On-the-fly model checking for C programs with extended CADP in FMICS-JETI *

Maria del Mar Gallardo, Pedro Merino
and David Sanan
University of Mélaga
ETSI Informatica
Campus de Teatinos s/n, 29071 Malaga, Spain
{gallardo,merino,sanan} @lcc.uma.es

Abstract

A current trend in the software engineering community
is to integrate different tools in a friendly and powerful de-
velopment environment for use by final users. This is also
the case for tools based on formal methods, which are very
valuable for increasing confidence in the reliability of soft-
ware. This paper contributes to one promising approach to
make this integration possible, the project FMICS-JETL
This project aims to obtain an active repository of tools
based on formal methods in such a way that users can ac-
cess and combine all the tools simply by defining a graph
with the tools and the files they manage. In particular, the
paper explains how two new modules of the well known
toolset CADP are added to FMICS-JETI. These new mod-
ules, named C.OPEN and ANNOTATOR extend CADP with
functions to manage C programs in this toolset.

1. Introduction

Current software systems are becoming more concur-
rent, distributed and pervasive and their complexity requires
that many tools be used during development. For instance,
in order to analyse the software properties, checking com-
piler errors is only the starting point, and tools with more
powerful functionalities are necessary, like reliability or
performance analysers. In this context, the formal meth-
ods community has produced a number of tools that man-
age specification and programming languages. In particular,
we have participated in the development of several tools for
software reliability which combines formal techniques like
static analysis, abstract interpretation and model checking
(see ASPIN [7], ANNOTATOR [4, 5], C.OPEN [8]). It is
clear that the combination of existing tools can be a way

*Work partially supported by TIN2004-7943-C04-01 and TIN 2005-
09405-C02-01

Christophe Joubert
Technical University of Valencia
DSIC /ELP
Camino de Vera, s/n, 46022 Valencia, Spain
joubert@dsic.upv.es

to obtain powerful environments for software developers,
who are willing to accept new tools provided that they are
not forced to learn new languages or to write new specifica-
tions.

Considering the problem of tool integrations, a first ap-
proach is to define intermediate languages, which are used
as the transfer notation between the tools to be integrated.
These languages are not ad-hoc or user-oriented, but they
suitable for parsers and for algorithms. This approach was
originally followed by the SPECS [19] and SEDOS [3]
projects and, more recently in IF [1] Veritech, [14], BAN-
DERA [12] and in the toolset CADP [10]. Another related
approach to integrating tools is the use of XML [6] which
has recently produced the definition and implementation of
the intermediate language of interchange PiXL [7].

A different approach to tool integration is the construc-
tion of integrated environments to manage a group of tools,
using internal translators between the source and the desti-
nation tool. The ETT platform [20] was designed with this
approach. In ETI, coordination among tools is obtained
through the definition of functional taxonomies that each
tool exports when it is integrated into the platform. Thus,
the environment is able to recognize common or compatible
functionality. ETI has been recently redesigned and is now
FMICS-JETI [15, 16]. Now, the project FMICS-JETT is
promoting the use of this platform to integrate formal meth-
ods tools [2, 21].

In this paper, we show how to include two of our tools,
C.OPEN and ANNOTATOR, into FMICS-JETI. C.OPEN
is designed to translate C programs into the internal nota-
tion of CADP. ANNOTATOR takes the output of C.OPEN
and perform static analysis in order to obtain information
to optimize further processing with other tools in CADP.
Both tools are now being used to do model checking of
C programs. The successful integration of both tools in
FMICS-JETI is an important step towards showing that
other modules of CADP can also be integrated.

The paper is organized as follows. Section 2 describes

the C.OPEN and ANNOTATOR tools with the standard im-
plementation of CADP. Section 3 contains the details on
how to include both tools in FMICS-JETI. Section 4
presents a case study with the resulting integration. Finally,
we present some conclusions in Section 5.

2. Extending CADP for C code

This section presents the new tools developed to extend
CADP to manage C code.

2.1. CADP overview

CADP can be considered a traditional toolbox for the
analysis of communication protocols.

Using a modular architecture, CADP includes compilers
to translate several input formalisms (LOTOS, BCG) into
a generic format (an LTS). The different applications of
CADP uses the LTS as an internal representation of the in-
put language.

There is a wide variety of tools providing different fuc-
tionailities in CADP. For example, it contains a module
to analyze whether two specifications are bisimilar. It also
provides several model checkers for various temporal log-
ics and for p-calculus. It implements several verification
algorithms including exhaustive verification, on-the-fly ver-
ification, symbolic verification using Binary Decision Dia-
grams, and compositional verification based on refinement.

CADP contains some tools that could be particu-
larity interesting for the software engineering commu-
nity. For instance, EVALUATOR (model checker for mu-
calculus formulas), TGV (generator of conformance test
suites), BISIMULATOR (checker of equivalence relations),
REDUCTOR (LTS on-the-fly reduction with respect to a rela-
tion), EXHIBITOR (search patterns of execution sequences),
OCIS and SIMULATOR (graphical and command-line sim-
ulators, respectively).

Nevertheless, CADP is not only a set of tools, but also
a tool development framework. OPEN/CASAR is an inter-
face for the creation of new modules in the CADP toolkit.
Applications in OPEN/CZSAR have the functionality sep-
arated into three different modules: the graph, the storage
and the exploration modules. The main functionality is car-
ried out by the exploration module and it handles the other
two modules. OPEN/CESAR provides a set of libraries with
the necessary structures to store the labels and states of the
LTs. These structures constitute the storage module. Fi-
nally, the graph module provides the exploration module
with the necessary operations to handle the implicit LTS,
that is, to handle states, labels and to generate the successor
states.

However, CADP does not support programming lan-
guages in a native way, it only provides compilation for

some formalism such as LOTOS or binary code graphs BCG
through CAESAR.OPEN and BCG_OPEN. We extend CADP
with C.OPEN, based on [8], making it possible to use the
whole environment with C programs. A second extension
is ANNOTATOR [4] that allows us to perform static analysis
in order to improve the processing with other modules in
CADP(see fig. 1).

Lrs
exploration

(state) l

static analysis

= |XML2LTS encoding
(boolean
/mplict Ly graph)
| OpEN/CESARY, |
| graph module |
BES resolution

el — — — | |
caesar casar-solve
an?masor library libra
-exe;

OPEN/CESAR environment

“bes, -bfs, -xml, etc.
(-bes, -bfs, -xml, etc.) — = = provides

D : CADP librairies

live variables

property satisfaction

ANNOTATOR

annotating function (:xml)

Figure 1. C.OPEN and ANNOTATOR tools

2.2. C.OPEN

C.OPEN adds the possibility of using the CADP frame-
work to support C program input. The idea that the
OPEN/CZESAR [9] environment could be connected to a
C compiler and that existing CADP tools can therefore be
extended to this new class of specification can be con-
sidered an important step towards reusing well-stablished
verification toolboxes. In particular, C.OPEN deals with
,code that makes use of well-defined APIs; its main pur-
pose is to test the correct use of such APIs using the whole
CADP environment. C.OPEN takes as inputs a system de-
scribed by a set of C programs, an Apis model operat-
ing system written in C, the translation rules for the Api’s
model represented in XML, and an OPEN/CASAR applica-
tion (e.g., ANNOTATOR). In the translation task of gen-
erating the OPEN/CZESAR graph module (see sub-section
above), C.OPEN is divided in several subtasks that are car-
ried out by different modules. The task of handling and
managing the C code is not trivial due to the complex-
ity of this language. So, it is translated into XML, and
more specifically, into a PIXL scheme [7] with a tool called
C2Xml. Another tool called Xml2LTS analyzes the code
to stablish the external calls to the language, to perform an

influence analysis of variables and to generate the neces-
sary structures and transitions, w.x.t.the API used in the in-
put code, that forms the final LTS. In the code analysis,
users can decide whether the influence analysis of variables
is performed by C.OPEN or supported by other tool such as
ANNOTATOR which provides a more strict analysis. Once
the LTS from the initial system input has been generated,
C.OPEN compiles the generated LTS with the given explo-
ration module and the storage module (as an OPEN/CESAR
library) and it executes the resulting application. It cur-
rently offers the possibility of generating either a control
flow graph (Cfg), to be used by ANNOTATOR , or an ex-
plicit state space of a program as an implicit LTS

To properly validate the input system w.r.z. some API,
C.OPEN needs a model of the behaviour for the external
calls appearing in the program and an XML file with the
rules for translating the external API functions into the mod-
elled one. Table 1 shows, as an example, the APT Shared
Memory that provides four basic functions for dealing with
a shared resource, that is, create, read, write and
close. We can consider the shared memory as a composi-
tion of several regions with an unique name and size. New
regions are created through the screate function model.
It receives the name of the new region, and its size and ini-
tial value and it ensures that no region has been previously
created with the same name, size or initial value. Other-
wise, if there was a region with the same name, the function
call returns the region identifier previously assigned. The
other operations, sread, swrite and sclose, are used
to read from, write to, or close the region specified by the
corresponding argument. In particular, the sclose opera-
tion decreases the number of references to that region, deal-
locating the reserved memory if there are no references left.
Any attempt to access to a non-existent region returns an
error code.

C.OPEN uses the so-called translation rules to prop-
erly transform each external function. Possibly, exter-
nal function call parameters will be modified in the cor-
responding model. Therefore, the way to translate each
call is given in an XML file where, for each function
call, the arguments that must be preserved or that must be
added into the modelled function are specified. For exam-
ple, Figure 2 shows the translation rules for the function
sread. It indicates that sread is translated into func-
tion read_shared memory, which has two arguments:
the first one refers to the first argument of sread, and the
other is the value returned by the function. Moreover, the
arguments of functions may have a different representation
in the label of the LTS, so, it is necessary to specify this as-
pect in the translation rules file. This is the case in the first
argument of the sread, the LTS uses the name of the vari-
able instead of the real variable value, this is done setting
the option varname to yes.

<function name="sread" sname="read_ shared memory"
type="1">
<arg typeArg="1" argref="0" type="int" labeltype="char"
varname="yes" labelsize="20" labelname="desc"/>
<arg typeArg="0" type="void x"
labeltype="int" returned="true"/>
</functions>

Figure 2. sread translation rules

2.3. ANNOTATOR

ANNOTATOR implements standard data flow analysis al-
gorithms on a CFG, by using boolean equation systems
(BEss) [4]. It also computes various influence analy-
ses [10], generally used for compacting the program state
representation, by detecting the relevant program variables
in each control point, for a property of interest. Our static
analyser takes as inputs a static analysis to be carried out
and an LTS describing the CFG of a program, in which
instructions are abstracted to the strictly necessary infor-
mation (i.e., modified and defined variables, used expres-
sions and instruction type). This LTS is represented im-
plicitly by its successor function as an OPEN/CAESAR pro-
gram provided by compliant compilers, such as C.OPEN,
but existing CADP compilers, such as CASAR, could be di-
rectly extended to provide such CFGs [11]. ANNOTATOR (6
000 lines of C code) consists of several modules, each one
containing the BES translation for a particular static analy-
sis (live variables, very busy expressions, available expres-
sions, reaching definitions, reachability, assertion control,
formula and Api preservation influence analyses). BESs
are represented implicitly by their successor function, in the
same way as LTSs in OPEN/C&ASAR. They are handled in-
ternally by the CESAR_SOLVE [17] library, which offers
several on-the-fly resolution algorithms, based on different
search strategies (e.g., breadth-first). Depending on the op-
tion selected by the user, the analysis result is written as an
XML or textual file. These formats allow post- processing
of computed analyses, by directly conveying the result as
input to compilers reading these formats, such as C.OPEN,
allowing further compilation optimizations. Figure 1 shows
how the generation of the Cfg from a program with C.OPEN
lets us to use ANNOTATOR to determine which variables in
this program must be verified with CADP.

ANNOTATOR consists of two parts: a front-end, respon-
sible for encoding the static analysis of LTS as a (param-
eterised) BES resolution, and a back-end, responsible for
(parameterised)Bes resolution, playing the role of verifica-
tion engine. Back-end is obtained by using algorithms of
the CESAR_SOLVE library. Globally, the approach to on-
the-fly static analysis is both to construct the LTS and cor-
responding (parameterised) LTS on the fly and to determine
the final value of boolean variables of interest. Only the

#include <stdio.h>

int

main (int argc, char xxargv)

{
unsigned int flag0 des, flagl des, turn des;
int flag0_value, flagl_value, turn_value;
int flag0_res, flagl res, turn_res;
int pid, initial_value;

/***/
/* Local process identification %/

initial_value = 0;

pid = initial value;

/x Initialization of shared variables */

flag0_des = screate ("flag0",/x descriptor name for flag0 =/
sizeof (flagO_Value),/* value size of flag0 x/
&initial value /x initial value for flag0 %/);

flagl des = screate ("flagl",/* descriptor name for flagl x/
sizeof (flagl_value),/* value size of flagl =/
&initial value /+ initial value for flagl %/);

turn _des = screate ("turn",/x descriptor name for turn x/
sizeof (turn_value),/* value size of turn %/
&initial value / initial value for turn */);

/***/
/* Behavior of process 0 x/
flag0_value = 1;
flag0 res = swrite (flag0 des,/* descriptor for flag0 x/
&flag0_value, /» pointer to flag0 value x/
sizeof (flag0_value) /% value size of flag0 x/

)i

turn_value = 1;

turn_res = swrite (turn_des,/* descriptor for turn x/
&turn_value,/* pointer to turn value x/

sizeof (turn_value) /+ value size of turn x/

)i

/* Busy waiting of remote process */
pid = (pid + 1) % 2;
while ((x(int) sread (flagl des /* descriptor for flagl x/) == 1) &&
(% (int *) sread (turn des /x descriptor for turn %/) == 1)
{
printf ("Waiting for process %d\n", pid);

}

/***/
/% Critical section x/

pid = (pid + 1) % 2;

printf ("Process %d is in critical section\n", pid);

/+ End of critical section x/

flag0_value = 0;

flag0_res = swrite (flag0_des,/+ descriptor for flag0 =/
&flag0_value,/* pointer to flag0 value =/
sizeof (flag0 _value) /* value size of flag0 «/

)i

/***/
/+* Close shared memory =/

flag0_res = sclose (flag0 _des /* descriptor for flag0 */);

flagl_res = sclose (flagl_des /+ descriptor for flagl =/);

turn_res = sclose (turn_des / descriptor for turn */);
/***/

Figure 3. peterson mutual exclusion code

func. return arg 1 arg 2 arg 3
screate reg.id(int) reg name(char *) | sizeof reg.(int) value(void *)
sread | value(void *) reg.id(int)

swrite code(int) reg.id(int) value(void *) | sizeof value(int)
sclose code(int) reg.id(int)

Table 1. Shared Memory API functions

part of both graphs where it necessary to perform the static
analysis is explored incrementally.

2.4 Example

In order to highlight the benefits of the translation from
C to LTS, we show how the different CADP tools can be
used to analyze C programs with calls to an external API.
In particular, the API example will be used together with
a model of this API. We will show how C.OPEN works
implementing the Peterson’s mutual exclusion (PME) algo-
rithm and using several CADP tools as generator, simulator
or evaluator to check the correctness of the programs.

PME is a concurrent programming algorithm for mutual
exclusion that allows only two processes to share a single-
use resource without conflict, using only shared memory
for communication. It was formulated by Gary Peterson in
1981 at the University of Rochester.

To prevent the same piece of data from being in an in-
consistent and unpredictable state, critical sections of code
accessing shared data must therefore be protected, so that
other processes which read from or write to the data are ex-
cluded from running.

The system to be analyzed is composed of two pro-
grams, pO_peterson.c (figure 3) and pl_peterson.c, which
use the Peterson mutual exclusion algorithm for accessing
to a common critical section. Both programs are symmetri-
cal, they differ only in the program pid, and in the control
flag variables that guard the critical section. The programs
are structured as follows: First, the different shared vari-
ables controlling the critical section are created; then, and
before going into the critical section, both processes make
an active wait for the critical section; thirdly, each process
updates the flag shared variable to ensure that the other pro-
cess can not exit from the active wait; finally the shared
structures are closed and the programs finish.

Figure 4 shows the execution of C.OPEN with
GENERATOR . The command line C.Open takes as ar-
guments the input for C.OPEN (typically the C system)
and the exploration module, GENERATOR in this exam-
ple, with the corresponding parameters (i.e. the file where
GENERATOR will save the generated BCG). In the ex-
ample, C.OPEN generates and invokes the executable for
GENERATOR.

david@david-desktop:~/ejemplos/petersonmod$ c.open -filelist 2 p@_peterson.c 1 p
1 peterson.c 1 generator peterson.bcg

-filelist p@_peterson.c 1 pl_peterson.c 1

C2xml versidn 0.8

Procesados todos los ficheros

-filelist p0@_peterson.c 1 pl peterson.c 1

-Ddebug=Tfalse

graph

c.open: using " /usr/share/cadp//src/open_caesar/generator.c'’

c.open: using link mode

Jusr/share/cadp//src/com/cadp_cc -I. -I/usr/share/cadp//incl -Ifusr/share/cadp/
/src/open_caesar -C graph.c -o graph.o

fusr/share/cadp//src/com/cadp cc -I. -I/usr/share/cadp//incl -I/usr/share/cadp/
/src/open_caesar -c /Jusr/share/cadp//src/open_caesar/generator.c -o generator.o
fusr/share/cadp//src/comfcadp_cc generator.o graph.o -o generator -L/usr/share/
cadp//bin.iX86 -lcaesar -L/usr/share/cadp//bin.iX86 -1BCG I0 -1BCG -1m

c.open: running "~ “generator peterson.bcg'' for " graph.c'’

Figure 4. Call to C.Open to generate an ex-
plicit Lts with generator

david@david-desktop:~/ejemplos/petersonmods bcg info peterson.bcg
.fpeterson.bcg:
created by generator
719 states
1312 transitions
27 labels
initial state: ©
list of deadlock state(s): 714 715 716 717 718
branching factor: average = 1.82, minimal = @, maximal = 2
332 transition(s) with a hidden label ("1i")
non-deterministic behavior for:

label "i" at state(s): 0 10 14 21 27 36 46 ... (43 states in total)

Figure 5. Information of the explicit LTS gen-
erated by generator

Figure 5 shows the caption of the info for the BCG cre-
ated by GENERATOR. It has 719 states, but CADP includes
several tools to reduce the graph through bisimulation, mak-
ing it easier to manage. For that purpose REDUCTOR per-
forms an exhaustive analysis and generates the LTS corre-
sponding to an input BCG. The resulting LTS is reduced on-
the-fly respect to several relations (strong equivalence, tau-
divergence, tau-compression tau-confluence, tau*.a equiva-
lence, safety equivalence, trace equivalence, or weak trace
equivalence). Figure 6 shows the application of REDUCTOR
to the BCG previously obtained. Therefore, if we apply
REDUCTOR to the beg obtained after applying GENERATOR
with a total reduction, we obtain a smaller LTS equivalent
with only 157 different states and 288 transitions.

To check the correctness of the system being evaluated,

david@david-desktop:~/ejemplos/petersonmods bcg_info peterson_reductor.bcg
./peterson_reductor.bcg:
created by reducter
157 states
288 transitions
27 labels
initial state: @
list of deadlock state(s): 156
branching factor: average = 1.83, minimal = @, maximal = 2
no transition with a hidden label ("i")
deterministic behavier for all labels

Figure 6. Information about the explicit LTS
after being reduced with reductor

we test that the algorithm satisfies the three essential criteria
of mutual exclusion:

e Mutual exclusion. PO and P1 can never be in the criti-
cal section at the same time: If PO is in its critical sec-
tion, then either flag is false or turn is 0. Either case,
P1 cannot be in its critical section.

e Progress requirement. If process PO does not want to
enter its critical section, P1 can enter it without wait-
ing. There is not strict alternating between PO and P1.

e Bounded waiting. A process will not wait longer than
one turn for entering the critical section: After giving
priority to the other process, this process will run to
completion and set its flag to 0, thereby allowing the
other process to enter the critical section.

The study of the PME can be divided into three major
parts.

e Analysis of PO and Pl programs modulo API in-
fluence analysis. For this, we use C.OPEN next
to ANNOTATOR to determine the variables that pre-
serve the API used. For each program control point,
ANNOTATOR gives a list of variables influencing the
PME abstract model and puts the analysis results in an
XML file. This tool further detects that pid is the only
variable that does not influence any control point of the
PME program, and thus it can be safely ignored for the
protocol verification.

e The PME program is sliced using the analysis result of
step 1, and a minimized PME model is obtained. This
is done by C.OPEN using the XML influence analy-
sis result files from ANNOTATOR, together with the
Generator application, which successfully constructs a
smaller LTS than the one previously computed without
slicing.

e We use EVALUATOR, a model checker which evalu-
ates the various temporal properties in the minimized
model The satisfaction of the properties indicates that

Tool Name:

Descripti

SR RTOOEEN

add Union add Parameter clear

Parameter Configuration

B H unon

add Parameter

AR static ParamETER
Class: java.lang.String

Value: svi

B A rReQUIRED PARAMETER
Name: SVLFILE

Class: de.unido. s5. eti.toolserver. InputFileReference

Description: SVL script to execute (.svl)

Figure 7. Snapshot of the JETI web configura-
tor for SVL SIB

our implementation of the PME algorithm preserves
the three mutual exclusion criteria, w.xt. our abstract
shared memory API model.

3. Adding C model checking tools to FMICS-
JETI

3.1. FMICS-JETT architecture

FMICS-JETI is based on a client/server architecture.
Through a client application (JABC), it is possible to de-
fine graphs for the integration of different tools and their
execution on a remote server. For adding new services into
FMICS-JET]I, it offers an easy and handy interface, HTML
tool configurator. This configurator allows automatic SIBs
(Service-Independent Building Block) generation from the
specification of the parameters for such service. SIBs are
java classes that are called on the client side and are respon-
sible for the communication with the server which allocates
the tool associated to the service provided by the S1B

The JABC client is a graphical interface for the specifi-
cation of SLG graphs. These graphs allow the combination
of the different remote tools, and see them as sequential pro-
grams.

3.2. SVL SIB on jETT server

To remotely execute C.OPEN and ANNOTATOR, we have
designed only one SiB, SVL SiB. This SIB adds a ser-
vice that remotely executes a SVL (Script Verification Lan-
guage) script which is responsible for calling to C.OPEN
and ANNOTATOR with all the necessary parameters to in-
voke them, such the C input files or the configuration ones.

<etitoolserver serverURI='http://d3.lcc.uma.es:8080/services/ETI’ >

<tool name='SVL’ active='true’ class='de.unido.ls5.eti.toolserver.RuntimeUnix’ method='exec’>

<descriptions>Executes an SVL script (.svl) on given input files (contained in a .tar file) using CADP tools.
Returns standard outputs in a log file (.log) and generated output files (in a .tar file).</descriptions
<array class='java.lang.Object’>

<union>

<parameter class='java.lang.String’ value='svl’ />
<parameter name=’'SVLFILE’ class='de.unido.ls5.eti.toolserver.InputFileReference’ required='true’
description=’SVL script to execute (.svl)’ />
</union>
<parameter name='INFILE’ class='de.unido.ls5.eti.toolserver.InputFileReference’ required='true’
description='Archive (.tar) of input specification files’ />
<union>
<parameter class='java.lang.String’ value='>’' />
<parameter name='LOGFILE’ class='de.unido.ls5.eti.toolserver.OutputFileReference’ required=’true’
description='File (.log) to write log information to’ />
</unions>
<parameter name='OUTFILE’ class='de.unido.ls5.eti.toolserver.OutputFileReference’ required='true’
description='File (.tar) to write all generated output files to’ />
</array>
</tool>

</etitoolservers>

Figure 8. XML file describing the new SVL jETI-SIB

JETI
ErlE@:rsm

error

J T —defauJ!—)} iETI —defauh—)} JE'”' defau!?—} jETf dEf&uJ?%ﬁ' JETI

ReadScriptFile tNﬁllnput\ SWL /teLogMeOutputFne

error error error errar

_lETi'
ErrarsiB

Figure 9. Service logic graph of the Peterson’s mutual exclusion case-study

Using SVL as a service let us simplify the integration of
CADP with FMICS-JETI. Moreover, defining a SVL script
instead of creating different S1Bs, one for each CADP tool,
lets us use the whole set of CADP tools adding a unique
service. The SVL SIB invoques the SVL interpreter on the
server side and it requires four parameters, two of them are
input parameters and the others are from output. There-
fore, it needs the SVL script containing the necessaries com-
mands (typically, file manipulation and CADP tools) for the
verification process that will be executed in the server. The
system being analyzed, as well as configuration files for the
tools involved in the verification process, are passed to the
script through the second input argument of the SVL SIB.
The different files are packed into a tar file, and the script,
when it is executed in the server, untars the files enabling
the script to work correctly.

The output arguments of the SIB are, on one hand, the
execution log of the script, containing the output of the dif-
ferent tool. On the other, the SIB returns the different files
generated by the tools invoked remotely.

4. The Peterson’s mutual exclusion case-study

The Peterson’s mutual exclusion (PME) protocol is a
small example that illustrates the entire tool chain and
methodology, and touches most of the tool components dis-
cussed in the paper. It is based on an implementation in C
code of the algorithm taken from [18] for mutual exclusion
between two processes (figure 3).

4.1. Service logic graph on jJABC client

In [13], the authors gave a C implementation of this
protocol as well as an SVL script describing the whole
verification process of the PME protocol with standalone
CADP. In order to realize the same experimentation through
the FMICS-JETI platform, it is necessary to define a ser-
vice logic graph (SLG) in the JABC client, which invokes
for each SIB composing the graph, the corresponding re-
mote tool on a specific FMICS-JETIserver. Hence, once
we defined our SVL SIB and made it available on our
FMICS-JETI server, we need to use it in a JABC graph.
Figure 9 gives an SLGthat first reads two files, one being
the SVL script (demo.svl) and the other being an archive
of all input files (demo_41_input.tar). The SVL SIB is then
called with those two arguments and, upon success, returns
two files, one for the remote standard output trace (std-
out.log) and one for the files generated during the experi-
ment (demo_41_output.tar). If an error occurs, it is either
treated locally(ErrorSIB), or remotely (ETIErrorSIB).

This methodology enables the remote use of C.OPEN
and ANNOTATOR tools, which are C model checking ex-
tensions of the last stable release of the CADP toolbox,

without needing a local installation these tools. This ap-
proach is even more attractive since our SVL SIB file, and
FMICS-JETI server enable the execution of all verifica-
tion tools as well as all 40 SVL demos available part of the
current CADP toolbox. This is a great advantage when one
wants to quickly test the applicability of an approach using
state-of-the-art up-to-date technologies and tools, without
the necessity of dealing with hardware, software and license
dependencies.

Using the stdout.log file generated by the execution of
our SLG we observe that the evaluation of three alternation-
free pi-calculus formulas by the EVALUATOR model checker
returns true. The satisfaction of these properties indicates
that our C implementation of the PME algorithm preserves
the three criteria of mutual exclusion, w.r.t. our abstract
shared memory API model.

5. Conclusions

We have presented another case study in the evolution
of the project FMICS-JETI. In particular, we have inte-
grated the tools C.OPEN and ANNOTATOR and we have
constructed the SIB and the SLG to access these tools from
the JABC client. We also present an example of how to
use the new tools within this framework. The success in
bringing the new tools to this environment in a very short
time proves that most (maybe all) the components of CADP
can be also integrated into the FMICS-JETI project pro-
moted by the ERCIM Working Group on Formal Methods
for Industrial Critical Systems (FMICS) (see information at
http://www.inrialpes.fr/vasy/fmics/).

References

[1] M. Bozga, J. Fernandez, L. Ghirvu, S. Graf, and L. Krimm,
J.and Mounier. If: A validation environment for timed asyn-
chronous systems. In Proceedings of CAV’00, volume 1855,
2000.

[2] L. Brim and M. Leucker. Parallel model checking and the
fmics-jeti platform. 2007. To appear in Proc. of ICECCSO07.

[3] M. Diaz, C. Vissers, and J. Ansart. Sedos software environ-
ment for the design of open distributed systems. In The for-
mal Description Technique LOTOS. North-Holland, 1989.

[4] M. Gallardo, C. Joubert, and P. Merino. Implementing in-
fluence analysis using parameterised boolean equation sys-
tems. In N. Halbwachs and L. Zuck, editors, Proceed-
ings of the 2nd International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation
ISOLA’06 (Paphos, Cyprus), volume 3440 of Lecture Notes
in Computer Science, pages 581-585. IEEE Computer Soci-
ety Press, November 2006.

[5] M. Gallardo, C. Joubert, and P. Merino. On-the-fly data
flow analysis based on verification technology. In R. Drech-
sler, S. Glesner, and J. Knoop, editors, Proceedings of the

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

(20]

[21]

6th International Workshop on Compiler Optimization meets
Compiler Verification COCV’2007 (Braga, Portugal). Else-
vier, March 2007.

M. Gallardo, J. Martinez, P. Merino, and E. Pimentel. A
tool for abstraction in model checking. Software Tools for
Technology Transfer, 5, 2004.

M. Gallardo, J. Martnez, P. Merino, P. Nuez, and E. Pi-
mentel. Pixl: Applying xml standards to support the inte-
gration of analysis tools for protocols. Science of Computer
Programming, 65:57-69, March 2007.

M. Gallardo, P. Merino, and D. Sanan. Towards model
checking ¢ code with open/caesar. In Proc. of MSVVEIS 06,
pages 198-201, 2006.

H. Garavel. Open/caesar: An open software architecture for
verification, simulation, and testing. In B. Steffen, editor,
Proceedings of the First International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
TACAS’98,, 1998.

H. Garavel, F. Lang, and R. Mateescu. Cadp 2006: A
toolbox for the construction and analysis of distributed pro-
cesses. In Proc. of CAV’07, To appear.

H. Garavel and W. Serwe. State space reduction for process
algebra specifications. Theor. Comput. Sci., 351(2):131-
145, 2006.

J. Hatcliff, M. Dwyer, C. Pasareanu, and Robby. Founda-
tions of the bandera abstraction tools. In The Essence of
Computation, volume 2566. LNCS, 2003.
http://www.lcc.uma.es/gisum/tools/smc. C.OPEN and AN-
NOTATOR: Tools for On-the-Fly Model Checking C Pro-
grams. UMA/GISUM and UPV/ELP, 2007.

S. Katz. Faithful translations among models and specifica-
tions. In Proc. of Formal Methods Europe, 2001.

T. Margaria, R. Nagel, and B. B. Steffen. Remote integration
and coordination of verification tools in jeti. 2005.

T. Margaria and B. Steffen. Advances in the fmics-jeti plat-
form for program verification. 2007. To appear in Proc. of
ICECCS07.

R. Mateescu. Caesar solve: A generic library for on-
the-fly resolution of alternationfree boolean equation sys-
tems. Springer Int. J. on Soft. Tools for Tech. Trans.(STTT),
8(1):37-56, 2006.

M. Raynal. Algorithmique du parallelisme : le probleme de
Iexclusion mutuelle. 1984.

W. Reed, R.and Bouma, J. Evans, M. Dauphin, and
M. Michel. The specs consortium. specification and pro-
gramming environment for communication software. North-
Holland, 1993.

B. Steffen, T. Margaria, and V. Braun. The electronic tool
integration platform: concepts and design. Special section
on the Electronic Tool Integration Platform, Int. Journal on
SoftwareTools for Technology Transfer, 1, 1997.

B. Steffen, T. Margaria, and L. M. The learnlib in fmics-jeti.
2007. To appear in Proc. of ICECCS07.

