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Abstract

Software model checking technology is based on an ex-
haustive and efficient simulation of all possible execution
paths in concurrent programs. Existing tools based on this
method can rapidly detect execution errors, preventing mal-
functions in the final system. However dealing with dynamic
memory allocation is still an open trend.

In this paper, we present a novel method to extend ex-
plicit model checking of C programs with dynamic memory
management. The method consists in defining a canonical
representation of the heap that is based on moving most
of the information from the state vector to a global struc-
ture. We give a formal semantics of the method in order to
show its soundness. Our experimental results show that this
method can be efficiently implemented in many well known
model checkers, like CADP or SPIN.

Keywords: Model extraction, software model checking,
pointers, dynamic memory

1 Introduction

Model checking is a mature technique to analyze prop-
erties of concurrent and critical systems, both hardware and
software. Research in this topic has produced a number of
tools oriented to particular specification languages, usually
called formal description techniques. During the last ten
years, this method has been adapted to real programming
languages, like C[11] [1] [16] [5], C++[8] or JAVA[9] [3]
[13]. These tools for software model checking are based
on the same state exploration algorithms designed for for-
mal description techniques, and not all of them do consider
additional features missing in specification languages, like
pointers and dynamic memory allocation.

∗This work has been partially supported by the Spanish MEC under
grant P07-TIC3131, TIN2007-67134 and IST-5-033563

1.1 Motivation and related work

Extending explicit model checking to manage pro-
gramming languages with dynamic memory allocation
presents two kinds of problems: the internal represen-
tation of dynamic structures (the heap) and the specifi-
cation/verification of properties related to these dynamic
structures. In the following paragraphs, we describe works
related to these two areas.

1.1.1 Heap representation

From the implementation point of view, the problem is how
to deal with the internal representation of the states dur-
ing the exploration of the potential behaviors of the pro-
gram. Model checking algorithms are optimized to con-
sider global states with a fixed structure and length and they
should be modified in order to deal with states with differ-
ent configurations that depend on operations to allocate and
free memory. There are some proposals describing repre-
sentations of the state for C [6] [16] and JAVA [13].

The most natural approach to deal with dynamic struc-
tures is to allocate a heap for every process in the state vec-
tor. In that way, the state vector contains all the static and
dynamic variables for all the processes, although a high cost
on memory use has to be paid. This is the approach ini-
tially followed by the tool CMC [16], which is able to do
model checking of C and C++ programs. In order to avoid
the huge use of memory, CMC employs a hash table where
only a signature of the state is stored, so this kind of com-
pression of the state vector produces partial verification.

Tool dSPIN [6] extends SPIN with new PROMELA sen-
tences and modifies the basic SPIN implementation. The
language is extended with a notation to identify pointer vari-
ables, in such a way that the operations regarding pointers
(assignment and comparison) are given a different seman-
tics which is context-dependent. Their behavior depends on
the position of the pointer variable (left or right) and the
type of the other side of the instruction. Internally, the tool
uses an extensible vector state with a separate area for dy-
namic objects for each state. This extensible state is lin-
earized in every step of the model checker in order to pro-
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duce a representation compatible with the SPIN algorithms
to perform matching, hashing and state compression. Apart
from considering the heap in every state (at least partially),
this linearization is a time consuming step; however, only
the relevant information should be copied to the linear state
using a canonical representation of the heap. This idea is
also applied in BOGOR [18].

JPF[13], a Java oriented model checker, also considers
the separation of static and dynamic parts of the state
vector. Dynamic objects are stored as a global pool of
values, and only the indexes to the pool are placed in
the static part of the state vector, together with the static
variables. This way of collapsing the state increases
the time and memory to verify large examples due to
backtracking (necessary to perform exhaustive exploration
of the bytecode corresponding to the Java program). So
the authors also implement a reverse collapse method to
manage the states.

1.1.2 Verifying properties over dynamic structures

It is necessary to define new property languages to express
requirements and to reason about data structures created
in a dynamic form, like linked lists. Model checkers usu-
ally employ variants of temporal logic to define properties
about states and sequences of states. Atomic propositions
in these logics are related to the static variables in the pro-
gram. When considering linked structures (with anonymous
nodes), a new mechanism is needed to reason about them.

Tool GROOVE [12] focuses on making the dynamic
structures available to check CTL formulas. Instead of a lin-
ear method, the authors use a graph representation, which is
more suitable to implement efficient matching.

The proposal by Bouajjani et al. [2] focuses on the use of
a global store of values to represent linked structures as list
and graphs. Then they employ model checking combined
with abstraction to reason about the dynamic structures.

It is also worth noting that some works focus on design-
ing new logics to deal with dynamic structures rather than
on the internal behaviour of model checkers. In particu-
lar, work has been done in separation logic [17] parametric
shape analysis [1] and pointer assertion logic [15]. How-
ever, these logics are used in theorem provers and its apli-
cability in model checking techniques have to be studied.

1.2 Contributions

The problem addressed in this paper is how to represent
the state vector during verification of C programs with dy-
namic structures. The contributions of the paper are: a) a
novel method to deal with pointers and heap management
in the context of C programs; b) the formalization of the

method in order to prove its correctness; and c) an exten-
sion of the tool set CADP to include this functionality.

We propose a new representation of the heap of a given
C process that consists in using an incremental global data
structure to allocate new objects. This global store is not
kept as a part of the state; instead, indexes to this store are
only used to point to the store elements. The way we gener-
ate the indexes (a hashing method) and the way of managing
the store allows us to efficiently manage canonical represen-
tation of the states and to implement model checkers with
this feature. This approach constitutes a new way to imple-
ment state collapsing [10].

This new proposal to manage pointers does not affect
the expected behavior of model checkers when analyzing
programs without pointers. We can use the usual model
checker property language, like temporal logic, to reason
about programs that use pointers and dynamic memory;
however, we still cannot reason about the dynamic struc-
tures itself. This feature will be our next work.

Previous works cited above only provided informal de-
scriptions of the mechanism to manage dynamic memory.
We describe our proposal giving a formal semantics to the
operations related to pointers and memory management. As
far as we know, this is the first time that collapsing related
methods are formalized. Like in [4], the formal semantics
has been useful to check correctness and to guide the imple-
mentation.

Our proposal can be implemented in many existing tools.
The first implementation has been carried out within our
project C.OPEN [5], which extends the tool box CADP in
order to verify C programs that use external functions. Ex-
perimental results confirm that we can use the extension
with realistic C programs.

Compared to related work, our method shares the ideas
of the global store and canonical states with [13] and [2].
However, like JPF our way of managing the store is more
efficient, because we save memory keeping the real data
outside the state vector. We also save time because: a) we
do no need the linearization used in dSPIN and b) we do not
need a specific mechanism to implement backtracking. This
is due to the use of a special hashing method to manage the
global store. Furthermore, our method considers new fea-
tures such as explicit memory deallocation and support for
pointer arithmetic.

The paper is organized as follows. In Section 1, we
present a summary of our approach to integrate heap man-
agement in the usual algorithms to perform explicit model
checking. The approach is formalized and analyzed for
soundness in Section 3. Sections 4 and 5 give details on im-
plementation issues and experimental results, respectively.
Conclusions are given in Section 6
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2 Modelling the heap of a C process

Explicit model checking (of software) consists in gener-
ating all the global states of a given configuration of concur-
rent programs. The most resource consuming operation is
checking whether a given (new) state has been analyzed be-
fore. The number and size of global states to be compared
for this purpose depends on the variables in the processes
and on the degree of interleaving. So usually, optimizations
are considered in both directions, reducing both the repre-
sentation of states and the interleavings necessary to check a
property. However, there is a balance between the optimiza-
tions and the visibility of instructions and variables needed
to check the properties. This is also applicable when we
extend model checking to deal with dynamic memory man-
agement in C programs.

In theory, dynamic memory can produce an infinite num-
ber of states and, therefore, explicit model checking does
not work to check properties. However, if we consider real-
istic programs, we could think of practical methods to man-
age very large states. The critical point is how to keep a
small representation of states while capturing the relevant
information to compare states. Our method produces such a
canonical representation. Figure 1 represents how we split
the information of the states into two parts. The state vector
contains the relevant information to be used during model
checking, for instance, to compare states and to check prop-
erties. The global store contains all the data structures cre-
ated by processes at any point during model checking. We
add any new value created to the store, thus ensuring that
these values are shared as parts of the heaps of different
processes (this allows us to keep the store in a reasonable
size). The heap of every process is placed in the state, but
only a reference to the store is put in the process heap.

The logical model of the process heap works as follows.
Pointer variables are usually static process variables, there-
fore they are placed with other variables. A pointer variable
contains a reference to the process heap, which is uniquely
assigned depending on the name of the variable (this is done
with a hash function). The entry in the heap contains a ref-
erence to the value in the store (or a Null reference). Each
reference is composed of the type of the dynamic structure
plus a hash value that is fixed for each value of the given
type during model checking. This second hash function is a
critical part that clearly depends on the range of values al-
lowed for every type (types can be C native or user defined).
Keeping each process heap sorted by the values produced by
the first hash function (the one based on the names), we ob-
tain a canonical representation of the states. This canonical
representation ensures that different interleavings reaching
the same state will be correctly considered. All these mech-
anisms allow us to ignore the global store when comparing
states. The information in the store is only used to produce

new states.
This heap model allows us to easily represent non-linked

structures. The model is also able to manage linked struc-
tures by including references to the heap in the global store.
For instance, figure 1 shows how a list is internally repre-
sented. The list is pointed to by the variable list, which
refers to an element in the heap containing the information
about the location in the store. The next element in the list
is pointed by the field next, which has the reference to the
dynamic area in the heap (or NULL if it has not been linked
to the following element). Fortunately, we can again ignore
these references in the store when comparing two states, be-
cause we have all the information in the process heap.

Regarding the instructions to deal with pointers, we ex-
plicitly capture and model the creation and deallocation of
memory and all the operations to access the objects. The
way of modelling these operations and the overall method
to manage dynamic memory isformalized and analyzed for
correctness in the following section.

Figure 1. Model of the heap

3 Formal Description

In this section, we give a formal description of the pro-
posal to deal with dynamic memory. To simplify the pre-
sentation, we have assumed that our program consists of
a single process. Since our concurrency model for C only
supports local variables, this assumption is not a real restric-
tion. The extension to systems with more than one process
may be obtained by replicating the model described here in
the natural way.
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3.1 Memory Model

Let V be the set of variables declared in a given C pro-
gram P . We assume that variables in V lexicographically
ordered. Thus, if x ∈ V , δx denotes the position of x
in V . Let us denote with V alue the set of all possible
values of variables in P . We assume that V alue con-
tains the set of natural numbers N and the set A of ad-
dresses that may point to dynamic data during execution.
As it was described in the previous section, in our model,
the memory handled by P is divided into three main parts
γ = 〈γs, γh, γST〉 where γs ∈ STATIC = V → V alue
is the static part of state, with the current value of each
variable declared in P . If ptr is a pointer variable, then
γs(ptr) ∈ A. γST ∈ STORE = T × N → V alue∗

where T is the set of type identifiers used in the program
and V alue∗ denotes the set of all sequences v1 · · · vn of
any length n ≥ 0 of values. γST is the global structure
that stores all the dynamic data created during execution.
Each value v ∈ V alue of type t is saved in the sequence
γST(t, HASH(v)), HASH : V alue → N being a proper hash
function. Although store γST is included in γ, we will see
later (in Section 3.4) that the way of handling γST allows
us to consider it as a global external structure. Finally,
component γh in γ codifies the memory heap. Formally,
γh ∈ HEAP = A → T × N × N ∪ {null} is a function that
associates addresses with a triples (type, hash, pos) which
give us the position of the corresponding dynamic variable
on the global store γST. Value null indicates that the cor-
responding address is not being used. Thus, as explained
above, given a pointer variable ptr, γs(ptr) gives us the cur-
rent address of ptr in the heap, and γh(γs(ptr)) provides
the position of the dynamic variable pointed by ptr at the
global store. Thus, γh(γs(ptr)) = (t, n,m) tell us that this
variable is the m-th value of sequence γST(t, n) = v1 · · · vk,
that is, vm (m ≤ k). In the sequel, configurations are the
3-tuples γ = 〈γs, γh, γST〉 that define the program state at
a point during execution. Let us denote with C the set of
configurations.

3.2 Notation

The following section gives semantics to the pointer op-
erations. We now describe the notation used in the descrip-
tion of rules given below.

3.2.1 Sequences

Given seq = v1 · · · vn ∈ V alue∗ and val ∈ V alue, seq ·
val denotes the sequence v1 · · · vn · val obtained appending
val to the end of seq. Operator “∈” is used to check whether
a given value val is in a sequence . That is, c ∈ v1 · · · vk

iff ∃m ≤ k.vm = c. Given a sequence seq = v1 · · · vk,

seq ↓ m denotes the m-th value of seq, that is, vm. We
use operator + to append a value val to a sequence seq as
follows.

seq + val =
{

seq, if val ∈ seq
seq · val, if val �∈ seq

That is, val is only appended if it does not belong to seq.
Given a sequence seq of distinct values and val ∈ V alue,
function ind : V alue×V alue∗ → N returns the position of
a value in a given sequence, that is, ind(val, seq) = m iff
seq ↓ m = val, and ind(val, seq) = 0, otherwise. Finally,
we denote with len(seq) the length of a sequence.

3.2.2 Pointer Codification

As commented above, HEAP makes use of codified ad-
dresses to relate pointers with the dynamic data stored in
the global store. To do this, we assume that for each vari-
able x ∈ V , there exists an infinite sequence of distinct ad-
dresses x1 ·x2 · · · to be used as contents of variable x during
execution. In addition, addresses used by different variables
are also distinct. Thus, we assume that cod : V → A is a
codification function that returns a distinct number (a codi-
fication) for each variable x. In addition, implementation of
cod guarantees that cod(x) = xi iff cod(x) has been called
exactly i times.

3.2.3 Evaluation of Expressions

In the following rules, we assume that E is the set of pro-
gram expressions and that function eval : E × C → V alue
returns the result of evaluating each expression in a given
configuration. Function eval may make use of the three
components to calculate the returned value as follows:

• eval(x, γ) = γs(x), if x ∈ V

• eval(&x, γ) = δx, if x ∈ V

• eval(∗ptr, γ) = vm iff ptr ∈ V is a pointer vari-
able such that γh(γs(ptr)) = (t, n,m) and γST(t, n) ↓
m = vm.

• eval(ptr → c, γ) = vm ·c iff ptr ∈ V is a pointer vari-
able such that γh(γs(ptr)) = (t, n,m) and γST(t, n) ↓
m = vm.

• eval(&(ptr → c), γ) = &(vm · c) iff ptr ∈ V is a
pointer variable such that γh(γs(ptr)) = (t, n,m) and
γST(t, n) ↓ m = vm.

Above, vm ·c denotes the field c of record vm, and &(vm ·c)
represents the physical address of vm · c in the state.
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3.3 Semantics Rules

We now define the semantics of the C instructions re-
lated to dynamic memory management (denoted by Inst)

as a labelled transition system (LTS) 〈Conf ,
Inst−−→〉, Conf

being the set of configurations. Below, for each function f ,
f [ x : v ] denotes the function that is equal to f for all
elements in its domain except for x that is associated to v.

3.3.1 Allocation

If x ∈ V and cod(x) = xi then

γ
x=malloc(sizeof(t))−−−−−−−−−−−−−→ 〈γs[x : xi], γh[xi : (t, 0, 0)], γST〉

That is, to create a new dynamic data of type t, we update
the configuration, binding the new reference xi to the static
variable x in γs, and giving value (t, 0, 0) to address xi in
γh. Value (t, 0, 0) means that the dynamic value pointed by
x has been created but it has not yet been initialized. That
is why component γST is not modified.

3.3.2 Deallocation

To deallocate a pointer variable, we only eliminate the ref-
erence to the global store in γh.

γ
free(ptr)−−−−−−→ 〈 γs,

γh[γs(ptr) : null],
γST〉

3.3.3 Assignment

Case x = val γ
x=val−−−−→ 〈γs[x : eval(val, γ)], γh, γST〉

When an assignment is executed on a static variable,
only the static part γs is modified.

Case ptr → c = val For each type t ∈ T , we denote with
εt the value of type t with all its fields initialized, and
with εt[c : v] the value of type t with all its fields ini-
tialized except c that stores v.

1. If γh(γs(ptr)) = null then

γ
ptr→c=val−−−−−−−→ error

That is, if ptr has not been previously allocated
or has been freed, instruction ptr → c produces
an execution error.

2. Assume that γh(γs(ptr)) = (t, 0, 0), that is, the
dynamic variable has not yet initialized. Let w =
εt[c : eval(val, γ)], then if HASH(w) = h and
ind(w, γST(t, h) + w) = m

γ
ptr→c=val−−−−−−−→ 〈 γs,

γh[γs(ptr) : (t, h,m)],
γST[(t, h) : γST(t, h) + w]〉

The new dynamic data w = εt[c : eval(val, γ)]
is added, using operator +, in the proper posi-
tion in the sequence of values, and the heap is
updated with the position of the data in the store.
Observe that this rule models both the case when
the new data w is already in the sequence (and the
sequence is not modified), and the case when w
does not appear in the sequence (and it is added
at the end).

3. Assume now that ptr points to a dynamic vari-
able stored in γST, that is, γh(γs(ptr)) =
(t, h,m) with h �= 0 and m �= 0. Let w denote
the new data w = γST(t, h) ↓ m[c : eval(val, γ)]
to be introduced in the store. Observe that w
is constructed by substituting the c field of the
current dynamic data pointed by ptr, by the
new value eval(val, γ). If HASH(w) = h′ and
ind(w, γST(t, h′) + w) = m′, then

γ
prt→c=val−−−−−−−→ 〈 γs,

γh[γs(ptr) : (t, h′,m′)],
γST[(t, h′) : γST(t, h′) + w]〉

As before, due to the operator + definition, this
rule takes into account the cases when w ∈
γST(t, h′) and w �∈ γST(t, h′)

Case ∗ptr = val The cases for this instruction are similar
to the previous ones, except that it is not necessary to
refer to any field to access the element pointed by ptr
to be modified.

We assume that the program to be analyzed only
uses the instructions with pointers given above. This
is not a real restriction, because sentences involving
more complicated pointer dereferences may be writ-
ten as a sequence of these instructions. For exam-
ple, ptr → next = malloc(sizeof(t)) may be written
as temp1 = malloc(sizeof(t)); ptr → next = temp1,
and ptr → next → next = expmay be translated into the
sequence temp1 = ptr → next; temp1 → next = exp.

Our model supports the casting C feature as the rest of
(non pointer-related) C operations. The expression contain-
ing the casting is isolated and its value is calculated by the
underlying C runtime environment.
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3.4 Correctness

This section is devoted to proving that the memory
model and the behavior defined by rules described above al-
lows us to implement a simplified matching function in the
model checking algorithm. In particular, the way of deal-
ing with pointers and dynamic data in our model makes it
unnecessary to check the global store (we only take into ac-
count components γs and γh), which entails a considerable
improvement in model checking performance.

To do this, we now introduce a notion of equivalence of
configurations that captures the intuitive idea that two con-
figurations match if they have the same values for the static
and the dynamic program data. We use renaming functions
to define this notion. Let ρ : A → A be a one-to-one func-
tion that renames references. ρ may be extended to values
(ρ : V alue → V alue) in the natural way, that is, preserving
all values except addresses that are renamed via ρ. Given a
configuration γ = 〈γs, γh, γST〉 ∈ C and a renaming func-
tion ρ : A → A, we may construct the renamed configura-
tion γρ = 〈γρ

s , γρ
h, γρ

ST〉 where:

1. γρ
s (v) = ρ(γs(v)),∀v ∈ V .

2. γρ
h(d) = γh(ρ−1(d)),∀d ∈ A.

3. γρ
ST(t, h) ↓ m = ρ(γST(t, h) ↓ m),∀t ∈ T , h,m ∈ N

such that m ≤ len(γST(t, h)).

Intuitively, the renamed configuration γρ is equal to γ, ex-
cept for the references given to pointer variables that have
been changed using ρ. That is, both γ and γρ define the
same memory state modulo the references used to store
data.

Definition 1 Let γ, γ′ ∈ C be two configurations, we say
that γ and γ′ are equivalent (γ ∼= γ′) iff there exists a re-
naming function ρ : A → A such that γρ

s = γ′
s, and ∀d ∈ A

one of the following conditions holds:

1. γρ
h(d) = null and γ′

h(d) = null.

2. γρ
h(d) = 〈t, h,m〉, γ′

h(d) = 〈t, h′,m′〉, and γρ
ST(t, h) ↓

m = γ′
ST(t, h

′) ↓ m′.

That is, two configurations γ and γ′ are equivalent if there
exists a renamed configuration γρ such that γρ and γ′ give
the same values to all (static and dynamic) program vari-
ables. In the sequel, we prove that the task of checking
the equivalence of configurations may be strongly simpli-
fied when dealing with the memory model described above.
We first introduce a partial order � over stores:

Definition 2 Let Γ,Γ′ ∈ STORE be two stores, Γ � Γ′ iff
∀t ∈ T , h,m ∈ N such that m ≤ len(Γ(t, h)), it holds that
m ≤ len(Γ′(t, h)) and Γ(t, h) ↓ m = Γ′(t, h) ↓ m.

That is, Γ � Γ′ iff Γ′ may be obtained adding new dynamic
data at the end of the sequences of values of Γ.

Proposition 1 Let γ, γ′ ∈ C be two configurations, and

cinst ∈ Inst a C instruction such that γ
cinst−−−→ γ′, then

γST � γ′
ST.

Proof 1 To prove the result, we should only observe that the
C instructions that modify the global store γST are those re-
lated to pointers. In addition, rules described in Section 3.3
never eliminate data from the store. On the contrary, when
store γST is modified, it is extended with new elements at the
end of the already existing sequences. Therefore, by con-
struction, the new store γ′

ST satisfies γST � γ′
ST.

The previous proposition shows us that the global store
used to save dynamic values increases monotonically during
execution. The following results prove that this property
strongly simplifies the task of checking the equivalence of
configurations.

Proposition 2 Consider two configurations γ, γ′ ∈ C with
γ = 〈γs, γh,Γ〉 and γ′ = 〈γ′

s, γ
′
h,Γ′〉 such that Γ � Γ′.

Then if γs = γ′
s and γh = γ′

h, we have that γ ∼= γ′.

Proof 2 Let the identity map be the renaming function ρ .
By hypothesis, γs = γ′

s and γh = γ′
h. Since Γ � Γ′, by

definition, ∀t ∈ T , h,m ∈ N such that m ≤ len(Γ(t, h)), it
holds that m ≤ len(Γ′(t, h)) and Γ(t, h) ↓ m = Γ′(t, h) ↓
m, which proves that γ ∼= γ′.

Propositions 1 and 2 allow us to assume that during the
analysis of a C program, the store represents a global mem-
ory area that is monotonically increased. System states are
simply constituted of the static and heap components of
each configuration, and it is correct to only test these two
components to know whether two configurations are equiv-
alent.

4 Implementation

In this section we discuss a real implementation of our
proposal and we show how we can verify properties in a
real example using our tool C.OPEN [7] [5] that lets us to
verify C code with the CADP environment.

CADP is a tool box for constructing and analyzing dis-
tributed protocols. It uses different formalisms as input,
such as LOTOS or BCG (Binary Code Graphs). More-
over, CADP provides OPEN/CÆSAR, a set of libraries to
extend the environment with new tools or even to accept
new formalisms or languages as input. Figure 2 shows the
OPEN/CÆSAR scheme extended to take C programs as in-
put as well as the traditional LOTOS or BCG input. Basi-
cally, it divides the functionality of tools into three different
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modules: the graph module, the storage module and the ex-
ploration module. The graph module provides an implicit
LTS that gives the necessary functions to deal with the sys-
tem states, and labels and to evolve from one state to another
one executing a transition. Finally, the exploration module
uses the storage module to carry out the desired analysis
over the system implicitly represented by the graph mod-
ule. In particular, the tool EVALUATOR is a model checker
constructed with this methodology.

Our tool C.OPEN has been designed to analyze concur-
rent systems developed with C languages and external func-
tions provided by APIs. Given a C application, C.OPEN

generates an implicit LTS that can be used as a graph mod-
ule in OPEN/CÆSAR, so we can use its model checking
facilities. For this purpose, the LTS generated is oriented
to the analysis of properties when using a well defined
API. Now, we consider pointers and dynamic memory as
a new feature with its well defined API. Hence, we must
consider operations like allocate, deallocate and access to
objects as external functions. Following [7], we have ex-
tended C.OPEN to implement the operations defined in Sec-
tion 3. In particular, we have implemented the models for
malloc() and free() external functions, as well as the
operation for reading and writing over the dereferencing
pointer operator (operator *).

Figure 2. Schema of the extended CADP archi-
tecture including C.OPEN

Note that the model for dynamic memory management
proposed in this paper can be implemented in any model
checker; however, some of them (like SPIN and CADP ) are
designed to be easily extended by embedding C code. In
particular, using CADP we can easily implement some re-
maining operations on pointers, like referencing (operator
&) and pointer arithmetic.

5 Experimental results

In order to evaluate our model and its implementation, in
this section we show the results with the verification of the
C code to reverse a list. This is a case of study used before
in the context of checking properties with model checking
dynamic memory (see [14] and [2]). Now, we use it to have
performance measurements in the implementation.

struct list{ int data; struct list *next; }; void main(){
struct list *list;
struct list *ele;
struct list *aux;
int count;
int next;
//we create the list
count=1;
list=(struct list *)malloc(sizeof(struct list));
ele=list;
ele->data=0;
ele->next=0;
while(count<100){

aux=(struct list *)malloc(sizeof(struct list));
aux->data=cont;
aux->next=0;
ele->next=aux;
ele=aux;
count=count+1;

}
//we get the reversed list
ele=0;
while(list!=0){

aux=ele;
ele=list;
list=list->next;
ele->next=aux;

}
}

Figure 3. Program that reverses a list

elements states time memory state size
10 93 0:0.226 s. 12M 432B
30 273 0:0.226 s. 15M 752B
50 453 0:0.226 s. 22M 1072B
70 633 0:0.226 s. 28M 1392B

100 903 0:0.601 s. 28M 1872B

Table 1. Verification results for one process

elements states time memory state size
10 8469 0:0.3 s. 20M 620B
30 74529 0:2.2 s. 120M 1260B
50 205209 0:8.7s. 420M 1900B
70 400689 0:15:1 s. 1100M 2540B

100 815409 1:05 m. 2.8 GB 3500B

Table 2. Verification results for two processes

The C code to reverse the list is shown in (figure 3). The
code is divide into two phases: The first one, the creation
of the list, will add a new heap entry with every call to
malloc() function and will add the elements in the store
structure every time we assign a value to a dereferencing
pointer. The second phase, the reversing of the list, will
not add any new elements to the heap structure, but it will
modify the heap and the store in order to modify a part of
elements of the list during the reversing operation (it mod-
ifies the next part). Figure 1 in Section 2 shows how the
list is internally represented.
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Table 1 shows the experimental results of using C.OPEN

with EVALUATOR in order to obtain the number of states
generated during the verification process, as well as the time
taken and the usage of memory. Table 2 contains the results
when interleaving two processes doing the same reversing
work over two different lists. This second scenario is impor-
tant to consider backtracking and sharing the global store.

The experiments have been carried out for lists of 10,
30, 70 and 100 elements. In the analysis of a single pro-
cess, the number of states generated in each configuration
is very low; hence the memory needed. Nevertheless, when
we experiment with two processes to get a higher number
of states due to the interleaving, we obtain high memory us-
age, specially for more than 50 elements. Note that we only
need 15 seconds to analyze 400000 states in the second con-
figuration.

We are currently working on extending the method to
deal with very large states. For instance, two processes with
lists containing 100 elements produce a state of 3,5KB, ex-
cluding the global store. One direction to reduce this prob-
lem is to apply the collapse to the heap again, in such a way
that only one reference is used to identify the heap. That
means that we consider the heap of every process as an ele-
ment in the global store.

6 Conclusions

We have presented a method to extend model check-
ing tools in order to verify programs with point-
ers and dynamic memory. The method has been
formalized and implemented. We provide a tool,
C.OPEN, that can verify realistic concurrent C pro-
grams (see http://www.lcc.uma.es/gisum/tools/smc/

and http://www.inrialpes.fr/vasy/cadp/software/ for
more information about C.OPEN in CADP.)

We have considered a specific framework to evaluate the
technique: C programs as input and CADP as the verifica-
tion platform. However, our proposal can be implemented
in different contexts. One future line of work is the exten-
sion of SPIN in the same way, extending our previous work
presented in [4].

Another line of work planned is the extension of CADP

and SPIN property languages to specify and verify proper-
ties related to dynamic structures.
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