section 2 recalls briefly some clas-
sical definitions, namely labelled transition sys-
tems, control flow graphs, and automata.

In Section 3, we present a method for draw-
ing paths uniformly at random in a single au-
tomaton (Section 3.1) and then we address the
case of the uniform exploration of composed
models (Section 3.2), i.e. models that are given
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2 BACKGROUND 2.3 Automata

as products of automata, first without and then
with synchronisation.

In Section 4 we study the problem of draw-
ing paths at random taking into account some
coverage criterion: after some preliminaries, we
define in Section 4.2 a notion of random path
generation biased towards a coverage criterion.
We show how to implement it and how to assess
the achieved approximation of the coverage.

In Section 5 we report several experimental
results, first on random generation of traces in
LTS (in Section 5.1), second on statistical test-
ing of some C programs (in Section 5.2).

Section 6 discusses some related works, and
Section 7 gives some conclusions and perspec-
tives.

2 Background

In this paper, we study how to draw paths in
two kinds of graphs: labelled transition systems
and control graphs of C programs. Consider-
ing these graphs as automata makes it possible
to use a number of results that are useful for
studying random exploration and the notion of
randomised coverage.

2.1 Models of reactive systems: LTS

We consider a rather classical kind of model
of reactive systems, namely transition systems
where transitions are labelled by symbols of a
given alphabet X which represent the set of
actions of the reactive system.

Definition 1. A labelled transition system
(LTS) is a structure M = (S, T, s0, X) where
S is a set of states, s0 the initial state, T ⊆
S × X × S a transition relation, X a set of
labels.

When a LTS is finite, we note |M| the size
of M, i.e. its number of states.

A path of an LTS M is a finite or infinite
sequence σ = (s0, a0, s1, . . . , si, ai, si+1, . . . ) of
transitions satisfying:

∀i ≥ 0, (si, ai, si+1) ∈ T.

2.2 Control graphs

Control graphs are a classical way of represent-
ing programs. They are oriented and connected

graphs (S,V ,s0,sf ) where S is a set of states, V
is a set of transitions, s0 is the initial state and
sf is the final state. In control graphs, states
are either maximum indivisible blocks of state-
ments of the program, or predicates that ap-
pear in conditional or loop statements. Transi-
tions correspond to possible transfers of control
between these states.

In this paper, we consider control graphs
with two distinguished states named s0 and sf :
they correspond to the beginning point and the
exit point of the program. We consider con-
trol graphs with no dead code, i.e., any state is
reachable from s0, and sf is reachable from any
state. Each state (resp. transition) is labelled
in order to find easily at which piece of code
(resp. branch) of the program it corresponds
to. A control path is a path in the control graph
which goes from s0 to sf .

Given a control path, the valuations of in-
puts such that this path is followed during pro-
gram execution are characterised by the path
predicate. This predicate is the conjunction of
the conditions (or of their negations) met when
traversing the path, adequately updated in func-
tion of the variables assignments (see for in-
stance [15]). Any data satisfying the above pred-
icate is an input executing the path, thus a pos-
sible test input for covering this path : Thus
test data generation is done by resolution of
this predicate, using an adequate constraint solver.
The choice of the constraint solver depends on
the kind of constraints expressible in the pro-
gramming language.

2.3 Automata

LTS and control graphs are very close to the
notion of automata, that comes with a rich cor-
pus of results that we will use in the sequel.

Definition 2. An automaton A is denoted as
follows:

A = 〈X,S, s0, F, T 〉.

where X is an alphabet of labels, S a finite
set of states, s0 the initial state, F ⊆ S a set
of final states, and T a transition function T :
S ×X → S.

We will consider two special cases for F :
the case where F is a singleton {sf} (which
is convenient when considering control graphs
of programs); the case where F = S (which is
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3.1 Single automaton 3 UNIFORM PATH RANDOM GENERATION

Fig. 2: A finite automaton

convenient when considering models of reactive
systems such as LTS).

Figure 2 presents such an automaton, where
S = {0, 1, 2, 3, 4, 5, 6, 7}, s0 = 0, F = {7} and
X = {a, b, c, d, e, f, g, h, i, j, k}.

As for LTS, a path of an automaton A is
a sequence of transitions.The trace of a path
in A is the sequence of symbols of X that cor-
responds to the sequence of transitions. The
formal language defined by A, denoted L(A),
is the set of traces of all the paths from s0 to
any state of F . Any finite automaton defines a
regular language. The class of regular languages
is the simplest one in Chomsky’s hierarchy of
formal languages [21].

3 Uniform path random generation

Here we are interested in drawing uniformly at
random a set of paths in one or several au-
tomata that represents a model, as seen above.
In Section 3.1 we suppose that there is only
one automaton, and we recall a known algo-
rithm for generating paths uniformly at ran-
dom. Then, in Section 3.2, we deal with the
problem of generating paths uniformly in a very
large model which is composed of a (unsynchro-
nised or synchronised) product of much smaller
components (modelled by automata). Using com-
binatorial techniques, we reduce the problem
to drawing paths in the components. At first
we focus on unsynchronised systems, then we
study the case where there is one synchronised
transition per component, and all components
must synchronise at the same time.

3.1 Single automaton

If n is a positive integer, Pn (resp. P≤n) de-
notes the set of paths of length n (resp. whose
length is ≤ n) in A from s0 to any state of F .

The aim is, given an integer n, to gener-
ate uniformly at random one or several paths
of length ≤ n from s0 to any state of F . Uni-
formly means that all paths in P≤n have the
same probability to be generated. At first, let
us focus on a slightly different problem: the
generation of paths of length n exactly. We will
see further that a slight change in the automa-
ton allows to generate paths of length ≤ n.
Remark that generally the number of paths of
length n grows exponentially with n.

The principle of the generation process is
simple: starting from s0, draw a path step by
step. At each step, the process consists in choos-
ing a successor of the current vertex and going
to it. The problem is to proceed in such a way
that only (and all) paths of length n can be
generated, and that they are equiprobably dis-
tributed. This is done by choosing successors
with suitable probabilities. Given any state s,
let fs(m) denotes the number of paths of length
m which connect s to any state of F . Suppose
that, at one given step of the generation, we
are on state s, which has k successors denoted
s1, s2, . . . , sk. In addition, suppose that m > 0
transitions remain to be crossed in order to get
a path of length n. Then the condition for uni-
formity is that the probability of choosing state
si (1 ≤ i ≤ k) equals fsi

(m−1)/fs(m). In other
words, the probability to go to any successor of
s must be proportional to the number of paths
of suitable length from this successor to any
state of F .

Computing the numbers fs(i) for any 0 ≤
i ≤ n and any state s of the graph can be done
by using the following recurrence rules:

fs(0) = 1 if s ∈ F
= 0 otherwise

fs(i) =
∑
s→s′ fs′(i− 1) for i > 0

(1)

where s→ s′ means that there exists a transi-
tion from s to s′ (note that s′ may be equal to s
if loops are allowed in the automaton). Table 1
presents the recurrence rules which correspond
to the automaton of Figure 2.

Now the generation scheme is as follows:

– Preprocessing stage: Compute a table of the
fs(i)’s for all 0 ≤ i ≤ n and any state s.

– Generation stage: Draw the path according
to the scheme seen above.

Note that the preprocessing stage must be done
only once, whatever the number of paths to be
generated. Easy computations show that the
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3 UNIFORM PATH RANDOM GENERATION 3.2 Composed automata

f0(0) = f1(0) = f2(0) = 0
f3(0) = f4(0) = f5(0) = f6(0) = 0
f7(0) = 1

f0(k) = f1(k − 1) + f2(k − 1) (k > 0)
f1(k) = f3(k − 1) (k > 0)
f2(k) = f5(k − 1) (k > 0)
f3(k) = f4(k − 1) + f5(k − 1) (k > 0)
f4(k) = f6(k − 1) (k > 0)
f5(k) = f6(k − 1) + f7(k − 1) (k > 0)
f6(k) = f1(k − 1) + f7(k − 1) (k > 0)
f7(k) = 0 (k > 0)

Table 1. Recurrences for the fi(k).

memory space requirement is n × |S| integer
numbers. The number of arithmetic operations
needed for the preprocessing stage is in the
worst case in O(nd|S|), where d stands for the
maximum number of transitions from a state,
and the generation stage is O(nd).

For generating paths of length ≤ n instead
of exactly n, the only change is the following:
Add to the automaton a new state s′0 which be-
comes the new initial state, with a (void) tran-
sition from s′0 to s0 and a (void) loop transition
from s′0 to itself. Each path of length n+1 from
s′0 to a state of F in this new automaton crosses
k times the new loop transition for some k such
that 0 ≤ k ≤ n and exactly once the one from
s′0 to s0. With this path we obviously associate
a path of length n − k in the previous graph.
It is straightforward to verify that any path of
length ≤ n can be generated in such a way, and
the generation is uniform.

The above developments are a special case
of a general method of generation of combi-
natorial structures, which has been first ad-
dressed by Wilf [34] and then generalised and
systematised by Flajolet, Zimmermann and Van
Cutsem[10]. More precisely, our problem is equiv-
alent to the one of uniform random generation
of words of regular languages, which has first
been discussed by Hickey and Cohen in [19]. We
show in Table 2 the set of words which corre-
spond to the paths of length ≤ 10 of the graph
of Figure 2.

length words

3 bdk
4 acfk, bdhj
5 acegj, acfhj
7 bdhicfk
8 acegicfk, acfhicfk, bdhicegj, bdhicfhj
9 acegicegj, acegicfhj, acfhicegj, acfhicfhj

Table 2. The 14 words that correspond to the 14 paths
of length ≤ 10 from vertex s0 = 0 to F = {7}.

3.2 Composed automata

3.2.1 Without synchronisation

Here we focus on the problem of uniformly (that
is equiprobably) generating traces of a given
length n in a system of r modules represented
by automata. In a first step, we consider that
there is no synchronisation between the r mod-
ules. Each one is represented by a finite state
automaton

Ai = 〈Xi, Si, s
0
i , Fi, Ti〉.

where the Xi’s are pairwise disjoint. Each of
the Ai’s defines a regular language Li whose
words correspond to the traces within the cor-
responding module.

Now, the following automaton recognises the
language L that represents the set of traces in
the whole system: A = 〈X,S, s0, F, T 〉, where

– X = X1 ∪X2 ∪ . . . ∪Xr;
– S = S1 × S2 × . . .× Sr;
– s0 = (s01, s

0
2, . . . , s

0
r);

– F = F1 × F2 × . . .× Fr;
– T ((s1, . . . , si, . . . , sr), x)) =

(T1(s1, x), . . . , si, . . . , sr) if x ∈ X1

. . .
(s1, . . . , Ti(si, x), . . . , sr) if x ∈ Xi

. . .
(s1, . . . , si, . . . , Tr(sr, x)) if x ∈ Xr

We call this automaton a shuffling automa-
ton of L1, L2, . . . , Lr because the language L
can be also described by the shuffling opera-
tion on languages. The shuffling of two words
w,w′, denoted w ∃ w′ is the set w ∃ w′ defined
as follows:

{w1w
′
1 · · ·wmw′m | wi, w′i ∈ X∗∧
w = w1 · · ·wm ∧ w′ = w′1 · · ·w′m}.
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3.2 Composed automata 3 UNIFORM PATH RANDOM GENERATION

For example, ab ∃ cde = {abcde, acbde, acdbe,
acdeb, cabde, cadbe, cadeb, cdabe, cdaeb, cdeab}.
The shuffle of two languages L1 and L2 is the
set

L1

∃ L2 =
⋃

w1∈L1,

w2∈L2

w1

∃ w2

This easily generalises to any finite number r
of languages.

Since there is no synchronisation in the sys-
tem, clearly there is a one-to-one correspon-
dence between the set of its traces and the
words of L = L1

∃ L2

∃ . . . ∃ Lr. Thus the prob-
lem reduces to uniformly generating words of
length n in L. We present two different ap-
proaches for this problem and we discuss their
complexity issues.

Brute force method. This first approach con-
sists in constructing the shuffling automaton
seen above for L = L1

∃ L2

∃ . . . ∃ Lr. Then
classical algorithms for randomly generating words
of a regular language can be processed, as de-
scribed in Section 3.1.

Let C1 =
∑

0≤i≤r |Xi| and C2 =
∏

0≤i≤r |Si|.
The worst-case complexities of the two main
steps of the algorithm are the following.

1. Constructing the automaton: This step is
performed only once, whatever the num-
ber of traces to be generated. Its worst-case
complexity is C1C2 in time and space re-
quirements.

2. Generating traces: Using classical algorithms,
generating one word requires nC1 time re-
quirement, after a preprocessing stage hav-
ing worst-case complexity nC1C2 in time
and space. This preprocessing stage is per-
formed once, whatever the number of traces
to be generated.

Hence the worst case complexity for generat-
ing m traces of length n is O(nC1C2 +mnC1)
in time and O(nC1C2) in space. This is linear
in n, in m, in the total size of the alphabets.
However, since C2 =

∏
0≤i≤r |Si|, the complex-

ity is exponential according to the number of
modules. Thus the algorithm will be efficient
only for a small number of modules.

“On line” shuffling method. Here we describe
an alternative method which avoids construct-
ing the above automaton. At fist we need some
additional notation. Let `(k) (resp. `i(k)) be

the number of words of length k belonging to
the language L (resp. Li). The number of words
of length n belonging to L is:

`(n) =
∑

k1+···+kr=n

(
n

k1, . . . , kr

)
`1(k1) · · · `r(kr)

The method consists first in choosing at
random, with a suitable probability, the length
ni of each word wi of Li which will contribute
to the word w of L to be generated. Then each
wi is generated independently. Finally, the shuf-
fling operation is processed. That is:

1. Choose at random a r-uple (n1, . . . , nr) with
probability Pr(n1, . . . , nr) such that

Pr(n1, . . . , nr) =

(
n

n1,...,nr

)
`1(n1) · · · `r(nr)
`(n)

(2)
2. For each 1 ≤ i ≤ r, draw uniformly a ran-

dom word wi of length ni in Li, using the
classical algorithm for generating words of
a regular language.

3. Shuffle the r words. This can be done with
the following algorithm:

Shuffling r words
Input: r words w1, . . . , wr, of length
n1, . . . , nr respectively
Output: one word w of length n =

∑
i ni,

drawn uniformly among the set of shuffles of
w1, . . . , wr.
w ← ε
n←

∑
i ni

while n > 0 do
choose an integer i between 1 and r with

probability ni

n
add the first letter of wi at the end of w
remove the first letter of wi
ni ← ni − 1
n← n− 1

The word w has been generated equiproba-
bly among all the words of L of length n. Re-
garding complexity issues, clearly the complex-
ity of step 3 is linear in n. The complexity of
step 2 is linear in n, in the maximum of |Xi|
and in the maximum of |Si|, in time as well
as in space requirements. The main contribu-
tion to the total worst-case time complexity is
the computation of the suitable probabilities
by Formula (2). The space requirement is O(1)
but the number of terms in `(n) is exponen-
tial in n. However, there is a way of drastically

6



3 UNIFORM PATH RANDOM GENERATION 3.2 Composed automata

simplifying the computation of `(n), by using
asymptotic approximates, as explained below.

According to a well known result (see e.g.
[23, Chap. 7] or [9, Section IV.5.1]), there exist
an integer N1, a finite set of complex numbers
ω1, ω2, . . . , ωk and a finite set of polynomials
R1(n), R2(n), . . ., Rk(n) such that

n ≥ N1 → `(n) =
k∑
j=1

Rj(n)ωnj . (3)

The number N1, as well as the ωj ’s and the
Rj ’s, can be computed from any automaton of
L, with an algorithm of polynomial complexity
according to the size of the automaton.

If the automaton of L satisfies certain con-
ditions (see below), then there is an unique i
such that |ωi| > |ωj | for any j 6= i, and Ri(n)
has degree zero, that is Ri(n) = C for any
n, where C is a constant. Thus, if we define
ω = ωi, the following formula holds, asymptot-
ically:

`(n) ∼ Cωn. (4)

This gives a very good estimation of `(n) even
for rather small n since, according to Formu-
las (4) and (3), Cωn/`(n) converges to 1 at an
exponential rate.

A simple sufficient condition for Formula (4)
to hold is: the automaton is aperiodic and strongly
connected. An automaton is aperiodic if, for
any sufficiently large n, l(n) 6= 0.

Now, as stated in Section 2.3, this is true for
labelled transition systems (LTS) because all
the states are final states. Concerning strong
connectivity, it is a sufficient yet not manda-
tory condition. For instance, for satisfying For-
mula (4), it suffices to have some unique biggest
strongly-connected component in the automa-
ton.

Now, assuming that all the Li’s are such
that

`i(k) ∼ Ciωki (5)

where Ci and ωi are two constants, we have:

`(n) ∼ C1 · · ·Cr
∑

k1+···+kr=n

(
n

k1, . . . , kr

)
ωk11 · · ·ωkr

r

(6)

= C1 · · ·Cr(ω1 + · · ·+ ωr)n (7)

However, if the Li’s satisfy the hypothesis
of Formula (5), then, by Formula (6):

Pr(n1, . . . , nr) ∼
(

n
n1,...,nr

)
ωn1

1 ωn2
2 . . . ωnr

r

(ω1 + ω2 + . . .+ ωr)n
.

(8)

There is an easy algorithm for choosing n1, . . . , nr
with this probability without computing it: take
the set of integers {1, . . . , r} and draw a ran-
dom sequence by picking independently n num-
bers in this set in such a way that the proba-
bility to choose i is Pr(i) = ωi

ω1+ω2+...+ωr
. Then

take ni as the number of occurrences of i in
this sequence.

Well, one could argue that Formula (8) only
provides an asymptotic approximation of
Pr(n1, . . . , nr) as n tends to infinity. However,
as noticed above, the rate of convergence is
exponential, so Formula (8) is precise enough
even for rather small n. And for really small n
(at least when n < N1 in Formula (3)),
Pr(n1, . . . , nr) can be computed exactly by For-
mulas (1) and (2).

In conclusion, for any large enough n, the
algorithm generates traces of length n almost
uniformly at random. Its overall complexity is
linear according to n, polynomial according to
the maximum of |Xi| and to the maximum of
|Si|, in time as well as in space requirements.

3.2.2 With one synchronisation

Now we suppose that each module contains ex-
actly one synchronised transition, denoted α.
Thus, in the global system all modules must
take α at the same time.

Let A1, . . . , Ar be r automata, with alpha-
bets X1, . . . , Xr, all containing a common syn-
chronisation symbol α, such that

∀i, j ∈ 1 . . . r, i 6= j,Xi ∩Xj = {α}.

Let L1, . . . , Lr be the respective languages recog-
nised by A1, . . . , Ar. Here, any trace can be
represented by a word belonging to the lan-
guage L defined as follows: L is the set of words
w ∈ X1 ∪ . . . ∪Xr such that

w = w0αw1α . . . wm−1αwm

where the projection of w onto any Xi belongs
to Li. The number m is the number of syn-
chronisations during the process: each of the
projections contains exactly m letters α (and,
equivalently, there is no α in any of the wi.)

Again the brute force approach. Here the ap-
proach consists in constructing the synchro-
nised product of A1, A2, . . . , Ar, as follows. Let
Xi,α = Xi \ {α}. The synchronised product [1]
of A1, A2, . . . , Ar with {α} as synchronisation
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3.2 Composed automata 3 UNIFORM PATH RANDOM GENERATION

set is the finite automatonA =< X,S, s0, F, T >,
where

– X = X1 ∪X2 ∪ . . . ∪Xr;
– S = S1 × S2 × . . .× Sr;
– s0 = (s01, s

0
2, . . . , s

0
r);

– F = F1 × F2 × . . .× Fr;
– T is as follows:

T ((s1, . . . , si, . . . , sr), x)) =
(T1(s1, x), . . . , si, . . . , sr) if x ∈ X1,α,
. . .
(s1, . . . , Ti(si, x), . . . , sr) if x ∈ Xi,α,
. . .
(s1, . . . , si, . . . , Tr(sr, x)) if x ∈ Xr,α.

T ((s1, . . . , si, . . . , sr), α)) =
T1(s1, α), . . . , Ti(si, α), . . . , Tr(sr, α))

This automaton accepts the language L of
synchronised traces. Once it has been built, the
generation process is exactly as in 3.2.1. The
construction easily generalises to these cases
where there are several synchronisations
α1, . . . , αk in each automaton. If k is small,
the size of the synchronised product is of the
same order as for the non-synchronised case
(see 3.2.1). However, in presence of numerous
synchronisations the brute force method turns
out to be exploitable (see Section 5.1.4) since
the reachable state space of the synchronised
product remains of reasonable size.

“On line” generation of synchronised traces.
Here we sketch an algorithm for almost uni-
formly generating random synchronised traces
of length n, avoiding the construction of the
synchronised product. The approach is similar
to the one we described in Section 3.2.1, al-
though we must be more careful because of the
synchronisations. Given that each automaton
Ai contains a unique transition labeled by α
(the synchronised transition), let si,1 and si,2
be the states just before and just after this
transition, respectively. Now let us define, for
each Li, the four following languages:

– The beginning language: Bi is the set of
words corresponding to the paths which start
at the initial state of Ai, which do not cross
the α transition, and which stop at si,1.

– The central language: Ci is the set of words
corresponding to the paths which start at
si,2, which do not cross the α transition,
and which stop at si,1.

– The ending language: Ei is the set of words
corresponding to the paths which start at
si,2, which do not cross the α transition,
and which stop anywhere.

– The non-synchronised language: Di is the
set of words which start at the initial state
of Ai, which never cross the α transition,
and which stop anywhere.

For any i, the language Li can be defined ac-
cording to Bi, Ci, Ei and Di:

Li = Bi.(α.Ci)∗.α.Ei ∪ Di .

Thus, if we define B = ∃ r
i=1Bi (resp. C =

∃ r
i=1Ci, E = ∃ ri=1Ei, and D = ∃ ri=1Di), we

have:
L = B.(α.C)∗.α.E ∪ D . (9)

Now let `(n) (resp. `i(n), b(n), bi(n), c(n), ci(n),
e(n), ei(n), d(n), di(n)) be the number of words
of length n in L (resp. Li, B, Bi, C, Ci, E, Ei,
D, Di). Additionally, let `(n,m) be the number
of words of L of length n which contain α ex-
actly m times. Let w be one of these words. If
m > 0, then w writes w = w0.α.w1.α. . . . .α.wm
where w0 ∈ B, wi ∈ C for any 1 ≤ i < m, and
wm ∈ E. Finally, let `(n,m, i0, im) be the num-
ber of such words such that the length of w0

equals i0 and the length of wm equals im. Then
we have

`(n) =
n∑
i=0

`(n, i) , (10)

where

`(n,m) =


d(n) if m = 0,
n−m∑

i0+im=0

`(n,m, i0, im) otherwise,(11)

and, for m > 0,

`(n, 1, i0, i1) = b(i0) e(i1), (12a)

`(n,m, i0, im) = b(i0) e(im)∑
i1+...+im−1=

n−m−i0−im

c(i1)c(i2) . . . c(im−1). (12b)

Now suppose that all the Bi’s, the Ci’s, the
Ei’s and the Di’s satisfy Formula (4), that is:

bi(k) ∼ Cb,iω
k
b,i ,

ci(k) ∼ Cc,iω
k
c,i ,

ei(k) ∼ Ce,iω
k
e,i ,

di(k) ∼ Ct,iω
k
t,i .

8



3 UNIFORM PATH RANDOM GENERATION 3.2 Composed automata

Then, similarly to Formula (6), we have:

b(k) ∼ Cb,1 . . . Cb,r(ωb,1 + . . .+ ωb,r)k ,(13)
c(k) ∼ Cc,1 . . . Cc,r(ωc,1 + . . .+ ωc,r)k ,(14)
e(k) ∼ Ce,1 . . . Ce,r(ωe,1 + . . .+ ωe,r)k ,(15)
d(k) ∼ Ct,1 . . . Ct,r(ωt,1 + . . .+ ωt,r)k . (16)

Consequently, for m = 1,

`(n, 1, i0, i1) ∼ (Cb,1 · · ·Cb,r)(Ce,1 · · ·Ce,r)
(ωb,1 + · · ·+ ωb,r)i0

(ωe,1 + · · ·+ ωe,r)i1 ,
(17a)

and for m > 1,

`(n,m, i0, im) ∼(
n−i0−im−2

m−2

)
(Cb,1 · · ·Cb,r)(Cc,1 · · ·Cc,r)m−1(Ce,1 · · ·Ce,r)

(ωb,1 + · · ·+ ωb,r)i0
(ωc,1 + · · ·+ ωc,r)n−m−i0−im

(ωe,1 + · · ·+ ωe,r)im .
(17b)

Now let us evaluate the complexity of comput-
ing `(n,m, i0, im) for all pairs (i0, im) such that
0 ≤ i0+im ≤ n and for allm such that 1 ≤ m ≤
n− i0− im. At first, suppose that i0 and im are
fixed. Computing the `(n,m, i0, im)’s for all m
involves computing all the binomial coefficients
in Formula (17b). Each of them involves only
a constant number of arithmetic operations,
using the binomial recurrence formula. In the
same way, each of the (Cc,1 · · ·Cc,r)m−1’s, each
of the (ωb,1 + · · ·+ωb,r)i0 ’s, each of the (ωc,1 +
· · ·+ωc,r)n−m−i0−im ’s, and each of the (ωe,1 +
· · ·+ωe,r)im ’s can also be computed with a con-
stant number of operations. Altogether, com-
puting the `(n,m, i0, im)’s for all 1 ≤ m ≤ n−
i0− im can be achieved in O(n+ r) arithmetic
operations. Thus, computing `(n,m, i0, im) for
all pairs (i0, im) such that 0 ≤ i0 + im ≤ n
and for all m such that 1 ≤ m ≤ n − i0 − im
needs O(n3 + (n+ r)) = O(n3 + r) arithmetic
operations.

Now we can sketch the algorithm for gener-
ating a trace of length n.

1. Using Formulas (17a) and (17b), compute
`(n,m, i0, im) for all pairs (i0, im) such that
0 ≤ i0 + im ≤ n and for all m such that
1 ≤ m ≤ n − i0 − im. As seen above, this
requires O(n3 + r) arithmetic operations.
Then compute `(n,m) for all m such that
1 ≤ m ≤ n, using Formula (11) and, addi-
tionally, Formula (16) when m = 0. Finally

compute `(n) by Formula (10). It is worth
noticing that this preliminary stage has to
be done only once, whatever the number of
traces of length n to be generated. Its over-
all arithmetic complexity is O(n3 + r).

2. Choose m, the number of synchronisations,
with probability

Pr(m) =
`(n,m)
`(n)

.

Computing these probabilities requiresO(n)
arithmetic operations in the worst case.

3. If m = 0, then generate uniformly at ran-
dom a word of length n in T , with the “on
line” shuffling method of Section 3.2.1.

4. If m > 0, then:
(a) Choose the length of w0 and the length

of wm by picking at random a pair (i0, im)
with probability

Pr(i0, im) =
`(n,m, i0, im)∑n−m

k0+km=0 `(n,m, k0, km)
.

Computing these probabilities requires
O(n2) arithmetic operations in the worst
case.

(b) Choose the lengths of w1, w2, . . . , wm−1

by picking at random a (m − 1)-uple
(i1, i2, . . . im−1) with probability

Pr(i1, . . . im−1) =
c(i1)c(i2) . . . c(im−1)∑
P c(k1)c(k2) . . . c(km−1)

.

where P stands for :

{k1, . . . , km−1 | k1+· · ·+km−1 = n−m−i0−im}.

By Formula (14) this leads to

Pr(i1, . . . , im−1) ∼ (ωc,1 + · · ·+ ωc,r)n−m−i0−im∑
P (ωc,1 + · · ·+ ωc,r)n−m−i0−im

=
1∑
P 1

The denominator equals the number of
distinct ways to choose (k1, k2, . . . , km−1)
in such a way that they sum to n −
m − i0 − im. This means that the se-
quence (i1, i2, . . . , im−1) is to be picked
uniformly among all sequences such that
k1 + k2 + · · ·+ km−1 = n−m− i0 − im.
Let Q = n−m− i0− im and q = m− 1.
The number of ways to choose q num-
bers greater or equal to zero that sum

9



4.1 Coverage criteria and randomness 4 RANDOMISED COVERAGE CRITERIA

to Q equals
(
Q+q−1
q−1

)
, for any positive

integers Q and q. Hence

Pr(i1, . . . im−1) ∼ 1(
n−2−i0−im

m−2

) .
And there is an easy algorithm to gen-
erate uniformly at random q numbers
i1, i2, . . . , iq ≥ 0 that sum to Q: pick
uniformly at random q−1 distinct num-
bers j1 < j2 < . . . < jq−1 between 1 and
Q+q, then set i1 = j1−1, i2 = j2−j1−1,
. . ., iq−1 = jq−1−jq−2−1, iq = Q−jq−1.
Clearly, this simple algorithm is linear
according to Q and q, hence to n and
m.

(c) Now we have got the whole sequence
(i0, i1, ..., im) with a suitable probabil-
ity. It remains to generate the words w0 ∈
B, w1, w2, . . . , wm−1 ∈ C and wm ∈ E,
each wk having length ik. Each of these
words is simply a shuffle of the r lan-
guages (Bi)i=1...r if k = 0, (Ci)i=1...r if
1 ≤ k < m, (Ei)i=1...r if k = m. For
each of the wk’s, the shuffling algorithm
given in Section 3.2.1 can be used.

As noticed above, the first step of the algo-
rithm, in O(n3 + r) operations, has to be done
only once. Thereafter, the overall complexity
of generating any random trace of length n
is quadratic according to n. And, as in Sec-
tion 3.2.1, it is polynomial according to the
maximum of |Xi| and to the maximum of |Si|,
in time as well as in space requirements. Thus
we have defined an efficient way for approxi-
mating the uniform coverage in presence of one
synchonisation for any sufficiently large n.

4 Randomised coverage criteria

4.1 Coverage criteria and randomness

The idea of combining coverage criteria and
random testing aims at overcoming some draw-
backs of both approaches.

Applying coverage criteria corresponds to a
decomposition of the input domain into some
(very often non disjoint) sub-domains: Each el-
ement to be covered defines a sub-domain that
is the set of inputs that cause its execution. The
main drawback here is that these sub-domains
are generally not homogeneous, i.e. some of

their inputs may result in a failure, and some
others may yield correct results.

Random testing lessens this drawback since
it allows intensive test campaigns where the
same element of the program may be executed
several times with different data. However, in
its pure uniform version it induces a bad cover-
age of cases corresponding to small input sub-
domains.

In [31,32], Thévenod-Fosse and Waeselynck
developed what they called a statistical testing
method where the input distribution takes into
account some coverage criteria in order to avoid
the existence of low probability cases. They
have reported several experiments, which led to
the conclusion that their approach has a bet-
ter fault detection power than uniform random
testing and deterministic testing based on clas-
sical coverage criteria. However, the construc-
tion of the input distribution is difficult since
it requires the resolution of as many equations
as paths in the program (or traces in the spec-
ification). For large programs, or in presence
of loops, the construction is empirical, based
on preliminary observations of the behaviour
of the program [32].

Here, we avoid the explicit construction of
the distribution by using the techniques pre-
sented in Section 3 for drawing paths, and then
randomised constraint solving for generating
inputs that exercise these paths. Before pre-
senting the approach in detail, let us precisely
state what it means for a random testing method
to take into account a coverage criteria.

A notion of test quality for statistical test-
ing methods has been defined first in [30]. We
slightly reformulate it for our context.

Let A be an automaton describing a sys-
tem under test. On the basis of this automa-
ton , it is possible to define coverage criteria:
all-states, all-transitions, all-paths-of a certain-
kind, etc. More precisely, a coverage criterion
C characterises for a given description A a set
of elements EC(A) of the underlying automa-
ton (denoted E in the sequel when C and A
are obvious). In the case of deterministic test-
ing, the criterion is satisfied if every element of
the set is exercised by at least one test.

In the case of random testing, the satis-
faction of a coverage criteria C by a testing
method for a description A is characterised by
the minimal probability qC,N (A) of covering
any element of EC(A) when drawing N tests.

10
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q 0.9 0.99 0.999 0.9999

N 32 63 94 125

Table 3. Number of tests N required for a given test
quality q

In [30], qC,N (A) is called the test quality of the
method with respect to C.

The test quality qC,N (A) can be easily stated
if qC,1(A) is known. Indeed, one gets qC,N (A) =
1−(1−qC,1(A))N , since when drawing N tests,
the probability of reaching an element is one
minus the probability of not reaching itN times.

Let us come back to the example of Sec-
tion 3.1, where we generate uniformly random
paths among the set P≤n of paths of length
≤ n. Considering the coverage criterion “all
paths of length ≤ n”, noted below AP≤n, we
get the following test quality:

qAP≤n,N = 1− (1− 1
|P≤n|

)N

In the example, choosing n = 10 allows the
coverage of all elementary paths. Since there
are 14 paths of length less or equal to 10 (see
Table 2) we have:

qAP≤10,N = 1− (1− 1
14

)N

Table 3 gives the number of tests required
for four values of test quality, for the criterion
“all paths of length ≤ 10”.

The assessment of test quality is more com-
plicated in general. Let us consider more prac-
ticable coverage criteria, such as “all-states” or
“all-transitions”, and some given random test-
ing method. Generally, the elements to be cov-
ered have different probabilities to be reached
by a test. Some of them are covered by all
the tests. Some of them may have a very weak
probability, due to the structure of the behavioural
automaton or to some specificity of the test-
ing method. For instance, in the example tran-
sitions b and d appear in 5 paths of length
≤ 10 only. Transitions a and c appear in 9
such paths. It means that drawing uniformly
from P≤10 leads to a probability of 5

14 to reach
transition b, and 9

14 to reach transition a.
Let EC(A) = {e1, e2, ..., em} and for any

i ∈ (1..m), pi the probability for the element
ei to be exercised during the execution of a
test generated by the considered random test-
ing method. Then

qC,N (A) = 1− (1− pmin)N (18)

where pmin = min{pi|i ∈ (1..m)}. Consequently,
the number N of tests required to reach a given
quality qC(A) is

N ≥ log(1− qC(A))
log(1− pmin)

(19)

By definition of the test quality, pmin is just
qC,1(A). Thus, from the formula above one im-
mediately deduces that for any given A, for any
given N , maximising the quality of a random
testing method with respect to a coverage crite-
ria C reduces to maximising qC,1(A), i. e. pmin.

In the case of random testing based on a
given distribution, pmin characterizes, for a given
coverage criterion C, the approximation of the
coverage induced by the distribution. However,
maximizing pmin must not lead to give up the
randomness of the method. This may be the
case when there exists a path traversing all the
elements of EC(A): one can maximize pmin by
giving a probability 1 to this path, going back
to a deterministic testing method. Thus, an-
other requirement must be combined to the
maximization of pmin: All the paths travers-
ing an element of EC(A) must have a non null
probability and the minimal probability of such
a path must be as high as possible. Thus de-
signing an optimal random testing method for
a given coverage criterion turns out to be a dif-
ficult multi-criteria problem:

1. maximising pmin, that is the minimal prob-
ability to any element of EC(A) to be reached
by a path

2. maximising the minimal probability of any
path traversing an element of EC(A)

In most cases, these criteria are antagonist and
some compromises must be found. In the next
section, we present a solution that favorises (1)
and weakens (2) into: “any path traversing an
element of EC(A) must have a non-null prob-
ability.”

4.2 Path generation biased towards a
coverage criterion

Now let us consider a given coverage criterion
C. As a preliminary remark, note that the set
of elements EC(A) must be finite, otherwise
the quality of test would be zero. This implies,
in particular, that the coverage criterion “all
paths” is irrelevant as soon as there is a cycle in
the description, like in the example (Figure 2).
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Thus, this criterion has to be bounded by ad-
ditional conditions, for example “all paths of
length ≤ n”, “all paths of length between given
n1 and n2”, or “all paths which take at most
m times each cycle in the automaton”. For the
sake of simplicity, we consider in the following
that paths are generated within P≤n, the set
of paths of length ≤ n that go from vs to ve.

Two cases must be considered, according to
the nature of the elements of EC(A). If EC(A)
denotes a set of paths in the automaton, the
quality of test is optimal if the paths of EC(A)
are generated uniformly, i.e. any path has the
same probability 1/|EC(A)| to be generated.
Indeed, if the probability of one or several paths
was greater than 1/|EC(A)|, then there would
exist at least one path with probability less
than 1/|EC(A)|, therefore the quality of test
would be lower. Section 3.1 presented how to
generate uniformly random paths of given length
n in an automaton, and how to fit with the cri-
terion “all paths of length ≤ n”. The method
easily applies to other criteria that involve paths,
as those given above, by ways similar to the
ones seen in Section 4.3.

In the case where the elements of EC(A) are
not paths, but are constitutive elements of the
automaton as, for example, states, transitions,
or cycles, uniform generation of paths does not
ensure optimal quality of test in this case. Ide-
ally, the distribution on paths should ensure
conditions (1) and (2) above. In Gouraud and
al. [5,15], some of the authors of the present
paper propose a practical solution in two steps:

1. pick at random one element e of EC(A),
according to a suitable probability distri-
bution (which is discussed below),

2. generate uniformly at random a path of length
≤ n that goes through e. This ensures a
balanced coverage of the set of paths which
cover e.

Now let us compute the probability pi for
the element ei (for any i in [1..m]) to be reached
by a path generated with the above process.
Let

– πi be the probability of choosing element ei
in step 1 of the process.

– αi be the number of paths of P≤n, which
cover element ei;

– αi,j be the number of paths, which cover
both elements ei and ej (note that αi,i = αi
and αi,j = αj,i);

The probability of reaching ei by drawing a
random path which goes through another ele-
ment ej is αi,j

αi
. Thus the probability pi for the

element ei (for any i in [1..m]) to be reached
by a path is

pi = πi +
∑

j∈[1..m]−{i}

πj
αi,j
αj

,

which simplifies to

pi =
m∑
j=1

πj
αi,j
αj

(20)

since αi,i = αi.
We will see in the following Subsection how

to compute the αj ’s and the αi,j ’s, and how
to generate paths that cross a given transi-
tion. For now, let us suppose that the αj ’s and
the αi,j ’s have been computed. The problem
of computing the probabilities {π1, π2 . . . , πm}
with

∑
πi = 1, which maximise pmin = min{pi, i ∈

[1..m]} can be stated as a linear programming
problem:

Maximise pmin under the constraints:{
∀i ≤ m, pmin ≤ pi ;
π1 + π2 + · · ·+ πm = 1 ;

where the pi’s are computed as in Formula 20.
Standard methods lead to a solution in time
polynomial according to m.

However, it may happen that some paths
traversing an element to be covered have a null
probability (see the example below). In this
case, the solution we have chosen is to rede-
fine the probability distribution on EC(A) with
the additional requirements that each element
has a non-null probability greater or equal than
some small positive value ε1.

Starting with the principle of a two-step
drawing strategy as seen above, this method
ensures a maximal minimum probability of reach-
ing the elements to be covered and, once one el-
ement chosen, a uniform coverage of the paths
traversing this element. For a given number of
tests, it makes it possible to assess the approx-
imation of the coverage, and conversely, for a
required approximation, it gives a lower bound
of the number of tests to reach this approxima-
tion (cf. Formula 19).

1 This solution has the advantage of being general,
i.e. applicable for any coverage criterion. For certain
simple criteria, there exist simpler solutions. For in-
stance, for “all-states”, it is sufficient to add the re-
quirement that π0, the probability to get s0 at the first
step, is greater or equal than some ε.
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a b c d e f g h i j k

a 9 0 9 0 5 7 5 5 6 6 3
b 0 5 3 5 1 2 1 4 3 3 2
c 9 3 12 3 6 9 6 8 9 8 4
d 0 5 3 5 1 2 1 4 3 3 2
e 5 1 6 1 6 3 6 3 5 5 1
f 7 2 9 2 3 9 3 7 7 5 4
g 5 1 6 1 6 3 6 3 5 5 1
h 5 4 8 4 3 7 3 9 7 7 2
i 6 3 9 3 5 7 5 7 9 6 3
j 6 3 8 3 5 5 5 7 6 9 0
k 3 2 4 2 1 4 1 2 3 0 5

Table 4. Table of the αij .

Let us illustrate this method with the exam-
ple. Given the coverage criterion “all-transitions”
and given n = 10, Table 4 presents the coeffi-
cients αi,j , where i and j denote letters from
’a’ to ’k’. For example, the value ’9’ in row ’f’
and column ’c’ means that αc,f = 9, i.e. there
are exactly 9 paths of length lower or equal to
10 from the initial state to the final state which
cross both transitions c and f in the automaton
of Figure 2.

The corresponding linear program is shown
in Table 5. Each line, but the last one, is an
inequation which corresponds to a row in Ta-
ble 4. The first term of the inequation is pmin,
the value to be maximised. The second term
is one of the pi’s, computed according to For-
mula 20. For example, the first line means that
pmin must be lower or equal to pa, the proba-
bility of reaching transition ’a’ with a random
path. By maximising pmin, one maximises the
lowest pi, i.e. the quality of test. The last line
ensures that the probabilities πi sum to 1.

Solving this linear program leads to πa =
πc = πd = πf = πg = πh = πi = πj =
0, while πb = πk = 5

16 = 0.3125 and πe =
6
16 = 0.375. This gives pmin = 1

2 = 0.5, there-
fore the quality of test is 1 − 1

2N , according
to Formula 18. But with this distribution, the
paths acfhj and acfhicfhj have a null proba-
bility to be drawn. To ensure the coverage of
all paths, one adds the following constraints
πx ≥ ε for all x ∈ EC(A). In the example, with
ε = 0.0001, the new distribution is πa = πb =
πc = πe = πf = πh = πi = πj = 1

1000 , while
πd = 35729

115200 ≈ 0.3101, πg = 11867
32000 ≈ 0.3708,

and πk = 179141
576000 ≈ 0.311. This gives pmin =

58893
120000 ≈ 0.4908

The new pmin is very close to the previous
one.

4.3 Conditions on paths and operations on
automata

As seen above, our approach involves counting
and randomly generating paths subject to con-
straints that depends on the kind of coverage
that is considered. Here we show how to deal
with the automaton in order to take into ac-
count such constraints.

At first, let us focus on a simple example:
we want to construct, given the automaton A
of Figure 2 and the transition labeled e, an au-
tomaton B whose set of paths is equal to the
set of those paths of A which cross the transi-
tion labeled e. This can be done by using the
following procedure:

1. Create a copy A′ of A, in which the transi-
tions are labeled exactly as the ones of A,
and in which any state label s in A becomes
s′ in A′.

2. As the transition labeled e joins state 3 to
state 4 in A, delete it and replace it with
a new transition labeled e between state 3
(in A) and state 4′ (in A′).

3. Set F ′ as the set of final states, instead of
F (and s0 remains the initial state.)

4. Delete all the states (and their adjacent tran-
sitions) to which no path from s0 exists.

5. Delete all the states (and their adjacent tran-
sitions) from which no path to a state of F ′

exists.

This concludes the construction of B. Figure 3
shows the result of the procedure. This trans-
formation can be done in linear time and lin-
ear memory requirement with respect to the
size of the initial automaton. Note that steps 4
and 5 are not mandatory: they are used only to
”clean” the final automaton by deleting useless
elements.

The process we just illustrated can be widely
generalised, by considering classical operations
on formal languages. As seen in Section 2, the
set of paths from s0 to F in A can be seen as
a regular language L(A). And any constraint
on the set of paths can be expressed as the in-
tersection of L(A) and another formal language
L′. For example, the above condition “cross the
transition e” can be represented by the lan-
guage L′ = X∗eX∗, that is the language of
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pmin ≤ πa + 3
4
πc + 5

6
πe + 7

9
πf + 5

6
πg + 5

9
πh + 2

3
πi + 2

3
πj + 3

5
πk

pmin ≤ πb + 1
4
πc +πd + 1

6
πe + 2

9
πf + 1

6
πg + 4

9
πh + 1

3
πi + 1

3
πj + 2
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Table 5. The linear program.

Fig. 3: An automaton that contains only the
paths of the automaton of Figure 2 which cross
transition labeled ’e’.

words that contains the letter e at least once.
And, obviously, L(A) ∩ L′ equals the language
that corresponds to the paths from s0 to F in A
that cross transition e. In the case where L′ is a
regular language, there are classical algorithms
to construct its automaton and the automaton
of the intersection of the two languages (see
e.g. [21]). The complexity of the intersection
algorithm, and the number of states of the cor-
responding automaton, are proportional to the
product of the numbers of states of the two au-
tomata. A number of constraints can be mod-
elled by a regular language, notably:

– to cross one transition (or one state), or
more generally a set of transitions (or states),
in a given order or in an arbitrary order;

– not to cross a given transition (or state) or
a given set of transitions (or states);

– to cross one or several transitions, or one
or several sequences of transitions, a fixed
number of times;

– any combination of the above constraints;
– etc.

Meanwhile, there are constraints that cannot
be modelled by a regular language. For exam-
ple, “cross transition a not a fixed number of
times, but exactly as many times than tran-
sition b” is a constraint that typically needs
a more general class of languages in Chom-
sky’s hierarchy [21]. In this case, it can be mod-
elled by a context-free language. The method
described here for regular languages can be gen-
eralised to context-free languages, by using context-
free grammars in place of automata. But this is
beyond the scope of the present paper. On the
other hand, there exist constraints that need
an even more general class in Chomsky’s hi-
erarchy. They cannot latter be handled by the
methods described here in general. An example
of such a constraint is “the paths to be gener-
ated must not cross twice the same state”. This
defines the set of self-avoiding paths in an au-
tomaton. Problems on self-avoiding paths are
known to be extremely difficult.

5 Experimental results

In this section we present the experiments we
did to prove the effectiveness of our approaches.
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5 EXPERIMENTAL RESULTS 5.1 Uniform path generation

More precisely, in Section 5.1 we give numerical
results for the uniform generation of random
paths in both non-synchronised and synchro-
nised systems while in Section 5.2 we present
experiments of our method for testing programs
under different coverage criteria.

5.1 Uniform path generation

We present experimental results that prove the
feasibility of the method we described in Sec-
tion 3. We first describe the implementation
of our approach for the uniform generation of
paths of a given length from components of a
transition system described in the BCG for-
mat (Binary Coded Graphs bcg-format). We
then present our methodology for the experi-
ments together with our experimental frame-
work. Last we give tables summarising the nu-
merical results together with a discussion, both
in the non-synchronised and synchronised cases.
Moreover, we compare our approach to the one
that build the whole system (e.g., computing
the product of several components) before gen-
erating paths.

5.1.1 Implementation and methodology

Random paths are uniformly generated accord-
ing to the following process: First, the graph
underlying the transition system described in
the BCG format is used to generate a MuPAD
(see [3]) script. This script allows to compute
the values of ω and C (see Section 3.2.1). Then,
we use ad-hoc tools written in C++ in two dif-
ferent manners:

1. Non-synchronised case (see Section 3.2.1):
we first compute the so-called counting ta-
ble, which is the only preprocessing step
done for this case. Then we compute the
length of paths we will pick in each com-
ponent and generate these paths. Last we
shuffle these paths to obtain a path in the
whole system.

2. Synchronised case (see Section 3.2.2): it is
almost the same case as previously described,
except that in the preprocessing phase we
need to compute binomial coefficients and
we generate a counting table for each sub-
language (B, C, T , and E) of each mod-
ule. Before computing the length of paths
we will pick in each module, we have to

choose the number of synchronised tran-
sitions taken and where they occur in the
global path.

For our implementation, we use several tools
that we mention here: the BCG library of the
CADP toolbox [12], the GMP (Gnu Multiple
Precision) library [16] and the random function
of the BOOST library [25] in order to generate
random numbers.

We did all our experiments on a dedicated
server whose hardware is composed of an In-
tel Xeon 2.80GHz processor with 1GB mem-
ory. Each BCG graph used for our experiments
comes from the VLTS (Very Large Transition
Systems [11]) benchmark suite. These models
correspond to real industrial systems. Each model
name is of the form vasy X Y, where X is the
number of states divided by 1000, and Y is the
number of transitions divided by 1000. Mea-
surements were done 10 times and we give the
mean value and standard deviation of these
measurements.

5.1.2 Generation in single models

Here, we give results for the uniform generation
of paths in a transition system described by a
single component. Table 6 shows the time mea-
surements for the uniform generation of paths
in models of various sizes.

The main drawback of the brute force ap-
proach is its memory consumption. When this
approach is feasible, it is efficient. However, we
can see that it is not possible to deal with sys-
tems of size more than 104 states for reason-
able path lengths. In the next section, we show
that generating paths from composed systems
allows to handle systems up to 1027 states and
maybe more.

5.1.3 Generation in composed systems
without synchronisation

We present here the results for the uniform
generation of paths in a system succinctly de-
scribed as the composition of vasy 0 1 with it-
self several times (from 2 to 12 times). If r
is the number of such modules used for the
composition, then the number of states of the
whole system is 289r since there is 289 states in
the component and there is no synchronisation
here.
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length

name # states
200 1000 2000 3000 5000 8000

vasy 0 1 289 0.0s 0.9s 2.9s 6.3s 15.9s 40.1s

vasy 1 4 1183 0.1s 1.0s 3.2s 6.7s 18.2s 8

vasy 5 9 5486 0.0s 0.9s 2.4s 5.2s 8 8

vasy 8 24 8879 0.2s 0.8s 2.4s 8 8 8

vasy 10 56 104 0.0s 1.3s 8 8 8 8

vasy 12323 27667 107 8 8 8 8 8 8

Table 6. Uniform generation of paths in models of various sizes: size versus time. 8 means there is not enough
memory to build the counting table.

MuPAD needs 8.23s, measured using the
Unix time function, to compute the value of ω
for each component.

Table 7 and Table 8 give respectively the
time needed in order to build the counting table
for vasy 0 1 (the table that gives the number of
paths leaving each state of the module) and the
time required for the generation of 100 paths.
The time measurements are here done with the
timer function of the BOOST library.

We observe that 28912 is of the same or-
der of magnitude as 1027. It means that this
method is tractable and still efficient for very
large models.

We also did experiments with systems com-
posed of different components. For instance,
Table 9 (resp. Table 10) shows the time needed
to generate 100 paths in a system composed
of two (resp. three) different components. As
soon as it is possible to build the counting ta-
ble of each component, we can draw paths in
the whole system.

5.1.4 Generation in composed systems with
synchronisation

Now, we experiment the generation of paths
in composed systems when the composition is
synchronised. Two case-studies show the ad-
vantages and drawbacks of a brute force ap-
proach and the on-line method. We first use
a real case-study to draw paths in a commu-
nication protocol, based on a brute force ap-
proach (see 3.2.2). Then, we analyse an arti-
ficial case-study for the on-line generation of
paths in systems in which components have a
single synchronised transition.

Brute force approach. We studied a well-known
communication protocol: the INRES protocol
[20]. In this three-model protocol, the Initiator

sends data to the Responder through a Medium
that offers an unreliable data-transfer service.
We used a LOTOS description of this proto-
col2.

The method is as follows:

1. we build an automaton that represents the
whole system from the LOTOS description,

2. we uniformly draw paths in this system.

The step 1 starts from a LOTOS descrip-
tion of each component. Component sizes are
summarised in Table 11. We build an automa-
ton that represents the composed system by
using CADP tools: First, we translate LOTOS
abstract data types into a concrete implemen-
tation in C with the program caesar.adt. Then,
we translate the system described in LOTOS
into a finite state automaton in the BCG for-
mat with the program caesar.

This process takes less than one second to
build the BCG automaton. Table 12 describes
its sizes.

Once the whole system is built, the step 2
consists in drawing uniformly at random paths
as in the single-model case. Table 13 and Ta-
ble 14 show the time needed to build the count-
ing table and to generate 100 paths in the whole
system, respectively.

This case-study reveals that the brute force
approach is feasible and provides good results
in specific composed systems in which there are
few non-synchronised transitions. Actually, in
such systems, the size of the product automa-
ton is not too large according to the size of the
biggest component. So we can build the whole
system and then draw paths in this system.
However, if there are many non-synchronised
transitions, the size of the whole system will be

2 ftp://ftp.inrialpes.fr/pub/vasy/demos/demo_

09
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length 200 500 1000 2000 4000 8000

0.12s 0.34s 0.77s 2.06s 6.01s 20.70s

Table 7. Preprocessing: time for the construction of the counting table of vasy 0 1, according to the path length.

length

# components
200 500 1000 2000 4000 8000

2 0.58s (0.04) 0.91s (0.08) 1.83s (0.08) 4.71s (0.08) 14.93s (0.54) 37.39s (0.40)

4 0.91s (0.07) 1.25s (0.10) 2.42s (0.11) 5.09s (0.25) 14.57s (0.12) 36.05s (1.04)

6 1.37s (0.11) 1.73s (0.08) 3.00s (0.10) 6.39s (0.27) 18.31s (0.13) 42.21s (0.69)

8 1.78s (0.17) 2.20s (0.07) 3.70s (0.08) 7.91s (0.18) 22.61s (0.32) 49.88s (0.72)

10 2.16s (0.12) 2.76s (0.16) 4.57s (0.13) 9.30s (0.25) 26.82s (0.15) 58.61s (0.69)

12 2.65s (0.22) 3.41s (0.15) 5.31s (0.13) 11.23s (0.17) 31.36s (0.18) 68.73s (1.23)

Table 8. Generation: average time (and standard deviation) for the generation of 100 paths in composed models
without synchronisation (vasy 0 1 is composed with itself).

length 200 1000 2000 3000 5000 8000

0.3s 1.0s 2.4s 4.1s 9.2s 8

Table 9. Average time for the generation of 100 paths in a system composed of vasy 0 1 and vasy 1 4. 8 means
there is not enough memory to build the counting table of each components.

length 200 1000 2000 3000 5000 8000

0.2s 1.6s 2.3s 2.9s 8 8

Table 10. Average time for the generation of 100 paths in a system composed of vasy 0 1, vasy 1 4, and vasy 5 9.
8 means there is not enough memory to build the counting table of each components.

# transitions
model # states

synchronised internal

Initiator 34 111 4

Responder 26 81 2

Medium 65 294 0

Table 11. Description of the three models (Initiator, Responder and Medium) that compose the INRES protocol.

# transitions
model # states

synchronised internal

Global system 981 2290 262

Table 12. Description of the BCG automaton built from a LOTOS description of the INRES protocol.

length 200 500 1000 2000 4000 8000

0.21s 0.74s 1.76s 4.53s 12.40s 8

Table 13. Preprocessing: time to build the counting table from the INRES system according to the path length.
8 means there is not enough memory to build the counting table.
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length 200 500 1000 2000 4000 8000

0.08s 0.23s 0.86s 2.54s 8.54s 8

Table 14. Generation: average time to generate 100 paths in the INRES system. 8 means there is not enough
memory to build the counting table.

too large for the brute force approach. There-
fore, we use the on-line method instead of the
brute force approach.

On-line generation. Here we give the numeri-
cal results for the uniform generation of paths
in system with synchronisation when using the
method that avoids building the whole system.
For these experiments, we used the vasy 0 1
model in which we picked at random a transi-
tion and labelled it with the synchronised la-
bel α. This modified vasy 0 1 component was
composed several times (2 to 12) with itself.

MuPAD needs 17.18s to compute the value
of the constant ω and C for the component.
The time is again measured using the Unix
time function.

Table 15 summarises the time needed for
the second step of the preprocessing phase :
the construction of the counting tables for the
languages B, C, E and T of vasy 0 1.

Table 16 contains time measurements for
the computation of the numbers l(n,m) and
l(n,m, i0, im) as defined in Formula 11 and For-
mula 17, respectively.

Last, Table 17 presents the time used to
generate 100 paths with some synchronisations.

Again, the method is feasible and efficient
for very large models. However, there are some
limitations: with 1GB of memory, it is not pos-
sible to generate paths of lengths 600+.

5.2 Uniform generation of paths and testing
programs

Here we present some experiments in the area
of program testing. The objectives of this cam-
paign were the following : first evaluate the
fault detection power of the approach, second
study the stability of this detection power w.r.t.
randomness.

We have developed a prototype, AuGuSTe,
which has been used for testing some C func-
tions extracted from an industrial application.
This test suite is a part of the one used in [32].
In that paper Thevenod-Fosse and Waeselynck
presented an experimental evaluation of their

statistical structural testing method [31]. We
used the same sets of mutants (see below), and
the same set of experiments as in [32] was re-
played with some minor differences due to the
evolution of the C compiler and of the operat-
ing system in the last years.

Below we briefly recall the principles of mu-
tation testing. Then, we present the prototype
and the context of the experiments: the pro-
grams under test and their mutants, the con-
sidered coverage criteria, and the number of
performed tests.

5.2.1 Mutation testing

Classically, mutation testing is used as a se-
lection method [4], but it can be also used to
evaluate the efficiency of dynamic testing gen-
eration methods. The idea is to create clones
of the program under test where one elemen-
tary error is introduced. These clones are called
mutants.

A test data set, and by extension the method
which created this set, is evaluated by measur-
ing the proportion of mutants which are killed.
A mutant is said to be killed when the pro-
gram and the mutant have different outputs.
This proportion of killed mutants is called the
mutation score [4]. It is a number between 0
and 1: a high mutation score indicates that the
test data set has been very good at detecting
the faults in the mutants.

5.2.2 The AuGuSTe prototype

The prototype has been developed for experi-
menting the method described in Section 4. Its
modular architecture allows for an easy switch
of the programming language of the programs
to test, the constraint solver and the distribu-
tion on the elements to be used.

AuGuSTe takes four input data: a program
under test P , a coverage criterion C, a num-
ber of tests to be generated N , and a maximal
length of paths n. Currently, the program P
is written in a simple imperative language in-
spired from C and Pascal. The basic construc-
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length 100 200 300 400 500 600

0.24s 0.48s 0.73s 0.98s 1.27s 1.51s

Table 15. Preprocessing phase : time to build the 2 counting tables for the number of paths leaving each state of
the module vasy 0 1 with a unique synchronised transition.

length 100 200 300 400 500 600 700

0.91s 7.88s 28.28s 66.93s 134.77s 239.71s 8

Table 16. Preprocessing : time to compute values of l(n,m, i0, im) and l(n,m).

length

# components
100 200 300 400 500 600

2 0.57s (0.60) 1.17s (0.10) 2.05s (0.05) 4.97s (0.03) 7.16s (0.08) 9.50s (0.29)

4 1.09s (0.09) 1.71s (0.17) 3.96s (0.12) 6.09s (0.23) 13.37s (0.68) 18.38s (0.18)

6 1.53s (0.17) 2.44s (0.23) 5.87s (0.24) 9.15s (0.14) 13.99s (0.09) 27.01s (0.95)

8 1.93s (0.09) 3.22s (0.12) 5.64s (0.07) 11.92s (0.22) 18.05s (0.10) 25.53s (0.28)

10 2.38s (0.08) 4.01s (0.09) 6.85s (0.16) 10.47s (0.22) 23.04s (0.10) 32.18s (0.09)

12 3.01s (0.05) 4.80s (0.14) 8.17s (0.17) 12.54s (0.14) 27.29s (0.12) 38.38s (0.39)

Table 17. Generation : average time (and standard deviation) to generate 100 paths in composed systems with
synchronisation (the modified version of vasy 0 1 is composed with itself).

tions are sequential composition, If...Then...Else
construction (Else is optional), While loop and
For loop. The data types we consider are booleans,
integers, arrays of booleans and arrays of in-
tegers. The criterion C is chosen among “all
paths of length ≤ n”, “all branches” and “all
statements”. Then, AuGuSTe draws the paths
and computes the corresponding input data.

AuGuSTe proceeds in three main steps: the
analysis, the paths generation and the resolu-
tion.

The analysis step builds the control graph
G of the program P , and the necessary au-
tomata required by the chosen criterion. If C is
“all statements” (resp. “all branches”) then the
distribution on the nodes (resp. edges) which
is a linear programming system is built and
solved by an optimisation function using a sim-
plex algorithm of MuPAD.

The path generation step is performed in
one or two steps as described in Section 4.

Finally, the resolution step builds the predi-
cates corresponding to each path and then tries
to solve them. Each path predicate, which is
a conjunction of boolean expressions, is trans-
lated into logical constraints and a constraint
solver package is used to compute a solution
of the resulting constraint system. This pack-
age is borrowed from the GATeL tool [24]. This

solver uses randomised resolution i.e. variables
are randomly instantiated [15]. This kind of
resolution has two advantages. First, when a
path is generated several times, the solver very
lilely yields different input data to execute this
path, something really important in software
testing. Second, whenever the resolution of a
predicate does not succeed, if this predicate ac-
tually has a solution, it is more likely that this
solution will be obtained if the same path is
generated again.

When an unfeasible path is detected (or
suspected) by the constraint solver, it is re-
jected and another path is drawn. This so-called
rejection strategy does not affect the uniform
distribution on paths: feasible paths are still
drawn with uniform probability.

5.2.3 Programs under test

The experiments were performed on four C func-
tions that are part of an industrial software. We
used 2914 mutants of these functions created
by the SESAME mutation tool[32].

The functions belong to a component, ex-
tracted from a nuclear reactor safety shutdown
system, which periodically scans the position
of the reactor’s control rods[32]. At each oper-
ating cycle, 19 rod positions and some general
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control data on the hardware device are pro-
cessed. This data acquisition is performed by
two functions FCT1 and FCT2. After acqui-
sition, a filtering process is performed by an
other function (FCT3) in order to detect and
eliminate doubtful measures (for instance, by
checking the parity bit). Finally, measures are
converted by a function called FCT4 into a se-
quence of mechanical steps. In this paper, we
will only consider the experiments on functions
FCT1 and FCT4.

Table 18 gives main characteristics for each
function i.e. its number of code lines, and the
number of paths (∞ if there is a loop), of blocs
(maximal sequence of statements without choice
points), of edges and of choice points (While,
IfThen, IfThenElse) in its control graph.

For each function, the number of mutants is
different according to the code complexity and
the length: there are 279 mutants of FCT1 and
605 of FCT4.

5.2.4 Coverage criteria and test quality

Since FCT1 has a finite number of paths (there
is no loop), we were able to use the strongest
structural criterion for it, namely “all paths”,
whereas for FCT4 we choose to use (as it is
also done in [32] the weaker, but feasible, “all
branches” criterion.

The number of tests needed for each func-
tion was calculated in order to obtain a test
quality qC of 0.9999. Table 19 summarises the
number of runs we perform for each function
in order to ensure the good coverage.

The program, FCT4 contains both a loop
and a huge number of unfeasible paths. The
coverage criterion considered for the experiments
was “all branches”. The maximal length of paths
was 234 (in number of edges of the control
graph, thus much more in number of state-
ments). The length 234 was chosen according
to the characteristics of the loop. With such a
length, the predicates to be solved were rather
long too: on the average they were conjunctions
of 190 conditions.

In order to reduce the number of unfeasi-
ble paths, we adapted the automaton accord-
ing to the characteristics of the feasible paths
[14]. This manipulation dramatically decreased
the proportion of infeasible paths from 1

1000 to
1
2 . It reduced the test generation time (draw-
ing paths and solving predicates) but increased
the time of the preprocessing stage (construc-

FCT1 FCT4

]lines 30 77

]paths 17 ∞
]blocs 14 19

]edges 24 41

]choice pts 5 10

Table 18. Main characteristics of FCT1 and FCT4

FCT1 FCT4

criterion all paths all branches

]runs 1 5

]tests N per run 170 850

Table 19. Number of tests

tion of the automaton and counting the num-
ber of paths); this was largely compensated by
the reduction of the number of unfeasible path
rejections.

The mutation scores are presented in Ta-
ble 20. The results are significantly better than
with uniform random testing on inputs (first
line). They are comparable to the ones reported
in [32] for a different statistical structural test-
ing method, which has been proposed in the
90’s by Thevenod-Fosse and Waeselynck [31].
The main difference with our approach is that
it is based on drawing inputs, with an explicit
construction of an input distribution that takes
into account the structure of the program. This
construction cannot be automated in presence
of loops and is performed by successive exper-
imental refinements. Our approach is based on
drawing paths and has the advantage of being
fully automated.

6 Related Work

Recently, various authors have addressed the
issue of improving random testing by taking
into account coverage issues. Some approaches
consider program coverage, some consider model
coverage. In those considering programs, signif-
icant experimental results have been reported
by combining dynamic and symbolic evalua-
tions. We first report on this class of work.

Directed Automated Random Testing (DART)
[13] is a method and a tool recently proposed
by Godefroid et al., which combines static and
dynamic program analysis for automatically test-
ing software. It is similar to ideas proposed ear-
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FCT1 FCT4
min ave max

uniform testing[32] 1 0.8950 na 0.9150

structural statistical testing[32] 1 0.9898 0.9901 0.9915

AuGuSTe 1 0.9854 0.9854 0.9854

Table 20. Mutation scores

lier by Ferguson and Korel in [8]. A DART di-
rected search attempts to sweep through all the
feasible execution paths of a program using dy-
namic test generation: the program under test
is first executed on some random well-formed
input; symbolic constraints on inputs are gath-
ered at conditional branches during that run;
then a linear constraint solver is used to gen-
erate variants of the previous inputs in order
to steer the next execution of the program to-
wards an alternative program branch. This pro-
cess is repeated until all feasible program paths
of the program are executed, while detecting
various type of errors using run-time checking
tools.

The only form of randomness that is used
by DART concerns the inputs: the test driver
is initialised by random values. The directed
aspect of the method is deterministic.

The basic idea of DART, i.e. the combina-
tion of dynamic testing and symbolic evalua-
tion, has been at the origin of different variants
and extensions in order to palliate the main
drawback of this approach, that is the system-
atic execution of all feasible program paths that
leads to some explosion of the number of tests,
or even non termination of DART when there
are some loops. All these variants make use,
at different levels, of random selection of some
inputs, but there is no random generation of
paths.

In the area of random walk in concurrent
systems, K. Sen [29] recently proposed a new
way for effective random testing of concurrent
programs, based on partial order reduction meth-
ods. Such methods exploit the fact that among
the traces of a concurrent system, a number of
interleavings are equivalent to each other be-
cause they correspond to the different execu-
tions orders of various independent instructions
from concurrent threads. K. Sen has designed a
novel algorithm (RAPOS) which aims at sam-
pling partial orders more uniformly than the
classical random selection of traces where suc-
cessors are drawn uniformly at random. In [29],

some experiments are reported. But, as the au-
thor says, it is not clear how to mathematically
show that this method samples partial order
more uniformly.

Object-oriented programs and models call
for new notions of coverage and randomness.
It has been recognised for a while that method
interactions and dependences are an adequate
level for defining test criteria. In [27], C. Pacheco
et al. present a technique that improves ran-
dom test generation of sequences of method
calls. Sequences are built in an incremental way,
alternating phases of random generation and
test executions as follows: Feedback from pre-
vious test sequences execution is used for pro-
ducing new test sequences: A method is drawn
at random and appended to some previous test
sequences that have shown to be extensible, i.e.
able to lead to new and legal object states. Such
objects are used as inputs for the new method.
This method is a kind of random walk among
feasible sequences of method calls. There is no
coverage consideration. It is implemented by
a random tester for object-oriented programs
(RANDOOP).

In the area of model checking a few studies
have been led to explore the introduction of
random explorations in model-checkers.

Monte-Carlo Model Checking, presented by
Grosu and Smolka [17] is an approximate method
for model checking inspired from the work of
Herault et al[18]. It uses path generation by a
classical random walk on the transition graph.
The main advantage of this approach is the
following fact: the randomized algorithm takes
also as input an approximation parameter and
a confidence parameter which measure the qual-
ity of error detection. However, the drawback
is that the random path generation is not uni-
form, as mentioned in the introduction for clas-
sical random walks.

Another approach, reported by Dwyer and
al. in [7], is based on concurrent randomised
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depth-first searches on models extracted from
Java programs. The goal is rather different from
ours, since it aims at speeding up the first error
finding: as soon as one of the concurrent search
reaches a counter-example, the other ones are
stopped. The implementation is based on Java
Path Finder [33] and makes use of the JPF’s
RandomOrderScheduler. The experimental re-
sults show a significant gain in time to reach
the first error. Other work for DFS improve-
ments based on various heuristics are reported
by Rungta and Mercer in [28].

A more similar approach to our work is the
“hit or jump” test generation method [2]. It
addresses the problem of testing an embedded
component in a system described as a set of
communicating extended finite state machines.
It is based on a kind of randomised DFS bi-
ased in order to cover all the transitions of the
component under test.

Namely, the test generation is based on suc-
cessive depth-bounded DFSs: when some tran-
sition of interest is hit during such a DFS, a
new DFS is started from its target state; if it
is not the case, one of the leaves of the DFS is
chosen uniformly at random to start the next
DFS. Experimental results show that this kind
of random exploration avoids to be trapped in
zones where there are no transitions of interest.
However, its mathematical analysis remains to
be done.

7 Conclusion

In this paper we have introduced several new
ideas on the use of uniform random paths gen-
eration in model exploration and software test-
ing, and we give some first experimental re-
sults.

We have presented and implemented uni-
form paths generation in single models, and on
this basis we have developed a “on-line gener-
ation” method which makes it possible to cope
with large composed models, avoiding the con-
struction of the global model.

In case of asynchronous composition, we have
handled models up to 1027 states and it would
be possible to do more. However, for us, the
main interest of asynchronous composition was
its use for dealing with synchronous composi-
tions. Then, we have started to study how to
deal with such compositions of models, using

either a brute force approach, where the syn-
chronous product is built, or a similar “on-line”
approach to what was done for asynchronous
products, avoiding the construction of the syn-
chronous product. From our first experiments,
it turns out that the brute force approach is
feasible for composed systems where there are
few non-synchronised transitions. Concerning
the “on-line” method, we have presented its
generalisation to the case where there is one
synchronised transition. The generalisation to
several synchronisations is sketched in [26] and
is the topic of an on-going Ph.D. thesis. Prelim-
inary results on complexity let think that it will
be practicable in the case of a small number
of synchronisations only. Thus it is very likely
that brute-force and on-line methods need to
be combined in a way depending on architec-
ture patterns of the global systems. The deter-
mination of these patterns (including patholog-
ical ones that may be out of the scope of the
method) is part of this on-going work.

We saw that, up to now, the random gener-
ation algorithm fails for large component size
|S| and large path length n, by lack of mem-
ory. Indeed, the memory requirement is n×|S|
integer numbers. However, there are at least
two approaches for solving this problem. On
one hand, the counting table of the prepro-
cessing stage could be computed on line, need-
ing a memory requirement in O(|S|) only [19].
On the other hand, under certain conditions,
the Boltzmann generation method [6] allows to
generate uniform random paths without com-
puting a counting table. We are currently in-
vestigating in both directions.

In another part of the paper we have stud-
ied how to take into account weaker coverage
criteria when drawing paths randomly, intro-
ducing a notion of randomised coverage sat-
isfaction. We have proposed a two-step draw-
ing strategy: first, one element to be covered
is drawn at random with a suitable probability
distribution; second, a path that goes through
this element is drawn uniformly at random.
We have shown how to choose the probability
distribution of the first step in order to both
maximise the minimum probability to reach
an element to be covered, and ensure that any
path going trough such an element has a non-
null probability. This method has been imple-
mented and applied to a C program that had
the advantage to be provided with a set of mu-
tants: this made it possible to assess the de-
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tection power of the method and to favorably
compare it to other random testing methods.

This paper present several first contribu-
tions on the application of the corpus of knowl-
edge that has been developed on counting and
generating combinatorial structures. They open
numerous perspectives in the area of random
testing, model checking, or simulation of proto-
cols and systems that involve many distributed
entities, as it is often the case in practice.
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