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Abstract— The well-known problem of state space explosion
in model checking is even more critical when applying this
technique to programming languages, mainly due to the presence
of complex data structures. One recent and promising approach
to deal with this problem is the construction of an abstract
and correct representation of the global program state allowing
to match visited states during program model exploration. In
particular, one powerful method to implement abstract matching
is to fill the state vector with a minimal amount of relevant
variables for each program point. In this paper, we combine the
on-the-fly model checking approach (incremental construction
of the program state space) and the static analysis method
called influence analysis (extraction of significant variables for
each program point) in order to automatically construct an
abstract matching function. Firstly, we describe the problem
as an alternation-free value-basedµ-calculus formula, whose
validity can be checked on the program model expressed as
a labeled transition system (LTS). Secondly, we translate the
analysis into the local resolution of a parameterised boolean
equation system (PBES), whose representation enables a more
efficient construction of the resulting abstract matching function.
Finally, we show how our proposal has been elegantly integrated
into CADP, a generic framework for both the design and analysis
of distributed systems and the development of verification tools.

I. I NTRODUCTION

One of the most exciting challenges in the model checking
community is to apply automatic reachability based verifica-
tion to standard programming languages. Actually, there are
many ongoing projects oriented to adapt the results on formal
method research to languages like Java (see BANDERA [16]
and JPF [3]) or C/C++ (see VERISOFT [14], FEAVER [18] or
SOCKETMC [5]). As expected, a common problem to these
approaches is how to deal with thestate space explosion
problem, resulting from the size of data structures employed in
real software, which is several orders of magnitude superior to
the size of models written with formal description techniques.

Abstract interpretation is one well-established solutionto
automatically construct smaller and sound models, which may
be analyzed by model checking tools (see [7], [16], [10],
[2]). This method, employed in tools like JPF, BANDERA or
αSPIN, is partial, because it consists in constructing an over-
approximation of the program, where non-realistic paths are
possible. Here, we are interested in a more recent approach,
which tries to solve the problem using precise abstractions.
Thanks to a minimal amount of information, such a method
explores exactly the paths required for a given property.

One technique of particular interest isabstract matching. It
consists in using a function for reducing the state vector by
ignoring variables, whose values are not relevant to check
the property. Actually, these variables are temporally replaced
by their abstractions, allowing to cut the exploration paths.
Moreover, this approach generates an under-approximationof
the whole state space. Thus, it never produces non-realistic
paths. Holzmann and Joshi were the first in [17] to propose the
technique, then employed in [26]. In [4], the authors proposed
the use ofstatic analysisalgorithms to automatically construct
abstraction functions. The method makes use of the property
to be analyzed, and in practice, it is based on computing the
influence graph for each program variable. In this paper, we
intend to automatically construct abstract matching functions
by performing the influence analysis described in [4] using
model checking techniques.

The idea of using model checking to implement static
analysis was first expressed by Steffen in [29], who provided
a framework to characterize data flow analyses as the verifi-
cation of particular modal formulas. Schmidt then extended
Steffen’s work in [27] to relate it with abstract interpretation.
More recently, the tool jABC [21] put in practice Steffen’s
proposals in the context of Java programs. Our approach is
close to these previous works, but rather focus on one specific
analysis:influence analysis. We show how influence analysis
can be expressed as an alternation-free modalµ-calculus
formula with data parameters evaluated on a labeled transition
system (LTS) expressing the abstracted program behavior.
Another interesting contribution of the paper is the encoding
of influence analysis in terms of on-the-fly Boolean Equation
System (BES) resolution. BESs allow a natural description of
numerous verification problems, such as model checking of
temporal formulas, bisimulation, partial order reduction, horn
clause resolution, abstract interpretation and conformance test
case generation [19]. Moreover, BESs are efficiently supported
by different resolution algorithms in the literature, one im-
plementation being the CÆSAR SOLVE library [24], which is
part of the widespread verification toolbox CADP [13]. This
resolution library is used by the model checker EVALUATOR

3.5 [24], but also by bisimulation and partial-order reduction
tools. In addition, it has recently been extended with dis-
tributed algorithms, thus allowing an immediate distribution
of each tool connected to CÆSAR SOLVE [19]. Hence, our



static analysis proposal can directly benefit from this verifica-
tion platform. Parallelly, the SOCKETMC tool is now being
rewritten [11] for OPEN/CÆSAR, thus creating a complete set
of tools to perform the whole cycle towards verification of
software with abstract matching functions.

This paper is organized as follows. Section II summarizes
the influence analysis algorithms used to construct abstract
matching functions. Section III translates the different al-
gorithms into alternation-freeµ-calculus formulas with data
parameters, and explains the limitations of such an approach.
Section IV further transforms the problem into PBES reso-
lutions. Section V shows the implementation and experiment
of the different encodings into the verification toolbox CADP.
Finally, Section VI gives some concluding remarks and direc-
tions for future work.

II. I NFLUENCE ANALYSIS FOR ABSTRACT MATCHING

As proposed in [17], an abstract matching functionf()
should be invoked when it is necessary to compact the
state vector. In such cases, the abstraction function computes
abstract representations of the hidden data and copies the
result onto the state vector. In [17], the authors do not address
any particular method to generatef() , however they present
necessary conditions to define sound abstract functions that
preserve CTL properties.

In [4] a particular method is proposed to constructf() in
such a way that the function be sound and oriented to the
property to be checked. This method is based on the identi-
fication of variables thatinfluencethe verification result from
the current state. In particular, the authors of [4] developed
the so-calledinfluence analysis(IA) to annotate each program
point p with the set ofsignificantvariablesIA(p) needed to
correctly analyze a given property. Data flow analysisIA is a
variant of the classic live variable analysis (LV) that attaches
each program point with the set oflive variables at this point.
The key difference is thatIA makes use of the property to be
checked to determine the set ofneededvariables. Informally,
a variable is needed (w.r.t.IA), if its current value may be
necessary to evaluate the property of interest in the future.
Thus, at a given point, alive variable (w.r.t.LV) may not be
needed, if its value does not influence the property evaluation.

For each program pointp, IA(p) is iteratively calculated as
the fixed point of an operator that informally works as follows.
Let V be the set of program variables.IA starts by attaching
to p the setI(p) ⊆ V of variables, which are initially needed
at p. The definition ofI(p) depends on the property to be
analysed. Now, assume that it is known that variablex ∈ V
is needed at pointp, then variabley ∈ V influencesx at p,
if there exists an execution path in the program fromp to
an assignmentx = exp, and the current value ofy is used
to calculateexp. The notion of influenceis recursive since
it may be necessary to check ify influences some variable
appearing in expressionexp in order to decide whethery
is needed at pointp. As shown in the following sections, a
consequence of this recursive behaviour is that we need to

useparameterswhen translatingIA into µ-calculus formulas
or boolean equation systems.

Influence analysis is used in a dual manner by hiding
(abstracting) the variables, whichare not needed at each
program point, while the rest of variables remains explicitin
the state vector. Therefore, thebest IA analysis is the one
attaching the smallest set of variables to each point.

The work in [4] describes four different influence analyses
preserving specific properties. The most precise analysis,de-
noted asIA1, only preserves information on reachable code.
As an example, we can consider the C processp1, shown in
Figure 1 (a). The goal ofIA1 is to determine, in each program
point (represented as labelsL0, · · · , L4 in processp1, and
vertices in the corresponding control flow graph illustrated
in Figure 1 (b)), which variables will affect the program
execution flow.
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x = x − 1

x > 0

y = 2 * y

printf ( y )

(b)

x <= 0

(a)

/* L4 */ }

         void p1 ( int n ) {

              int x = n;

              int y = 1;

/* L0 */      while ( x > 0 ) {

/* L1 */           x = x − 1;

/* L2 */           y = 2 * y;

              };

/* L3 */      printf ( y );

Fig. 1. Example of a C programp1 (a) and its control flow graph (b)

Figure 1 (b) shows the intended result ofIA1 for p1. For
this process, the static analysis associates the set{x} with the
labelsL0, L1, andL2 (represented in the control flow graph
as nodes 0, 1 and 2). Hence, if we are interested in knowing
whether a particular label of processp1 is reachable, we only
have to store variablex at labelsL0, L1, andL2. In particular,
variabley may be completely hidden because its value is not
relevant for this analysis.

The other variants ofIA extendIA1 in the following way:
IA2 produces bigger sets of variables, but it preservessafety
properties. It extends IA1 considering variables contained
in assertions;IA3 studies the case of models with global
variables; IA4 is the least precise analysis, but in contrast,



it preservesliveness properties. It is based on considering as
influencing variables all variables appearing in the temporal
formulas to be verified. More details on these influence
analyses can be found in [4]. It is worth noting that they
can be directly applied to different kinds of modelling and
programming languages. In particular, in the rest of the paper,
we assume concurrent systems written in C code, although
the techniques are applicable to a broader set of imperative
languages, such as SystemC, Java, Promela, LOTOS, as far
as their control flow graph can be described by our LTS

formalism, given in the sequel.

III. I NFLUENCE ANALYSIS USING MODEL CHECKING

This section is devoted to one implementation of influence
analysis over finite LTSs [4] using model checking. We first de-
fine the LTS model extracted from the program being statically
analysed, next we describe how the influence analysis problem
can be translated into the model checking of temporal formulas
over the program model, and finally we give the limitations
of such an approach.

A. Presentation of the program model

Influence analysis takes as input a program, or more pre-
cisely, a model extracted from it. In this work, we consider the
Labeled Transition System(LTS) model, which is suitable for
value-passing languages, in particular for concurrent system
descriptions. An LTS is a tuple〈S, A, T, s0〉, where:

• S is a finite set of states. Since influence analysis works
on program control flow graph, states only contain infor-
mation about program counter;

• A is a finite set of actions. An actiona ∈ A is represented
as a listi ~w, wherei identifies its type and~w is a list of
typed values;

• T ⊆ S × A × S is the transition relation. A transition
(s, a, s′) ∈ T , also noteds

a
→ s′, states that the system

can move froms to s′ by executing actiona (s′ is an
a-successor ofs);

• s0 ∈ S is the initial state.
In particular, since influence analysis makes use of program

variables, that are present in program assignments and in
boolean and arithmetical expressions, we use the typeV ar to
denote the set of program variables, and two additional types
to denote actions being present in LTS labels:

• BOOL ~v describes a boolean expression based on the
list of variables~v of type V ar;

• ASSIGN v1~v describes an assignment expression,
where variablev1 of type V ar is assigned a value based
on variables~v.

In order to facilitate the further analysis task, we assume
that actions in LTSs present a particular form, which depends
on the static analysis to be carried out. These abstract actions
may be automatically constructed from the instructions on the
source language. As for an example, we obtain the LTS on
Figure 2 corresponding to the program presented on Figure 1.

Its construction results from the control flow analysis of
the program together with a labelling of relevant (i.e.,BOOL
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BOOL x

BOOL x

ASSIGN x x

ASSIGN y y

τ

Fig. 2. Example of LTS extended with special actions BOOL and ASSIGN

andASSIGN ) and invisible (i.e.,τ ) actions. Moreover, our
model splits each action “BOOL v1, . . . , vj” in actions
“BOOL vi” containing only one variablevi, for all i ∈ [1, j].
A non-deterministic choice is then made between actions
“BOOL vi”. Similarly, each action “ASSIGN v1 v2 . . . vj”
is split in actions “ASSIGN v1 vi” with two variable
parameters only, for alli ∈ [2, j]. We can also remark that
non-determinism may be introduced artificially (i.e., actions
“BOOL x” from state0) when creating the LTS. However,
since the unique purpose of such an LTS is to enable influence
analysis, all pertinent information for the analysis is kept.

B. Influence analysis usingL1
µ formulas with data parameters

Modalµ-calculus [20] is an expressive temporal logic based
on fixed points, that allows to express a wide range of
properties on LTSs, including those of various other useful
logics, such as PDL [9] or CTL [6] (as well as its action-based
extension ACTL [25]).

The alternation-free fragment of the modalµ-calculus, noted
L1

µ [8], is obtained by forbidding mutual recursive dependen-
cies between minimal and maximal fixed point variables. This
logic is of practical usefulness thanks to the existence of linear
resolution algorithms in the size of the formula (number of
operators) and LTS (number of states and transitions).

In this work, we are interested in the value-based extension
of the logic [23], which enables the specification of data
variables and parameterised fixed point into the temporal for-
mulas. Properties are not restricted to static label description,
but they can refer to dynamic values dependent from the
system execution. Formulas of alternation-free value-based
modalµ-calculus are defined by the following grammar (where
X ∈ X is a propositional variable, andX a set of propositional
variables):

φ ::= false | true | φ1 ∨ φ2 | φ1 ∧ φ2 | 〈a〉φ | [a]φ

| X(~e) | µX(~x : ~t := ~e).φ | νX(~x : ~t := ~e).φ

The semantics of a formulaφ over an LTS M =
(S, A, T, s0) denotes the set of states satisfyingφ and it is de-
fined as follows: boolean operators have their usual definition;
possibility operator〈a〉φ (resp. necessity operator[a] φ) define
states from which some (resp. all) transitions labeled by action
a lead to states satisfying formulaφ. We will use overlined
actionsa to represent all actions different froma; propositional



variablesX are parameterised by data variables~e; minimal
(resp. maximal) fixed point operatorµX(~x : ~t := ~e).φ (resp.
νX(~x : ~t := ~e).φ) denotes the least (resp. greatest) solution
of the fixed point equationX(~x : ~t) = φ, parameterised
by data variables~x and argument types~t, evaluated with
the arguments~e and interpreted over2S. On-the-fly model
checking determines if the initial states0 of an LTS satisfies
a formulaφ and belongs to the set of states denoted byφ.
Although there only exist partial resolution algorithms for
value-basedL1

µ, they are practically useful, especially in the
context of influence analysis problems.

As a fragment of the data flow analysis problem, influence
analysis has shown to be solvable using model checking
techniques [28], namely using the modalµ-calculus. However,
there doesn’t exist to our knowledge a value-basedL1

µ formula
encoding the problem of influence analysis. Our approach is
the same in spirit to the one of [21], where checking a program
property corresponds to writing a new formula, evaluating it
on the model and extracting from the set of states satisfying
the formula, those defining the different program points.
Considering that influence analysis algorithmIA1 from [4]
attaches each program point with the set of variables, whose
value is needed to preserve the reachability graph, the resulting
value-basedL1

µ formula is:

φIA1
= µY (v : V ar). (〈BOOL v〉 true

∨ 〈ASSIGN z : V ar v〉Y (z)
∨

〈

ASSIGN v z : V ar
〉

Y (v))

φIA1
is true if variable v is influent on the initial state

of the LTS. Labels “ASSIGN z : V ar v” represent graph
actions, where the value of an existentially bound variablez is
influenced byv in an assignment expression. On the contrary,
“ASSIGN v z : V ar” stands for actions, where variable
v, given as parameter, is modified by an existentially bound
variablez.

Even if encoding influence analysis in terms of value-based
µ-calculus formulas over LTS is straightforward, it is a new
practically useful result for static analysis tools using model
checking (e.g., jABC [21]).

Similarly to IA1, algorithms IA2−4 can be encoded as a
µ-calculus formula. Since algorithmIA2 relies on assertions
present in the program, it is necessary to extend abstract
actions in the LTS with a new type of label:

• ASSERT ~v describes an assertion composed of vari-
ables~v of typeV ar. Similarly to boolean expressions, we
will consider that each action “ASSERT v1, . . . , vj”
is split in actions “ASSERT vi” containing only one
variablevi, for all i ∈ [1, j].

Hence,φIA1
can naturally be extended by taking into ac-

count assertion variables and we obtain the formula:

φIA2
= µY (v : V ar). (〈BOOL v〉 true

∨ 〈ASSERT v〉 true
∨ 〈ASSIGN z : V ar v〉Y (z)

∨
〈

ASSIGN v z : V ar
〉

Y (v))

Algorithm IA3 being an extension ofIA1 and IA2 consid-

ering not only local variables but also global variables, the
encoding of the problem as aµ-calculus formula is unchanged
and does not need an extra definition. However, algorithmIA4

aims at preserving generic temporal properties, and for this
purpose, all variables included in such a property have an
influence over the program execution. Since the information
contained in temporal properties is external to the program
being checked, it will not be accessible in its extracted model,
described as LTS. Hence, a variablex is influent moduloIA4 at
a specific program point if it is included in the set of variables
used in the temporal properties or if the evaluation ofφIA4

,
given as follows, on the LTS is true:

φIA4
= µY (v : V ar). (〈BOOL v〉 true

∨ 〈ASSIGN wi : V ar v〉 true
∨ 〈ASSIGN z : V ar v〉 Y (z)
∨

〈

ASSIGN v z : V ar
〉

Y (v))

The formulaφIA4
is an extension ofφIA1

with as many
modal operations〈ASSIGN wi : V ar v〉 as variableswi

present in the external temporal property. Indeed, if a variable
v affects the value ofwi in the program, thenv is an influent
variable itself.

To illustrate the use of model checkingµ-calculus formulas
for influence analysis, we can show the result of evaluating
φIA1

on the LTS given in Figure 2. Checking the validity of
φIA1

for variablex on states0 will return true, since there exist
boolean expressions (e.g., “BOOL x”) involving x reachable
from s0. This process can be iterated through all states figuring
in the LTS and all variables of the program (i.e.,x and y),
allowing the progressive construction of the list of variables
influencing each state (see Figure 3). We can remark that only
x influences part of the LTS. Hence, variabley can be totally
disregarded without involving any skip of reachable states.

x x

0

x

3 4
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BOOL x

BOOL x

ASSIGN x x

ASSIGN y y5
ASSIGN x y

y

τ

Fig. 3. Example of influence analysis usingµ-calculus model checking

C. Limitations of on-the-fly value-basedL1
µ model checking

Instead of iterating through each state, in order to obtain all
states satisfyingφIA1

for a given variable, it would be more
convenient to evaluate only one formula on the whole LTS,
and consequently to extract a subgraph from the original LTS,
containing all states influenced by the specific variable. This
could be done by computingφIA1

on the LTS in a backwards
manner using a fixed point iteration. However, this requiresthe



prior computation of the LTS, and we seek a solution which
is suitable for on-the-fly exploration. An adequateµ-calculus
formula (for IA1) would look like the following:

φallIA1
= νZ. ( φIA1

∧ [ true ] ( ¬ φIA1
∨ Z ) )

This formula has the same interpretation asφIA1
, meaning that

its satisfaction on the initial states0 denotes that the given
variable is significant for the initial state. Moreover, theon-
the-fly evaluation ofφallIA1

on a state satisfyingφIA1
requires

the recursive evaluation of all its successors that also satisfy
φIA1

, until all states satisfyingφIA1
have been explored. In

case of atrue answer, it is then possible to draw a positive
diagnostic (example), that only reports the states annotated
by x in the Figure 3. However, this is only true ifx never
gets assigned a new value. In such a case, this might create
holes in the diagnostic, as can be shown in Figure 3 when
adding an artificial new states5 connected tos0. Evaluating
φallIA1

on s5 will return false for variable x, whereasx is
influent on statess0, s1 and s2. Standard model checkers
are not designed to draw such a diagnostic or a partial one
with only states satisfyingφIA1

. Hence, an iteration through
all states is necessary to incrementally construct the set of
states influenced by a specific variable.

Working at the level ofµ-calculus formulas and standard
model checkers allows us to design generic solutions that
work not only for influence analysis but, more generally, to
many static analyses including classic data flow analyses [21].
However, using on-the-fly model checking is inefficient for
influence analysis. Indeed, it would be necessary to use persis-
tent computation results between subsequent costly repetitive
evaluations of a same formula over each state of the LTS and
each program variable. In this sense, global model checking
would be more appropriate, but it is more prone to state
space explosion when generating the complete state space
and verifying the formula on each of its states. Moreover, it
would be more convenient to incrementally generate the listof
variables that influence each state, in order to define strategies
on which variables need to be checked on successor states,
thus allowing a gain in the number of computations needed.
To respond to these limitations, a finer-grained encoding of
the problem in terms of PBES resolution is preferred and it is
described in the following section.

IV. I NFLUENCE ANALYSIS USINGPBES

This section introduces the Parameterised Boolean Equation
System (PBES) model, and gives a PBES encoding of the
influence analysis problem.

A. Definition of a parameterised boolean equation system

A Boolean Equation System(BES) [1], [22] is a tuple
B = (x, M1, . . . , Mn), wherex ∈ X is a boolean variable,
X a set of boolean variables, andMi are equation blocks
(i ∈ [1, n]). Each blockMi = {xij

σi= opijXij}j∈[1,mi] is a
set of minimal (resp. maximal) fixed point equations with sign
σi = µ (resp.σi = ν). The right-hand side of each equation
xij of block Mi is a pure disjunctive or conjunctive formula

obtained by applying a boolean operatoropij ∈ {∨,∧} to
a set of variablesXij ⊆ X . Boolean constantsfalse and
true abbreviate the empty disjunction∨∅ and the empty
conjunction∧∅ respectively. A variablexij depends upon a
variablexkl if xkl ∈ Xij . A block Mi depends upon a block
Mk if some variable ofMi depends upon a variable defined
in Mk. A block is closed if it does not depend upon any
other blocks. A BES is alternation-freeif there are no cyclic
dependencies between its blocks. In this case, blocks can be
sorted topologically such that a blockMi only depends upon
blocksMk with k > i. The main variablex must be defined
in M1. In this work, we are interested in the parameterised
extension of alternation-free BES [23], called PBES. A PBES

is a tuple B = (x (~z : ~t), M1, . . . , Mn), where x ∈ X
is a boolean variable parameterised by data variables in~z
typed by~t. Similarly, each blockMi = {xij( ~zij : ~tij)

σi=
opijXij}i∈[1,n], j∈[1,mi] is parameterised by data variables in
~zij typed by ~tij .

The local (or on-the-fly) resolution of an alternation-free
PBES B = (x (~z : ~t), M1, . . . , Mn) consists in computing the
value ofx(~z : ~t) by exploring the right-hand sides of the equa-
tions in a demand-driven way, without explicitly constructing
the blocks. Several on-the-fly BES resolution algorithms [1],
[22] and PBES resolution algorithms [23], [15] are available.
Although PBES algorithms are partial computations, they are
practically useful on finitely branching LTSs.

B. Encoding of influence analysis as PBES resolution

PBES being a relatively new formalism, solving value-based
L1

µ formulas by means of a translation to PBESs isn’t as
standard as it would be for BESs andL1

µ formulas.
To solve influence analysis using PBES resolution, the first

step is to construct an adequate equation system. Followingthe
approach of [23], it is possible to transform the problem of
evaluating a value-based alternation-freeµ-calculus formula
upon an LTS, into the resolution of a parameterised modal
equation system (PMES) upon the LTS, by extracting fixed
point operators out of the formula. Starting fromφIA1

, the
resulting PMES contains one block of modal equations and it
is given as follows:

Y (v : V ar)
µ
= ( 〈BOOL v〉 true

∨ 〈ASSIGN z : V ar v〉 Y (z)
∨

〈

ASSIGN v z : V ar
〉

Y (v))

Then, to obtain a PBES each modal equation block is
converted into a boolean equation block by ‘projecting’ it on
each state of the LTS being checked:

{Ys(v : V ar)
µ
=

∨

s
a

→s′ | a|=BOOL v
true

∨
∨

s
a

→s′ | a|=ASSIGN z v
Ys′(z)

∨
∨

s6
a

→s′ | a|=ASSIGN v z
Ys′(v)}s∈S

Expressions “a |= BOOL v”, “ a |= ASSIGN z v”,
and “a |= ASSIGN v z” respectively mean thata is a
boolean expression containing the program variablev, a is
an assignment, where variablev is modified by a variablez,



1 INFLUENCE ANALYSIS (S,A,T ,s0) : S → 2V ar

2 visited := {s0}; explored := ∅; var := ∅;
3 while visited 6= ∅ do
4 s := get(visited); visited := visited \ {s};
5 explored := explored ∪ {s}; d(s) := ∅;
6 forall w ∈ V ar do
7 if solve(Ys(w)) then
8 d(s) := d(s) ∪ {w}
9 endif

10 endfor;
11 forall s → s′ | s′ /∈ explored do
12 visited := visited ∪ {s′}
13 endfor
14 endwhile;
15 return d

Fig. 4. Influence analysis of LTS using PBES resolution

and a is an assignment, where a variablez is modified by
variablev.

A boolean variableYs(v) is true iff state s satisfies the
propositional variableY considering variablev. Thus, the on-
the-fly influence analysis of variablex on the initial state of
the LTS amounts to compute the value of variableYs0

(x).
Generalizing the approach, the influence analysis of all

program variablesx over all statess in the LTS, can be
transformed into an iterative local PBES resolution algorithm.

The function INFLUENCE ANALYSIS, shown on Figure 4,
describes the influence analysis of an LTS M = 〈S, A, T, s0〉
using a PBES resolution for each program variable and LTS

state. It starts the resolution with the initial states0 (line 2).
Given a states, the function constructs and solves for each
program variablew (lines 6–10), the corresponding boolean
variableYs(w) (line 7, functionsolve). If the variablew is
influent upon the current states, then the setd(s) of influent
variables on states is increased with variablew (line 8).
Then, the algorithm iterates through each of the successor
states ofs (lines 11–13) updating the set of visited states.
The analysis continues until all states are explored (line 3).
The result of function INFLUENCE ANALYSIS is the function
d : S → 2V ar, which returns for each state, the list of variables
that are significant. Such a functiond can be further used to
automatically construct an abstract matching function stating
which variables need to be inserted in the state vector at each
program point. Finally, we can also remark that the algorithm
presented on Figure 4 can be applied with all influence analysis
algorithmsIA1−4 by using the corresponding PBES encodings
when constructing boolean variableYs(w) (line 7).

This solution is similar in spirit to the model checking
specification in terms ofµ-calculus formulas, as it allows to
directly provides the desired property as an equation system,
whereas it was expressed as a temporal formula in the previous
approach. An important aspect of the method is that influence

analysis will require the resolution of only one structure,the
parameterised boolean equation system, whereas it needed
the resolution of as manyµ-calculus formulas as variables
being checked, multiplied by the number of states in the LTS.
Moreover, the PBES is solved on-the-fly, which means that
only the relevant parts of it are computed for each state and
each variable. Finally, since a boolean variablexij defined
in Mi may be required several times during the resolution
process, it is possible to obtain an efficient overall resolution
by using persistent computation results between subsequent
resolution calls.

V. I MPLEMENTATION AND EXPERIMENTS

Similarly to model checker EVALUATOR 3.5 [24],
ANNOTATOR (1 600 lines of C code, see Figure 5) has
been fully developed within CADP [13] by using the generic
OPEN/CÆSAR environment [12] for on-the-fly exploration of
LTSs.

EVALUATOR (resp. ANNOTATOR) consists of two parts:
a front-end, responsible for encoding the verification of the
L1

µ formula (resp. the static analysis type) on LTS1 as a
BES (resp. PBES) resolution. EVALUATOR produces also a
counterexample by interpreting the diagnostic provided bythe
BES resolution; and a back-end, responsible of BES (resp.
PBES) resolution, playing the role of verification engine. Both
tools are obtained by using, as back-end, algorithms of the
CÆSAR SOLVE library [24]. Globally, the approach to on-the-
fly model checking (resp.static analysis) is both to construct
on-the-fly the LTS1 and corresponding BES (resp.PBES) and
to determine the final value of the main variable.

In the sequel, we present an experimentation with
EVALUATOR 3.5 of the influence analysis propertyIA1 ex-
pressed as a modal equation system (MES) that is not
parameterised, and the implementation and experiment of
ANNOTATOR to achieve the static analysis of an LTS using
PBES resolution within CADP.

A. Experiments withEVALUATOR 3.5

The current EVALUATOR model checker of CADP, whose
version is 3.5, does not handle data parameters inµ-calculus
formulas. However it is possible to use EVALUATOR 3.5
with the µ-calculus formulaφIA1

, by transforming it in a
parameterless equation system. This can be done, assuming
that the set of program variablesxi is known, by instantiating
each call toY (xi) into a parameterless propositional variable
namedYxi

. Moreover, to get a more compact representation
of the expanded formula, we can use modal equation systems
(MES), which are accepted as input for EVALUATOR 3.5 as
.blk files (option-block). Such transformation has already been
realized in Section IV-B where the formulaφIA1

was expanded
into a PMES. In order to obtain a resolution complexity linear
in the size of the LTS and PMES, it is necessary to simplify
the PMES, by splitting each right-hand side equation in order
to have a single boolean or modal operator [23]. Simplifying
the PMES Y of Section IV-B leads to the following PMES:
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Fig. 5. The on-the-fly tools EVALUATOR and ANNOTATOR

Y1(v1 : V ar)
µ
= Y2(v1) ∨ Y3(v1)

Y2(v2 : V ar)
µ
= 〈BOOL v2〉 true

Y3(v3 : V ar)
µ
= Y4(v3) ∨ Y5(v3)

Y4(v4 : V ar)
µ
= 〈ASSIGN z : V ar v4〉 Y (z)

Y5(v5 : V ar)
µ
=

〈

ASSIGN v5 z : V ar
〉

Y (v5)

Next, we transform the simplified PMES in a MES using
the parameterless propositional variableY j vi. This MES has
a size quadratic w.r.t. the number of influencing variables in
the program, but this may be of reasonable size if the number
of variables in the program is also not very large. The.blk file,
for variablesx andy in the LTS on Figure 2, is the following:

block mu B is
Y1 x = Y2 x or Y3 x
Y2 x = < "BOOL x" > TRUE
Y3 x = Y4 x or Y5 x
Y4 x = < "ASSIGN y x" > Y1 y
Y5 x = < not ("ASSIGN x y") > Y1 x
Y1 y = Y2 y or Y3 y
Y2 y = < "BOOL y" > TRUE
Y3 y = Y4 y or Y5 y
Y4 y = < "ASSIGN x y" > Y1 x
Y5 y = < not ("ASSIGN y x") > Y1 y

end block

Then, to evaluate the influence of variablex (resp. y) on
the initial states0, we can use the.blk clauseeval B:Y1_x
(resp. eval B:Y1_y ), which tells EVALUATOR 3.5 which
propositional variable it has to check. As a consequence,
another limit of the method using EVALUATOR 3.5 is that
we cannot check the influence property on a state different
from the initial state, as EVALUATOR 3.5 will systematically
evaluate the MES on the initial state of the considered LTS.

B. Implementation of an on-the-fly static analyser in CADP

Instead of using current model checkers, we seek a solution
that will explicitly manipulate the encoded problem as PBES,
implementing the algorithm given in Figure 4. This led us to
the need of constructing a static analyser in CADP, based on
the OPEN/CÆSAR interface for on-the-fly exploration of LTS.
Adapting existing tools to perform influence checking on-the-
fly is of real interest.

The architecture of such a tool, named ANNOTATOR, is
described on Figure 5. For each visited state in the LTS,
it computes the encoding of the static analysis problem in
terms of PBES and solves it upon the state following the
algorithm in Figure 4. In the case of influence analysis, the
corresponding PBES, given in Section IV-B, is projected to
the LTS to generate aflat (i.e., parameterless) BES, that is
solved by the CÆSAR SOLVE library. Once the satisfiability
of the static property has been computed, the tool updates the
definition of a function that returns for each state the result of
the analysis (i.e., a set of significant variables in the context of
influence analysis). After exploring the entire state space, the
annotating function results are either returned by the toolor
given as input to other applications, e.g., for abstract matching.

Another important feature of the tool is that both the
extracted model (as LTS) and the PBES can be constructed
and explored on-the-fly, thus allowing incremental exploration
of only the part of both graphs that is necessary to perform
the static analysis.

ANNOTATOR is fully functional and has been tested on
more than10 experiments, some of them being extracted
from the literature [4]. The majority of the tested examples
were explicitly defined asbinary coded graphs(BCG) [13]
describing program control flow graphs as LTSs. A first
evaluation of the concept showed the elegant and adaptable
structure of the tool for different influence analyses, and its



capability to easily integrate new static analyses in termsof
BESs. All analyses on tested experiments were immediately
solved, principally due to a lack of industrial scale case studies.
Once the tool discussed in [11] will be fully implemented,
experiments would be far more appealing and we will be able
to show the real contribution of influence analysis in tackling
the state space explosion problem. Furthermore, there does
not exist to our knowledge a benchmark of industrial case
studies that would enable comparisons with other tools (e.g.,
jA BC [21]) and demonstrate the added value of using PBESs
for influence analysis. Hence, constructing such environment
of experimentation is a line of research of first importance.

VI. CONCLUSION AND FUTURE WORK

Static analysis is a necessary step towards software model
checking with abstract matching. Our encodings of the influ-
ence analysis problem in terms of alternation-freeµ-calculus
formulas with data parameters and in terms of PBES resolution
enables to automatize the analysis process and to use it in con-
junction with on-the-fly verification tools. To develop robust
explicit-state analysis tools, it is necessary to use efficient and
generic verification components. Our on-the-fly static analyser
ANNOTATOR goes towards this objective by relying on the
generic OPEN/CÆSAR environment [12] for on-the-fly LTS

exploration within CADP [13] and by using the BES resolution
library CÆSAR SOLVE [24].

We plan to continue our work along several directions.
First, we will show the impact of automatic abstract matching
on the explored state space size during verification of C
programs thanks to the translator C2LTS proposed in [11].
Next, we will study the interconnection of ANNOTATOR and
C2LTS tools integrated into CADP with tools extending SPIN,
such as SOCKETMC and αSPIN [10]. Finally, we will seek
solutions to other static analysis problems, especially data flow
analyses already expressed asµ-calculus formulas in [27], by
investigating their translation in terms of BESs resolution.
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