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a b s t r a c t

Composite Web services development is a complex task involving specification, verification, imple-

mentation, and testing. Despite the fact that several languages have been proposed for composing Web

services (e.g., BPEL, WSCI), there is a lack of well-defined formal semantics for formal analysis and

verification. Moreover, current approaches are specific to a given programming language (e.g. BPEL) and

they focus only on the verification of already implemented composite services. This paper proposes an

approach for specifying, verifying and implementing composite services according to the Model-Driven

Architecture principles. It makes use of formal methods, especially the LOTOS formal description

language, to support composition verification at specification time. The benefit is that the composition

specification is proven to be correct before its implementation with a programming language such as

BPEL. A case study is also presented to show how a service composition can be specified in a workflow

and then formally verified before executable code generation.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Web services are currently used by organizations to share their
knowledge over the network and facilitate Business-to-Business
(B2B) collaboration. Services are independent software components
realizing specific tasks, which can communicate with each other by
exchanging messages. This process, called service composition,
usually results in the creation of a new composite service that can
be defined as the aggregation of other elementary or composite
services (Gaber and Bakhouya, 2006; Bakhouya and Gaber, 2008).

The composition of independent existing Web services is a
difficult and time consuming task. Programming languages, such
as BPEL (OASIS, 2007), are gaining popularity and overall accep-
tance by the software industry. However, these languages are
meant for the implementation and execution rather than provid-
ing a visual or formal representation of the composition. This lack
of consideration to the specification and verification stages
decreases the global understanding of the composition and makes
the application harder to understand and therefore to maintain. In
the past few years, the research community has been trying to
tackle this issue by proposing model-driven approaches based on
ll rights reserved.

utbm.fr (J. Gaber),
formal methods (ter Beek et al., 2006). The downside of these
approaches is that the composite service is not verified in the
early design process. This results in increased development time
and costs when errors are detected late in the development cycle
(Achilleos et al., 2008).

In this paper, an approach according to the principles of Model-
Driven Architecture (MDA) is proposed for specifying, verifying and
implementing composite services. MDA (Soley, 2000) focuses on
creating abstract models rather than computing or algorithmic
concepts. It uses models that make sense from the user’s point of
view and that are precise enough to serve as a basis for implementa-
tion. In the context of service composition, examples of such models
include BPMN (White, 2004a) and UML activity diagram (OMG,
2009). These models are de facto standards for Business Process
Modeling (BPM), but their lack of clearly defined formal semantics
does not allow formal analysis and verification.

For this purpose, the solution introduced in this paper embraces
formal methods, especially LOTOS formal specification language, in
order to prove that a service composition is correct at design time.
This is an important step towards reliable service composition, since
problems could be detected early in the development cycle, before
even starting the implementation. To achieve this objective, the
following methodology composed of five phases is considered:
�
 Selection from a service repository, such as UDDI, of the
services required for the service composition.
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�
 Elaboration of a specification model of the composition using
business process modeling languages, such as UML and BPMN.
We have adapted UML activity diagrams to model the inter-
actions between the services in a workflow. These business
process modeling languages are well-known in the software
designers community and are able to model all workflow
control-flow patterns supported by popular composition lan-
guages, such as BPEL.

�
 Automated translation of the specification model into a formal

description. Any formal description language may be used as
long as it is supported by automated verification tools. We
have selected LOTOS because it provides constructs that are
adequate to specify composition owing to their composition-
ality properties, such as sequential, parallel, and conditional
execution constructs and it is supported by a powerful
verification tool, CADP. A mapping method by translating
workflow models into LOTOS formal specification language is
also proposed.

�
 Automated verification of desired behavioral properties

using CADP.

�
 Generation of BPEL code from the business process modeling

languages as recommended by MDA. For example, BPMN is
currently supported by more than 60 tools for BPMN to BPEL
translation. In this work, a tool has been developed to allow
the translation of UML activity diagrams (UML-AD) to BPEL.
Once the composite Web service is implemented, the last step
is usually to publish it into a service registry so that it can be
reused later.

More precisely, the objective is to be able to generate composite
services proven to be correct, according to MDA principles. The
advantage is that the composite service is verified in the early design
process before code generation. Moreover, we put emphasis in this
paper on the control-flow patterns that are supported by BPEL,
which is the most common language to build service compositions.

The remainder of this paper is structured as follows. Section 2
provides a state-of-the-art review of service composition
approaches involving formal methods. In Section 3, the model-
driven methodology is presented together with the formal speci-
fication of basic workflow patterns using LOTOS. In Section 4, a
composition scenario is modeled using UML, translated into
LOTOS and then verified using the CADP tool set before generating
the corresponding BPEL code. Finally, Section 5 draws the con-
clusions and presents future work.
2. Related work

This section focuses on service composition approaches invol-
ving formal methods. Two research directions are identified:
language-oriented approaches and model-oriented approaches. The
former ones focus on the composite services verification after-

wards. These services are expressed in a particular business
process modeling language, such as BPEL or WSCI. For example,
one takes a BPEL code, translates it into a formal description, and
verify the desired properties. The main formalisms used for
reasoning about the service composition are Petri nets, state
transition systems (STSs), and process algebras.

In the second research direction, the designer uses graphical
representations, such as BPMN or UML, to specify the service
composition before generating the corresponding executable code
with BPEL for example. These business process modeling lan-
guages are widely adopted or service composition, because of the
design features they provide (support most of control-flow
patterns) and being comprehensive enough to generate execu-
table codes. However, it is hard for designers to deal with formal
verification of service composition at design time because neither
BPMN nor UML are supported with suitable tools. Therefore,
research direction towards modeling methods that allow
designers to specify and verify the composition during the early
design phase are required, thus avoiding iterative cycle between
the implementation and the specification. The rest of this section
presents brief descriptions of some approaches proposed in the
literature. Furthermore, a classification and a comparison of
composition approaches is developed in Appendix A.

2.1. Language-oriented approaches

Several approaches that belong to the first research direction have
been proposed in the literature. For example, Tan et al. (2009)
propose an approach to analyze the compatibility of two services
by translating their BPEL abstract processes (i.e., description) into
CPN (Colored Petri Net) and check if their composition violates the
constraints imposed by either side. Service/Resource Net (SRN),
introduced by Tang et al. (2004), is an extended Petri net-based
model with some new elements, such as time, resource taxonomy,
and conditions to model Web service composition. Once the compo-
sition is modeled using a SRN, it can be analyzed and evaluated using
PN analysis methods. Finally, the authors discuss the development of
a framework to generate BPEL code from their model.

Alike Petri nets, state transition systems, such as finite state
automata, Input/Output (I/O), and timed automata, have been
used to describe and verify Web services composition. For
example, an approach was proposed by Pu et al. (2006) by
providing a mapping between a subset of BPEL activities and
timed automata in order to use the UPPAAL model checker. Mitra
et al. (2007) propose to describe the goal and component services
as I/O automata whose states represent the configuration of the
services, while the transitions define the way in which the
services evolve from one configuration to another. This shifts
the problem from verifying the existence of the goal service to a
simulation problem over automata. Diaz et al. have proposed an
approach to automatically translate Web services with time
restrictions into timed automata and use UPPAAL tool to simulate
and verify the system behavior (Diaz et al., 2006).

Foster et al. (2006) proposed an approach for modeling and
verifying services composition using the Finite State Processes
(FSP). In their work, the BPEL specification is modeled in UML, in
the form of message sequence charts, and then translated into the
FSP notations. FSP notation is then mapped to LTS (Labelled
Transition System) to reason and verify its correctness, such as
safety and liveness properties. Another approach called COCOA
was proposed by Ben Mokhtar et al. (2006). COCOA is a composi-
tion framework which supports complex behaviors for both
services and tasks (i.e. user requests) described as OWL-S
(Martin et al., 2004) processes. In Ravn et al. (2011), the authors
propose an approach that allows manually translating WS-
Business Activity (mainly WS-BA standard) specified by state-
transition tables to model checker UPPAAL and verifies its
correctness, mainly its correctness and its boundedness.

Process algebras, such as CSP (Communicating Sequential
Processes), CCS (Calculus of Communicating Systems), LOTOS
(Language of Temporal Ordering Specification) and p-calculus,
have been used for verifying service composition. This is due to
their high expressiveness together with constructs that are
adequate to easily specify service composition. In other words,
they provide constructs with compositionality properties, such as
sequential, parallel, and conditional execution constructs
(Bordeaux and Salaun, 2005; Beek et al., 2007). For example, in
Li et al. (2007), rules to map each syntactic construct of WS-CDL
to its corresponding CSP process are given. In Camara et al.
(2006), the authors propose rules to translate Web service
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choreographies written in WSCI into CCS and then check whether
two or more Web services are compatible or not, i.e., all
exchanged messages are mutually understood, and that their
communication is deadlock-free. In Peng et al. (2009), the authors
propose a mapping approach to translate WS-CDL choreographies
into models for model checker SPIN to verify properties about
channel passing.

In Lucchi and Mazzara (2007), the semantics of BPEL are specified
using p-calculus. Because BPEL lacks formal semantics, the authors
formally describe a BPEL subset, especially the specification of basic
activities, structured activities and fault handling. This allows
designers to formally reason about orchestration processes. In
Camara et al. (2006) and Mateescu et al. (2008) a methodology for
the generation of adaptors capable of solving behavioral mismatches
between services interface descriptions was presented. The compo-
site service is supposed to be given in ABPEL and the description of
the orchestration conversation is available. A tool was developed to
generate STSs from service interfaces that can be translated to LOTOS
and then composition issues can be found such as unmatching
number of parameters, different ordering, etc before the generation
of BPEL model. It should be noted that the objective is to detect the
behavioral mismatches between services interface during the service
invocation and it does not deal with service composition at
design time.
2.2. Model-oriented approaches

As described in the previous section, several works towards the
first research direction have been done to specify WS composition
using formal methods. However, these approaches are used too late
in the development process because their aim is to reason on
services already implemented using for example BPEL. Little work
has been done, to the best of our knowledge, into the second
research direction in order to specify and verify the service during
the early design phase, thus avoiding iterative cycle between the
implementation and the specification. For example, an approach that
combines MDA and Petri Net is proposed in Achilleos et al. (2008) to
provide the design, the verification and the code generation process.
The main advantage is that a service is verified early on and prior its
implementation. In Vaz and Ferreira (2008), a translation of a
collection of workflow patterns were translated into Promela, which
is the input specification language of SPIN verification tool
(Holzmann and et al., 1997). In this tool, systems are described in
Promela and the properties to be verified are expressed as Linear
Temporal Logic (LTL) formulas. The main advantages of this approach
is that Promela’s C-like syntax makes it more accessible to non-
experts and SPIN is a model checker that allows the automatic
verification of business processes.

BPMN (White, 2004a) and UML (OMG, 2009) are graphical
modeling languages, fairly easy to understand while being com-
prehensive enough to generate executable code from them. For
example, Wohed et al. (2006) show that BPMN provides direct
support for the majority of the control-flow patterns. BPMN is
currently supported by over 60 tools.1 Gardner et al. presented, in
Amsden et al. (2003), a UML profile for modeling automated
business processes as well as a mapping to BPEL 1.0. An adapta-
tion of this profile for BPEL 1.1 was then implemented by Mantel
in ws-uml2bpel (Mantell, 2003). Dumez et al. proposed a UML
2.0 profile called UML-S (Dumez et al., 2008a,b,c) together with
translation rules where models are detailed enough to allow
automatic executable code generation with WS-BPEL 2.0. A
framework has also been developed in order to model the
1 See http://www.bpmn.org
composition using UML-S diagram and automatically generate
the corresponding BPEL code (Dumez et al., 2009).

The work presented in this paper also falls into the second
research direction by proposing a model-driven methodology that
integrates both business process modeling (i.e., UML activity
diagram) with formal methods, mainly process algebra, LOTOS
(Brinksma, 1988). Business process modeling supports the service
design, specification, and implementation stages while LOTOS
with its verification features and constructs that are more
adequate to easily model service composition, is used for service
verification. The main aim of this methodology is to allow
designers to specify and verify the composition during the early
design phase are required, thus avoiding iterative cycle between
the implementation and the specification.
3. Proposed methodology

3.1. Development phases

The development phases involved in the proposed MDA
approach are depicted in Fig. 1 and explained in the remainder
of this section.

As illustrated in Fig. 1, the designer should start by selecting
the services he wishes to compose. A service repository such as
UDDI (Bellwood et al., 2002) is usually employed to find services
that provide required functionalities. Service discoverability is an
important architectural principle of a service oriented architec-
ture which states that services are designed to be outwardly
descriptive so that they can be found and accessed via available
discovery mechanisms (Erl, 2007).

Once the existing services are selected, the second step consists
in elaborating the specification model of the composition. Such
model should be clear, readable and implementation-independent
to facilitate the comprehension of the composition by the user. It
should also be precise enough to serve as a basis for the imple-
mentation, usually meaning that programming code can be directly
generated from the specification model. Compliant modeling
Fig. 1. Model-driven development of composite Web services supporting formal

verification.

http://www.bpmn.org
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languages include the Business Process Modeling Notation (BPMN)
(White, 2004a) and the UML Activity Diagram (UML-AD) (OMG,
2009). Both languages are competing standards maintained by the
OMG for BPM. They are well-known in the software designers
community. By considering the service composition as a business
process, BPMN and UML-AD can be used to model the interactions
between the services in a workflow. Furthermore, they are able to
model all workflow control-flow patterns supported by popular
composition languages such as BPEL, as shown by White (2004b).

The third step lies in the automated translation of the
specification model into a formal description. Any formal descrip-
tion language may be used as long as it is supported by
automated verification tools. This formal specification stage is
thoroughly described in Section 3.2, focusing on LOTOS as a
formal specification language.

The fourth step consists in using an automated verification tool to
prove that the composition realizes the expected tasks. This is done
by verifying desired behavioral properties using the formal specifica-
tion model. In the case where the composition is specified in LOTOS,
the designer can use the CADP toolset (Fernandez et al., 1996) to
verify temporal properties. These properties may describe any
characteristic of the composition using temporal logic. CADP toolset
will then be able to prove or disprove these properties. If errors are
detected in the composition through formal verification, the designer
should correct and refine the composition model (fifth step) until it is
proven to be correct.

When the composition is formally verified, the next step
corresponds to the implementation. As previously stated, execu-
table code such as BPEL can directly be generated from the
specification model (e.g. BPMN or UML-AD workflow). Depending
on how precise the specification model is, the developer may
need to edit the code of the composite Web service. Basic
workflow models would only provide the structure of the code.
More expressive models can be obtained, for example, by defining
a profile to adapt UML to the domain of Web service composition
(Gardner, 2003; Dumez et al., 2008c). The most expressive ones
could be used to generate the whole code. Finally, once the
composite Web service is implemented, the last step is usually
to publish it into a service registry so that it can be reused later.

In the rest of this paper, we focus on LOTOS formal specifica-
tion phase of workflow control-flow patterns required for web
service composition description. A case study then is presented to
show the usage of workflow patterns for designing, analyzing, and
verifying service composition before generating the executable
code. The LOTOS formal specification language has been selected
to fulfill this purpose (see Appendix B for a brief overview). LOTOS
is an excellent candidate due to (i) its ISO standardization, (ii) its
high expressiveness and its support for value passing between
processes, (iii) its formalism and (iv) the existence of verification
tools that support it such as CADP (Fernandez et al., 1996).

3.2. Workflow pattern specification

To promote reusability, we model each workflow control-flow
pattern as an independent LOTOS process. LOTOS does not support
the concept of function and code may only be grouped in processes to
achieve a similar result. For inter-process synchronization and to
realize the desired workflow patterns, we make use of the value
exchange feature in full LOTOS. Values can be exchanged synchro-
nously at gates. A workflow can be seen as a directed graph where
each node represents an activity. Therefore, an intuitive approach
would be to represent each node (step on an activity) as a LOTOS
process and each edge as a gate. However, as explained by Raymond
(1989), LOTOS declares gates in static lists both as parameters to
processes and in the parallel composition of processes. This mechan-
ism does not allow for the number of gates passed to a process to be
dynamic. As a consequence, by choosing this approach, we would
not be able to model accurately a pattern such as the exclusive
choice where a choice is made between two or more execution
branches. Indeed, the number of possible output branches in an
exclusive choice is undetermined, which makes it impossible to pass
a static list of gates (branches) to the exclusive choice process. The
solution to this issue proposed by Raymond (1989) is to use a single
gate to specify all communications and to use a communication

medium constraint process to ensure that communication only
occurs along edges of the graph.

In this paper, we adopt the same solution by considering that
every service being composed is modeled as a LOTOS process. The
processes execute concurrently and communicate through a soft-
ware bus, as illustrated in Fig. 2. The services can send or receive
messages (events) via gates SEND and RECV respectively. The Bus

process acts an unbounded buffer that is initially empty which
accepts messages on gate SEND and delivers them on gate RECV.

The communication medium process is specified in LOTOS in
Listing 1. We use two gates (SEND and RECV) instead of one to
model the two-way communication between the bus and the
services (processes), as suggested in Cornejo et al. (2001). Each
service process is assigned with an identifier that is an integer.
When communicating via the bus the services provide the
identifier of the destination service, their identifier (sender) and
a message action. The most common action we define is RUN,
which corresponds to service invocation message. Upon reception
of a RUN message, a process (service) will start its execution.

Listing 1. LOTOS code for communication bus.

process Bus [SEND, RECV] (B:Buffer) : noexit :¼SEND ?R:Int ?S:
Int ?D:Cmd ?P:Int;

Bus [SEND, RECV] (B þ Message (R, S, D, P))
[]
½notðemptyðBÞÞ��4

(let M:Msg¼head (B) in
RECV !getrcv (M) !getsnd (M) !getcmd (M) !getprm

(M);
Bus [SEND, RECV] (tail (B))

)
endproc

After specifying the communication medium, each control-
flow pattern in the original set, introduced by Aalst et al. in van
der Aalst et al. (2003) could be translated into LOTOS formal
specification language. We also take into account their reviewed
definition by Russell et al. (2006). These patterns can be used to
describe the control flow perspective of workflow systems and
most of them are supported by service composition languages
such as BPEL (OASIS, 2007). Instead of providing a mapping of
BPEL constructs into LOTOS, we prefer to focus on the translation
of generic workflow constructs. The benefit is that our mapping
can be applied to virtually any workflow language. We present
here the basic control flow patterns, but we refer reader to Dumez
et al. (2010) for advanced patterns specification.
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As described by Aalst five basic flow control patterns, namely the
sequence, the parallel split, the synchronization, the exclusive choice and
the simple merge, are identified. These patterns capture elementary
aspects of the process control. This subsection provides a definition
and a rigorous translation into LOTOS for each of them. LOTOS
descriptions of advanced control-flow patterns, such as the multi-

Choice, the structured synchronizing merge, the deferred choice, the
cancel case and the structured loop, are described in Appendix C.

Sequence—An activity identified by id_dst should be exe-
cuted after the completion of the activity identified by id in the
workflow. The LOTOS specification is provided in Listing 2 in
which the current process (Service1) sends a RUN message to
the next process (Service2) via the communication bus. The
next process awaits this message before starting its execution.

Listing 2. LOTOS translation for sequence pattern.

process Service1 [SEND, RECV] (Id:Int) : exit :¼
(n Do work n)

Sequence [SEND, RECV] ðId,2Þ44exit
where
process Sequence [SEND, RECV] (Id:Int, Id_dst:Int): exit :¼

SEND !Id_dst !Id !RUN !void; exit
endproc

endproc

process Service2 [SEND, RECV] (Id:Int) : exit :¼
(n Wait for message n)

RECV !Id ?Sender:Int !RUN !void;
(n Do work n)

endproc

Note that the comments (n Do work n) should be replaced by
the details of each activity.

Parallel split—Mechanism to execute several execution branches
concurrently. A single branch diverges into two or more parallel
execution branches. Each of these parallel branches contains activ-
ities that will be executed at the same time. The LOTOS specification
of ParallelSplit process is provided in Listing 3. The identifiers of
the activities (Ids_dst) to be executed in parallel are passed in
parameters to the process as a set of integers (IntSet). The process
needs to iterate over this set and send a RUN message to each activity
identified in the set. However, recursion is the only way to realize
cyclic behaviors in LOTOS. As a consequence, the ParallelSplit

process is calling itself recursively and removing already processed
Ids from the set in order to iterate over it.

Listing 3. LOTOS translation for parallel split pattern.
process ParallelSplit [SEND, RECV] (Id:Int, Ids_dst:IntSet) :

exit :¼
½emptyðIds_dstÞ��4exit
[]

½notðemptyðIds_dstÞÞ��4
(let Dest:Int¼pick(Ids_dst) in

SEND !Dest !Id !RUN !void;
ParallelSplit[SEND, RECV](Id, remove(Dest, Ids_dst))

)
endproc
The pick operation returns an element from the set which is
then stored in Dest variable using the LOTOS let operator.

Synchronization—Mechanism to merge two or more execution
branches into a single subsequent branch with synchronization.
More precisely, it waits for all input execution branches
to terminate before passing the thread of execution to the
output branch. This pattern is used after a parallel split in the
workflow process. The corresponding LOTOS specification is given
in Listing 4. The Synchronization process waits for the reception
of one RUN message per input branch before exiting, thus allowing
the calling process to continue its work.

Listing 4. LOTOS translation for synchronization pattern.

process Synchronization [SEND, RECV] (Ids_src:IntSet, Id:Int)

: exit :¼
½emptyðIds_srcÞ��4exit
[] ½notðemptyðIds_srcÞÞ��4

RECV !Id ?Id_src:Int !RUN !void [Id_src isin Ids_src];
Synchronization [SEND, RECV] (remove(Id_src, Ids_src),

Id)
endproc

Exclusive choice—A split in the control flow between two or
more exclusive execution paths. The thread of control is passed to
one (and only one) outgoing branch. In the LOTOS specification
provided in Listing 5, the choice between the output branches is
nondeterministic, meaning that there is no evaluation criteria to
make the decision between the branches and any one of them
may be chosen in a random fashion. However, the specification
we provided guarantees that only one of the output branches will
be executed. The LOTOS choice operator in combination with the
[Dest isin Ids_dst] guard is used to pick randomly an Id in
the Ids_dst set of possible outgoing activities (branches).

Listing 5. LOTOS translation for exclusive choice pattern.
process ExclusiveChoice [SEND, RECV] (Id:Int,

Ids_dst:IntSet): exit :¼
(choice Dest:Int []

½DestisinIds_dst��4
SEND !Dest !Id !RUN !void;
exit)

endproc
Simple merge—Mechanism to merge two or more exclusive
execution branches into one subsequent branch. Only one of the
input execution may be active. As a consequence, the simple
merge pattern is used after an exclusive choice in the workflow
process. The corresponding LOTOS specification is defined in
Listing 6. The SimpleMerge process awaits a RUN message from
any of the input activities identified in the Ids_src set. This is
achieved through a synchronous RUN message reception directive
whose destination is the current process (Id) in combination with
a guard on the identifier of the sender (Id_src) to make sure that
it belongs to the Ids_src set.

Listing 6. LOTOS translation for simple merge pattern.
process SimpleMerge [SEND, RECV] (Ids_src:IntSet, Id:Int) :

exit :¼
RECV !Id ?Id_src:Int !RUN !void [Id_src isin Ids_src];
exit

endproc
4. Case study

In this section, a working scenario is studied to show how to
use the pattern specifications to translate a workflow into LOTOS
in order to formally verify the service composition using CADP
toolbox. This toolbox is a state-of-the-art tool set that provide an
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integrated set of functionalities ranging from interactive simula-
tion to exhaustive, model-based verification (Cornejo et al., 2001).
CADP provides a wide panel of features ranging from step-by-step
simulation to massively parallel model-checking (e.g., proofs of
temporal properties, compositional verification, etc).

4.1. Field emergency response

This case study consists in an field emergency response
process where a user can report an emergency situation. Upon
receiving a report, the system will first check if the accident was
already reported by other users. If it is not the case, it will find the
closest hospital to the accident. Then, it will concurrently send the
paramedics and a police patrol, before marking the accident as
reported. This service composition workflow is modeled as a
UML-AD in Fig. 3. This scenario makes use of 4 existing services:
�
 HospitalLocator: A service to find the closest hospital to a
location.

�
 Paramedics: A service to send paramedics to a location.

�
 PoliceDispatch: A service to send a police patrol to a location.

�
 ReportsDatabase: A service to check if an emergency was

already reported and to mark an emergency as reported (two
methods).

4.2. Corresponding LOTOS model

In this subsection, a LOTOS specification for the field emer-
gency response, based on the control-flow patterns presented in
this paper, is provided. The first step to translate the activity
diagram depicted in Fig. 3 into LOTOS is to create a process for
each step of the activity (including initial and final nodes) and to
assign a unique identifier (integer) to each one of them. The
identifiers were already specified in Fig. 3 for a better under-
standing. The instantiation of these processes in LOTOS is pro-
vided in Listing 7. All service processes are executed concurrently
using the ‘‘999’’ operator, which means that they are independent
and they do not communicate directly with each other. The
9½SEND;RECV�9 operator is used the synchronize the services with
the Bus process through the gates SEND and RECV.

Listing 7. Processes instantiation in LOTOS.
specification EmergencyResponse [SEND, RECV]: noexit
behavior

(

Init [SEND, RECV](0) 999

CheckIfReported [SEND, RECV](1) 999

FindHospital [SEND, RECV] (2) 999

SendParamedics [SEND, RECV](3) 999

SendPolice [SEND, RECV](4) 999

MarkAsReported [SEND, RECV](5) 999
Final [SEND, RECV](6)
)

9½SEND,RECV�9
BUS [SEND,RECV] (o4)

where
(n Processes definition n)

endspec
The next step is the translation into LOTOS by identifying the
control-flow patterns in the workflow in order to provide a definition
(implementation) for each process. The Init process (Id:0) merely
starts the CheckIfReported process (Id:1). As a consequence, it
uses the sequence pattern before exiting, as defined in Listing 8.

Listing 8. LOTOS specification for Init process.
process Init [SEND, RECV] (Id:Int) : exit :¼
Sequence [SEND, RECV] (Id, 1)

44exit
endproc
The CheckIfReported process waits for a RUN message from
Init before starting. After that, it realizes an exclusive choice
between FindHospital (Id:2) and the Final process (Id:6), as
defined in Listing 9.

Listing 9. LOTOS specification for CheckIfReported process.
process CheckIfReported [SEND, RECV] (Id:Int) : exit :¼
RECV !Id !0 !RUN !void;
ExclusiveChoice [SEND, RECV] (Id, insert(6, insert(2, {})))

44exit
endproc
The FindHospital process waits for a RUN message from the
CheckIfReported process before starting concurrently the
SendParamedics (Id:3) and SendPolice (Id:4) processes, thus
realizing a parallel split pattern. The corresponding specification
is provided in Listing 10.

Listing 10. LOTOS specification for FindHospital process.
process FindHospital [SEND, RECV] (Id:Int) : exit :¼
RECV !Id !1 !RUN !void;
ParallelSplit [SEND, RECV] (Id, insert(4, insert(3, {})))

44exit
endproc
The SendParamedics and SendPolice processes both await
a RUN message from the FindHospital process (Id:2) before
executing and eventually starting the Mark-AsReported process
(Id:5). Only the definition for Send-Paramedics is given in
Listing 11 since SendPolice has the exact same implementation.

Listing 11. LOTOS specification for SendParamedics process.
process SendParamedics [SEND, RECV] (Id:Int) : exit :¼
RECV !Id !2 !RUN !void;

Sequence [SEND, RECV] ðId,5Þ44exit
endproc
The MarkAsReported process synchronizes its two incoming
branches (paramedics and police calls) before executing and
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SEND !POS (1) !POS (0) !RUN !POS (0)

RECV !POS (6) !POS (5) !RUN !POS (0)

SEND !POS (6) !POS (5) !RUN !POS (0)

SEND !POS (5) !POS (3) !RUN !POS (0)
RECV !POS (5) !POS (4) !RUN !POS (0)

RECV !POS (1) !POS (0) !RUN !POS (0)

RECV !POS (4) !POS (2) !RUN !POS (0)
SEND !POS (5) !POS (3) !RUN !POS (0)

SEND !POS (5) !POS (4) !RUN !POS (0)

RECV !POS (5) !POS (3) !RUN !POS (0)
SEND !POS (5) !POS (4) !RUN !POS (0)

SEND !POS (6) !POS (1) !RUN !POS (0)
SEND !POS (2) !POS (1) !RUN !POS (0)

SEND !POS (5) !POS (3) !RUN !POS (0)

RECV !POS (5) !POS (3) !RUN !POS (0)

RECV !POS (2) !POS (1) !RUN !POS (0)

RECV !POS (5) !POS (3) !RUN !POS (0)
SEND !POS (5) !POS (4) !RUN !POS (0)

RECV !POS (5) !POS (4) !RUN !POS (0)

RECV !POS (5) !POS (4) !RUN !POS (0)

RECV !POS (3) !POS (2) !RUN !POS (0)

RECV !POS (4) !POS (2) !RUN !POS (0)
SEND !POS (5) !POS (3) !RUN !POS (0)

RECV !POS (6) !POS (1) !RUN !POS (0)

RECV !POS (5) !POS (3) !RUN !POS (0)
SEND !POS (4) !POS (2) !RUN !POS (0)

SEND !POS (5) !POS (3) !RUN !POS (0)
SEND !POS (4) !POS (2) !RUN !POS (0)

RECV !POS (5) !POS (3) !RUN !POS (0)
SEND !POS (4) !POS (2) !RUN !POS (0)

RECV !POS (4) !POS (2) !RUN !POS (0)

SEND !POS (3) !POS (2) !RUN !POS (0)

RECV !POS (3) !POS (2) !RUN !POS (0)
SEND !POS (4) !POS (2) !RUN !POS (0)

Fig. 4. LTS generated by CADP.
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eventually starting the Final process. This behavior is defined in
Listing 12.

Listing 12. LOTOS specification for MarkAsReported process.

process MarkAsReported [SEND, RECV] (Id:Int) : exit :¼
Synchronization [SEND, RECV] (insert(4, insert(3, {})), Id)
44
Sequence [SEND, RECV] ðId,6Þ44exit

endproc

Finally, the Final process (corresponding the final node of the
activity diagram) will merge its two incoming branches that were
earlier split by an exclusive choice. As a consequence, and as stated in
Listing 13, it realizes a simple merge between the branches coming
from the MarkAsReported and CheckIfReported processes.

Listing 13. LOTOS specification for Final process
process Final [SEND, RECV] (Id:Int) : exit :¼
SimpleMerge [SEND, RECV] (insert(5, insert(1, {})), id)
44exit
endproc
4.3. Properties verification

To analyze the behavior of the composite service described
above, we used the CADP toolkit, which provides an on-the-fly
model checker for regular alternation-free m-calculus formulas on
Labeled Transition Systems (LTS). The temporal logical used as
input language is an extension of the alternation-free m-calculus
(Kozen, 1983; Emerson and Lei, 1986) with boolean formulas over
actions and regular expressions over action sequences. As a
consequence, once the service composition scenario is specified
in LOTOS, CADP starts by translating the LOTOS specification into
a LTS. The LTS generated from the emergency response LOTOS
specification by CADP is provided in Fig. 4. To increase its read-
ability, a minimization according to branching bissimulation was
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achieved using CADP. To realize such graph reduction, CADP uses
the algorithm presented in Groote and Vaandrager (1990).

The developer can then describe behavioral properties regard-
ing the composition using m-calculus and proceed with their
automatic verification on the generated LTS using CADP evaluator.
The evaluator will not only tell if the property is verified or not
but it will also construct examples (or counter examples) to
understand why. CADP evaluator input language can be extended
via macro-expansion in order to improve readability. In Listing
14, we provide a few macros used to verify this service composi-
tion workflow. The first macro takes two actions in parameters (A
and B) and verifies that action A necessarily leads to action B.

Listing 14. Verification macros definition.

macro A_inev_B (A, B)¼
[truen . (A) ] mu X . (otrue4 true and [not (B) ] X)

end_macro
macro ACC_REPORT()¼ ‘SEND !POS (1) !POS (0) !RUN.n’
end_macro
macro ALREADY_REPORTED()¼ ‘SEND !POS (6) !POS (1)
!RUN.n’ end_macro
macro SEND_PARAMEDICS()¼ ‘SEND !POS (3) !POS (2) !RUN.n’

end_macro
macro SEND_POLICE()¼ ‘SEND !POS (4) !POS (2) !RUN.n’

end_macro

The last four macros correspond to actions in the workflow.
For example, the SEND_PARAMEDICS macro refers to SendPar-

amedics activity execution. These action macros use UNIX
regular expressions in order to match the RUN messages corre-
sponding to each activity. Note that in these macros, POS merely
refers to the constructor for a positive integer.

Using these macros (see Listing 14), it is now possible to define
properties of the composition and verify them. In other words, we
can verify that the service composition being specified realizes the
expected behavior. One of the properties we can check is that the
process never sends the paramedics nor the police if the emergency
was already reported. This is actually a safety property because it is
used to make sure an undesirable event will never occur. This
property can be expressed in temporal logic as follows:
([ALREADY_REPORTED . SEND_PARAMEDICS ] false) and
([ALREADY_REPORTED . SEND_POLICE ] false)
Another important property we can verify is that whenever an
accident is reported, the process always sends the paramedics, unless
the emergency was already previously reported. This is actually a
liveness property because it is used to make sure a desirable event
will happen. This translates into temporal logic as follows:
A_inev_B (ACC_REPORT, SEND_PARAMEDICS or
ALREADY_REPORTED)
Both these properties were automatically verified using the
CADP evaluator and they were both evaluated as being TRUE,
meaning that they are verified.
2 http://sourceforge.net/projects/uml-s/
4.4. BPEL code generation

After the verification of the service composition specification,
the next development stage is the implementation. In a MDA
approach such as the one presented in this paper, the implemen-
tation time is greatly decreased because part of the programming
code can be generated from the specification model. This is
widely used already in software engineering where code such as
Java is generated from UML diagrams.

In the context of Web service composition, the computation is
actually achieved by the services being composed and not the
composite service itself. As a consequence, an important part of
the composite Web service code can be generated from the
workflow model. It is thus possible to use the activity diagram
previously presented in Fig. 3 to generate the BPEL code for the
composite Web service shown in Listing 15. It is worth noting
that this figure only provides the overall structure BPEL process
because the UML activity diagram does not specify any Web
service related information nor any data information. However,
we developed an open source development environment2 that
allows the developer to import existing services, specify the
composition using UML and generate the BPEL code. To be able
to generate the whole code for the composite Web service, the
framework uses a specific UML profile called UML-S (Dumez et al.,
2008c) or UML for Services engineering that customizes UML
2.x for the specific purpose of Web service composition. UML-S
has the same metamodel as standard UML, it merely defines
specific stereotypes, tagged values and constraints to increase the
expressiveness of UML models in the context of service
composition.

Listing 15. The BPEL executable code generated from UML-AD.
oprocess name¼ EmergencyResponse4
osequence4
oreceive operation¼ ReportEmergency =4
o invoke name¼ ‘‘wasAlreadyReported’’ . . . =4
o if name¼ ‘‘notAlreadyReported’’4

ocondition4not_reportedo=condition4
osequence4
oflow name¼ ‘‘Parallel’’4
o invoke name¼ ‘‘SendParamedics’’ . . . =4
o invoke name¼ ‘‘SendPolice’’ =4

o=flow4
o invoke name¼ ‘‘markAsReported’’ =4

o=sequence4
o=if4
oreply operation¼ ReportEmergency . . . =4

o=sequence4
o=process4
5. Conclusions and future work

The formal verification of Web service composition is an
important task that is not supported by current composition
languages, due to their lack of well-defined formal semantics.
This issue can be addressed using formal methods and existing
formal verification tools.

In this paper, we presented a MDA approach to specify, verify
and implement service composition using existing specification
and implementation languages. To support the formal verification
of the composition, we proposed to translate the composition
workflow model into a LOTOS formal specification. To achieve this
task, a mapping into LOTOS for each of the 20 original workflow
control-flow patterns was provided. The CADP toolset can then be
used to verify the composition via its LOTOS specification, before
generating the programming code.

http://sourceforge.net/projects/uml-s/
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The applicability and the effectiveness of the proposed meth-
odology was illustrated through an example. The UML activity
diagram was used to model the composition in a workflow. It was
then translated into LOTOS formal specification language to
proceed with the verification of temporal properties using CADP
toolset. Finally, the structure of the BPEL code was generated from
the workflow model. Future work addresses the enhancement of
the tool supporting the proposed methodology with additional
automation features as well as its application to complex case
studies that includes advanced control-flow patterns.
Table A1
Main flow-control patterns supported by BPEL.

Flow-control pattern WS-BPEL 2.0 construct

Sequence (WCP-1) osequence4
Parallel split (WCP-2) oflow4
Synchronization (WCP-3) oflow4
Exclusive choice (WCP-4) oif4=oelse4 or links within a

oflow4
Simple merge (WCP-5) oif4=oelse4 or links within a

oflow4
Multi-choice (WCP-6) Links within a oflow4
Structured synchronizing merge

(WCP-7)

Links within a oflow4

Deferred choice (WCP-16) opick4
Cancel Case (WCP-20) oterminate4
Structured loop (WCP-21) owhile4

Fig. A1. Model-driven approaches to WS composition: a classification.
Appendix A. Classification and comparison of composition
approaches

Composition approaches described in the related work section
are depicted in Fig. A1. These approaches are compared based
their support of control-flow patterns used by WS-BPEL 2.0,
which is the most common executable code for Web service
orchestration. The mapping between these Flow-control patterns
(WCP) and the BPEL constructs is provided in Table A1.

Let us first consider the five basic control-flow patterns,
namely the sequence (WCP-13 the parallel split (WCP-2), the
synchronization (WCP-3), the exclusive choice (WCP-4) and the
simple merge (WCP-5). The sequence enables the developer to
execute activities in a given order, as opposed to the parallel split
that is used to execute them simultaneously. The synchronization
joins parallel execution paths and waits for all of them to finish
before continuing. The exclusive choice (or XOR-split) where only
one of several branches gets chosen according to a condition.
Finally, the last basic pattern is the simple merge that joins two or
more alternative branches without synchronization.

Most of the models depicted in Fig. A1 support the five basic
control flow patterns. Only the models based on state automata
do not directly support the modeling of the parallel split and the
synchronization patterns. This is due to the fact that the seman-
tics of automata cannot model concurrency. However, solutions
have been proposed to solve this issue. For example, Yan and
Dague (2007) proposed to model each of the parallel branches as
an individual automaton and define synchronization events to
build their connections.

In the following, the models are compared based on their
support for more advanced control-flow patterns such as the
multi-Choice (WCP-6), the structured synchronizing merge (WCP-7),
the deferred choice (WCP-16), the cancel case (WCP-20) and the
structured loop (WCP-21). The multi-choice (OR-split) is an exten-
sion of the exclusive choice where more than one output branch
can be executed. The structured synchronizing merge appears in a
workflow after a multi-choice in order to merge the input
branches with synchronization. The deferred choice is a point in
a process where one of several branches is chosen based on
interaction with the operating environment. Before this point, all
output branches represent possible future courses of execution.
The cancel case terminates a whole process instance, meaning
that all executing tasks are stopped. Finally, the structured loop
has the ability to execute a task or sub-process repeatedly.

The automata support all the advanced patterns except the
multi-choice and the structured synchronizing merge due to their
lack of support for concurrent modeling. The classical and timed
Petri nets cannot represent these two patterns either because
they lack conditions on the arcs. Colored Petri nets, however, can
model all patterns as presented by Aalst et al. in van der Aalst
3 WCP-i refer to the control-flow pattern identifiers at www.workflowpat

terns.com.
et al. (2003) and Russell et al. (2006). CPN represents the multi-
choice as an exclusive choice, except that the condition of the arcs
are not necessarily distinct so that one or more output transitions
can be fired at once. For process algebras, we limited our study to
CSP, CSS and p-calculus. According to Wong and Gibbons (2007),
CSP supports all patterns. However, we are uncertain about the
structured synchronizing merge because their paper does not
mention it. CCS representation for all patterns have been provided
by Stefansen (2005). However, we consider that the structured
synchronizing merge representation is not entirely satisfactory
because it requires the number of input branches that were
executed to be known in advance. The same thing is true for
the p-calculus representation of this pattern that was given by
Puhlmann and Weske (2005). Finally, both UML-AD and BPMN
provide support for all considered patterns, as presented by
White (2004b). The comparison results for advanced control-
flow patterns support are summarized in Table A2.

Table A3 summarizes the features these formalisms provide
for designers mainly (Ferrara, 2004; Frappier and Habrias, 2006):
�
 Model checking: determines if properties (e.g., liveness and
safety) about the specification can be checked by enumeration
of the system states.

�
 Temporal logic: determines if the notation includes some first-

order (or higher-order) logic notation. Logic is useful to
express properties in an abstract manner.

�
 Provability: determines if properties about the service speci-

fication can be proved using a formal proof system.

�
 Bisimulation: checks whether the behaviors of two services or

two versions of the same service are equivalent; or, if they are
different.

�
 Simulation: checks whether the behavior of a service is

included within the behavior of other interacting services.

www.workflowpatterns.com
www.workflowpatterns.com
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�
 Execution traces of the service: to understand the behavior of
the service.

For example, process algebra formalisms provide all facilities
that allow designers to verify the WS composition. Note that
these formalisms do not include a logic notation. However, their
semantics are defined in terms of a set of inference rules
expressed in a logic notation (Ferrara, 2004). Simulation and
bisimulation features are also provided, which are required for
automatic composition. However, in spite of the facilities they
provide, specification using process algebra is rather complicated
and difficult to read for complex WS composition.

Petri net formalisms do not include logic and do not allow
simulation or bisimulation, but they provide facilities to allow
designers to verify properties, which can be checked by enumera-
tion of the system states, or using formal proof systems or by
execution traces of the service. The graphical nature of these
formalisms and the available verification tools make Petri net
formalisms more attractive to the community.

As described in Table A3, business process methods do not
support verification, since their semantics are not based on formal
notations. If the verification of business process models is
required, it is necessary to convert these models to formal ones
such as Petri net or p-calculus (Staines, 2008; Dijkman et al.,
2008). Such approach is interesting because business process
models are compact, easy to use and understand. Service compo-
sition development using tools such as BPMN or UML-AD is thus
very popular.
Appendix B. Overview of LOTOS

LOTOS (Brinksma, 1988) is a formal description developed
within ISO (International Standards Organization) for the specifi-
cation of open distributed systems, especially protocols in OSI
standards. LOTOS is based on process algebraic methods by
Table A2
Advanced flow-control patterns support.

Family Model Multi-
choice

Deferred
choice

Cancel
case

Sync.
merge

Struct.
loop

State-

transition

Automata – þ þ – þ

Petri Net Classical – þ þ – þ

Colored þ þ þ þ þ

Timed – þ þ – þ

Process

algebra

CSP þ þ þ ? þ

CCS þ þ þ þ/– þ

p-calculus þ þ þ þ/– þ

LOTOS þ þ þ þ/– þ

Business

Process

UML-AD þ þ þ þ þ

BPMN þ þ þ þ þ

Table A3
Verification features.

Family Model Model checking Bisimulation

State transition Automata þ –

Petri net Classical þ –

Colored þ –

Timed þ –

Process algebra CSP þ þ

CCS þ þ

p-calculus þ þ

LOTOS þ þ

Business process UML-AD – –

BPMN – –
combining the features provided by CCS (Milner, 1982) and CSP
(Hoare, 1978).

The LOTOS behavior operators are summarized in Table A4,
where G refers to a gate (channel of communication between
processes), X to a variable, P to a process, S to a sort, V to a value
and B to a behavior.

The symbol stop denotes an inactive behavior (Cornejo et al.,
2001; Ferrara, 2004). It can also be viewed as the end of a
behavior. The symbol exit is used to describe a normal termina-
tion of a process. The expression G !V ?X:S ; B denotes that the
behavior B is interacting on gate G, sending value V and receiving
in variable X a value of sort S, then continues its execution. The
non-deterministic choice between two behaviors is represented
using ‘‘[]’’. ½E��4B denotes that the process should behave as
B if E is true. LOTOS has three parallel composition operators. The
general case is given by the expression B1 9½G1, . . . ,Gn�9 B2, which
denotes the parallel execution of B1 and B2 with synchronization
on gates G1, . . . ,Gn. In other words, B1 and B2 evolve indepen-
dently but synchronize on gates G1, . . . ,Gn. B1 and B2 also
synchronize on the termination exit. The two other operators
are particular cases of the former one: B1999B2 denotes the
execution of B1 and B2 in parallel without synchronization
(interleaving) and B199B2 means that B1 and B2 synchronize on
all actions. The sequential execution is described by B144B2,
which denotes the execution of B1 is followed by B2 when B1

terminates. The expression B½G1, . . . ,Gn� (V1, . . . ,Vm) is a call to the
process B with gate parameters G1, . . . ,Gn and value parameters
V1, . . . ,Vm. More precisely, the full syntax of a process is described
as follows:
process P[G_{0}, y, G_{m}] (X_{0}:T_{0}, y,

X_fng : T_fngÞ : func :¼
B

endproc
where B is the behavior of the process P and func corresponds to
the functionality of the process: either the process loops endlessly
Simulation Execution trace Logic Provability

– þ þ þ

– þ – þ

– þ – þ

– þ – þ

þ þ þ þ

þ þ þ þ

þ þ þ þ

þ þ þ þ

– – – –

– – – –

Table A4
LOTOS behavior operators.

Behavior operator Meaning

stop Inaction

exit Successful termination

G !V ?X:S ; B Action Prefix

B1 [] B2 Choice

½E��4B Conditional

B19½G1 , . . . ,Gn�9B2 Parallel composition

B1999B2 Interleaving

B199B2 Full synchronization

B1 44B2 Sequential composition

P½G1 , . . . ,Gn �ðV1 , . . . ,VmÞ Process call
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(noexit), or it terminates (exit) possibly returning results of type
TjA1: :n (exitðT0, . . . ,TnÞ).
Appendix C. LOTOS descriptions of advanced patterns

C.1. Branching and synchronization patterns

This subsection provides the LOTOS translation for four more
complex branching and merging concepts that arise in business
processes: the multi-choice, the structured synchronizing merge, the
multi-merge and the structured discriminator.

Multi-choice—A split in the control flow between two or more
execution paths. The thread of control is passed to one or several
outgoing branches. This pattern is essentially an analogue of the
exclusive choice pattern in which multiple outgoing branches can be
chosen and executed. In the LOTOS specification provided in Listing
16, the choice between the output branches is nondeterministic.

Listing 16. LOTOS translation for multi-choice pattern.

(n Initially, Nb_active¼0 n)

process MultiChoice [SEND, RECV] (Id:Int, Ids_dst:IntSet,

Id_merger:Int, Nb_active:Int): exit :¼
½emptyðIds_dstÞ��4

SEND !Id_merger !Id !ACT !Nb_active; exit
[]

½notðemptyðIds_dstÞÞ��4
(choice Dest:Int []

½Dest isin Ids_dst��4SEND !Dest !Id !RUN !void;
(MultiChoice [SEND, RECV] (Id, remove(Dest, Ids_dst),

Id_merger, Nb_activeþ1)
[]
(nn Notify which branches are active for later merging

nn)

SEND !Id_merger !Id !ACT !Nb_activeþ1; exit)
)

endproc

In this specification, a random branch is chosen in the same
way as in the exclusive choice. The difference lies in the fact that
the ‘‘[]’’ operator is used without guards after the selection to
realize a nondeterministic choice between recursion and exit. If
the recursion is chosen, the pattern will select an additional
outgoing branch before reproducing the same nondeterministic
choice. This branching pattern makes the future merging of the
parallel execution branches difficult, especially when synchroni-
zation between the input branches is required (i.e. structured
synchronizing merge). Indeed, synchronization should only be
made on activated input branches (the branches that were
selected by the previous multi-choice pattern). The branches that
have been activated can only be known at runtime. To solve this
problem, the MultiChoice process sends an ACT message to the
process that will merge the branches. This message contains a
parameter (Nb_active) which indicates the number of branches
that have been activated.

Structured synchronizing merge—Mechanism to merge two or
more execution branches such that synchronization is achieved
on the activated input branches before passing the thread of
execution to the subsequent branch. This structure provides a
means of merging the branches resulting from a multi-choice
construct earlier in the workflow. A specification in LOTOS for this
pattern is proposed in Listing 17. It takes in parameters the
identifiers of the activities (branches) to merge (Ids_sec), the
identifier of the current merging process (Id), the number of
active input branches (Nb_active) and the number of input
branches that have already terminated (Nb_synced).

Listing 17. LOTOS translation for structured synchronizing merge
pattern.
(n Initially, Nb_active¼Nb_synced¼0 n)

process SynchronizingMerge [SEND, RECV] (Ids_src:IntSet,
Id:Int,

Nb_active:Int, Nb_synced:Int): exit :¼
½Nb_active¼ 0��4

(RECV !Id ?dummy:Int !ACT ?Nb:Int;

ð½Nb_synced¼Nb��4exit
[]

½Nb_syncedoNb��4
SynchronizingMerge [SEND, RECV] (Ids_src, Id, Nb,

Nb_synced) )
)

[]
(RECV !Id ?Source:Int !RUN !void [Source isin Ids_src];

ð½Nb_syncedþ1¼Nb_active��4exit
[]

½Nb_syncedþ1o4Nb_active��4
SynchronizingMerge [SEND, RECV](remove(Source,

Ids_src), Id, Nb_active, Nb_syncedþ1))
)

endproc
The number of input branches that were activated (Nb_
active) is retrieved from the ACT message that was sent to the
merging process by the earlier multi-choice process. The number of
input branches that have already terminated (Nb_synced) is
incremented on recursion, upon reception of a RUN message from
an input branch. To achieve synchronization, the Synchronizing-
Merge process waits for all active input branches to terminate (i.e.
[Nb_synced¼Nb_active]) before exiting. Upon exit, the process
that called the synchronizing merge can continue its execution.

Multi-merge—Mechanism to merge two or more execution
branches without any synchronization. The termination of each
input branch will result in the thread of control being passed to
the subsequent branch. This structure provides a means of
merging the branches resulting from a multi-choice construct
earlier in the workflow. A specification in LOTOS for this pattern is
proposed in Listing 18. The specification is similar to the one of
the structured synchronizing merge. However, the MultiMerge

process takes one more parameter: the identifier of the next
process to be executed upon the completion of an input branch
(Id_nxt). More precisely, the merging process realizes this
behavior by sending a RUN message to the next process (activity)
in the workflow, whenever it receives a RUN message from an
incoming process (branch). The number of input branches that
were activated by the earlier multi-choice construct is used in this
specification to detect the end of the merging process resulting in
the exit action.

Listing 18. LOTOS translation for multi-merge pattern.
(n Initially, Nb_active¼Nb_merged¼0 n)

process MultiMerge [SEND, RECV] (Ids_src:IntSet, Id:Int,

Id_nxt:Int, Nb_active:Int, Nb_merged:Int): exit :¼
½Nb_active¼ 0��4

(RECV !Id ?dummy:Int !ACT ?Nb:Int;

ð½Nb_merged¼Nb��4exit
[]

½Nb_mergedoNb��4
MultiMerge [SEND, RECV] (Ids_src, Id, Id_nxt, Nb,
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Nb_merged))
)

[]
(
(n Wait for incoming branch to terminate n)

RECV !Id ?Source:Int !RUN !void [Source isin Ids_src];
(n Call next activity n)

SEND !Id_nxt !Id !RUN !void;
(n Check if there are more active branches to merge n)

ð½Nb_mergedþ1¼Nb_active��4exit
[]

½Nb_mergedþ1o4Nb_active��4
MultiMerge [SEND, RECV] (remove(Source, Ids_src), Id,

Id_nxt, Nb_active, Nb_mergedþ1))
)

endproc
Structured discriminator—Mechanism to merge two or more
parallel execution branches so that the thread of execution is
passed to the subsequent branch when the first input branch is
finished. The termination of other input branches does not result
in the thread of control being passed on. The structured discri-
minator resets once all input branches are finished. This pattern
can only be used after a parallel split pattern. Its LOTOS specifica-
tion is given in Listing 19. The Discriminator process takes the
identifier of the next process in the workflow to be executed
(Id_nxt) upon the completion of the first (fastest) input branch.
Once the first input branch is finished, the Discriminator

process calls the Synchronization process in order to wait
from the other input branches to finish before exiting.

Listing 19. LOTOS translation for structured discriminator
pattern.

process Discriminator [SEND, RECV] (Ids_src:IntSet, Id:Int,

Id_nxt:Int): exit :¼
(n Wait for first branch to complete n)

RECV !Id ?Id_src:Int !RUN !void [Id_src isin Ids_src];
(n Call next process n)

SEND !Id_nxt !Id !RUN !void;
(n Wait for other branches to complete and ignore them n)

Synchronization [SEND, RECV] (remove(Id_src, Ids_src), Id)

44exit
endproc

C.2. Structural patterns

Structural patterns show restrictions on workflow languages,
for example that arbitrary loops are not allowed. LOTOS easily
handles both of the following patterns.

Arbitrary cycles—The ability to represent cycles (loops) that
have more than one entry or exit point. This is also referred to as
an iteration pattern. In LOTOS, arbitrary cycles can be achieved
using an exclusive choice together with a simple merge.

Implicit termination—A given process instance should termi-
nate when there is no remaining work to do either now or at any
time in the future and the process instance is not in deadlock. This
is also referred to as a termination pattern. In LOTOS, a process
simply executes the exit action once it finishes its work.

C.3. Multiple instance patterns

Multiple instance patterns describe situations where there are
multiple threads of execution active in a process model, which
relate to the same activity (and hence share the same
implementation definition). LOTOS only provides a partial sup-
port for these patterns because it cannot create a dynamic
number of new instances of an activity. The number of instances
needs to be specified at design time.

Multiple instances without synchronization—Within a given
process instance, multiple instances of a task can be created. These
instances are independent from each other and run concurrently.
There is no requirement to synchronize them upon completion.
LOTOS can create several instances of the same process and have
them run concurrently using the ‘‘999’’ operator as presented in
Listing 20, provided that the number of instances is known at design
time. In the code sample provided, three instances for the process S1
are created. LOTOS does not require these instances to be synchro-
nized upon exit. Once all the instances have been created, they
should all await for a RUN message before starting their execution.
The LOTOS code provided in Listing 21 can then be used to start the
instances. Basically, the StartInstances process takes in para-
meter the identifier of the process whose instances should be started
(ProcessId) and the number of instances to start (NbInstances).
It will then send as many RUN messages as instances to start.

Listing 20. LOTOS translation for multiple instances without
synchronization pattern.
behavior

S1[SEND,RECV](1) 999 S1[SEND,RECV](1) 999
S1[SEND,RECV](1)

ðn999 . . . nÞ
where

(n y n)
Listing 21. LOTOS process for starting multiple instances of a
process.
process StartInstances [SEND, RECV] (Id:Int, ProcessId:Int,

NbInstances:Int) : exit :¼
SEND !ProcessId !Id !RUN !void;

ð½NbInstances¼ 1��4exit
[]

½NbInstances41��4
StartInstances [SEND, RECV] (Id, ProcessId,

NbInstances�1))
endproc
Multiple instances with a priori design time knowledge—Within a
given process instance, multiple instances of a task can be
created. The required number of instances is known at design
time. These instances are independent from each other and run
concurrently. It is necessary to synchronize the task instances at
completion before any subsequent tasks can be triggered. The
process for creating process instances and starting them is
identical as in the previous pattern. However, to achieve the
multiple instances with a priori design time knowledge pattern, it
is necessary to synchronize the instances on completion. This can
be achieved in LOTOS using the code provided in Listing 22. It is
an adaptation of the Synchronization specification where all
awaited processes have the same identifier (ProcessId).

Listing 22. LOTOS code to wait for the completion of several
instances of a process.
process SynchronizeInstances [SEND, RECV] (Id:Int,

ProcessId:Int, NbInstances:Int) : exit :¼
RECV !Id !ProcessId !RUN !void;

ð½NbInstances¼ 1��4exit
[]
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½NbInstances41��4
SynchronizeInstances [SEND, RECV] (Id, ProcessId,

NbInstances�1))
endproc
Multiple Instances with a priori Run-Time Knowledge—This
pattern is similar to the previous one, except that the number
of instances is not at run-time only. As explained earlier in this
subsection, LOTOS does not support such behavior because the
number of instances must be specified at design time.

Multiple Instances without a priori Run-Time Knowledge—This
pattern is also similar to the previous ones except that the
number of instances is not known a priori. At any time, whilst
instances are running, it is possible for additional instances to be
initiated, based on a number of run-time factors. This behavior is
not supported by LOTOS either.

C.4. State-based patterns

State-based patterns reflect situations that are more easily
realized in process languages that support the notion of state.
While this is not the case for LOTOS, it is still possible to specify
these patterns.

Deferred Choice—A deferred choice is much like an exclusive
choice except that the selection of the output branch is not made
explicitly in the activity, but rather by the environment. This
behavior can be specified in LOTOS using the ‘‘[]’’ operator
without any guard, resulting in the choice being made by the
environment instead of the activity itself.

Interleaved Parallel Routing—Mechanism to execute a set of tasks
in a sequential order that is only partially defined. This pattern offers
the possibility of relaxing the strict ordering that a process usually
imposes over a set of tasks. This behavior can be achieved in LOTOS
by making a random choice between the processes and by using
recursion to reproduce the choice until all processes in the sequence
have been executed. The corresponding LOTOS specification is given
in Listing 23. The LOTOS choice operator is used here to make the
random choice between the processes. For the UnorderedSequence
process to work, it is necessary that all processes in the sequence
notify the Unordered-Sequence process when they complete their
execution. The notification can be made using a simple RUN message.
As a consequence, the UnorderedSequence process awaits a RUN

message whenever it calls another process to make sure that the
process has terminated before calling the next process in the
sequence.

Listing 23. LOTOS translation for interleaved parallel routing
pattern.
process UnorderedSequence [SEND, RECV] (Id:Int,

SeqIds:IntSet) : exit :¼
½emptyðSeqIdsÞ��4exit
[]

½notðemptyðSeqIdsÞÞ��4
(choice SeqId:Int []

½SeqId isin SeqIds��4
Sequence [SEND, RECV] ðId, SeqIdÞ44
RECV !Id !SeqId !RUN !void; (n Wait for process to

complete n)

UnorderedSequence [SEND, RECV] (Id, remove(SeqId,
SeqIds))

)
endproc
Milestone—A task is only executed when the process instance
is in a specific state. This state is a specific execution point in the
process that is called milestone. Whenever the milestone is
reached, the task may be executed. If the process instance has
progressed beyond the milestone, then the task can no longer be
executed. We propose to model this in LOTOS by considering that
the milestone is a RUN message. If two processes wait for the
same RUN message then only one of them will be executed, in a
nondeterministic fashion. For example, we consider that a process
A is followed by a process B and that the milestone is reached
when A is complete. Upon completion, A sends a RUN message to
B. The solution is to have another process C wait for the RUN

message from A to B and execute the milestone task if such
message is received. Either B or C can receive the RUN message
from A. If B receives the message, then the milestone task will not

be executed. The LOTOS specification for the process that waits
for the milestone is provided in Listing 24. The task that can only
be executed when the milestone is reached is identified by
Id_nxt.

Listing 24. LOTOS translation for milestone pattern.
process Milestone [SEND, RECV] (Id_src:Int, Id:Int,

Id_nxt:Int): exit :¼
(n Wait for milestone n)

RECV !Id !Id_src !RUN !void;
(n Call next process n)

SEND !Id_nxt !Id_src !RUN !void;
(n Loop in case we reach the milestone again n)

Milestone [SEND, RECV] (Id_src, Id, Id_nxt)
endproc
C.5. Cancellation patterns

The cancellation patterns describes the withdrawal of one or
more activity from the workflow process.

Cancel Task/Activity—An enabled task is withdrawn prior to
starting its execution. In LOTOS, we can specify this by adding a
new message action that would cause the withdrawal of destina-
tion activity (e.g. a CANCEL message). Processes would then wait
either for a RUN message that would cause them to execute
normally, or a CANCEL message that would cause them to exit. An
example of such LOTOS process is provided in Listing 25.

Listing 25. LOTOS code for task cancellation.
process S1 [SEND, RECV] (Id:Int): exit :¼
(RECV !Id ?Dummy:Int !CANCEL !void;
(n Task is cancelled n)

exit)
[]
(RECV !Id ?Sender:Int !Run !void;
(n Do normal work n)

exit)
endproc
Cancel Case—A complete process instance is removed, includ-
ing currently running tasks and the ones that may execute at
some future time. This is specified in LOTOS as in the previous
pattern except that the CANCEL message should be broadcasted to
all tasks in the process instance. Note, however, that one can only
withdraw tasks that have not already started.
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