
A. Fehnker and H. Garavel (Eds.):
Models for Formal Analysis of Real Systems (MARS 2020)
EPTCS 316, 2020, pp. 15–39, doi:10.4204/EPTCS.316.2

c© H. Evrard

Modeling the Raft Distributed Consensus Protocol in LNT

Hugues Evrard
Google

hevrard@google.com

Consensus protocols are crucial for reliable distributed systems as they let them cope with network
and server failures. For decades, most consensus protocols have been designed as variations of the
seminal Paxos, yet in 2014 Raft was presented as a new, “understandable” protocol, meant to be
easier to implement than the notoriously subtle Paxos family. Raft has since been used in various
industrial projects, e.g. Hashicorp’s Consul or etcd (used by Google’s Kubernetes). The correctness
of Raft is established via a manual proof, based on a TLA+ specification of the protocol. This paper
reports our experience in modeling Raft in the LNT process algebra. We found a couple of issues
with the original TLA+ specification of Raft, which has been corrected since. More generally, this
exercise offers a great opportunity to discuss how to best use the features of the LNT formal language
and the associated CADP verification toolbox to model distributed protocols, including network and
server failures.

1 Introduction

Consensus protocols enable distributed systems to cope with network and server failures via the state
machine replication approach [14]. Most consensus protocols are designed as variations of Paxos [11],
and they are all notoriously difficult to implement due not only to their inherent complexity, but also to the
fact that they are typically presented in abstractions that are non-trivial to transcribe into an executable
program. The Raft consensus protocol was designed with understandability in mind, and user studies
indicate that it is easier to reason about than Paxos [13]. Several open-source implementations of Raft
exist,1 and the protocol is also used in some industrial projects like Hashicorp’s Consul2 or the etcd3

key-value store used by Google’s Kubernetes.4 Raft is formally defined by its TLA+ specification [12],
upon which the Raft authors presented a hand-written proof of the protocol safety.

In this paper, we discuss our experience in modeling Raft in the LNT formal language [1]. A first
version of this model was written as a use-case for the Distributed LNT Compiler [3], and helped to
identify two issues in the original TLA+ specification, which have been fixed since. We contributed a
second version as a new model for the 2015 edition of the Model Checking Contest [8, 9]. For the first
time, in this paper, we have the opportunity to discuss the whole specification in detail. Our goal is not so
much to describe Raft internals as to discuss the process of developing the formal model of a distributed
system using LNT.

An LNT model can be verified using CADP [4], which relies on explicit state-space exploration
model checking techniques. The style in which an LNT model is written can have a dramatic effect on
the size of its state space, possibly restricting the scope of achievable verification. Hence, we regularly
mention which style choices were made with respect to their impact on the state space size.

1https://raft.github.io/#implementations
2www.consul.io/docs/internals/consensus.html
3github.com/etcd-io/etcd/tree/master/raft
4kubernetes.io/blog/2019/08/30/announcing-etcd-3-4/

http://dx.doi.org/10.4204/EPTCS.316.2
https://raft.github.io/#implementations
www.consul.io/docs/internals/consensus.html
github.com/etcd-io/etcd/tree/master/raft
kubernetes.io/blog/2019/08/30/announcing-etcd-3-4/

16 Modeling the Raft Distributed Consensus Protocol in LNT

The paper is structured as follows: Section 2 gives an overview of Raft, and Section 3 presents
its LNT model. Section 4 discusses the style of the specification, and broadens to distributed systems
modeling in general. Section 5 gives concluding remarks. The complete LNT specification of Raft is
provided in Annex A.

2 The Raft consensus protocol

We give a brief overview of the consensus problem, and how Raft solves it. We aim at providing a
general understanding of Raft structure, more details come in the following section where we present the
LNT model.

2.1 Consensus for state machine replication

The state machine replication approach [14] enables a service to be made robust to failures by replicat-
ing the logic of the service, represented by a deterministic state machine, among several servers of a
distributed system. When a service’s client request—named command here—arrives, a server handles
it. This server then replicates them to all servers, which store them into their local log. As long as all
server logs stay coherent, they enable servers process the same client commands in the same order, such
that all the replicated deterministic state machines reach the same states and return the same responses.
Consensus is the mean by which we keep server logs coherent. This lets the system cope with server
failures: the service is kept available via the servers that are still alive.

This approach relies on a consensus protocol whose role is to let all alive servers agree on which
client commands to add to their log, and in which order, and to do so even in the presence of server and
network failures. Raft is a consensus protocol that operates in two main phases: leader election, and log
replication.

2.2 Raft leader election

In Raft, time is divided into terms, which are monotonically increasing and act as logical clocks [10].
The leader election phase of Raft aims at getting one server to be elected as the leader for the current
term.

Servers can be in one of three states: follower, candidate or leader. Every server that is not a leader
has a timeout after which, if it did not receive any message, it increments its own term index, moves
into the candidate state, and sends vote requests to all other servers. A server that receives a vote request
will grant its vote if: the candidate term is not lower than its own term, and the server has not already
voted for some other server for the current term. This election mechanism is achieved with RequestVote
requests and responses.

When a candidate for a given term is granted a majority of votes, it becomes the leader for this term
and starts sending heartbeat messages to all other servers. These heartbeat messages let other servers
know about the new leader, and other candidates step down to the follower state.

A leader regularly sends heartbeat messages to reset the timeout counter of its followers, and thus
prevent new elections. Yet, if the leader server crashes or becomes isolated by a network partition, other
servers stop receiving its messages and soon trigger a new leader election.

The timeout durations are chosen randomly within certain bounds, such that there is a high chance
for an election to successfully establish a leader. The frequency at which heartbeat messages are sent is
chosen accordingly, to minimize the opportunities of spurious elections while a leader is alive and able

H. Evrard 17

to communicate with its followers. The Raft paper [13] features a proper discussion on the choice of
relevant timeout duration to use in practical implementations.

Once a leader is elected, it becomes responsible for log replication.

2.3 Raft log replication

A leader handles client commands by adding them to its own log, and making sure to replicate these log
updates among its followers. The log is made of entries, each entry containing a client command and the
term of the leader that handled this command.

To achieve log replication, a leader exchanges AppendEntries requests and responses with its fol-
lowers, to append one or more entries in their log. An entry must be replicated by a majority of servers
before it can be considered committed, i.e. ready to be applied to the service state machine. Each server
maintains a commit index that indicates the log index up to which entries are known to be committed.

Failures may trigger an election while the current leader still has some entries not yet replicated by
a majority of servers. The new leader for the next term may append new entries that do not match the
ones that were not yet committed. In such situations, the new leader must send AppendEntries requests
that overwrite the tail of some followers log, effectively replacing the entries that are beyond the commit
index by new ones that are imposed by the new leader.

When a leader is elected, it does not know the commit index of its followers. It may try to replicate
entries whose indexes are too far beyond some of the followers commit index. In such cases, a follower
can refuse an AppendEntries request: the leader then retries to replicate entries with a lower index until
it catches up with the follower commit index.

3 Modeling Raft in LNT

Our LNT model is based on the Raft paper [13], and the TLA+ specification of the protocol [12]. Raft
contains several optional features, such as dynamically changing the number of servers, or compacting
the log. Our model is restricted to the core of the protocol, i.e. leader election and log replication. For the
sake of being comparable, we tried to stay close to the variable names used in the TLA+ specification.
After a primer on LNT, we describe our Raft model in a top-down fashion.

3.1 LNT: a primer

LNT is a formal language inspired by the LOTOS [6] and E-LOTOS [7] process algebras. Its syntax is
close enough to regular programming languages that most of the language should be understandable to
someone experienced in programming. The detailed definition of the language is available in the LNT
to LOTOS translator manual [1]. This primer focuses on illustrating the interaction between concurrent
processes.

In LNT, concurrent processes interact via an action on a gate to achieve both synchronization and
data exchange. Figure 1 illustrates LNT with a small example that defines three processes: Calc is a
calculator, User is a user of this calculator, and Main is the top-level parallel composition of Calc and
User processes. Calc loops on offering actions on either gate Add or Mul, via the non-deterministic
choice operator select. Any action on one of these gates involves three natural numbers (built-in type
nat), as imposed by the CalcOp channel. For both calculator operations, the first two naturals are the
operands and the third one is the result. The where condition imposes a relation between the operands
and the result, such that only the result corresponding to the operands is allowed in an action.

18 Modeling the Raft Distributed Consensus Protocol in LNT

module primer is

channel CalcOp is
(nat, nat, nat)

end channel

process Calc [Add, Mul: CalcOp] is
var op1, op2, res: nat in

loop
select

Add(?op1, ?op2, ?res)
where res == (op1 + op2)

[] Mul(?op1, ?op2, ?res)
where res == (op1 * op2)

end select
end loop

end var
end process

process User [Op: CalcOp] (a, b: nat) is
var result: nat in
Op(a, b, ?result)

end var
end process

process Main [Add, Mul: CalcOp] is
par Add, Mul in

Calc[Add, Mul]

|| par
User[Add](1, 2)

|| User[Mul](3, 4)

end par
end par

end process

end module

0

1ADD !1 !2 !3

2

MUL !3 !4 !12 3

MUL !3 !4 !12

ADD !1 !2 !3

Figure 1: Source code and state space of a small Calculator example of LNT

User takes one of the calculator operations as a gate argument (between square brackets), its two
operands as data arguments (between parentheses), and does an action on that gate to perform the oper-
ation. The value obtained in the result variable is imposed by the logic in Calc.

Main is the default process name for the model entry point. It uses the par operator to instantiate a
parallel composition of one Calc process and two User processes. The inner par composition indicates
that the two User processes run in parallel but do not synchronize on any gate. However, the outer par
composition indicates that any action on gates Add or Mul must synchronize Calc and one of the two
User processes. Another way to define which gates synchronize with which processes is to list gates
before each process in a parallel composition. For instance, our parallel composition can alternatively be
written as:

par
Add, Mul → Calc [Add, Mul]

|| Add → User [Add] (1, 2)

|| Mul → User [Mul] (3, 4)

end par

The graph illustrates the state space of this example, as generated by CADP tools: it is represented
as a labeled transition system (LTS) with the actions as labels—no other information is retained. We can
see that both operations lead to relevant results, thanks to the where conditions. More importantly, this
LTS contains all possible execution paths: as both users run in parallel, there is no order imposed on
which one of them interacts first with the calculator. Hence, the LTS has a typical diamond shape that
represents several possible execution paths leading to the same final state.

Now that we saw an overview of LNT, let’s see how we use it to model a distributed system protocol
like Raft, with a top-down approach.

H. Evrard 19

3.2 Raft model parameters

The Raft protocol can be used between any number of servers, but our LNT model has to instantiate a
specific Raft configuration among a fixed amount of servers. In the same vein, we need to bound the
number of terms, and the number of client interactions, otherwise the state space would be unbounded.
We define these three bounds as global configuration constants, which can be easily changed to obtain
different configurations.

LNT does not have global constants per se. Annex A.1 illustrates how we can use functions with no
arguments to define the MaxTerm, MaxServerID and MaxClientInteraction constants. Server IDs
range from one to MaxServerID, included: the zero ID is reserved as a “nil” value, which will prove
useful in Section 3.6.2. We also declare here the NatArray type, indexed by the server IDs, and the
Majority function which returns the number of servers needed to get a majority.

3.3 Top-level parallel composition

In Annex A.2, the Main process is our model entry point. It defines the top-level parallel composition
of three kinds of processes: Network, Server and Clients. The nested parallel composition is such
that: an action on gate Send or Recv involves the network and one of the servers, an action on Client

involves a server and a client, and an action on Crash involves a server. This enables servers to interact
by sending and receiving messages to and from the network via Send and Recv, clients to interact with
servers via Client, and server crashes to be monitored via Crash. The possible data exchange on these
gates is typed via the ID and Comm channels declared here.

Each server receives its ID as an argument. The number of server instances in this parallel compo-
sition must match the MaxServerID constant. Changing the number of servers is a matter of adding or
removing server instances here, and updating MaxServerID and the range of NatArray accordingly.

3.4 Interaction with clients

The Clients process in annex A.3 is a simple abstraction of how clients may interact with the servers.
Neither the TLA+ specification nor our model include the details of a service finite state machine, such
that we do not need to model client commands, or server responses to clients. Thus, client-server inter-
action boils down to an action on gate Client, where the only data is the ID of the leader with which
the client interacts. This is done in a loop which role is to bound the number of client interactions.

3.5 Network communication

Raft claims to be robust to the reordering, loss or duplication of messages. Annex A.4 contains our
model for such an unreliable communication network.

We start by defining a message Payload: Raft messages always contain the sender’s current term, to-
gether with the request or response of a remote procedure call5 (RPC), defined later. A NetworkMessage

encapsulates the origin and destination server ID, along with a payload. A NetworkMessageSet is sim-
ply a set of network messages.

The Network process is responsible for transferring messages between servers, but it can also loose
or duplicate messages. It interacts with servers through the Send and Recv gates, which are named from

5We use “remote procedure call” in this context to keep the naming coherent with the Raft paper.

20 Modeling the Raft Distributed Consensus Protocol in LNT

a server point of view: the network actually obtains a message through an action on Send, and delivers
it through an action on Recv.

This process is structured as an infinite loop on a non-deterministic choice of possible actions. The
network has two alternatives to obtain a message: in the first one, the message is successfully stored
in the bag of messages; in the second one, the message is obtained but not stored: this models message
loss. There are also two alternatives for message delivery: in the first, the delivered message is effectively
removed from the bag of messages; in the second, it is kept in the bag: this models message duplication.
In both cases of message delivery, any message stored in the bag may be transmitted: this models message
reordering.

3.6 Server

Annex A.5 presents the Server process, along with the declaration of a few types. The ServerState

type illustrates how to define an enumerated type with the possible states of a server. The Entry type
would in principle be made of both a term and a client command, yet as we do not model client commands
(see section 3.4), only the term remains. Both EntryList and NatSet types are pretty self-explanatory:
they represent a list of entries, and a set of naturals, respectively. The LastTerm function returns the
term of the last entry in the server’s log, or zero if this log is empty.

Raft servers may interact through two kinds of RPC, one for each of the protocol phases: the leader
election is achieved by the RequestVote RPC, the log replication by the AppendEntries RPC. The RPC

type defines the request and response messages for these two RPC. Note that the matchIndex field of
AppendEntriesResponse is not mentioned in the Raft paper, but is present in the TLA+ specification.

The Server process models the behavior of a Raft server. After the initialization of its state variables,
it follows a structure similar to the network process, i.e. an infinite loop on a non-deterministic choice
between a few possible behaviors: hit a timeout, receive an RPC message, or interact with a client. On
top of that, the server may crash at any time.

3.6.1 Timeout

When a leader times out, it sends AppendEntries requests to all its followers, whether to actually per-
form log replication or just as a heartbeat to prevent them to time out. This is achieved by calling the
BroadcastAppendEntriesRequest sub-process, which is defined underneath the Server process.

If a server times out while not being a leader, it becomes an election candidate for a new term. As
we bind our model on the number of terms servers may explore, we use the stop operator to disable
progress on this select branch if our current term is already at the limit. Note that this only stops the
server from triggering a new election, it can still perform behaviors of the other select branches, like
RPC message handling, within this term.

If the server’s term is still within bounds to be able to trigger a new election, then the server incre-
ments its term, becomes candidate, votes for itself and sends a vote request to all the other servers. In the
TLA+ specification, a candidate does not vote for itself, but rather sends itself a vote request. We choose
to have candidates vote for themselves because it is likely how a real implementation would behave, and
it reduces the state space by having less vote requests being sent.

3.6.2 Message reception

A server receives a message from the network through an action on the Recv gate. Here, we start by
declaring the variables needed to unpack message contents, all named with a “m” prefix to mirror the

H. Evrard 21

TLA+ specification. Then, the action on gate Recv stores the message sender ID in mFrom, while the
message payload is directly unpacked in mTerm and mRPC.

If the message is stale, i.e. the sender’s term mTerm is smaller than our current term, then we do
not bother handling it further. This is a difference with the TLA+ specification, which drops stale RPC
responses, but does reply to stale RPC requests in order to let the sender quickly become aware of a new
term. This behavior makes sense to minimize the time window during which a server is using an outdated
term. Still, we can safely ignore stale requests, and here we do so to reduce the model state space.

If the message is not stale, then we check whether we should update our own term: this is the
equivalent of the TLA+ specification UpdateTerm part. Updating to a higher term means falling back
into the follower state, and also store zero as a “nil” server ID into votedFor, to indicate that we did not
yet vote for anyone in this term. This is where having zero as a “nil” ID proves to be useful.

Finally, we use the pattern matching operator case to conveniently dispatch the RPC message ac-
cording to its type. Each RPC message type has a corresponding handler, which receives the message
contents extracted into variables via the matched pattern. An argument must be prefixed by “!?” if it is
an “in out” argument that may be modified by the handler.

We briefly describe the handlers, whose names mirror the ones in TLA+. For a full discussion of
why these behaviors safely implement a consensus, see the Raft original papers [12, 13].

RequestVoteRequest handler (annex A.6.1). The server checks whether to grant its vote or not based
on the status of its log, and whether it has already voted for someone else or not.

RequestVoteResponse handler (annex A.6.2). The server stores the vote response, and proceeds to
become leader if it received a majority of votes.

AppendEntriesRequest handler (annex A.6.3). The server checks whether its log is ready to receive
the new entries. If not, it declines the request. Otherwise, it accepts the request and appends the entries,
possibly by removing uncommitted entries at the tail of its log. The server commit index is updated to
the leader commit index, and a match index is computed to let the leader know up to which index this
server logs is matching the leader’s one. While the AppendEntries RPC is designed to enable the update
of several entries in one call, our model reflects the TLA+ specification choice of restricting updates to
one entry at a time. Hence, an AppendEntries request is either a heartbeat message with zero entries, or
a request to update a single entry, as verified with an assertion.

AppendEntriesResponse handler (annex A.6.4). The server keeps track of its followers’ current
matching indexes in the nextIndex and matchIndex arrays, which are updated accordingly to the Ap-
pendEntries response. Then, it tries to increase its commit index based on whether a majority of servers
now agree on sharing the same entry at a higher log index.

3.6.3 Client interaction

The last alternative in the server main loop (back to annex A.5) is to interact with a client. Only a leader
may interact with clients, hence the action on gate Client is guarded by a check on the current server
state. Remember that client commands are not part of our model, so a client interaction results in a new
entry containing only the leader’s current term.

22 Modeling the Raft Distributed Consensus Protocol in LNT

The AppendEntries requests related to this new log entry will be sent after a timeout (see sec-
tion 3.6.1). One may expect a real implementation to send an AppendEntries request right after a client
interaction, yet we know that at least in the case of Consul, the leader actually waits for its timeout, to
be able to batch an update of all the client interactions that may happen during a leader timeout duration.
This choice may be detrimental to latency, but beneficial to throughput.

3.6.4 Crash

Servers may crash at any time. The careful reader will have noticed that the whole main loop is encap-
sulated in a disrupt statement, which enables an action on gate Crash to happen at any point during
the server execution. One may think that the crash could simply be one of the select alternative, but
this would not enable a crash to happen e.g. in the middle of a heartbeat broadcast. This illustrates how
convenient is the disrupt operator to model behaviors that may pertubate others at any point.

3.7 Issues with the original TLA+ specification

Modeling Raft in LNT highlighted two issues with the original TLA+ specification.
The first6 is a minor typo: a “matchIndex’” which should have been a “matchIndex”, without the

apostrophe that denotes a variable’s next state in TLA+. This issue in AdvanceCommitIndex was minor
and made no practical difference.

The second7 issue is related to a missing server state change: candidates that received a heartbeat
message from the leader who won the term election would not step down to become followers. In
practice, a candidate behaves almost like a follower, it just will not grant its vote to any other server,
so this issue did not impact Raft manual proof. Yet this proves that discrepancies between the intended
behavior and the formal specification can appear by accident.

4 Discussion on the modeling of distributed systems

While our model is specific to the Raft protocol, it invites some remarks on the act of specifying dis-
tributed systems in general. In this section, we discuss various aspects of our experience with developing
the formal model of a distributed system.

4.1 Iterative development with LNT and CADP

Based on our experience with Raft, we argue that LNT and CADP offer a good environment to itera-
tively develop a formal specification of a distributed system. With regular programming, the ability to
experiment with a quick feedback loop can greatly improve the development experience. In practice,
this can be achieved with fast modify-compile-execute cycles, or by using interpreted languages which
offer read-eval-print-loop interfaces. We consider that writing a formal specification is close to writing a
program, except that we operate with a formal language. Having a quick iteration feedback loop is still
relevant in a formal context.

With this in mind, the following features of LNT and CADP have been very helpful. First, the
LNT syntax is close to mainstream programming languages. This cannot be said of numerous other
formal languages, which roots in theoretical computer science often lead to an exotic syntax. Second,

6github.com/ongardie/raft.tla/blob/34cdd49d22615426ea00a6605b95be57b3cab49a/raft.tla#L478
7groups.google.com/g/raft-dev/c/yu-wOUx-gnA/m/VsM49xpFPwcJ

github.com/ongardie/raft.tla/blob/34cdd49d22615426ea00a6605b95be57b3cab49a/raft.tla#L478
groups.google.com/g/raft-dev/c/yu-wOUx-gnA/m/VsM49xpFPwcJ

H. Evrard 23

LNT is a strongly typed language. Type checking can catch many issues as early as compilation time.
Beside type errors, CADP is also able to statically report useful warnings about e.g. unused variables,
or unreachable actions. Not all formal languages are typed, and in particular TLA+ is not typed. Third,
LNT features an assert statement, which will stop state-space generation with an error if violated.
This enables to quickly spot some bugs, without having to wait for a complete state-space generation.
Fourth, although not demonstrated here, LNT parallel composition enables to synchronize an arbitrary
number of processes (two or more) on a single action. Many languagues can only express process
interaction between a pair of processes, such that any kind of barrier synchronization between more than
two processes requires a protocol built on top of pair-wise interaction. The ability to synchronize an
arbitrary number of processes can prove very useful in some models [5], and lead to smaller state-space
by factoring barrier synchronization protocols into a single action.

Fifth, CADP can generate state spaces of a given model in both implicit and explicit forms. An
implicit state space is effectively a dynamic library offering relevant primitives to generate the list of
reachable states from a given state. An explicit state space is the actual LTS containing all the states
and transitions of a model, obtained by exhaustively exploring all reachable states from the model initial
state. Generating the explicit state space can take a significant time, which may hinder the iterative
development process. The implicit state space is typically generated within seconds, and can then be
explored manually to check e.g. whether a given execution path is reachable. This can prove very handy
when trying modifications on the model being developed.

4.2 Generic skeleton for distributed systems

A distributed system can arguably be defined as node processes that interact via some sort of network.
In that sense, LNT models of distributed systems are very likely to have a top-level parallel composition
similar to ours, i.e. a series of nodes (here, the Raft servers) communicating over a network.

Our Network process is already generic: it only knows about a message origin, destination, and
payload. What the payload actually contains can be easily adapted to the needs of other protocols.

While our Server process is specifically implementing Raft, we argue that its general struc-
ture can be used as a template for distributed system nodes. This structure is expressed in the
GenericNodeSkeleton process of annex B.1. The node initializes its state, then enters a main loop
where it reacts to the reception of messages, or other local events. The disrupt operator lets us easily
model a crash at any time. Note that such generic structures have already been captured by established
distributed system frameworks, like the gen_server8 module in Erlang.

4.3 A library of network models

The genericity of our network process means that it can be easily replaced by other ones, with different
communication behaviors. As an example, annex B.2 presents the ReliableNetwork process through
which messages may be re-ordered, but neither lost nor duplicated. This alternative network model is as
simple to use as dropping it in place of the Network process in the top-level parallel composition.

This ability to swap network models brings up two major benefits. First, using a reliable network
helps in iteratively developing a model. A reliable network will generate smaller state spaces, because
its behavior is a subset of the unreliable one, which leads to less possible message interactions between
nodes. As an example, consider a Raft configuration of two servers, one term and one client interac-
tion: with the unreliable Network process, this configuration leads to an LTS of 11,862,015 states and

8https://erlang.org/doc/design_principles/gen_server_concepts.html

https://erlang.org/doc/design_principles/gen_server_concepts.html

24 Modeling the Raft Distributed Consensus Protocol in LNT

74,821,042 transitions. With the ReliableNetwork process, the state space is down to 22,311 states
and 108,176 transitions, that is three and two orders of magnitude smaller, respectively. Thus, a reliable
network helps to get a quick development feedback loop by being able to generate smaller state spaces.
While those state spaces are not relevant for a proper verification, they can still be used as a proxy: if an
issue is found with the reliable network, then it will appear with the unreliable network as well.

Second, being able to swap network models enables to test a system under a whole spectrum of
network behaviors. For instance, some network models could capture the guarantees offered by Unix
sockets in TCP or UDP mode. Others could model the communication guarantees of the run-time of some
specific distributed programming languages. We could then have a whole library of network models,
such that the same distributed system can be easily verified against each of them. This would help to
gain confidence on which requirements are actually needed for a real implementation. It could also help
in making some existing distributed algorithms become robust to some communication failures (e.g.
message duplication) that were not considered in its original design, by verifying the algorithm against
a less reliable network model and then improving the algorithm until it supports this alternative network
model.

4.4 Keep the state space minimal

When editing an LNT specification, it is recommended to try and keep the state space as small as pos-
sible, while still exploring all relevant execution paths. This balance can be risky when, for the sake of
minimizing the state space, the model restricts some execution paths that may well lead to some issues
in the real implementation. Here, we discuss a couple of techniques we used.

First, events surfaced as actions on gates should be kept to a minimum. In the state space LTS, only
the actions appear as transitions, so the less actions there are, the smaller the state space. Still, there
should be enough actions to analyze the state space and look for issues. For distributed systems, a rule
of thumb seems to be to surface events related to either inter-process communication, or outstanding
local events. In Raft, communication events happen on gates Send and Recv, while actions on gates
Client and Crash are, as long as the protocol is concerned, local to a Raft server. One could argue that
actions on Client are not strictly necessary to surface, since we could infer whether a leader had a client
interaction by observing its AppendEntries requests. Still, we choose to model them as explicit actions
because it makes it easier to reason about the resulting state space.

Second, some of the action interleavings may be avoided by forcing a specific order of execution. For
instance, in our Raft model a leader broadcasts AppendEntries requests in the order of server IDs (e.g.
leader 1 would send requests to follower 2, and then follower 3). If we wanted to be truly exhaustive, we
should model this broadcast as sending requests in any order (e.g. leader 1 could send to either follower
2 or 3, and then to the other one). Yet we argue that exploring all these sending orders is irrelevant
here, because of the asynchronous nature of communications. What matters is that the receiving order
is not fixed, and in our case all possible receiving orders will be explored thanks to the network process
which buffers messages and delivers them in any order. Based on this reflection, we decided that it was
acceptable to impose the sending order, and thus reduce the state space along the way.

This example demonstrates how it is sometimes acceptable to impose an execution order that reduces
the state space, but one should be genuinely careful about deciding when it is safe to do so. It is very easy
to restrict the state space in a way that removes some of the possible execution paths that are actually
problematic. These decisions depend not only on the system being modeled, but also on the kinds of
verification that are performed on the state space. The obliteration of some execution paths may be
irrelevant to a given verification property, but crucial to an other. Therefore, great care should be taken

H. Evrard 25

when using this technique.

4.5 Working around unreliable communication

Could it be possible to safely reduce the state space by bypassing the modeling of unreliable communi-
cation altogether? Many distributed system protocols or algorithms are designed to cope with unreliable
network, using well-known techniques. For instance, making messages idempotent is a classic way to
cope with message duplication: receiving a message once or several times does not make a difference.
If we take for granted that nodes are robust to any message duplication, why bother modeling message
duplication in our specification? Removing message duplication from our model would help to reduce
the state space by a significant amount.

In the case of our Raft model, messages are not only idempotent, but servers also discard any message
that has a lower term than the server’s current term. Thus, besides removing message duplication from
our network model, we could go further and make the network track the current term of each server and
drop all buffered outdated messages that would be dropped by the destination server anyway. This could
reduce the state space by removing some Recv actions.

These considerations could pave the way to analyze state spaces of configurations with higher bounds
on the number of servers, client interactions and terms, hence gaining more confidence in the verification.
Yet, it is also very easy to overlook how such bypassing may cut away corner-cases that are relevant to
expose bugs that could happen in real implementations. In other words, we are back to this subtle
question: on which grounds can we be certain that it is safe to bypass some behaviors? Such decisions
would be best based on some formal verification or proof of specific well-known solutions, such that
we can safely put those bypasses in place. For instance, a proof that message duplication can be safely
bypassed in modeling if all messages are idempotent would enable to use this technique in any distributed
system model.

4.6 Formal model and implementation: bridging the gap

Several Raft implementations now exist, but how can we know whether they are correct? Some tools
specialize in testing distributed systems. In recent years, the Jepsen9 tool has been used to analyze more
than twenty distributed systems, finding issues in almost all of them, including systems that are based on
Raft, like etcd.10

More generally, the question is how to bridge the gap between the formal model of a protocol and its
actual implementation. TLA+ does not have a code-generation feature. Other projects, like Verdi [15],
are explicitly designed to generate code from the very same specification on which a proof is conducted.
As a matter of fact, Verdi has been used to model Raft and obtain an implementation directly from the
model [16]. In the model-checking world, the Distributed LNT Compiler [3] enables the generation of
a distributed implementation (in C) of an LNT model. Yet, its protocol to implement synchronization
on gates assumes a reliable message passing between processes, so it is not best suited to generate
implementations of distributed systems. Still, it would be possible to specialize this tool and have the
network actions inthe model being replaced by actual call to e.g. Unix socket primitives. Section 6
of [2] conducts a performance comparison between Consul and the code generated by DLC from an
LNT Raft specification: the DLC version can process 1000 client commands on a cluster of 3 servers
in 2.3 seconds, where Consul requires 0.5 second. DLC is slower than Consul in the general case, but

9https://jepsen.io
10See etcd analysis published on January 2020: https://jepsen.io/analyses/etcd-3.4.3

https://jepsen.io
https://jepsen.io/analyses/etcd-3.4.3

26 Modeling the Raft Distributed Consensus Protocol in LNT

Consul also features an optimization that buffers client commands on the leader to treat them in batch
to favour throughput over latency, whereas the DLC version triggers an AppendEntries RPC round for
each client command. In any case, this study reports that DLC-generated implementations can achieve
inter-LNT-process communication over TCP between separate machines in less than half a millisecond.

5 Conclusion

We gave an overview of the Raft consensus protocol followed by a presentation of how we specified it
in LNT. Our model clearly separates the behavior of Raft servers on one side, and the behavior of the
network on the other. Having the network as a separate, generic entity enables not only to reuse this
network model to be reused for other systems, but also to be replaced with other network behaviors. This
can help during the development of a model, to keep the state spaces from growing too big too early. Our
model was written to be comparable with the original TLA+ specification of Raft, in which we found
two issues.

We then conducted a discussion on the formal specification of distributed systems in general. As
opposed to proof systems, we argue that LNT and CADP offer an iterative development environment
that provides a quick feedback loop. We also discussed various techniques for safely reducing the state
space of a model, while still capturing all the execution paths relevant for verification.

Our Raft model only contains the core of the protocol, and a possible future work would be to extend
it to cover optional features, like dynamic configuration changes or log compaction.

Acknowledgements

The author would like to thank the MARS workshop editors and reviewers for their valuable feedback.
Special thanks also goes to Hubert Garavel and Frdric Lang from the Inria CONVECS team for their
support in running some experiments.

References

[1] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine McKinty, Vincent
Powazny, Frédéric Lang, Wendelin Serwe & Gideon Smeding (2017): Reference Manual of the
LNT to LOTOS Translator (Version 6.7). Available at http://cadp.inria.fr/publications/

Champelovier-Clerc-Garavel-et-al-10.html. INRIA/VASY and INRIA/CONVECS, 130 pages.

[2] Hugues Evrard (2015): Génération automatique d’implémentation distribuée à partir de modèles formels de
processus concurrents asynchrones. Theses, Université Grenoble Alpes. Available at https://hal.inria.
fr/tel-01215634.

[3] Hugues Evrard (2016): DLC: Compiling a Concurrent System Formal Specification to a Distributed Imple-
mentation. In Marsha Chechik & Jean-François Raskin, editors: Tools and Algorithms for the Construction
and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, Lecture Notes in Computer Science 9636, Springer, pp. 553–559, doi:10.1007/978-3-
662-49674-9 34.

[4] Hubert Garavel, Frédéric Lang, Radu Mateescu & Wendelin Serwe (2013): CADP 2011: A Toolbox for
the Construction and Analysis of Distributed Processes. Springer International Journal on Software Tools
for Technology Transfer (STTT) 15(2), pp. 89–107, doi:10.1007/s10009-012-0244-z. Available at http:
//cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html.

http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://hal.inria.fr/tel-01215634
https://hal.inria.fr/tel-01215634
http://dx.doi.org/10.1007/978-3-662-49674-9_34
http://dx.doi.org/10.1007/978-3-662-49674-9_34
http://dx.doi.org/10.1007/s10009-012-0244-z
http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html
http://cadp.inria.fr/publications/Garavel-Lang-Mateescu-Serwe-13.html

H. Evrard 27

[5] Hubert Garavel & Wendelin Serwe (2017): The Unheralded Value of the Multiway Rendezvous: Illustration
with the Production Cell Benchmark. In Holger Hermanns & Peter Höfner, editors: Proceedings of the
2nd Workshop on Models for Formal Analysis of Real Systems (MARS’17), Uppsala, Sweden, Electronic
Proceedings in Theoretical Computer Science 244, pp. 230–270, doi:10.4204/EPTCS.244.10.

[6] ISO/IEC (1989): LOTOS – A Formal Description Technique Based on the Temporal Ordering of Observa-
tional Behaviour. International Standard 8807, International Organization for Standardization – Information
Processing Systems – Open Systems Interconnection, Geneva.

[7] ISO/IEC (2001): Enhancements to LOTOS (E-LOTOS). International Standard 15437, International Organi-
zation for Standardization – Software and systems engineering, Geneva.

[8] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti, A. Hamez, E. Lopez-Bobeda,
L. Jezequel, J. Meijer, E. Paviot-Adet, C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg & K. Wolf (2015):
Complete Results for the 2015 Edition of the Model Checking Contest. http://mcc.lip6.fr/2015/results.php.

[9] Fabrice Kordon, Hubert Garavel, Lom-Messan Hillah, Emmanuel Paviot-Adet, Loı̈g Jezequel, César
Rodrı́guez & Francis Hulin-Hubard (2016): MCC’2015 - The Fifth Model Checking Contest. Trans. Petri
Nets Other Model. Concurr. 11, pp. 262–273, doi:10.1007/978-3-662-53401-4 12.

[10] Leslie Lamport (1978): Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM
21(7), pp. 558–565, doi:10.1145/359545.359563.

[11] Leslie Lamport (1998): The Part-Time Parliament. ACM Trans. Comput. Syst. 16(2), pp. 133–169,
doi:10.1145/279227.279229.

[12] Diego Ongaro (2014): Consensus: Bridging Theory and Practice. Ph.D. thesis, Stanford University. Avail-
able at https://purl.stanford.edu/qr033xr6097.

[13] Diego Ongaro & John K. Ousterhout (2014): In Search of an Understandable Consensus Algorithm. In
Garth Gibson & Nickolai Zeldovich, editors: 2014 USENIX Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014, USENIX Association, pp. 305–319. Available at https:
//raft.github.io/raft.pdf.

[14] Fred B. Schneider (1990): Implementing Fault-Tolerant Services Using the State Machine Approach: A
Tutorial. ACM Comput. Surv. 22(4), pp. 299–319, doi:10.1145/98163.98167.

[15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst & Thomas E.
Anderson (2015): Verdi: a framework for implementing and formally verifying distributed systems. In
David Grove & Steve Blackburn, editors: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, ACM, pp. 357–368,
doi:10.1145/2737924.2737958.

[16] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst & Thomas E. Anderson
(2016): Planning for change in a formal verification of the raft consensus protocol. In Jeremy Avigad
& Adam Chlipala, editors: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, Saint Petersburg, FL, USA, January 20-22, 2016, ACM, pp. 154–165, doi:10.1145/2854065.2854081.

http://dx.doi.org/10.4204/EPTCS.244.10
http://dx.doi.org/10.1007/978-3-662-53401-4_12
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/279227.279229
https://purl.stanford.edu/qr033xr6097
https://raft.github.io/raft.pdf
https://raft.github.io/raft.pdf
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1145/2737924.2737958
http://dx.doi.org/10.1145/2854065.2854081

28 Modeling the Raft Distributed Consensus Protocol in LNT

A The LNT specification of Raft

A.1 Global configuration parameters

−− Global parameters to bound the system

−−Maximum term to be allowed
function MaxTerm: nat is

return 3

end function

−−Maxium number of client interaction
function MaxClientInteraction: nat is

return 3

end function

−− Server IDs are within 1..MaxServerID included
−− Zero is reserved as the ”nil” server ID
function MaxServerID: nat is

return 3

end function

−− The range of NatArray must be 1..MaxServerID
type NatArray is

array[1 .. 3] of nat
end type

−−Majority returns the number of servers needed to get a majority
function Majority : nat is

return (MaxServerID div 2) + 1

end function

A.2 Top-level parallel composition

−− For action that only exchange a server ID
channel ID is
(nat)

end channel

−− For general communication between servers
channel Comm is
(nat, nat, Payload)

end channel

−− Entry point: parallel composition of Network, Servers and Client
process Main [Send, Recv: Comm, Client, Crash: ID] is

par
Send, Recv → Network[Send, Recv]

|| Client → Clients[Client]

|| Send, Recv, Client →
par
−− The number of servers here must reflect MaxServerID

H. Evrard 29

Server[Send, Recv, Client, Crash](1)

|| Server[Send, Recv, Client, Crash](2)

|| Server[Send, Recv, Client, Crash](3)

−− Additional servers can be added with e.g.:
−− || Server[Send, Recv, Client, Crash](4)
end par

end par
end process

A.3 Clients

−− Clients bounds the number of client interactions
process Clients [Client: ID] is

var n: nat in
for n := 0 while n < MaxClientInteraction by n := n + 1 loop
Client(?any nat)

end loop
end var

end process

A.4 Network

−− Payload encapsulates the message contents
type Payload is
Payload(mTerm: nat, rpc: RPC)

with "get"

end type

−− NetworkMessage is a message Payload, plus origin and
−− destination which correspond to ServerID’s
type NetworkMessage is
NetworkMessage(orig, dest: nat, payload: Payload)

with "get"

end type

type NetworkMessageSet is
set of NetworkMessage

with "element", "length", "remove"

end type

−− Network models an unreliable communication network.
−−Messages can be lost, duplicated, and reordered.
process Network [Send, Recv: Comm] is

var
n: nat,
orig: nat,
dest: nat,
payload: Payload,

msg: NetworkMessage,

msgBag: NetworkMessageSet

in
msgBag := {}; −− start with no message in the bag

30 Modeling the Raft Distributed Consensus Protocol in LNT

loop
select
−− Obtain a message, and store it in the bag
Send(?orig, ?dest, ?payload);
msgBag := insert(NetworkMessage(orig, dest, payload), msgBag)

[]
−−Message loss: obtain a message, but do not store it
Send(?any nat, ?any nat, ?any Payload)

[]
−− Transmit any message from the bag, then remove it from the bag
−− Note: by picking up any message from the bag, we model reordering
n := any nat where (n > 0) and (n <= length(msgBag));
msg := element(msgBag, n);
Recv(msg.orig, msg.dest, msg.payload);
msgBag := remove(msg, msgBag)

[]
−−Message duplication: transmit it, but do not remove it from the bag
n := any nat where (n > 0) and (n <= length(msgBag));
msg := element(msgBag, n);
Recv(msg.orig, msg.dest, msg.payload)

end select
end loop

end var
end process

A.5 Server

type ServerState is
Follower,

Candidate,

Leader

with "==", "!="
end type

−− Entry content is restricted to a term, we do not model client commands
type Entry is
Entry(term: nat)
with "get"

end type

type EntryList is
list of Entry

with "element", "append", "empty", "length"

end type

type NatSet is
set of nat
with "length"

end type

−− RPC models the remote procedure calls of Raft
−− Each of RequestVote and AppendEntries has a request and a response message

H. Evrard 31

type RPC is
RequestVoteRequest(lastLogIndex, lastLogTerm: nat),
RequestVoteResponse(voteGranted: bool),
AppendEntriesRequest(prevLogIndex, prevLogTerm: nat, entries: EntryList,

leaderCommit: nat),
AppendEntriesResponse(success: bool, matchIndex: nat)

end type

−− LastTerm returns the term of the last log entry
function LastTerm(log: EntryList) : nat is

case log in
{} → return 0

| any → return get_term(element(log, length(log)))
end case

end function

−− Server models the behavior of a Raft server
process Server [Send, Recv: Comm, Client, Crash: ID] (self: nat) is

var
−− server internal state
state: ServerState,

currentTerm: nat,
log: EntryList,

commitIndex: nat,
−− related to RequestVote RPC
votedFor: nat,
votesGranted: NatSet,

−− related to AppendEntries RPC
nextIndex: NatArray,

matchIndex: NatArray

in

−− This disrupt wraps the whole main loop to model a Crash at any time
−− See the actual Crash action at the bottom of the process
disrupt

−− state initialization
state := Follower;
currentTerm := 0;
log := {};
commitIndex := 0;
votedFor := 0;
votesGranted := {};
nextIndex := NatArray(0);
matchIndex := NatArray(0);

−− main loop
loop

select

−− Timeout
if state == Leader then

32 Modeling the Raft Distributed Consensus Protocol in LNT

BroadcastAppendEntriesRequest[Send](self, currentTerm,

commitIndex, log, nextIndex)

else
if currentTerm >= MaxTerm then
−− Do not progress further
stop

else
−− Trigger election for a new term
currentTerm := currentTerm + 1;
state := Candidate;
−− Diff with TLA+ spec: we do vote for ourselves directly
votedFor := self;
votesGranted := {self};
−− Broadcast vote requests
var n: nat in

for n := 1 while n <= MaxServerID by n := n + 1 loop
if (n != self) then
Send(self, n,

Payload(currentTerm,

RequestVoteRequest(length(log),
LastTerm(log))))

end if
end loop

end var
end if

end if

[]

−− Receive message
var
−− Variables to unpack message content
mFrom: nat,
mTerm: nat,
mRPC: RPC,

−− RequestVote
mLastLogIndex: nat,
mLastLogTerm: nat,
mVoteGranted: bool,
−− AppendEntries
mPrevLogIndex: nat,
mPrevLogTerm: nat,
mEntries: EntryList,

mLeaderCommit: nat,
mSuccess: bool,
mMatchIndex: nat

in

−− Network interaction to receive a message
Recv(?mFrom, self, ?Payload(mTerm, mRPC));

if mTerm < currentTerm then

H. Evrard 33

−− Drop stale message
−− Diff with TLA+ spec: drop any message, where in TLA+
−− the server would still reply to stale RPC ∗requests∗
null

else

−− This is the ”UpdateTerm” part of the TLA+ spec
if mTerm > currentTerm then
currentTerm := mTerm;
state := Follower;
votedFor := 0 −− Value zero is the nil server ID

end if;

−− Dispatch to the relevant handler using pattern matching
case mRPC in
RequestVoteRequest(mLastLogIndex, mLastLogTerm) →
HandleRequestVoteRequest[Send](self, currentTerm, LastTerm(log),

mLastLogTerm, length(log),
mLastLogIndex, mFrom, !?votedFor)

| RequestVoteResponse(mVoteGranted) →
eval HandleRequestVoteResponse(log, !?nextIndex, !?matchIndex,

mFrom, !?state, mVoteGranted,

!?votesGranted)
| AppendEntriesRequest(mPrevLogIndex, mPrevLogTerm,

mEntries, mLeaderCommit) →
HandleAppendEntriesRequest[Send](self, mFrom, currentTerm,

mPrevLogIndex, mPrevLogTerm,

mEntries, mLeaderCommit,

!?commitIndex, !?log)
| AppendEntriesResponse(mSuccess, mMatchIndex) →

if state == Leader then
eval HandleAppendEntriesResponse(currentTerm, mFrom, mSuccess,

mMatchIndex, log, !?nextIndex,
!?matchIndex, !?commitIndex)

end if
end case

end if
end var

[]

−− Client interaction
Client(self) where state == Leader;
log := append(Entry(currentTerm), log)

end select
end loop

by
−− Crash may happen at any time
Crash(self)

end disrupt

34 Modeling the Raft Distributed Consensus Protocol in LNT

end var
end process

−− Helper process to broadcast AppendEntries requests
process BroadcastAppendEntriesRequest [Send: Comm] (self: nat,

currentTerm: nat,
commitIndex: nat,
log: EntryList,

nextIndex: NatArray) is
var
n, prevLogIndex, prevLogTerm, lastEntry : nat,
entries: EntryList

in
for n := 1 while n <= MaxServerID by n := n + 1 loop

if (n != self) then
prevLogIndex := nextIndex[n] - 1;
if prevLogIndex > 0 then
prevLogTerm := get_term(element(log, prevLogIndex))

else
prevLogTerm := 0

end if;
lastEntry := min(length(log), nextIndex[n]);
entries := SubSeq(log, nextIndex[n], lastEntry);
Send(self, n,

Payload(currentTerm,

AppendEntriesRequest(prevLogIndex, prevLogTerm,

entries, commitIndex)))

end if
end loop

end var
end process

A.6 RPC handlers

A.6.1 HandleRequestVoteRequest

process HandleRequestVoteRequest [Send: Comm] (in self: nat,
in currentTerm: nat,
in lastLogTerm: nat,
in mLastLogTerm: nat,
in lengthLog: nat,
in mLastLogIndex: nat,
in mFrom: nat,
in out votedFor: nat) is

var logOK: bool, voteGranted: bool in

logOK := (mLastLogTerm > lastLogTerm) or
((mLastLogTerm == LastLogTerm) and (mLastLogIndex >= lengthLog));

voteGranted := logOK and ((votedFor == 0) or (votedFor == mFrom));

H. Evrard 35

if voteGranted then
votedFor := mFrom

end if;

Send(self, mFrom, Payload(currentTerm, RequestVoteResponse(voteGranted)))

end var
end process

A.6.2 HandleRequestVoteResponse

function HandleRequestVoteResponse (log: EntryList,

in out nextIndex: NatArray,

in out matchIndex: NatArray,

voter: nat,
in out state: ServerState,

mVoteGranted: bool,
in out votesGranted: NatSet) is

if (state == Candidate) and mVoteGranted then
votesGranted := insert(voter, votesGranted);

if length(votesGranted) >= Majority then
−− This is the ”BecomeLeader” part of the TLA+ spec
state := leader;
nextIndex := NatArray(length(log) + 1);
matchIndex := NatArray(0)

else
use nextIndex;
use matchIndex

end if
end if

end function

−−
−− Helpers

function SubSeq (e: EntryList, in var i: nat, in var j: nat): EntryList is
var n: nat, result: EntryList in

result := {};
−− restrict indexes
if i == 0 then

i := 1

end if;
j := min(j, length(e));
for n := i while n <= j by n := n + 1 loop
result := append(element(e, n), result)

end loop;
return result

end var
end function

A.6.3 HandleAppendEntriesRequest

36 Modeling the Raft Distributed Consensus Protocol in LNT

process HandleAppendEntriesRequest [Send: Comm] (self: nat,
leaderId: nat,
currentTerm: nat,
mPrevLogIndex: nat,
mPrevLogTerm: nat,
entries: EntryList,

mLeaderCommit: nat,
in out commitIndex: nat,
in out log: EntryList) is

var
logOK : bool,
index, matchIndex : nat,
entry: Entry

in

logOK := (mPrevLogIndex == 0) or
((mPrevLogIndex > 0)

and (mPrevLogIndex <= length(log))
and (mPrevLogTerm == get_term(element(log, mPrevLogIndex))));

−− Diff with TLA+ spec: we don’t need to test if the request
−− was stale (outdated term), because we drop any stale message
−− before dispatching to handlers

if not(logOK) then
−− Decline request
Send(self, leaderId,

Payload(currentTerm, AppendEntriesResponse(False, 0 of nat)));
−− commitIndex is an ”in out” variable, we must use it in all execution paths
use commitIndex

else
−− Accept request
index := mPrevLogIndex + 1;
if empty(entries) then
−− Requests with no entry are heartbeat messages
matchIndex := mPrevLogIndex

else
−−We mirror the TLA+ spec logic which limits to 1 entry at a time
assert(length(entries) == 1);
entry := element(entries, 1);
if (length(log) >= index) and (get_term(element(log, index)) != entry.term) then
−− Conflict, remove our log tail
log := SubSeq(log, 1, index - 1)

end if;
if length(log) == mPrevLogIndex then
−− Entry not yet in the log, append it
log := append(entry, log)

end if;
matchIndex := mPrevLogIndex + 1

end if;
commitIndex := mLeaderCommit;
Send(self, leaderId,

H. Evrard 37

Payload(currentTerm, AppendEntriesResponse(True, matchIndex)))

end if
end var

end process

A.6.4 HandleAppendEntriesResponse

function HandleAppendEntriesResponse (currentTerm: nat,
mFrom: nat,
success: bool,
mMatchIndex: nat,
log: EntryList,

in out nextIndex: NatArray,

in out matchIndex: NatArray,

in out commitIndex: nat) is
if success then
nextIndex[mFrom] := mMatchIndex + 1;
matchIndex[mFrom] := mMatchIndex

else
nextIndex[mFrom] := max(1 of nat, nextIndex[mFrom])

end if;

eval AdvanceCommitIndex(currentTerm, log, matchIndex, !?commitIndex)
end function

−−
−− Helpers

−−MajorityAgree returns true if a majority of servers have the same
−− entry at the given index
function MajorityAgree (index: nat, matchIndex: NatArray): bool is

var n, nbagree: nat in
−− start nbagree at 1 since the current leader always agree,
−− but its own matchIndex is zero
nbagree := 1;
for n := 1 while n <= MaxServerID by n := n + 1 loop

if index <= matchIndex[n] then
nbagree := nbagree + 1

end if
end loop;
return nbagree >= Majority

end var
end function

−−MaxAgreeIndex returns the higher index for which servers agree
function MaxAgreeIndex (lengthLog: nat, matchIndex: NatArray): nat is

var index: nat in
index := lengthLog;
while not(MajorityAgree(index, matchIndex)) loop

index := index - 1

end loop;
return index

38 Modeling the Raft Distributed Consensus Protocol in LNT

end var
end function

function AdvanceCommitIndex (currentTerm: nat,
log: EntryList,

matchIndex: NatArray,

in out commitIndex: nat) is
var index: nat in

index := MaxAgreeIndex(length(log), matchIndex);
if (index > 0) and (get_term(element(log, index)) == currentTerm) then
commitIndex := index

else
use commitIndex

end if
end var

end function

B General distributed system modeling

B.1 Node skeleton

process GenericNodeSkeleton [Send, Recv, Crash, Other, ...] (...) is
var
... −− Declare node state variables

in
disrupt
... −− Initialize state variables
loop

select
−− Handle message reception
Recv(...);
...

Send(...) −−May trigger sending of other messages
[]
−− React on other events: timeouts, local sensor reading, etc
Other(...);
...

Send(...)

[]
...

end select
end loop

by
Crash() −− Crash at any time

end disrupt
end var

end process

B.2 Reliable Network

process ReliableNetwork [Send, Recv: Comm] is
var

H. Evrard 39

n: nat,
orig: nat,
dest: nat,
payload: Payload,

msg: NetworkMessage,

msgBag: NetworkMessageSet

in
msgBag := {};
loop

select
−− Obtain a message, and store it in the bag
Send(?orig, ?dest, ?payload);
msgBag := insert(NetworkMessage(orig, dest, payload), msgBag)

[]
−− Transmit a message from the bag, in no particular order
n := any nat where (n > 0) and (n <= length(msgBag));
msg := element(msgBag, n);
Recv(msg.orig, msg.dest, msg.payload);
msgBag := remove(msg, msgBag)

end select
end loop

end var
end process

	1 Introduction
	2 The Raft consensus protocol
	2.1 Consensus for state machine replication
	2.2 Raft leader election
	2.3 Raft log replication

	3 Modeling Raft in LNT
	3.1 LNT: a primer
	3.2 Raft model parameters
	3.3 Top-level parallel composition
	3.4 Interaction with clients
	3.5 Network communication
	3.6 Server
	3.6.1 Timeout
	3.6.2 Message reception
	3.6.3 Client interaction
	3.6.4 Crash

	3.7 Issues with the original TLA+ specification

	4 Discussion on the modeling of distributed systems
	4.1 Iterative development with LNT and CADP
	4.2 Generic skeleton for distributed systems
	4.3 A library of network models
	4.4 Keep the state space minimal
	4.5 Working around unreliable communication
	4.6 Formal model and implementation: bridging the gap

	5 Conclusion
	A The LNT specification of Raft
	A.1 Global configuration parameters
	A.2 Top-level parallel composition
	A.3 Clients
	A.4 Network
	A.5 Server
	A.6 RPC handlers
	A.6.1 HandleRequestVoteRequest
	A.6.2 HandleRequestVoteResponse
	A.6.3 HandleAppendEntriesRequest
	A.6.4 HandleAppendEntriesResponse

	B General distributed system modeling
	B.1 Node skeleton
	B.2 Reliable Network

