
On-the-Fly API Influence Analysis of Software ⋆

Maŕıa del Mar Gallardo a, Christophe Joubert b, Pedro Merino a and David Sanán a

aUniversity of Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
bTechnical University of Valencia, Campus de Vera s/n, 46022, Valencia, Spain

Abstract

In order to combat the state space explosion resulting from explicit-state model checking of software, we investigate
the use of a parameterised boolean equation system (Pbes) to solve on-the-fly (i.e., with incremental construction
of the program state space) influence analysis of program variables w.r.t. Application Programming Interface (Api)
calls executed in the program. The static analysis results are then processed to simplify the program state vector by
keeping only program variables preserving all reachable Api calls. Using the connection of the C compiler C.Open
to the static analyser Annotator, we illustrate the benefit of such an analysis by reducing the state space of the
Peterson mutual exclusion protocol, in which shared memory accesses are made through an Api.

Key words: formal method, static analysis, software model checking, labeled transition system, boolean equation system

1. Introduction

Explicit-state verification of software, and espe-
cially distributed software, is prone to the state
space explosion problem, due to complex (and in-
finite) data structures as well as (asynchronous)
processes interleaving. Efficient abstraction and re-
duction techniques have been encountered during
the last years, one of them, called abstract match-

ing [1], consisting in abstracting the state vector
of a program by keeping only relevant information
w.r.t. to a class of properties to be verified. One im-
plementation of such a technique, called influence

analysis [2], extracts program variables in each pro-
gram control point that preserve the reachable code
dealing with properties of interest. In this paper,
we introduce a new on-the-fly (i.e., during the in-
cremental construction of the program state space)
influence analysis that enables the reduction of the
program state vector while preserving properties
depending on program Api calls. We first describe
the influence analysis (IA) problem in Section 2
and then give an extension to Api preservation in
Section 3 in terms of flow equations, value-based

alternation-free Mcl formula (L1
µ), and parame-

⋆ This work has been supported by the Spanish MEC under
grant TIN2004-7943-C04

Email addresses: gallardo@lcc.uma.es (Maŕıa del Mar
Gallardo), joubert@dsic.upv.es (Christophe Joubert),
pedro@lcc.uma.es (Pedro Merino), sanan@lcc.uma.es
(David Sanán).

terised boolean equation system (Pbes). Section 4
shows details of implementation and experimenta-
tion on a C implementation of the Peterson mutual
exclusion protocol. Finally, Section 5 gives some
concluding remarks and future work.

2. Influence analysis

The static analysis method called influence anal-
ysis extracts the least set of significant variables for
each program point w.r.t. to properties that have to
be preserved in the program. In [2], the flow equation
definitions of three influence analyses were given:
– IAreachability preserves information on reachable

code. The authors also gave an extended version
of this analysis considering global variables;

– IAassertion produces bigger sets of variables,
but preserves safety properties. It extends
IAreachability considering variables contained in
assertions; and

– IAformula is the least precise analysis, but in con-
trast, it preserves liveness properties. It is based
on considering as influential variables all variables
appearing in the temporal formulas to be verified.

In [3], the authors gave a translation of the influ-
ence analysis problem in terms of L1

µ formulas [4]
and in terms of Pbess [4]. These formalisms al-
lowed to combine on-the-fly techniques with com-
pact program representation. The program control
flow graph (Cfg) was first abstracted into a la-

belled transition system (Lts) and then analysed by
a general-purpose model checker or by a Bes solver.
This translation from flow equations to L1

µ formu-
las and Pbess was extended to general purpose data
flow analyses (Dfas) in [5].

Here, we follow the approaches of [3] and [2]: we
first give a definition of the Api influence analy-

sis (IAApi) in terms of flow equations and then we
translate it in terms of value-based L1

µ formulas and
Pbes.

3. Extending influence analysis to APIs

A program variable is influential at a program
state w.r.t. to Apis, when it satisfies any of the fol-
lowing conditions:
– the variable is used in an Api call;
– the variable modifies a variable later used in an

Api call; or
– the variable modifies a variable used in a boolean

expression.
This analysis preserves information on the reach-
able code and further considers the dependencies be-
tween program variables and Api calls. For instance,
this analysis is useful for verifying properties on the
correct use of Apis in a program. The analysis result
can further be processed to reduce the reachable pro-
gram state space by excluding non-influential vari-
ables from the state vector.

3.1. Flow equations

IAApi is a backwards must data flow analysis. The
analysis is done in a backwards order, and the data
flow confluence operator is set union. Using the no-
tation of [6], the data flow equations used for a given
instruction block s in IAApi are:

IAApi,in[s] =

GEN[s] ∪ (IAApi,out[s] − KILL[s] ∪ INFL[s])

IAApi,out[final] = ∅

IAApi,out[s] =
⋃

api,bool 6∈s,p∈succ[s]

IAApi,in[p]

GEN[y1, · · · , yn := bool(x1, · · · , xn)] = {x1, · · · , xn}

GEN[y1, · · · , yn := api(x1, · · · , xn)] = {x1, · · · , xn}

KILL[(y1, · · · , yn) := f(x1, · · · , xn)] = {y1, · · · , yn}

INFL[(y1, · · · , yn) := f(x1, · · · , xn)] =

if ({y1, · · · , yn} ∩ IAApi,out[s] 6= ∅)

then {x1, · · · , xn}

x1, · · · , xn and y1, · · · , yn are variables in var the set
of program variables. ~y := f(~x) is a program in-
struction block, where f is a functional using vari-
ables in ~x, and where ~y gets modified by f . bool and
api are similar functionals, but they respectively de-
scribe a boolean expression and an instruction call
to an Api.

We illustrate such analysis on a portion of C
code extracted from a Peterson mutual exclusion [7]
implementation using a shared memory Api (e.g.,
sread call):

pid = (pid + 1) % 2;

while (sread (flag1_des) == 1

&& sread (turn_des) == 1)

printf (‘‘Process %d waiting\n’’, pid);

From the above flow equation definition, the
IAApi returns that variables flag1 des and turn des

are influential on every program point, whereas
variable pid is not influential on any point.

The correctness of the IAApi follows the same
proof scheme as detailed in [2] for influence analyses
IAreachability , IAassertion and IAformula.

3.2. Value-based L1
µ formula and Pbes

When translating the problem of IAApi from flow
equations to Mcl formulas, we also translate the
problem of modeling the program control flow graph
from textual specific description to implicit indepen-
dent formalism such as Lts.

Using previous work on translating influence
analysis problems into value-based L1

µ formulas and
Pbess [3], we can describe the problem of IAApi by
a least fixed point of a functional over all program
states.

Given a Cfg described as an Lts M =
〈S, A, T, s0〉, and a variable v ∈ var, Table 1 gives
the encoding in terms of value-based L1

µ formula of
IAApi variable v on all states of M .

In addition to used(v, a) and modified(v, a) prim-
itives (indicating if a variable v is used (modified)
by action a), we introduce bool(a) (api(a)), which
tests if a is a boolean (Api) instruction.

In the table, the IAApi formula is translated into
a Pbes with single µ block and parameter v of type
var defining, for each couple of state and variable

2

Value-based µ-calculus formula:

φ = µY (v : var).(〈a | used(v, a) ∧ (bool(a) ∨ api(a))〉 true ∨

〈a | modified(z, a) ∧ used(v, a)〉 Y (z) ∨

〈a | ¬modified(v, a)〉 Y (v))

Parameterised boolean equation system:


















Xs,v
µ
=

∨

({true | s
a
→ s′ ∧ used(v, a) ∧ (bool(a) ∨ api(a))} ∪

{Xs′,z | s
a
→ s′ ∧ modified(z, a) ∧ used(v, a)} ∪

{Xs′,v | s
a
→ s′ ∧ ¬modified(v, a)})



















s, s′ ∈ S, a ∈ A,

v, z ∈ var

Table 1. Value-based alternation-free µ-calculus formula and Pbes encodings of Api influence analysis

(s,v) ∈ S×var, a variable Xs,v which expresses that
variable v is influential at state s [3]. Generalising the
analysis to all program states is done via algorithm
Analyse from [5].

The Pbes shown in Table 1 can be solved us-
ing an optimised Bes resolution algorithm based on
depth-first search for disjunctive equation blocks,
such as algorithm A4 of [8]. Here, the transforma-
tion of Pbes into Bes is direct, since the parameter
v is part of the boolean variable definition. Hence, at
most |var| boolean variables will need to be solved
for each state of the abstract Cfg described as an
Lts, before the analysis be terminated.

Using the same C implementation of Peterson
mutual exclusion protocol as in Section 3.1, we il-
lustrate on Figure 1 the construction of an IAApi
Bes (lower part of Figure 1) on the program Cfg
given as an Lts (upper part of Figure 1). This Bes
intends to answer to the following question: “Does
program variable pid influences state 0 of the pro-
gram Cfg?”. Solving the Bes returns that variable
pid is false, hence it does not influence state 0 of the
Cfg. Further computations on all states of the Cfg
would finally give us (with algorithmAnalyse) that
variable pid is not influencing any state of the Cfg,
hence it can be excluded from the program state
vector.

4. Implementation and experiments

We implemented the IAApi Pbes in our mod-
ular static analyser, called Annotator, which is
built within Cadp [9] upon the primitives of the
Open/Cæsar [10] environment for on-the-fly ex-

3

(pid + 1) % 2 : MODIFY pid : USE pid

USE pid

USE flag1_des turn_des : BOOL : API

USE flag1_des turn_des : BOOL : API

2

0

1

x1,pid
µ
= x2,pid ∨ x3,pid

x0,pid
µ
= x1,pid

x2,pid
µ
= x1,pid

x3,pid
µ
= false

⇒ x0,pid = false

Bes solution

Program model (Cfg)

Fig. 1. Subset of the Peterson Cfg and Bes for the Api
influence analysis of variable pid on state 0

ploration of Ltss and on-the-fly resolution of Bess.
Currently, Annotator achieves four influence anal-
yses [3] and four classical Dfas [5].

The static analyser Annotator (see Figure 2)
takes as input the Lts associated to the program

3

abstract Cfg provided by C.Open and the type of
analysis to carry out. It produces as output static
analysis results (as Xml or textual file) that can
be further processed by the C.Open compiler to
produce, for instance, smaller program state spaces.
The original explicit state space of Peterson protocol
contained 35 671 states and 57 066 transitions. After
analysing the Peterson Cfg with Annotator, our
C compiler could reduce the Peterson state space to
25 655 states and 40 493 transitions. Further minimi-
sations gave us a final state space of size 652 states
and 1 255 transitions 1 .

1

2

2 1

program

static analyser

data flow analyses

annotation of

control flow graph

(reduced state space)

(control flow graph)

compiler

verification tool

language
technology

model
technology

(Annotator)

Lts

Lts

(C.Open)

(IAApi, etc.)

Fig. 2. The on-the-fly software state space construction
(C.Open) and Api influence analysis (Annotator) tools

Annotator consists of two parts: a front-end, re-
sponsible for encoding the static analysis of Lts as a
(parameterised) Bes resolution, and a back-end, re-
sponsible of (parameterised)Bes resolution, playing
the role of verification engine. Back-end is obtained
by using algorithms of the Cæsar Solve library [8].
Globally, the approach to on-the-fly static analysis
is both to construct on-the-fly the Lts and corre-
sponding (parameterised) Bes and to determine the
final value of boolean variables of interest. Only the
part of both graphs that is necessary to perform the
static analysis is explored incrementally.

5. Conclusion and future work

Explicit-state software model checking requires
techniques to abstract and reduce a program state
space. Here, we presented a new influence analysis
that preserves properties on program Api calls. We

1 Full implementation, result details and a thorough
discussion on the Peterson case-study are available at
http://www.lcc.uma.es/gisum/tools/smc.

gave encodings in terms of flow equations, value-
based alternation-free Mcl formula, and parame-
terised boolean equation system. Experiments on
the Peterson mutual exclusion protocol showed im-
portant reduction of the program state space. An
interesting line of research would be to combine dif-
ferent static analyses on the compiler side to further
reduce the program state space w.r.t. specific prop-
erties of interest.

References

[1] G. J. Holzmann and R. Joshi. Model-driven software
verification. In Proc. of SPIN’04, LNCS 2989, pp. 76–91.

[2] P. Cámara, M. Gallardo and P. Merino. Abstract

matching for software model checking. In Proc. of
SPIN’06, LNCS 3925, pp. 182–200.

[3] M. Gallardo, C. Joubert and P. Merino. Implementing
influence analysis using parameterised boolean equation
systems. In Proc. of ISOLA’06, IEEE Computer Society
Press.

[4] R. Mateescu. Vérification des propriétés temporelles
des programmes parallèles. Thèse de doctorat, Institut
National Polytechnique de Grenoble, 1998.

[5] M. Gallardo, C. Joubert and P. Merino. On-the-fly data
flow analysis based on verification technology. In Proc.
of COCV’07, ENTCS.

[6] F. Nielson, H. Nielson and C. Hankin. Principles of
Program Analysis. 2005.

[7] M. Raynal. Algorithmique du parallelisme : le probleme
de l’exclusion mutuelle. 1984.

[8] R. Mateescu. Caesar solve: A generic library for on-
the-fly resolution of alternation-free boolean equation
systems. Springer Int. J. on Soft. Tools for Tech. Trans.
(STTT), 8(1):37 –56, 2006.

[9] H. Garavel, F. Lang and R. Mateescu. An overview
of CADP 2001. Europ. Assoc. for Soft. Sci. and Tech.
(EASST) Newsletter, 4:13–24, 2002.

[10] H. Garavel. Open/cæsar: An open software architecture
for verification, simulation, and testing. In Proc. of
TACAS’98, LNCS vol. 1384, pp. 68–84.

4

