
C.OPEN and ANNOTATOR: Tools for

On-the-Fly Model Checking C Programs ⋆

Maŕıa del Mar Gallardo1, Christophe Joubert2,
Pedro Merino1, and David Sanán1

1 University of Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
{gallardo,pedro,sanan}@lcc.uma.es

2 Technical University of Valencia, Camino de Vera s/n, 46022, Valencia, Spain
joubert@dsic.upv.es

Abstract. This paper describes a set of verification components that
open the way to perform on-the-fly software model checking with the
Cadp toolbox, originally designed for verifying the functional correct-
ness of Lotos specifications. Two new tools (named C.Open and
Annotator) have been added to the toolbox. The approach taken fits
well within the existing architecture of Cadp which doesn’t need to be
altered to enable C program verification.

1 Introduction

The software model checking problem consists in verifying that a program, i.e.

an infinite state system described in a high-level language, does not contain er-
rors, such as improper memory access, misuse of system interfaces, or violation
of (temporal logic) properties. The verification process is automatic, and the
wrong conception of the program is eventually illustrated by means of potential
offending behaviors of the system (e.g., counter examples). Traditionally, pro-
grams are first analysed to statically remove parts that do not affect the property
of interest, using light-weight pre-processing technique such as program slicing.
The reduced model is then abstracted using predicate abstraction and localization

techniques. Finally, the resulting finite state system is processed by Sat-based,
Bdd-based or explicit state model checkers.

Existing software model checkers, like Slam [1] and Blast [2], are either
domain specific (e.g., verification of drivers), language dependent, or based on
dedicated algorithms and tools. This paper presents an analysis engine that finds
application programming interface (Api) usage errors in C programs, similarly
to Blast and Slam, but rather focusing on a general purpose model checking
framework. We describe a set of components, namely C.Open and Annotator,
that enable the explicit state verification of C programs by means of the last
stable Cadp 2006 “Edinburgh” release. The Cadp toolbox3 [3] is a complex
software suite integrating numerous verification tools. Cadp supports the pro-
cess algebra Lotos for specification, and offers various tools for simulation and

⋆ This work has been supported by the Spanish MEC under grant TIN2004-7943-C04
3 Cadp web site: “http://www.inrialpes.fr/vasy/cadp”.



formal verification, including equivalence checkers (bisimulations) and model
checkers (temporal logics and modal µ-calculus). The toolbox is designed as an
open platform for the integration of other specification, verification and analysis
techniques. This is realized by means of Apis which on different levels provide
means to extend or exploit the functionalities of the toolbox. These Apis have
been used by others to link Cadp to other specification languages as well as other
verification/testing tools. Here we describe how these Apis have been used by
C.Open to support C program transformation and abstraction based on Xml
intermediate representation, and by Annotator to support on-the-fly data flow
analysis and program slicing, namely influence analysis, of implicit control flow
graphs using boolean equation systems (Bess). Our efforts have been driven by
the intention to avoid changes to the existing components as much as possible,
while providing a sound and efficient framework for C program model checking.

Originality. Our approach differs from previous works, like Blast and Slam,
in several ways:

1. in the first attempt to connect to the Cadp toolbox a model generator
(C.Open) that automatically extracts implicit labeled transition systems

(Ltss) from programs written in C programming language, and a static an-
alyzer (Annotator) that works on implicit abstracted control flow graphs

(Cfgs) described as Ltss,
2. in our emphasis on the verification of distributed protocols (e.g., the Peter-

son’s mutual exclusion (Pme) protocol between two processes), using well-
specified Apis [4], described as multiple (or multi-instantiated) concurrent in-
dependent C programs, rather than on sequential (Slam) or multi-threaded
programs (ongoing work of Blast),

3. in our use of the Open/Cæsar modular architecture and Xml, Bes and
Lts technologies to represent the state-space and verification problem effi-
ciently and to facilitate the connection to other programming languages, like
Promela, and

4. in the way we concentrated this research work on the compiler side, similarly
to Bandera and Bogor [5] model checking frameworks, but using well-
established verification tools of the Cadp toolbox as back-end.

2 Software Architecture

The toolset encompasses two sorts of tools (see Figure 1) to verify C programs
generated via Cadp. (i) The C.Open tool provides different means to distill an
implicit Lts from a C program. (ii) The static analyser Annotator enables
on-the-fly data flow and influence analysis of implicit Ltss describing abstract
Cfgs.

Distilling implicit LTSs from a C program. C.Open [6] is an addon component
for Cadp to support C program input to the Open/Cæsar environment [7],
though we state that the Xml Api, called PiXL [8], on which the tool is based,

2



is general enough to attach the C program abstraction process to other veri-
fication toolboxes, such as Spin, via Promela specifications instead of implicit
Ltss [4]. The idea that Open/Cæsar environment can be connected to a C
compiler and that existing Cadp tools can thereby be extended to this new
class of specifications is an important step towards re-using well-established ver-
ification toolboxes. C.Open (400 lines of Shell script) takes as inputs a system

liv
e 

va
ri

ab
le

s

de
ad

 v
ar

ia
bl

es

ve
ry

 b
us

y 
ex

pr
es

si
on

s

av
ai

la
bl

e 
ex

pr
es

si
on

s

re
ac

hi
ng

 d
ef

in
iti

on
s

re
ac

ha
bi

lit
y

as
se

rt
io

n

fo
rm

ul
a ap

i

Lts

Bes

graph)

(state)

(boolean

exploration

encoding
static analysis

p
ro

p
e
rt

y
sa

ti
sf

a
c
ti

o
n

Annotator

(-bes, -bfs, -formula, -xml, etc.)

Open/Cæsar environment

optional input/output argument

: provides

: input/output : new tools

: Cadp librairies

C2Xml

cc

C.Open

Xml2LTS

C program

cæsar
library

annotating

function (.xml,

program

library

cæsar solve

annotator
(.exe)

(.xml)
Api model

(.xml)

.txt, implicit)

PiXL

Open/Cæsar

graph module

implicit Lts

Lts exploration

Bes resolution

Fig. 1. C.Open and Annotator tools

described by a set of C programs, an operating system Api’s model represented
in Xml, and an Open/Cæsar application (e.g., Annotator). As an output,
it generates an executable application (e.g., annotator.exe) by performing the
required sequence of tool invocations: 1) a tool, called C2Xml (2 000 lines of
Java), is used with Javacc and a C grammar (1 000 lines of Java), to translate
C programs into PiXL compliant Xml models; 2) another tool, called Xml2Lts
(4 500 lines of Java), then slices the program models with respect to system Apis
to be preserved [9] and it constructs the Open/Cæsar graph module describing
the implicit program Lts; 3) finally, the C compiler cc is called.

C.Open allows to construct abstracted state spaces on-the-fly, and only to
the required precision (w.r.t. a specific Api). It currently offers the possibility
to generate either Cfg or explicit state space of a program as an implicit Lts.

Analysing implicit CFGs. Annotator implements standard data flow analysis
algorithms on a Cfg, by using boolean equation systems (Bess) [10, 11]. It

3



also computes various influence analyses [12], generally used for compacting the
program state representation, by detecting the relevant program variables in
each control point, for a property of interest.

Our static analyser takes as inputs a static analysis to carry out and an Lts
describing the Cfg of a program, in which instructions are abstracted to the
strict necessary information (i.e., modified and defined variables, used expres-
sions, and instruction type). This Lts is represented implicitly by its successor
function as an Open/Cæsar program provided by compliant compilers, such
as C.Open, but existing Cadp compilers, such as Cæsar, could be directly
extended to provide such Cfgs [13].

Annotator (6 000 lines of C code) consists of several modules, each one
containing the Bes translation for a particular static analysis (live variables,
very busy expressions, available expressions, reaching definitions, reachability,
assertion control, formula and Api preservation influence analyses). Bess are
represented implicitly by their successor function, in the same way as Ltss in
Open/Cæsar. They are handled internally by the Cæsar Solve [14] library,
which offers several on-the-fly resolution algorithms, based on different search
strategies (e.g., breadth-first). Dependent on the option selected by the user, the
analysis result is written to an Xml or textual file. These formats allow post-
processing of computed analyses, by directly conveying the result as input to
compilers reading these formats, such as C.Open, allowing further compilation
optimizations.

Availability. The proposed tools are publicly available through the following
web pages http://www.lcc.uma.es/gisum/tools/smc. C.Open and Annotator,
being part of the database of research tools developed using Cadp, are also
referenced by the Cadp web site. Both new tools are rather small, robust and
mature (in operation for about a year) and detailed manual pages are provided,
as well as more than 25 program examples and step-by-step small case studies.
More recently [15], we also defined web services that allow the remote use of
C.Open and Annotator, as well as most of Cadp verification tools, through
the Fmics-jEti platform [16] from a jAbc client [17].

Applicability. Concerning applicability, C.Open compiles concurrent C pro-
grams into the Open/Cæsar intermediate format (i.e., implicit labeled transi-
tion system (Lts)), to which efficient Cadp model checkers, such as Evaluator
(evaluation of regular alternation-free µ-calculus formulas) and Bisimulator
(equivalence checking), are connected. Hence, Ctl, Actl, Pdl, Pdl-∆ and
regular alternation-free µ-calculus properties can be verified on our C input
programs. In the Pme demonstration, we successfully checked respectively one
safety, liveness and fairness property on the C implementation of the protocol
and we also reduced the explicit-state space size by 20% using Api influence
analysis results computed by the Annotator tool. Furthermore, all analyses
that are available in the Cadp toolbox can be directly used on our C input
programs. Unfortunately, we could not compare our verification framework with

4



well-established software model checkers, like Blast or Slam, since they are
not dealing with distributed protocols with well-defined Apis yet.

Scalability. Annotator has been successfully experimented on very large Cfgs,
extracted from the Vlts benchmark4, with size up to 106 program counters
and instructions. Moreover, C.Open and Annotator allow several levels of
abstraction of the program instructions present in the LTS model, giving the
possibility to verify further properties or to achieve further reductions on the
program model.

3 Conclusion and Future Work

The development of an on-the-fly software model checker “from scratch” is a
complex and costly task. The open modular architecture adopted for C.Open
and Annotator aims at making this process easier, by using the Xml inter-
mediate representation, the well-established verification framework of Bess, to-
gether with the generic libraries for Lts exploration and Bes resolution provided
by Cadp. For instance, this tool architecture reduces the effort of implementing
a new static analysis to its strict minimum: encoding the mathematical definition
of the analysis as a Bes, and interpreting the result. We plan to continue our
work by extending Annotator with other static analyses (e.g., reset variables
analysis [13]) and by interconnecting the two new Cadp components with tools
extending Spin, such as SocketMC [4] and αSpin [18].

References

1. Ball, T., Rajamani, S.K.: The slam toolkit. In Berry, G., Comon, H., Finkel,
A., eds.: Proceedings of the 13th International Conference on Computer Aided
Verification CAV’2001 (Paris, France). Volume 2102 of Lecture Notes in Computer
Science., Springer Verlag (2001) 260–264

2. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In Ball, T.,
Jones, R.B., eds.: Proceedings of the 18th International Conference on Computer
Aided Verification CAV’2006 (Seattle, WA, USA). Volume 4144 of Lecture Notes
in Computer Science., Springer Verlag (2006) 532–546

3. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter 4 (2002)
13–24 Also available as INRIA Technical Report RT-0254 (December 2001).

4. Camara, P., Gallardo, M., Merino, P., Sanán, D.: Model checking software with
well-defined apis: the socket case. In Gnesi, S., Margaria, T., Massink, M., eds.:
Proceedings of the 10th International Workshop on Formal Methods for Industrial
Critical Systems FMICS’2005 (Lisbon, Portugal), ACM-SIGSOFT (2005) 17–26

5. Robby, Rodŕıguez, E., Dwyer, M.B., Hatcliff, J.: Checking JML specifications using
an extensible software model checking framework. Springer International Journal
on Software Tools for Technology Transfer (STTT) 8 (2006) 280–299

4 Vlts web site: http://www.inrialpes.fr/vasy/cadp/resources/benchmark bcg.html

5



6. Gallardo, M., Merino, P., Sanán, D.: Towards model checking c code with
open/cæsar. In Barjis, J., Ultes-Nitsche, U., Augusto, J.C., eds.: Proceedings of
the 4th International Workshop on Modelling, Simulation, Verification and Valida-
tion of Enterprise Information Systems MSVVEIS’2006 (Paphos, Cyprus), Insticc
Press (2006) 198–201

7. Garavel, H.: Open/cæsar: An open software architecture for verification, sim-
ulation, and testing. In Steffen, B., ed.: Proceedings of the First International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems TACAS’98 (Lisbon, Portugal). Volume 1384 of Lecture Notes in Computer
Science., Berlin, Springer Verlag (1998) 68–84 Full version available as INRIA Re-
search Report RR-3352.

8. Gallardo, M., Mart́ınez, J., Merino, P., Nuñez, P., Pimentel, E.: Pixl: Applying
xml standards to support the integration of analysis tools for protocols. Science of
Computer Programming (2006)

9. Gallardo, M., Joubert, C., Merino, P., Sanán, D.: On-the-fly API influence analysis
of software. In Merino, P., Bakkali, M., eds.: Proceedings of the 2nd International
Conference on Science and Technology JICT’07 (Málaga, Spain), Spicum (2007)

10. Gallardo, M., Joubert, C., Merino, P.: On-the-fly data flow analysis based on ver-
ification technology. In Drechsler, R., Glesner, S., Knoop, J., eds.: Proceedings of
the 6th International Workshop on Compiler Optimization meets Compiler Verifi-
cation COCV’2007 (Braga, Portugal). Electronic Notes in Theoretical Computer
Science, Elsevier (2007) To appear.

11. Gallardo, M., Joubert, C., Merino, P.: Implementing influence analysis using pa-
rameterised boolean equation systems. In: Proceedings of the 2nd International
Symposium on Leveraging Applications of Formal Methods, Verification and Vali-
dation ISOLA’06 (Paphos, Cyprus), IEEE Computer Society Press (2006) To ap-
pear.

12. Cámara, P., Gallardo, M., Merino, P.: Abstract matching for software model check-
ing. In Valmari, A., ed.: Proceedings of the 13th International SPIN Workshop on
Model Checking of Software SPIN’06 (Vienna, Austria). Volume 3925 of Lecture
Notes in Computer Science., Springer Verlag (2006) 182–200

13. Garavel, H., Serwe, W.: State space reduction for process algebra specifications.
Theoretical Computer Science 351(2) (2006) 131–145

14. Mateescu, R.: Caesar solve: A generic library for on-the-fly resolution of
alternation-free boolean equation systems. Springer International Journal on Soft-
ware Tools for Technology Transfer (STTT) 8 (2006) 37–56

15. Gallardo, M., Joubert, C., Merino, P., Sanán, D.: On-the-fly model checking for
C programs with extended CADP in FMICS-jETI. In: Proceedings of the 12th
IEEE International Conference on Engineering of Complex Computer Systems
ICECCS’07 (Auckland, New Zealand), IEEE Computer Society Press (2007) To
appear.

16. Margaria, T., Steffen, B.: Advances in the FMICS-jETI platform for program
verification. In: Proceedings of the 12th IEEE International Conference on En-
gineering of Complex Computer Systems ICECCS’07 (Auckland, New Zealand),
IEEE Computer Society Press (2007) To appear.

17. Margaria, T., Nagel, R., Steffen, B.: Remote integration and coordination of veri-
fication tools in jETI. In: Proceedings of the 12th IEEE International Conference
on the Engineering of Computer-Based Systems ECBS’05 (Greenbelt, MD, USA),
IEEE Computer Society Press (2005) 431–436

18. Gallardo, M., Martinez, J., Merino, P., Pimentel, E.: αspin: A tool for abstraction
in model checking. Software Tools for Technology Transfer 5(2-3) (2004) 165–184

6


