
Epistemic Verification of Anonymity

Jan van Eijck

CWI, Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam and UiL OTS, Utrecht University, Trans
10, 3512 JK Utrecht

Simona Orzan
Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven

Abstract

Anonymity is not a trace-based property, therefore traditional model checkers are not directly able to express
it and verify it. However, by using epistemic logic (logic of knowledge) to model the protocols, anonymity
becomes an easily verifiable epistemic formula. We propose using Dynamic Epistemic Logic to model
security protocols and properties, in particular anonymity properties. We have built tool support for DEL
verification which reuses state-of-the-art tool support for automata-based verification. We illustrate this
approach by analyzing an anonymous broadcast protocol and an electronic voting protocol. By comparison
with a process-based analysis of the same protocols, we also discuss the relative (dis)advantages of the
process-based and epistemic-based verification methods in general.

Keywords: dynamic epistemic modeling, protocol verification, anonymity

1 Introduction

Protocols involving sensitive personal information or private choices have anonymity
as a central security requirement. Typical examples are electronic voting, web
browsing, posting on bulletin boards, sharing files, auctions. In order to prove
claims about the correctness of such protocols, (tool-supported) formal reasoning
frameworks for anonymity are desirable. Unfortunately, providing these is not
straightforward, since anonymity does not quite fit in the most successful auto-
mated verification framework to date, which is automata-based model checking.
Traditional security properties like secrecy and authentication are expressible as
reachability properties of finite-state systems and therefore allow for trace-based
model checking. As noted by Schneider and Sidiropoulos [32], a formal interpre-
tation of anonymity comprises for a given set of traces the existence of another,
observationally indistinguishable set of traces in which different sensitive personal
information is attributed to the same person or the same choice is attributed to
different participants. Thus, anonymity is not trace-based as secrecy and authen-
tication, but is a higher-order trace property. Note also that, unlike traditional

Van Eijck and Orzan

properties, anonymity depends on the point of view of the untrusted observer: par-
ticipant, outsider, coalition of participants. This means that formalisms relying
on trace specifications require a remodeling of the protocol for every anonymity
property which is to be verified.

Both these problems (anonymity being a higher-order trace property and a
perspective-dependent property) are implicitly solved by approaches based on epis-
temic logic [9,28,25,20]. There, the focus is on the information flow of the protocol
and not on the observable behavior. An epistemic state of the protocol is a snap-
shot of all the information and uncertainties of the participating parties about the
relevant facts (modeled by propositions), as well as about the information held by
the other parties. Anonymity of an agent in a given epistemic state translates as
the uncertainty of the observer regarding a particular proposition which models
sensitive information belonging to that agent. This is expressible as an epistemic
formula involving the knowledge modality (for instance, ¬Kcayes expresses that c
does not know that a voted ’yes’). However, the logic-based treatments of security
protocols and anonymity in particular [9,28,31,20] are often complex and protocol
modeling requires a high degree of expertise. The information updates generating
the transitions between epistemic states are especially tedious to specify, because
logics are geared to expressing properties rather than operational protocol steps.

In this paper, we investigate the application of the recently developed Dynamic
Epistemic Logic (DEL) [5,4,6] to automatic verification of anonymity. DEL distin-
guishes from other logics by the introduction of action models, which are Kripke
structures describing information updates corresponding to various forms of com-
munications (public announcements, passing messages, sharing secrets, telling lies).
The actual updates are performed by computing the update product of an epistemic
model and an action model. This action models/update product combination has
the advantage of a strong operational flavor and intuitive graphical representations
of the actions being taken, which suits our main goal of modeling and verifying
security protocols.

Our contribution is three-folded: we define a DEL verification methodology; we
give tool-support for this methodology, built on state-of-the-art tool-support for
automata-based verification; and, by experimenting on two example protocols, we
derive insights on the relative (dis)advantages of the process-driven and epistemic-
driven approaches to the verification of anonymity.

In our DEL methodology, protocol analysis consists of describing action models
corresponding to the protocol steps, automatically generating the final epistemic
state by repeatedly applying the update product operation, and model checking
epistemic formulas (expressed in PDL [30]) in this final state. Since the seman-
tics of both epistemic states and action models is given by Kripke structures, the
existing algorithmic and tool support for finite-state model checking of behavior
specifications is immediately reusable in the DEL setting. In this paper, we specif-
ically use the µCRL toolset [8] and the CADP model checker [17], together with
LYS, a small new dedicated toolset [1] that supports the graphical visualization of
the models and the execution of the update product.

We demonstrate the DEL modeling approach on Chaum’s Dining Cryptogra-
phers protocol [10] and an abstraction of the FOO voting scheme [18]. The Dining

2

Van Eijck and Orzan

Cryptographers protocol has been analyzed with many methods and tools, from
OBDDS [28] to probabilistic verification [7]. According to [13], our earlier work [14]
on DEL modeling and tooling compares favorably to [28], as well as [27]. FOO is
a protocol that has recently received much attention. It has been formally ana-
lyzed using applied π-calculus supported by the ProVerif tool [26] and anonymity
has been proved there manually. Other anonymity protocols, Onion Routing and
Crowds, have been analyzed in an epistemic modeling framework in [19]. That
framework is well tailored to specifying and verifying information hiding properties,
although not yet automated. Epistemic modeling has also recently been applied to
secrecy protocols in [24,29], but without the action models and the update product.

2 Dynamic epistemic modeling and verification

A model for representing the state of knowledge of a group of agents is a Kripke
structure with labels for the individual agents, and valuations for the states. It is
common to call the states of the Kripke structure worlds and to refer to the struc-
tures as epistemic models [23,11,16] or epistemic states. The labels i are interpreted
as the epistemic alternatives for agent i. If the models depict knowledge (as op-
posed to mere belief, or irrational preference), the label-relations i→ are equivalence
relations, and what we get are so-called multimodal S5 Kripke models.

Definition 2.1 (Epistemic model) Let a set of propositional variables P and a
finite set of agents Ag be given. An epistemic model is a triple M = (WM , VM , RM)
where WM is a set of worlds, VM : WM → P(P) assigns a valuation to each world
w ∈WM , and RM : Ag → P(W 2

M) assigns an accessibility relation i→ to each agent
i ∈ Ag. A pair M = (M,U) with U ⊆ WM is an (multiple pointed) epistemic
model, indicating that the actual world is among U .

The propositions in P model the facts of interest, for instance ’voter Alice voted
yes’, ’the coin we’ve just flipped is head ’. The valuation function describes the
possible worlds, by specifying which facts hold in every world. Take, for instance,
the leftmost epistemic model in Figure 1. There, P is {p, q} and the worlds are the
four different possibilities for the truth of p and q (∅, p, q, pq). One of them is the
actual world (marked with a colored background), where p is false and q true. The
epistemic accessibility relations a→, b→, c→ represent together the situation where
agent a knows the actual value of p and agent b knows the actual value of q, while
the third agent c knows nothing about either p or q.

More precisely, an epistemic formula Kaφ evaluates to true in a world if in that
world every a-accessible world makes φ true. In the actual world of the example
epistemic model, Ka¬p is true, for ¬p is true in all worlds that are a-accessible from
the actual world. So is Kbq as well. On the other hand, Kaq is false in the actual
world. More subtly, Ka(Kbq ∨ Kb¬q) is true in the actual world, for it happens
to be the case that Kbq is true in the actual world, and Kb¬q is true in the only
other world that is a-accessible from the actual world. This illustrates how the
epistemic models encode information about what agents know about the knowledge
or ignorance of other agents. In the example, a does not know about q, but a knows
that b knows whether q. Also, all agents know that c is ignorant about p and q.

3

Van Eijck and Orzan

 p q a,b,c

 q

b,c

 p

a,c

c

a,b,c

c

a,c a,b,c

b,c

a,b,c

⊗
 q a,b,c

=

 p q a,b,c

 q

b,c

a,b,c

Figure 1. An epistemic model (left) updated with an epistemic action representing a public announcement
(middle) transforms into a new epistemic model (right).

Formally, the epistemic formulas are described in the convenient language of
epistemic PDL, propositional dynamic logic [30,21,22] with the atomic actions in-
terpreted as epistemic accessibilities:

φ ::=> | p | ¬φ | φ1 ∧ φ2 | [π]φ
π ::= a | ?φ | π1;π2 | π1 ∪ π2 | π∗

We use ⊥ for ¬>, φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2), φ1 → φ2 for ¬(φ1 ∧ ¬φ2), 〈π〉φ
for ¬[π]¬ψ, Kaφ for [a]φ. If {b1 · · · bn} is a finite set of agents, [(b1 ∪ · · · ∪ bn)∗]φ
is usually written as Cb1···bn φ and expresses that φ is common knowledge among
the agents {b1 · · · bn}. The truth definition for epistemic PDL defines the relations
M |=w φ and [[π]]M , by mutual recursion. Key clauses are:

M |=w [π]φ iff for all v with (w, v) ∈ [[π]]M

it holds that M |=v φ

[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π∗]]M = ([[π]]M)∗,

where ◦ denotes relational composition and ∗ denotes transitive closure.
Intuitively, epistemic updates are acts of communication that change epistemic

models. A breakthrough in epistemic logic occurred when [5] proposed to view
epistemic updates as a kind of Kripke models, with the important difference that
the worlds do not carry a valuation but a precondition formula. See also [3,5,4].
Formally, we define:

Definition 2.2 [Action models for a given language L] Let a finite set of agents
Ag and an epistemic language L be given. An action model for L is a triple
A = (WA,pre, RA) where WA is a set of action states, pre : WA → L assigns a
precondition to each action state, and RA : Ag → P(W 2

A) assigns an accessibility

relation i→ to each agent i ∈ Ag. A pair A = (A,S) with S ⊆ WA is an action
model, indicating that the actual action that takes place is a member of S.

We work with the epistemic language of PDL formulas. The simplest example
of action model is the public announcement of some basic proposition. See, for
instance, the middle Kripke structure of Figure 1, where the fact that q holds is
publicly announced. More evolved examples are shown in Figure 2 and commented

4

Van Eijck and Orzan

at the end of this section. It turns out that defining the result of updating an
epistemic model with an action model as the product of the epistemic model and
the action model, restricted in a suitable way to take the preconditions in the action
model into account, has the desired effect. Formally:

Definition 2.3 [Update] Given an epistemic model (M,U) and an action model
(A,S), we define the update M ⊗A as (W ′, V ′, R′) and the update
(M,U)⊗ (A,S) as ((W ′, V ′, R′), {(u, s) | u ∈ U, s ∈ S, (u, s) ∈W ′}), where

W ′ := {(w, s) | w ∈WM , s ∈WS ,M |=w pre(s)},
V ′(w, s) := VM (w),

(w, s) i→ (w′, s′) ∈ R′ :≡w i→ w′ ∈ RM and s i→ s′ ∈ RA.

The language of PDLDEL (update PDL) is given by extending the PDL language
with update constructions [A,S]φ, where (A,S) is a (finite) action model. The
interpretation of [A,S]φ in M , given w is: at all pairs (w, s) with s ∈ S and w

satisfying the precondition of s, φ is true in the update result M ⊗ A. In the
remainder of the paper, we will use the graphical representation of action models,
rather than the textual one.

3 LYS - a knowledge analysis toolset

In order to experiment with the idea of dynamic epistemic modeling and verification
of protocols, we have built tool support for computing epistemic updates: a Haskell
version (DEMO [14]) and a C version (LYS [1]). In this paper, only LYS has been
used. Since Kripke models serve also as semantic models for finite-state systems,
standard automata-based model checkers are applicable to epistemic model checking
as well. We use the alternation-free µ-calculus model checker of CADP [17]. To
gain access to this model checker, LYS uses the AUT file format [17] to represent
the epistemic and action models.

We see anonymity as the intruder’s inability to distinguish between the real
situation and another possible one. Namely, between the actual world, where the
agent that should remain anonymous is responsible for an event E, and a world
where some other agent is responsible for E. Making a secret choice is expressed
as setting (and thus ’knowing’) the value of a propositional variable previously
assigned to represent that choice. An anonymity violation amounts in this case to
an unauthorized agent managing to deduce the value of that variable.

Anonymity is evaluated in an epistemic state (model), therefore it can now be
seen as a reachability property. Checking whether anonymity holds means evalu-
ating the respective knowledge formula in all epistemic states reachable from the
initial epistemic state by update steps corresponding to communication steps of the
protocol.

We consider the initial epistemic state as being the one containing no informa-
tion, i.e., where there is one world for each valuation, all the indistinguishability
relations form complete graphs, and all the worlds are marked actual. The rest
of the modeling process consists of defining appropriate action models to represent
the steps of the protocol as faithfully as possible. After that, the epistemic states

5

Van Eijck and Orzan

 p <=> q a,b,c

 T

c

a,b,c

 p <=> q a,b

 T

c

a,b,c

 p <=> q a,b,c

 p => q

c

 q => p

ca,b,c

c

a,b,c

Figure 2. The three action primitives, randomly instantiated. A group announcement to a, b that
p ⇔ q holds, a secret announcement to a, b that p ⇔ q holds and a group announcement to a, b that one
of the choices expressed by the formulas p ⇒ q, p ⇐ q, p ⇔ q has been taken. These primitives can be
instantiated by using the LYS command amnew (generate a new action model) with the flags -group,-secret
and -choice, respectively.

of the protocol will be generated by means of repeated application of the update
product operation. The required anonymity properties can then be verified by PDL
model checking on the final epistemic states. Whenever a property is not met, a
counterexample is provided, in the form of the valuation of an actual world w in
which the property evaluates to false. Note that, since the knowledge grows mono-
tonically, it is not needed to verify the intermediate epistemic states. But this is
of course possible. See Sections 4 and 5 for examples and Section 6 for a further
discussion on the epistemic verification process.

Building faithful actions models
When modeling security protocols, translating the informal description of the pro-
tocol steps to action models can be a challenging and subjective task. But this
is in fact always the case with modeling. Compared with other logical modeling
approaches, action models have the advantage of being separated from the updates
that they are expected to determine. They just have to faithfully represent the
communication act that is taking place and all uncertainties regarding that act.

Action signatures [4] are abstract communication patterns, action models where
the preconditions and labels on arrows are left unspecified. We identify three action
signatures as being the most common: group announcement, secret message and
nondeterministic (private) choice, shown in Figure 2 in some random instantiations.
They are implemented as commands in LYS, and thus can be easily instantiated. In
Figure 4, the group announcement and the choice primitives can be seen as they are
instantiated for specific steps of the Dining Cryptographers protocol (also discussed
in the next section). More elaborated actions should be constructed manually.
See [4,14] for many examples and intuitions behind constructing complex action
models.

The action model in Figure 1, representing a public announcement, corresponds
to an usual broadcast message. Note that it is actually more expressive than broad-
cast, since the parties do not only learn the content of the message being broad-
casted, but they also learn that all the other parties have heard the same message.
The first action model from Figure 2 is a public communication to a group of agents
(to agents a, b, in this case), and can be seen as a secure multicast or a sending a
message on a secure channel. The actual action (indicated by the shaded square),
is an update with p ⇔ q, but agent c confuses this with the trivial update > (an
update where nothing gets communicated). Thus, agents a and b will learn p⇔ q,

6

Van Eijck and Orzan

but agent c will not. The second model is a secret announcement, where c’s epis-
temic situation remains altogether unchanged, since he does not even notice that a
communication is taking place. Finally, the rightmost one models a nondetermin-
istic choice, made, in this particular case, by a and b together. c observes which
are the choices, but not which one was made. This pattern can be used to model
setting a variable, revealing a value to another agent, or simply branching the run
of the protocol into more possible scenarios.

4 The dining cryptographers

Chaum’s dining cryptographers protocol [10] is probably the most well-known ex-
ample of a protocol where anonymity is the main requirement. The story goes as
follows: three cryptographers have dinner together. At the end of the evening, they
learn that the bill has been payed anonymously - by one of them, or by the NSA
(the National Security Agency). They respect each other’s right to anonymity, but
they still wish to find out whether the payer was NSA or not. To achieve this, they
come up with the following protocol: each pair of cryptographers generates a shared
bit, by flipping a coin; then each cryptographer computes the exclusive or (XOR)
of the two random bits she shares with the neighbors, then announces the result —
or the flipped result, if she was herself the payer. The XOR of the three publicly
announced results indicate whether the payer was an insider or not.

We will now show how the Dining Cryptographers protocol can be modeled and
analyzed using the epistemic modeling framework introduced in Section 2. Figure 3
shows the LYS modeling script. The graphical representation of all action models
used is given in the appendix. The intermediate epistemic states are too large to
be viewed properly, but the very last one is readable and is shown in Figure 5.

For i ∈ {1, 2, 3}, let pi be the proposition “cryptographer i is the payer”. The
goal of the protocol translates to: everybody should learn whether the proposition
p1 ∨ p2 ∨ p3 is true or not, but if it is true, nobody (except the payer herself) learns
which of the propositions p1, p2, p3 is true. To model the protocol, we need three
more propositions q1,q2,q3 to represent the result of flipping the coins shared by
cryptographers 1 and 2, 2 and 3, 3 and 1, respectively. Let > represent “head” and
⊥ represent “tails”.

The protocol passes through four epistemic states (models): initial, after-

paydecision, afterflip, dc3final. The extra epistemic model allworlds rep-
resents the situation before the start of the protocol, when the rules have not yet
been agreed upon. The transition to the start state initial is made by the ac-
knowledgment that at most one of the cryptographers pays, modeled by the public
announcement zero-one. There are four possible paying scenarios: NSA pays, a
pays, b pays or c pays. Since the cryptographers’ names do not play a part in the
protocol, we do not lose generality if we model only two scenarios: NSA pays, a
pays. This fact is incorporated in the very first epistemic state, allworlds, by
specifying that only worlds satisfying ¬p2 ∧ ¬p3 should be marked as actual. We
do model all the flipping scenarios (⊥,⊥,⊥ up to >,>,>), as seen from the fact
that there is no restriction on q1, q2, q3 imposed on the actual worlds. Thus, the two
paying scenarios and the eight flipping scenarios will result in 16 possible situations,

7

Van Eijck and Orzan

prepare the action models
amnew zero-one -group a, b, c -form ¬(p1 ∧ p2) ∧ ¬(p2 ∧ p3) ∧ ¬(p1 ∧ p3)
amnew pay-a -choice a -form p1,¬p1
amnew pay-b -choice b -form p2,¬p2
amnew pay-c -choice c -form p3,¬p3
amnew flip-ab -choice a, b -form q1,¬q1
amnew flip-bc -choice b, c -form q2,¬q2
amnew flip-ca -choice a, c -form q2,¬q3
amnew asays -choice a, b, c -form p1 XOR (q1 XOR q3), ¬(p1 XOR (q1 XOR q3))
amnew bsays -choice a, b, c -form p2 XOR (q1 XOR q2), ¬(p2 XOR (q1 XOR q2))
amnew csays -choice a, b, c -form p3 XOR (q2 XOR q3), ¬(p3 XOR (q2 XOR q3))

and the protocol is..
emnew allworlds a, b, c p1, p2, p3, q1, q2, q3 ¬p2 ∧ ¬p3
emupdate allworlds zero-one initial
emupdate initial pay-a pay-b pay-c afterpaydecision
emupdate afterpaydecision flip-ab flip-bc flip-ca afterflip
emupdate afterflip asays bsays csays dc3final

Figure 3. Epistemic modeling of the Dining Cryptographers protocol with 3 participants a, b, c. The script
makes calls to LYS routines for creating new action models (amnew), new epistemic models (emnew) and
computing epistemic updates (emupdate). The argument -choice refers to the action pattern used, namely
a nondeterministic choice between the alternatives presented after -form. The indicated names of agents
are in all cases the agents receiving the update.

0. p1 a,b,c

1. -p1

b,c

a,b,c

0. p2 b,a,c

1. -p2

a,c

b,a,c

0. p3 c,a,b

1. -p3

a,b

c,a,b

0. q1 a,b,c

1. -q1

c

a,b,c

0. q2 b,c,a

1. -q2

a

b,c,a

0. q3 a,c,b

1. -q3

b

a,c,b

0. -(p1 <=> (- (q1 <=> q3))) a,b,c 1. (p1 <=> (- (q1 <=> q3))) a,b,c 0. -(p2 <=> (- (q2 <=> q1))) a,b,c 1. (p2 <=> (- (q2 <=> q1))) a,b,c 0. -(p3 <=> (- (q3 <=> q2))) a,b,c 1. (p3 <=> (- (q3 <=> q2))) a,b,c

Figure 4. The action models used in the epistemic modeling of the Dining Cryptographers protocol. Top:
pay-a,pay-b,pay-c. Middle: flip-ab, flip-bc, flip-ca. Bottom: asays, bsays, csays.

which are all evolving in parallel and are present in every epistemic state until the
end. The rest of the worlds are there to represent the pieces of reality known to
every agent.

The three big steps of the protocol — deciding who pays, flipping the coins,
announcing the results — are modeled as epistemic updates and performed by the
three emupdate calls marking the transition from initial to afterpaydecision,
then to afterflip, then to dc3final. The first transition uses the action models
pay-a, pay-b, pay-c, which are private announcements to a about the truth value of
p1, to b about p2 and to c about p3. The effect of pay-a on the current epistemic
state is the deletion of all a-arrows between a world where p1 = > and a world where
p1 = ⊥. This makes the formula Kap1 ∨Ka¬p1 true, thus a has learned the value

8

Van Eijck and Orzan

 p3 q1 q2 q3 a,b,c

 p2 q1 q3

a

 p1 q1 q2

b

 p2 q1 q2 q3 a,b,c

 p1 q2 q3

c

 p3 q1 q3

a

 p1 q1 q2 q3 a,b,c

 p2 q2 q3

c

 p3 q1 q2

b

 p3 q2 q3 a,b,c

 p2 q3

a

 p1 q2

b

a,b,c

 p3 q3

a

a,b,c

 p3 q2

b

a,b,c

 p1 q1

b

a,b,c

 p1 q3

c

 p1 q1 q3 a,b,c

c

 p3 q1

b

a,b,c

 p1

b

a,b,c

a,b,c

 p3

b

a,b,c

 p2 q1

a

 p2 q1 q2 a,b,c

ca

a,b,c

 p2 q2

c

a,b,c

 p2

a

a,b,c

a

a,b,ca,b,c

a,b,c

c

a,b,c

c

a,b,c a,b,c a,b,c

 q1 q2 q3 a,b,c q2 q3 a,b,c q1 q3 a,b,c q3 a,b,c q1 q2 a,b,c q2 a,b,c q1 a,b,c a,b,c

Figure 5. The final epistemic state (dc3final). The two paying scenarios can be distinguished: a pays
(p1 = >) on top; NSA pays, on bottom. The paying scenarios are combined with all coin flipping scenarios,
given by different valuations for q1,q2,q3.

of p. Similar for pay-b, pay-c. In the original modeling of the protocol [32], there is
a Master sending these announcements, in order to maintain the global restriction
that at most one pays. We do not need to model the Master as an agent. Its role
is fulfilled here by the pay announcements together with the public announcement
zero-one. At further steps of the protocol, similar revealing announcements take
place: flip-ab is the action model which reveals the value of q1 to a and b, asays is
the action model which computes the XOR of a’s pay-bit and of a’s two known coins.
The update steps could be further refined, if the inspection of more intermediate
epistemic states (for instance, the epistemic state after the coin between a and b

has been flipped) is desired.
The first attempt in checking anonymity could be to check that a cryptographer

can never learn whether another cryptographer has paid or not. That is, to check
the epistemic formula

¬(Kap2 ∨Ka¬p2) ∧ ¬(Kap3 ∨Ka¬p3) ∧ ¬(Kbp1 ∨Kb¬p1)∧

¬(Kbp3 ∨Kb¬p3) ∧ ¬(Kcp1 ∨Kc¬p1) ∧ ¬(Kcp2 ∨Kc¬p2).

The model checker disproves this property and gives as counterexample a valuation
where all of p1, p2, p3 are false. Indeed, in the case where NSA pays, the cryptogra-
phers do learn that all of p1, p2, p3 are false. Moreover, when one of the cryptogra-
phers pays, the payer will know that the other two did not pay, even from the very
beginning. A more realistic anonymity requirement is that if p1 ∨ p2 ∨ p3 = > then
b and c do not know that a was the payer. We can express this as the epistemic
formula p1 ⇒ ¬Kbp1 ∧ ¬Kcp1, which does get a positive answer when checked on
dc3final.

Note that, due to the public announcement that at most one cryptographer is
paying, the anonymity of non-payers is only guaranteed from the perspective of
another non-payer. The paying cryptographer will know that the other two are not
paying, and will also be able to deduce what the third flipped coin was:

p1 ⇒ Ka¬p2 ∧Ka¬p3 ∧ (Kaq2 ∨Ka¬q2)

Moreover, it is possible to verify that the payer herself knows that she is anonymous:

p1 ⇒ Ka(¬Kbp1 ∧ ¬Kcp1),

9

Van Eijck and Orzan

 areg

 q2

a,b,d

 -q2

b,d,a

 T

a,b,d

C,a,b,d

a,b,d

a,b,d C,a,b,d

a,b,d

C,a,b,d

 T a,b,C,d

 -areg

a,b,C,d

Figure 6. Left: the action model for “if registered to vote, voter a sends her vote to the counter C” Right:
The final epistemic state of the voting protocol, if the three phases are separated.

that the non payers know that the payer is aware of her anonymity,

p1 ⇒ KbKa(¬Kbp1 ∧ ¬Kcp1), p1 ⇒ KcKa(¬Kbp1 ∧ ¬Kcp1),

and actually that the payer’s anonymity is common knowledge among the three
cryptographers:

p1 ⇒ Ca,b,c(¬Kbp1 ∧ ¬Kcp1).

This protocol generalizes naturally to N cryptographers, and a similar analysis
can be performed for N = 4 and N = 5. In these cases, we can even talk about
coalitions of malicious cryptographers. We do this by using the distributed knowledge
operator [16]. It is impossible to express this operator with PDL modalities and is
also inconvenient from a logical perspective, but we introduce it here in order to be
able to express properties of conniving coalitions. We say that a group of agents G
have distributed knowledge about φ (denoted DGφ) if they know φ when they pool
their individual knowledge. In terms of Kripke structures:

(M, s) |= DGφ iff (M, t) |= t for all t s.t. (s, t) ∈
⋂
a∈G

Ra.

We can now express the possibility that two cryptographers pool their secret knowl-
edge and are able to learn who was the payer. After generating the final epistemic
state for N = 4, we can employ the CADP model checker, together with a trick
that we will not explain here, to verify that p1 ⇒ Db,dp1 holds. In other words,
(in DC4) a may remain anonymous to b, c, d individually, but if they decide to
share their secrets, then the anonymity of a is compromised. In DC5 as well, two
conniving cryptographers are able to violate payer’s anonymity if they are both her
direct neighbors. That is, the epistemic formula p1 ⇒ Db,ep1 holds.

Besides anonymity, we can of course also check that the protocol meets its goal,
that is all agents learn whether p1∨p2∨p3 holds, and that is even common knowledge:

Ca,b,c(p1 ∨ p2 ∨ p3) ∨ Ca,b,c(¬p1 ∧ ¬p2 ∧ ¬p3).

5 An electronic voting protocol

The so-called FOO protocol proposed by Fujioka, Okamota and Ohta [18] is a rather
complex voting scheme that guarantees anonymity of the voters with respect to any

10

Van Eijck and Orzan

conspiracy of administrator, collector and external parties. In summary, it runs as
follows: By interacting with the administrator and making use of a symmetric key,
a nonce and a special property of the digital signing scheme, each voter obtains a
so-called signed covered vote. The voter then sends anonymously her signed covered
vote to the collector, who publishes it. After the voter has verified that her covered
vote appears on the published list, she sends, again anonymously, the symmetric
key and covered vote to the collector. The collector can now open it and add it to
the clear votes list, that will be made public as soon as everybody has voted.

An anonymity analysis of an abstract version of the FOO voting scheme can be
conducted in the dynamic epistemic setting of this paper. For lack of space, we
will not explain the whole modeling, but only point out several interesting aspects,
which could not be observed in the modeling of the Dining Cryptographers protocol.
The abstractions we make are as follows: we ignore the administrator, whose main
role is to prevent ineligible and double voting and plays no role for anonymity; we
consider yes/no votes only; although the covering aspect can be modeled, we leave it
out for simplicity of presentation. The voters are modeled as agents a, b and d, the
collector as agent C. The choices of the voters are represented by the propositions
p1, p2, p3, meaning ‘a votes yes’, ‘b votes yes’, ‘d votes yes’, respectively . The list
of clear votes that will eventually be hold by the collector has three positions, to
which we refer by the propositions q1, q2, q3: q1 means ’the first vote in the list is
yes’, q2 means ’the second vote in the list is yes’, q3 means ’the third vote in the
list is yes’. We also need three propositions areg, breg, dreg to mark that the first
(registering) phase ended for a, b, d, respectively. Then the phases of the protocol
are:

• a,b,d register to vote. This includes the interaction with the administrator and
sending the covered vote to C. We model this by public announcements of areg ,
breg, dreg.

• a, b, d finalize their vote, by sending their symmetric key to C, and therefore
letting C add a new clear vote to its list, without learning who the respective
voter is. The effect of this phase is that q1, q2, q3 will be revealed to C. An
interesting point here is that we need to condition this phase by the completion
of the previous one. Although we did not model the covered votes explicitly, we
do assume that they should be sent to the collector and we keep track of whether
this happened or not through areg , breg, dreg. So, the action model that we
need in this phase for each voter is ’if the voter registered, she (anonymously)
reveals her clear vote to C, otherwise nothing happens’. This had to be designed
manually, since there is no simple pattern for it (Figure 6).

• C makes the result of the vote public and everybody learns the values of q1,q2,q3.

There are several facts relevant to the protocol, that everybody is aware of
(actually, they are common knowledge) and modeled as public announcements. One
of them is that the result of the voting is a permutation of the participants’ choices.
That is, any permutation of (q1, q2, q3) could be equal to (p1, p2, p3). Since the six
scenarios are symmetric, we only model one of them, say p1 = q2∧p2 = q3∧p3 = q1.
This is expressed by marking as actual worlds in the initial epistemic state precisely
those worlds which meet the condition above. Note that, essentially, this symmetry-

11

Van Eijck and Orzan

reduction is made outside the protocol, that is a, b, d still consider that all the
permutations might be possible. Another common knowledge fact is that, if C has
learned a clear vote, then there must have been a voter who sent it. For the clear
vote q1, we express this as:

KCq1|KC¬q1 ⇒ (areg ∧ (p1 ⇔ q1))|(breg ∧ (p2 ⇔ q1))|(dreg ∧ (p3 ⇔ q1)).

We write the similar formulas for q2 and q3 and announce them all publicly.
In the analysis of FOO performed by Kremer&Ryan [26], it has been observed

that the three phases should be strictly separated, otherwise anonymity is compro-
mised. We are able to detect this problem in our setting too, if we allow updates
to be performed in any order and thus look at more than one trace. Indeed, in the
trace: a registers, a votes, b registers etc., the formula (areg ∧ ¬breg ∧ ¬dreg) ⇒
(KCp2|KC¬p2) becomes true, meaning that a’s choice has leaked to the collector.
In the ’right’ trace, when the phases are separated, after performing all updates,
the epistemic state shown in Figure 6 is reached, where anonymity of a voter (for
instance, a) with respect to the other voters can be expressed as

¬(Kbp1 ∨Kb¬p1) ∧ ¬(Kcp1 ∨Kc¬p1).

This formula is not confirmed by the model checker, because it is too general. It
does not hold in all actual worlds, and thus a number of counterexamples are given.
For instance, when all votes are ’yes’, the anonymity is not preserved and it even
becomes common knowledge that this is the case.

But more specific formulas are proved correct by the model checker. For instance,
the one saying that the vote of a remains secret to b under the assumption that c
voted differently:

p1 6= p3 =⇒ ¬(Kbp1 ∨Kb¬p1).

6 Concluding discussion

We presented a tool-supported epistemic verification framework, built on recent
work from Dynamic Epistemic Logic [4]. The central new elements are the ac-
tion models, which give an elegant and compact representation for communication
primitives, and the update product operation, which allows mechanical execution of
epistemic updates, therefore bringing the epistemic specification closer to a behav-
ioral specification. We showed that a traditional verification toolset can be used
to verify a nontraditional and challenging property such as anonymity. We demon-
strated the technique on two examples of protocols guaranteeing anonymity.

Verification of anonymity
Due to the fact that epistemic states encode indistinguishability relations, this
framework is especially suitable to specification and verification of anonymity prop-
erties. There are two major advantages when comparing to the process-based ver-
ification approach: no remodeling of the protocol is necessary if the capabilities of
the (passive) observer change; once generated the final epistemic state of the pro-
tocol, every required anonymity property is verifiable by model checking, which is

12

Van Eijck and Orzan

much faster than computing trace equivalence. Compared to other epistemic logic
approaches, we believe that the action models are a more natural modeling mech-
anism for the protocol steps, and that the update product is very well suitable to
mechanization.

DEL modeling vs. process modeling
Figure 7 shows a comparison between the process and DEL models of the DC pro-
tocol. The process specification has been written in the µCRL language and is
explained in [12]. The generated state spaces are in the same AUT format men-
tioned in Section 3. Taking into account the two DC specifications (µCRL and
DEL) and the sizes of the state spaces, respectively epistemic models obtained,
we have to confirm the general opinion that process languages are better suited to
protocol modeling than the logic ones. Processes can be specified rather detailed,
thus achieving a realistic representation of the particular protocol. Epistemic logical
specifications are more abstractly geared and require some effort for constructing
faithful models. However, epistemic logical modeling allows for a richer analysis
of the protocol states, giving more insight into subtle effects of communication.
Common knowledge, for instance, is impossible to express on a plain process speci-
fication. Moreover, action models are very promising building blocks. Due to their
precise semantic model, it seems possible to define a formal translation from pro-
cess steps to action models and thus getting epistemic specifications from behavioral
ones, much in the line of [25].

DEL modeling limitations
As we have seen in the modeling of the FOO protocol, it is not always clear how
communication acts can be used to represent security ingredients like keys, nonces,
encryption. Some steps towards properly modeling these have been taken in previ-
ous studies [24,2,15].

Process state spaces DEL models

anonymity
states transitions

epistemic
worlds arrows

properties states

DC-3

32-1 184 362 initial 64 6 144

3-12 139 255 after flip 32 259

after announce 32 116

DC-4

24-13 910 2160 initial 256 131 072

234-1 1083 2673 after flip 128 5 088

34-12 886 2096 after announce 128 864

DC-5

12345- 6615 19681 initial 1024 2 621 440

245-13 5189 14679 after flip 192 16 992

after announce 192 1 440

Figure 7. Sizes of the Kripke structures representing process state spaces and epistemic models, respectively,
for several instances of the DC protocol. The “anonymity properties” column refers to the different process
models, and thus different state spaces, generated for various coalitions of dishonest participants. 24 − 13
means that 2, 4 are honest and 1, 3 dishonest; 12345− means that all five are honest. The given sizes are
for the completely generated state spaces. On the DEL models side, no distinction is necessary for various
coalitions, since all corresponding anonymity properties can be verified on the same final epistemic model
“after announce”. Note that this final model is always smaller than the state spaces generated from process
specifications. However, the initial DEL model is much larger and this is actually one of the bottlenecks
of the epistemic modeling. Epistemic-specific optimizations on the model representation are possible, but
for now the same formats as for process specifications are used. On an average desktop machine, Kripke
structures of up to ca. 50 million transitions/arrows can be handled.

13

Van Eijck and Orzan

Future work
One of the features of our epistemic modeling toolset is that it can be integrated
with control flow commands offered by programming shells. This allows, possibly, a
more fine-grained description of the protocols, in particular the branching aspects.
More interestingly, this allows generation of counterexamples in terms of steps of
the protocol executed until the bad epistemic state. We plan to investigate this as-
pects further. Also, we plan to extend the three primitives discussed in Section 3 to
real epistemic modeling guidelines that will help translating informal descriptions of
protocol steps into action models. Ideally, we would also be able to define a formal
correspondence between process specifications and epistemic updates. In the more
general context of verifying arbitrary security properties, we aim at a framework
where the advantages of specifying functional aspects with process modeling and
informational aspects with epistemic logic can be combined. The fact that the two
techniques are complementary and they should, ideally, be combined, has already
been recognized and various formalisms to achieve this have been proposed [25,20].
However, they are quite complex. We think that the update product operation
might be able to bridge the gap in a more straightforward way, by allowing to rep-
resent the behavior of a system as a ’higher-order’ Kripke structure, with epistemic
models as states and action models as transition labels.

Acknowledgment. We are grateful to Erik de Vink for comments on a previous
version of this document.

References

[1] LYS (2005), available from http://www.win.tue.nl/∼sorzan/lys/.

[2] A.Bleeker and J. v. Eijck, Epistemic action and change, in: LOFT-4 Proceedings, 2000.

[3] Baltag, A., A logic for suspicious players: epistemic action and belief-updates in games, Bulletin of
Economic Research 54 (2002), pp. 1–45.

[4] Baltag, A. and L. Moss, Logics for epistemic programs, Synthese 139 (2004), pp. 165–224.

[5] Baltag, A., L. Moss and S. Solecki, The logic of public announcements, common knowledge, and private
suspicions, Technical report, Dept of Cognitive Science, Indiana University and Dept of Computing,
Oxford University (2003).

[6] Benthem, J. v., J. van Eijck and B. Kooi, Logics of communication and change, Information and
Computation (2006), to appear.

[7] Bhargava, M. and C. Palamidessi, Probabilistic anonymity, in: Proceedings CONCUR’05, LNCS 3653,
2005, pp. 171–185.

[8] Blom, S., W. Fokkink, J. Groote, I. v. Langevelde, B. Lisser and J. v. d. Pol, µCRL: A toolset for
analysing algebraic specifications, in: Proc. CAV’01, LNCS 2102, 2001, pp. 250–254.

[9] Burrows, M., M. Abadi and R. Needham, A logic of authentication, in: Practical Cryptography for
Data Internetworks, IEEE Computer Society Press, 1996 Reprinted from the Proceedings of the Royal
Society, volume 426, number 1871, 1989.

[10] Chaum, D., The dining cryptographers problem: unconditional sender and receiver untraceability,
Journal of Cryptology 1 (1988), pp. 65–75.

[11] Chellas, B., “Modal Logic: An Introduction,” Cambridge University Press, 1980.

[12] Chothia, T., S. Orzan and J. Pang, Automatically checking anonymity using distributed mCRL (2006),
under submission. Draft available from http://www.win.tue.nl/∼sorzan/anonmcrl.pdf.

[13] Ditmarsch, H. v., W. v. d. Hoek, R. v. d. Meyden and J. Ruan, Model checking Russian cards, in:
C. Pecheur and B. Williams, editors, Proc. MoChArt 05, ENTCS 149(2), 2006, pp. 105–123.

14

http://www.win.tue.nl/~sorzan/lys/
http://www.win.tue.nl/~sorzan/anonmcrl.pdf

Van Eijck and Orzan

[14] Eijck, J. v., DEMO program and documentation (2005), available from http://www.cwi.nl/∼jve/
demo/.

[15] Eijck, J. v. and S. Orzan, Modelling the epistemics of communication with functional programming, in:
M. v. Eekelen, editor, Sixth Symposium on Trends in Functional Programming TFP 2005, Institute of
Cybernetics, Tallinn Technical University, Tallinn, 2005, pp. 44–59.

[16] Fagin, R., J. Halpern, Y. Moses and M. Vardi, “Reasoning about Knowledge,” MIT Press, 1995.

[17] Fernandez, J.-C., H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu and M. Sighireanu, CADP – a
protocol validation and verification toolbox, in: Proceedings CAV’96, LNCS 1102, 1996, pp. 437–440.

[18] Fujioka, A., T. Okamoto and K. Ohta, A practical secret voting scheme for large scale elections, in:
ASIACRYPT, LNCS 718, 1992, pp. 244–251.

[19] Garcia, F. D., I. Hasuo, P. van Rossum and W. Pieters, Provable anonymity, in: Proceedings of the
2005 ACM Workshop on Formal Methods in Security Engineering (FMSE ’05) (2005), pp. 63–72.

[20] Halpern, J. and K. O’Neill, Anonymity and information hiding in multiagent systems, Journal of
Computer Security (2005), pp. 483–514.

[21] Harel, D., Dynamic logic, in: D. Gabbay and F. Guenther, editors, Handbook of Philosophical Logic
Volume II — Extensions of Classical Logic, Reidel, 1984 pp. 497–604.

[22] Harel, D., D. Kozen and J. Tiuryn, “Dynamic Logic,” MIT Press, 2000.

[23] Hintikka, J., “Knowledge and Belief: An Introduction to the Logic of the Two Notions,” Cornell
University Press, Ithaca N.Y., 1962.

[24] Hommersom, A., J.-J. Meyer and E. d. Vink, Update semantics of security protocols, Synthese 142
(2004), pp. 229–267, knowledge, Rationality and Action subseries.

[25] Hughes, D. and V. Shmatikov, Information hiding, anonymity and privacy: A modular approach,
Journal of Computer Security 12 (2004), pp. 3–36.

[26] Kremer, S. and M. D. Ryan, Analysis of an electronic voting protocol in the applied pi-calculus, in:
Programming Languages and Systems – Proceedings of the 14th European Symposium on Programming
(ESOP’05), LNCS 3444, 2005, pp. 186–200.

[27] Meyden, R. v. d., Common knowledge an dupdate in finite environments, Information and Computation
140 (1998), pp. 115–157.

[28] Meyden, R. v. d. and K. Su, Symbolic model checking the knowledge of the dining cryptographers., in:
Proc. CSFW 2004, Pacific Grove (2004), pp. 280–291.

[29] Nirmal, S., “Verification of Security Protocols: tool support for Update Semantics,” Master’s thesis,
Technical University Eindhoven (2005).

[30] Pratt, V., Application of modal logic to programming, Studia Logica 39 (1980), pp. 257–274.

[31] Raimondi, F. and A. Lomuscio, A tool for specification and verification of epistemic properties in
interpreted systems, Electronic Notes in Theoretical Computer Science 85 (2004).

[32] Schneider, S. and A. Sidiropoulos, CSP and anonymity, in: E. Bertino, H. Kurth, G. Martella and
E. Montolivo, editors, Proc. ESORICS 1996, LNCS 1146, 1996, pp. 198–218.

15

http://www.cwi.nl/~jve/demo/
http://www.cwi.nl/~jve/demo/

	Introduction
	Dynamic epistemic modeling and verification
	LYS - a knowledge analysis toolset
	The dining cryptographers
	An electronic voting protocol
	Concluding discussion
	References

