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Abstract— The well-known problem of state space explosion One technique of particular interest abstract matchinglt
in model checking is even more critical when applying this consists in using a function for reducing the state vector by
technique to programming languages, mainly due to the pres&e  onqring variables, whose values are not relevant to check

of complex data structures. One recent and promising approeh .
to deal with this problem is the construction of an abstract the property. Actually, these variables are temporallyaegd

and correct representation of the global program state allwing Py their abstractions, allowing to cut the exploration gath
to match visited states during program model exploration. h  Moreover, this approach generates an under-approximation

particular, one powerful method to implement abstract matching  the whole state space. Thus, it never produces non-realisti
is to fill the state vector with a minimal amount of relevant paths. Holzmann and Joshi were the first in [17] to propose the

variables for each program point. In this paper, we combine he . .
on-the-fly model checking approach (incremental construgon technique, then employed in [26]. In [4], the authors pregbs

of the program state space) and the static analysis method the use oftatic analysisalgorithms to automatically construct

called influence analysis (extraction of significant variakes for abstraction functions. The method makes use of the property
each program point) in order to automatically construct an to be analyzed, and in practice, it is based on computing the
abstract matching function. Firstly, we describe the probem influence graph for each program variable. In this paper, we

as an alternation-free value-basedyu-calculus formula, whose . . .
validity can be checked on the program model expressed as intend to automatically construct abstract matching fiomst

a labeled transition system [Ts). Secondly, we translate the BY performing the influence analysis described in [4] using
analysis into the local resolution of a parameterised bookn model checking techniques.

equation system PBES), whose representation enables a more  The idea of using model checking to implement static
eff|C|ent construction of the resulting abstract matching pnctlon. analysis was first expressed by Steffen in [29], who provided
Finally, we show how our proposal has been elegantly integtad . .
into CADP, a generic framework for both the design and analysis a f':amework t_o characterize data flow anal,yses as the verifi-
of distributed systems and the development of verificationdols. ~ cation of particular modal formulas. Schmidt then extended
Steffen’s work in [27] to relate it with abstract interprebam.
. INTRODUCTION More recently, the tool j&c [21] put in practice Steffen’s

One of the most exciting challenges in the model checkimoposals in the context of Java programs. Our approach is
community is to apply automatic reachability based verificzlose to these previous works, but rather focus on one specifi
tion to standard programming languages. Actually, theee analysis:influence analysisWe show how influence analysis
many ongoing projects oriented to adapt the results on forntan be expressed as an alternation-free maqdahlculus
method research to languages like Java (se®OERA [16] formula with data parameters evaluated on a labeled tiansit
and PF [3]) or C/C++ (see ERISOFT[14], FEAVER [18] or system (Irs) expressing the abstracted program behavior.
SockETMC [5]). As expected, a common problem to thes@nother interesting contribution of the paper is the enogdi
approaches is how to deal with ttetate space explosionof influence analysis in terms of on-the-fly Boolean Equation
problem, resulting from the size of data structures emmloge System (E:S) resolution. B=ss allow a natural description of
real software, which is several orders of magnitude sup&io numerous verification problems, such as model checking of
the size of models written with formal description techrégu temporal formulas, bisimulation, partial order reductiborn

Abstract interpretation is one well-established solution clause resolution, abstract interpretation and confoomaest
automatically construct smaller and sound models, whicih maase generation [19]. MoreovergBs are efficiently supported
be analyzed by model checking tools (see [7], [16], [10hy different resolution algorithms in the literature, oma-i
[2]). This method, employed in tools liker8, BANDERA or plementation being the £sAR SoLVE library [24], which is
aSPIN, is partial, because it consists in constructing an oveart of the widespread verification toolboxaBp [13]. This
approximation of the program, where non-realistic pathes aresolution library is used by the model checkeraEUATOR
possible. Here, we are interested in a more recent approag, [24], but also by bisimulation and partial-order redlut
which tries to solve the problem using precise abstractionieols. In addition, it has recently been extended with dis-
Thanks to a minimal amount of information, such a methadbuted algorithms, thus allowing an immediate distribaot
explores exactly the paths required for a given properyf each tool connected to A£sAR SOLVE [19]. Hence, our



static analysis proposal can directly benefit from thisfieai useparameterswhen translatindA into p-calculus formulas
tion platform. Parallelly, the ScKETMC tool is now being or boolean equation systems.
rewritten [11] for OPEN'CASAR, thus creating a complete set Influence analysis is used in a dual manner by hiding
of tools to perform the whole cycle towards verification ofabstracting) the variables, whichre not needed at each
software with abstract matching functions. program point, while the rest of variables remains expilitit
This paper is organized as follows. Section Il summarizéise state vector. Therefore, thmest IA analysis is the one
the influence analysis algorithms used to construct alistrattaching the smallest set of variables to each point.
matching functions. Section Il translates the differeit a The work in [4] describes four different influence analyses
gorithms into alternation-freg-calculus formulas with data preserving specific properties. The most precise analgsis,
parameters, and explains the limitations of such an approanoted aslA;, only preserves information on reachable code.
Section IV further transforms the problem int@#&s reso- As an example, we can consider the C proggissshown in
lutions. Section V shows the implementation and experimefRigure 1 (a). The goal dfA; is to determine, in each program

of the different encodings into the verification toolbox@P. point (represented as labels),--- , L, in processpl, and
Finally, Section VI gives some concluding remarks and diregertices in the corresponding control flow graph illustdate
tions for future work. in Figure 1 (b)), which variables will affect the program

execution flow.

Il. INFLUENCE ANALYSIS FOR ABSTRACT MATCHING
void p1 (intn){

As proposed in [17], an abstract matching functigh intx=n;
should be invoked when it is necessary to compact the inty = 1;
state vector. In such cases, the abstraction function cteapu /*LO*  while (x>0){
abstract representations of the hidden data and copies the L1 X=xX-1:
result onto the state vector. In [17], the authors do notesklr L2 % y=2*y:
any particular method to generd{@ , however they present %
necessary conditions to define sound abstract functiorts tha /L3 printf(y):
preserve GL properties. LA}

In [4] a particular method is proposed to constrf(t in
such a way that the function be sound and oriented to the (@)
property to be checked. This method is based on the identi- C printf (y )
fication of variables thainfluencethe verification result from @
the current state. In particular, the authors of [4] devetbp x<=0

the so-callednfluence analysi§lA) to annotate each program
point p with the set ofsignificantvariableslA(p) needed to
correctly analyze a given property. Data flow analygiss a
variant of the classic live variable analysisV) that attaches
each program point with the set life variables at this point.
The key difference is thdA makes use of the property to be
checked to determine the set méededvariables. Informally,
a variable is needed (w.r.tA), if its current value may be
necessary to evaluate the property of interest in the future
Thus, at a given point, Bve variable (w.r.t.LV) may not be
neededif its value does not influence the property evaluation. Fi9- 1. Example of a C prograrpl (a) and its control flow graph (b)

For each program point, 1A(p) is iteratively calculated as
the fixed point of an operator that informally works as follow Figure 1 (b) shows the intended result 1&f; for pl. For
Let V be the set of program variabld# starts by attaching this process, the static analysis associates thézgetvith the
to p the setl(p) C V of variables, which are initially neededlabels L0, L1, and L2 (represented in the control flow graph
at p. The definition ofI(p) depends on the property to beas nodes 0, 1 and 2). Hence, if we are interested in knowing
analysed. Now, assume that it is known that variable YV whether a particular label of procegs is reachable, we only
is needed at poinp, then variabley € V influencesr at p, have to store variable at labelsL0, L1, andL2. In particular,
if there exists an execution path in the program frpnto variabley may be completely hidden because its value is not
an assignment = exp, and the current value af is used relevant for this analysis.
to calculateexp. The notion ofinfluenceis recursive since  The other variants ofA extendIA; in the following way:
it may be necessary to check 4f influences some variable A, produces bigger sets of variables, but it presesafsty
appearing in expressioarp in order to decide whethey properties It extendslA; considering variables contained
is needed at poinp. As shown in the following sections, ain assertions;lA; studies the case of models with global
consequence of this recursive behaviour is that we needvariables;lA, is the least precise analysis, but in contrast,



it preservediveness propertiedt is based on considering as @—7,@
influencing variables all variables appearing in the terapor

formulas to be verified. More details on these influence BooLx

analyses can be found in [4]. It is worth noting that they

can be directly applied to different kinds of modelling and ASSIGNyy

programming languages. In particular, in the rest of theepap

we assume concurrent systems written in C code, although BOOL x

the techniques are applicable to a broader set of imperative

languages, such as SystemC, Java, Promela, LOTOS, as far @—>
ASSIGN x x

as their control flow graph can be described by oumsL

formalism, given in the sequel.
Fig. 2. Example of £s extended with special actions BOOL and ASSIGN

[1l. I NFLUENCE ANALYSIS USING MODEL CHECKING
This section is devoted to one implementation of influence o _ )
analysis over finite tss [4] using model checking. We first de-2nd ASSIGN) and invisible (i.e.;r) actions. '\fqreove_r, our
fine the LTs model extracted from the program being staticall?mdel splits each actionBOOL v, ..., v;" in actions
analysed, next we describe how the influence analysis probleBOOL v;” containing only one variable;, for all i € [1, j].
can be translated into the model checking of temporal foamulA non-deterministic choice is then made between actions

over the program model, and finally we give the limitationsBOOL v;”. Similarly, each action ASSIGN vy v ... v;”
of such an approach. is split in actions ASSIGN wv; v;” with two variable

parameters only, for all € [2,j]. We can also remark that
A. Presentation of the program model non-determinism may be introduced artificially (i.e., an8
Influence analysis takes as input a program, or more ptd3OOL x” from state 0) when creating the ts. However,
cisely, a model extracted from it. In this work, we consider t since the unique purpose of such arslis to enable influence
Labeled Transition Syste(.Ts) model, which is suitable for analysis, all pertinent information for the analysis is tkep
value-passing languages, in particular for concurrentegys
descriptions. An s is a tuple(S, A, T, so), where: i i )
. S is a finite set of states. Since influence analysis worksModal i-calculus [20] is an expressive temporal logic based

on program control flow graph, states only contain infof2" f|xe.d points, that a”QWS to express a wide range of
mation about program counter; properties on tss, including those of various other useful

. Ais afinite set of actions. An actiane A is represented 109iCS, such as B [9] or CTL [6] (as well as its action-based

as a listiw, wherei identifies its type andi is a list of E€Xtension ATL [25]).
typed values: The alternation-free fragment of the mogatalculus, noted

« T C SxAxS is the transition relation. A transition L [8] is obtained by forbidding mutual recursive dependen-
(S’g’ s') € T, also noteds % s/, states that the systemc'e_s t_)etween mlmmal and maximal fixed pomt_vanables. This
can move froms to s’ by executing action: (s’ is an logic |s_0f practu_:al use_fulness _thanks to the existencéneflr
a-successor of); resolution algorithms in the size of the formu_lq (number of

« s € S is the initial state. operatqrs) and ts (number of staFes and transitions). _

In particular, since influence analysis makes use of progra In this work, we are interested in the value-based extension

. : : oF the logic [23], which enables the specification of data
variables, that are present in program assignments and_In

. . . variables and parameterised fixed point into the temporal fo
boolean and arithmetical expressions, we use the Hgeto . . : .
; I mulas. Properties are not restricted to static label detson,
denote the set of program variables, and two additionalstype .
. : . ) ut they can refer to dynamic values dependent from the
to denote actions being present imd.labels: . :
_ : ) system execution. Formulas of alternation-free valuetas
« BOOL v describes a boolean expression based on tH?odalu-calculus are defined by the following grammar (where

list of variable;sﬁ of tyPe Var; ) . X € X is apropositional variable, antl a set of propositional
e ASSIGN wv1v¥ describes an assignment eXpreSS'OQariables)'

where variabley; of type Var is assigned a value based
on variablesy. ¢ = false | true | é1 \ﬁ b2 | &1 N P2 | <a>ﬁ¢ | [a] ¢
In order to facilitate the further analysis task, we assume | X(€) | uX(Z:t=€).0 | vX(Z:t:=€).0
that actions in k£ss present a particular form, which depends The semantics of a formulay over an Its M =
on the static analysis to be carried out. These abstraarecti (S, A, T, so) denotes the set of states satisfyih@nd it is de-
may be automatically constructed from the instructionshen tfined as follows: boolean operators have their usual defmiti
source language. As for an example, we obtain the @n possibility operatofa) ¢ (resp. necessity operatfai ¢) define
Figure 2 corresponding to the program presented on Figurestates from which some (resp. all) transitions labeled lipac
Its construction results from the control flow analysis of lead to states satisfying formula We will use overlined
the program together with a labelling of relevant (iBQOL actionsa to represent all actions different froam propositional

B. Influence analysis using}t formulas with data parameters



variables X are parameterised by data variabl&sminimal ering not only local variables but also global variableg th
(resp. maximal) fixed point operat@rX (i : t := €).¢ (resp. encoding of the problem asiacalculus formula is unchanged
vX(Z : t := &).¢) denotes the least (resp. greatest) solutiand does not need an extra definition. However, algorithm
of the fixed point equationX (Z : #) = ¢, parameterised aims at preserving generic temporal properties, and far thi
by data variablest and argument types, evaluated with purpose, all variables included in such a property have an
the arguments’ and interpreted ove2®. On-the-fly model influence over the program execution. Since the information
checking determines if the initial statg of an LTs satisfies contained in temporal properties is external to the program
a formula¢ and belongs to the set of states denoted¢gby being checked, it will not be accessible in its extracted ehod
Although there only exist partial resolution algorithms fodescribed asis. Hence, a variable is influent moduldA, at
value-basecLL, they are practically useful, especially in thea specific program point if it is included in the set of var&bl
context of influence analysis problems. used in the temporal properties or if the evaluationpgf,,

As a fragment of the data flow analysis problem, influenagven as follows, on the ts is true:
analy_sis has shown to bg solvable using model checking(blAA1 = uY(v:Var). ((BOOL v)true
techniques [28], namely using the mogatalculus. However, V (ASSIGN w; : Var v)true
there doesn't exist to our knowledge avalue—basbdlormula V (ASSIGN z: Var v) Y(2)
encoding the problem of influence analysis. Our approach is v (ASSIGN vz Var) Y(v))
the same in spirit to the one of [21], where checking a program '
property corresponds to writing a new formula, evaluating i The formulaga, is an extension ofja, with as many
on the model and extracting from the set of states satisfyifitpdal operations(ASSIGN w; : Var v) as variablesw;
the formula, those defining the different program point@resentin the external temporal property. Indeed, if aaidei
Considering that influence analysis algoritidy, from [4] v affects the value ofv; in the program, them is an influent
attaches each program point with the set of variables, whogdiable itself.

value is needed to preserve the reachabi"ty graph, thdn“g;u To illustrate the use of model CheCkirﬂgCﬂlCUlUS formulas
value-based;}t formula is: for influence analysis, we can show the result of evaluating

¢ia, On the LTS given in Figure 2. Checking the validity of
$m, = pY (v:Var).  ((BOOL v)true ¢ia, for variablex on states, will return true, since there exist
V (ASSIGN z:Var v)Y(2) boolean expressions (e.gBOOL z”) involving = reachable
v (ASSIGN v z: Var)Y (v)) from sq. This process can be iterated through all states figuring
¢ia, is true if variable v is influent on the initial state in the LTs and all variables of the program (i.ex, and y),
of the LTs. Labels “ASSIGN =z : Var v” represent graph allowing the progressive construction of the list of vatésb
actions, where the value of an existentially bound variakite influencing each state (see Figure 3). We can remark that only
influenced byv in an assignment expression. On the contrary, influences part of the ts. Hence, variable/ can be totally
“ASSIGN v z : Var" stands for actions, where variabledisregarded without involving any skip of reachable states
v, given as parameter, is modified by an existentially bound

variablez. @_T,®
Even if encoding influence analysis in terms of value-based

p~-calculus formulas over s is straightforward, it is a new pooL
practically useful result for static analysis tools usingdal
checking (e.g., j&c [21]).
Similarly to 1A, algorithmslA,_, can be encoded as a v
. . . . [

p-calculus formula. Since algorithif\, relies on assertions BOOL x
present in the program, it is necessary to extend abstract
actions in the ks with a new type of label:

N\ ASSIGN xy
F====-»

o)

ASSIGNyy

ASSIGN x x

o ASSERT v describes an assertion composed of vari-
ablesv of type Var. Similarly to boolean expressions, we
will consider that each actionASSERT vy, ..., v;” Fig. 3. Example of influence analysis usipgcalculus model checking

is split in actions ASSERT v;” containing only one

variablev;, for all 7 € [1, j]. . C. Limitations of on-the-fly value-basdd, model checking
Hence,¢a, can naturally be extended by taking into ac-

count assertion variables and we obtain the formula: tI?steadt_o;;_teg;\tin%through each _Stife’ '? ordel(rj tg obthin a
B states satisfyingya, for a given variable, it would be more
S, = pY (v:Var). ((BOOL v)true convenient to evaluate only one formula on the whotes,L
z §ﬁ§§f§§ z}t{/u; WY (2) and consequently to extract a subgraph from the origimal L

i containing all states influenced by the specific variablds Th
Vv (ASSIGN v z: Var) Y (v)) could be done by computingia, on the LTs in a backwards
Algorithm 1A3 being an extension dfA; andIA; consid- manner using a fixed point iteration. However, this requiines




prior computation of the ts, and we seek a solution whichobtained by applying a boolean operatgr;; € {V,A} to
is suitable for on-the-fly exploration. An adequatealculus a set of variablesX,;; C X. Boolean constantfalse and
formula (forlA;) would look like the following: true abbreviate the empty disjunction® and the empty
_ conjunctionAl respectively. A variabler;; depends upon a
Paiiny  =vZ. (dia, A [tue] (= dn, vV Z2)) varijablea:kl if 2k erij. Ayblock M; depjendspupon apblock
This formula has the same interpretationggs , meaning that 1, if some variable of}M; depends upon a variable defined
its satisfaction on the initial state, denotes that the givenin M. A block is closedif it does not depend upon any
variable is significant for the initial state. Moreover, the- other blocks. A Es is alternation-freeif there are no cyclic
the-fly evaluation ofp,;;a, On a state satisfying, requires dependencies between its blocks. In this case, blocks can be
the recursive evaluation of all its successors that alsisfgat sorted topologically such that a blodi; only depends upon
¢ia,, until all states satisfyingsa, have been explored. In blocks M;, with k& > 4. The main variablex must be defined
case of atrue answer, it is then possible to draw a positivén M;. In this work, we are interested in the parameterised
diagnostic (example), that only reports the states anmtaextension of alternation-freee® [23], called BES. A PBES
by x in the Figure 3. However, this is only true if never is a tuple B = (z (£ : t),My,...,M,), wherez € X
gets assigned a new value. In such a case, this might creat@& boolean variable parameterised by data variables in
holesin the diagnostic, as can be shown in Figure 3 wheyped by i. Similarly, each blockM; = {z:j(25; - t{}-) Z
adding an artificial new state; connected tosy. Evaluating opinij}ie[L@ jel1,m;) IS parameterised by data variables in
Gaa, ON s5 will return false for variable z, whereasr is  2;; typed byt;;.
influent on statessy, s; and s;. Standard model checkers The local (or on-the-fly resolution of an alternation-free
are not designed to draw such a diagnostic or a partial oRees B = (x (Z: ), My,..., M,) consists in computing the
with only states satisfyinga,. Hence, an iteration throughvalue ofz(Z : #) by exploring the right-hand sides of the equa-
all states is necessary to incrementally construct the Bettions in a demand-driven way, without explicitly constingt
states influenced by a specific variable. the blocks. Several on-the-flye® resolution algorithms [1],
Working at the level ofu-calculus formulas and standard22] and RBES resolution algorithms [23], [15] are available.
model checkers allows us to design generic solutions th&ithough RBES algorithms are partial computations, they are
work not only for influence analysis but, more generally, tpractically useful on finitely branchingriss.
many static analyses including classic data flow analysHs [2
However, using on-the-fly model checking is inefficient foB. Encoding of influence analysis as PBES resolution

influence analysis. Indeed, it would be necessary to uséspers pgeg being a relatively new formalism, solving value-based
tent computation results between subsequent costly tepeti ;1 ¢5rmulas by means of a translation tBEss isn't as

. Iz
evaluations of a same formula over each state of thednd ¢i3ndard as it would be for B andL}L formulas.

each program variable. In this sense, global model checkingr, sove influence analysis usingg®s resolution, the first
would be more appropriate, but it is more prone to Stag?ep is to construct an adequate equation system. Follalwing

space e_XP'OS'O” when generating th_e complete state Spaﬁﬁroach of [23], it is possible to transform the problem of
and verifying the formula on each of its states. Moreover, aluating a value-based alternation-freealculus formula

would be more convenient to incrementally generate thce)flstupon an Irs, into the resolution of a parameterised modal

varlabl_es that_lnfluence each state, in order to define gteste equation system (WES) upon the ITs, by extracting fixed
on which variables need to be checked on successor st nt operators out of the formula. Starting frog,, the

thus allowing a gain n the _number _Of comp_utatlonS ne_eder‘ésulting RES contains one block of modal equations and it
To respond to these limitations, a finer-grained encoding f%fgiven as follows:
the problem in terms of BEs resolution is preferred and it is

described in the following section. Y(v:Var) £ ((BOOL v) true
V (ASSIGN z:Var v) Y(z)
IV. INFLUENCE ANALYSIS USINGPBES v (ASSIGN vz Var) Y(v))

This section introduces the Parameterised Boolean Equatio
System (BES) model, and gives a 8Es encoding of the
influence analysis problem.

Then, to obtain a PES each modal equation block is
converted into a boolean equation block by ‘projecting’rit o
each state of the1s being checked:

A. Definition of a parameterised boolean equation system {Ys(v: Var)

A Boolean Equation SystertBes) [1], [22] is a tuple
B = (x,My,...,M,), wherex € X is a boolean variable,
X a set of boolean variables, and; are equation blocks
(i € [1,n]). Each blockM; = {zi; = opij X }jc(im, IS @ Expressions ¢ = BOOL v", “a | ASSIGN z ",
set of minimal (resp. maximal) fixed point equations withnsigand ‘ac = ASSIGN v z” respectively mean that is a
o; = p (resp.o; = v). The right-hand side of each equatiorboolean expression containing the program variable is
x;; of block M; is a pure disjunctive or conjunctive formulaan assignment, where variableis modified by a variable,

true

vs—ans/ | a=BOOL v
Vg | = ASSIGN = v 19 (2)
v\/s#»s’ | aEASSIGN v z Yo (U)}SES



analysis will require the resolution of only one structuieg
1 INFLUENCEANALYSIS (S,4,T'50) : § — 2V" parameterised boolean equation system, whereas it needed
2 visited := {so}; explored :={; var := 0); the resolution of as many-calculus formulas as variables
3 while visited # () do being checked, multiplied by the number of states in the. L
4 s := get(visited); visited := visited \ {s}; | Moreover, the BES is solved on-the-fly, which means that
5 explored := explored U {s}; d(s) := 0; only the relevant parts of it are computed for each state and
6 forall w € Var do each variable. Finally, since a boolean variable defined
7 if solve(Ys(w)) then in M; may be required several times during the resolution
8 C_l(s) = d(s) U {w} process, it is possible to obtain an efficient overall resofu
9 endif by using persistent computation results between subsequen
10 endfor; resolution calls.
11 forall s — s’ | ' ¢ explored do
12 visited := visited U {s'} V. IMPLEMENTATION AND EXPERIMENTS
13 endfor
14 endwhile; Similarly to model checker YALUATOR 3.5 [24],
15 return d ANNOTATOR (1600 lines of C code, see Figure 5) has
been fully developed within &P [13] by using the generic

OPEN/CESAR environment [12] for on-the-fly exploration of
LTss.
EVALUATOR (resp. ANNOTATOR) consists of two parts:
a front-end, responsible for encoding the verification af th
and ¢ is an assignment, where a variableis modified by L}L formula (esp. the static analysis type) onTk; as a
variablewv. BEs (resp. PBES) resolution. EVALUATOR produces also a
A boolean variableY, (v) is true iff state s satisfies the counterexample by interpreting the diagnostic providedhiey
propositional variablé” considering variable. Thus, the on- BES resolution; and a back-end, responsible atsB(resp.
the-fly influence analysis of variable on the initial state of PBES) resolution, playing the role of verification engine. Both
the LTs amounts to compute the value of variablg (z). tools are obtained by using, as back-end, algorithms of the
Generalizing the approach, the influence analysis of &¥ESARSOLVE library [24]. Globally, the approach to on-the-
program variables: over all statess in the LTs, can be fly model checking resp. static analysis) is both to construct
transformed into an iterative locaBRs resolution algorithm. On-the-fly the ITs, and corresponding i (resp. PBES) and
The function NFLUENCE ANALYSIS, shown on Figure 4, to determine the final value of the main variable.
describes the influence analysis of ansL\f = (S, A, T, so) In the sequel, we _ present an e>_<perimentation with
using a BEs resolution for each program variable ands. EVALUATOR 3.5 of the influence analysis propert; ex-
state. It starts the resolution with the initial statg(line 2). Pressed as a modal equation systemegMthat is not
Given a states, the function constructs and solves for eacRarameterised, and the implementation and experiment of
program variablew (lines 6-10), the corresponding boolead*NNOTATOR to achieve the static analysis of arrd.using
variable Y, (w) (line 7, functionsolve). If the variablew is ~PBES resolution within G\DP.
influent upon the current state then the setl(s) of influent
variables on states is increased with variablev (line 8).
Then, the algorithm iterates through each of the successolhe current EALUATOR model checker of @bp, whose
states ofs (lines 11-13) updating the set of visited statesersion is 3.5, does not handle data parameteys-@alculus
The analysis continues until all states are explored (lipe 3ormulas. However it is possible to usevA UATOR 3.5
The result of function NIFLUENCE_ ANALYSIS is the function with the p-calculus formulaga,, by transforming it in a
d: S — 2V which returns for each state, the list of variableparameterless equation system. This can be done, assuming
that are significant. Such a functiehcan be further used to that the set of program variables is known, by instantiating
automatically construct an abstract matching functiotirgfa each call toY (z;) into a parameterless propositional variable
which variables need to be inserted in the state vector & eaamedY,,. Moreover, to get a more compact representation
program point. Finally, we can also remark that the algamithof the expanded formula, we can use modal equation systems
presented on Figure 4 can be applied with all influence aisalygM es), which are accepted as input fonvE UATOR 3.5 as
algorithmslA; _4 by using the correspondinggBs encodings .blk files (option-blocK). Such transformation has already been
when constructing boolean variab¥g(w) (line 7). realized in Section IV-B where the formuigs, was expanded
This solution is similar in spirit to the model checkingnto a PMES. In order to obtain a resolution complexity linear
specification in terms ofi-calculus formulas, as it allows toin the size of the Ls and RVES, it is necessary to simplify
directly provides the desired property as an equation Bystethe PVES, by splitting each right-hand side equation in order
whereas it was expressed as a temporal formula in the previow have a single boolean or modal operator [23]. Simplifying
approach. An important aspect of the method is that influenttee PMES Y of Section IV-B leads to the following WeS:

Fig. 4. Influence analysis of1ls using RBES resolution

A. Experiments witlEVALUATOR 3.5
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Fig. 5. The on-the-fly tools ¥ALUATOR and ANNOTATOR

Yi(vr:Var) £ Ya(v1) Vv Ys(vr) B. Implementation of an on-the-fly static analyser in CADP
Ya(vy : Var) £ (BOOL vy) true i ;

: . Instead of using current model checkers, we seek a solution
Ya(vs:Var) = Yi(vz)VYs(v3) that will explicitly manipulate the encoded problem aseB,
Yi(vg: Var) £ (ASSIGN z:Var vy) Y(2) implementing the algorithm given in Figure 4. This led us to
Ys(vs : Var) £ (ASSIGN vs = : Vma> Y (vs) the need of constructing a static analyser iRD8, based on

the OPEN/CESAR interface for on-the-fly exploration of1ls.

Next, we transform the simplified NES in a MES using Adapting existing tools to perform influence checking oa-th
the parameterless propositional variablg_v;. This Mes has fly is of real- Interest. _
a size quadratic w.rt. the number of influencing variabtes i The architecture of such a tool, namecNMOTATOR, is
the program, but this may be of reasonable size if the numistgscribed on Figure 5. For each visited state in the, L
of variables in the program is also not very large. Thikfile, it computes the encoding of the static analysis problem in

for variablesz andy in the LTs on Figure 2, is the following: €rms of PES and solves it upon the state following the
algorithm in Figure 4. In the case of influence analysis, the

corresponding BES, given in Section IV-B, is projected to
the LTs to generate dlat (i.e., parameterless) 8, that is

block mu B is solved by the @ESAR SOLVE library. Once the satisfiability
Ylx = Y¥2-x or ¥3 X of the static property has been computed, the tool updages th
Y2x = < "BOOL x" > TRUE . .

Y3x = Y4.x or Y5 X definition of a function that returns for each state the itestl
Y4x = < "ASSIGN y x" > Y1 y the analysis (i.e., a set of significant variables in the exinf
Y5.x = < not ("ASSIGN x y") > Y1 X influence analysis). After exploring the entire state sp#ue
YLy = Y2.y or Y3y annotating function results are either returned by the twol
xz _ ?(4 3O<SLY)5/ ; TRUE given as input to other applications, e.qg., for abstractiriag.
Y4y = < "ASSIGN x y" > Y1 x Another important feature of the tool is that both the
Y5y = < not ("ASSIGN y x") > Y1 .y extracted model (as1s) and the BES can be constructed
end block and explored on-the-fly, thus allowing incremental expiora

of only the part of both graphs that is necessary to perform
Then, to evaluate the influence of variahlg(resp.y) on the static analysis.

the initial statesy, we can use theblk clauseeval B:Y1 x ANNOTATOR is fully functional and has been tested on
(resp.eval B:Y1_y ), which tells E/ALUATOR 3.5 which more than10 experiments, some of them being extracted
propositional variable it has to check. As a consequendegm the literature [4]. The majority of the tested examples
another limit of the method usingVELUATOR 3.5 is that were explicitly defined adinary coded graphgBcG) [13]
we cannot check the influence property on a state differesdscribing program control flow graphs asss. A first
from the initial state, as ¥ALUATOR 3.5 will systematically evaluation of the concept showed the elegant and adaptable
evaluate the Ms on the initial state of the consideredd.  structure of the tool for different influence analyses, aisd i



capability to easily integrate new static analyses in teais [6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatigifieation of
BEss. All analyses on tested experiments were immediately

solved, principally due to a lack of industrial scale caseligts.

(7]

Once the tool discussed in [11] will be fully implemented,

experiments would be far more appealing and we will be able
to show the real contribution of influence analysis in tawdli

(8] E

Finite-State Concurrent Systems using Temporal Logic 8pations.
ACM Trans. on Prog. Lang. and Sy$(2):244-263, 1986.

D. Dams. Abstraction in Software Model Checking: Prpies and
Practice (Tutorial Overview and Bibliography). Rroc. of SPIN'02
LNCS vol. 2318, pp. 14-21.

. A. Emerson and C-L. Lei. Efficient Model Checking in Braents
of the Propositional Mu-Calculus. IRroc. of LICS'86 pp. 267-278.

the state space explosion problem. Furthermore, there dog@p M. J. Fischer and R. E. Ladner. Propositional Dynamic ica Regular

not exist to our knowledge a benchmark of industrial ca
studies that would enable comparisons with other tools,(e.
jABC [21]) and demonstrate the added value of usimgE®

for influence analysis. Hence, constructing such envirortmé!1l
of experimentation is a line of research of first importance.;

VI. CONCLUSION AND FUTURE WORK

Static analysis is a necessary step towards software mo%gl

checking with abstract matching. Our encodings of the inflyt4]

ence analysis problem in terms of alternation-freealculus
formulas with data parameters and in terms BEBresolution

[15]

enables to automatize the analysis process and to use ibin qas]

junction with on-the-fly verification tools. To develop raitu
explicit-state analysis tools, it is necessary to use efiicand
generic verification components. Our on-the-fly static ysed

[17]

ANNOTATOR goes towards this objective by relying on thé!8l

generic @ENCAESAR environment [12] for on-the-fly ts
exploration within @QDP [13] and by using the Bsresolution

library CESAR SOLVE [24].

[19]

We plan to continue our work along several direction&o]
First, we will show the impact of automatic abstract matghin
on the explored state space size during verification of €l

programs thanks to the translator Q2 _proposed in [11].
Next, we will study the interconnection of MNOTATOR and
C2LTts tools integrated into €0pP with tools extending SIN, 23
such as 8CKeETMC and aSPIN [10]. Finally, we will seek
solutions to other static analysis problems, especialig tlaw

[22]

]

analyses already expressed;asalculus formulas in [27], by [24]

investigating their translation in terms ofeBs resolution.
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