
Formally Reasoning on a Reconfigurable
Component-Based System -

A Case Study for the Industrial World

Nuno Gaspar1,2, Ludovic Henrio1, and Eric Madelaine1

1Oasis Project Team,
INRIA Sophia Antipolis - Méditerranée
http://www-sop.inria.fr/oasis/

2ActiveEon S.A.S
http://www.activeeon.com/

{Nuno.Gaspar,Ludovic.Henrio,Eric.Madelaine}@inria.fr

Abstract. The modularity offered by component-based systems made
it one of the most employed paradigms in software engineering. Precise
structural specification is a key ingredient that enables their verifica-
tion and consequently their reliability. This gains special relevance for
reconfigurable component-based systems. Indeed, the ability to evolve at
runtime inherently increases the complexity of an application, making
its formal verification a challenging task.
To this end, the Grid Component Model (GCM) provides all the means to
define such reconfigurable component-based applications. These, exhibit
the properties of our behavioural semantics pNets.
In this paper we report our experience on the formal specification and
verification of a reconfigurable GCM application as an industrial case
study.

Keywords: Component-based Systems, Autonomous Systems, Formal
Methods, Reconfiguration, Model-Checking

1 Introduction

Meeting the demands of our modern society requires special care when designing
software. Applications are expected to be full-featured, performant and reliable.
Moreover, for distributed applications high-availability is also cause of concern.
Taming this complexity makes the use of modular techniques mandatory. To
this end, the modularity offered by component-based systems made it one of the
most employed paradigms in software engineering.

Embracing this approach enables structural specifications, thus leveraging
formal verification. This gains special relevance for reconfigurable component-
based systems. Indeed, while offering systems with an higher availability, the
ability to evolve at runtime inherently increases the complexity of an application,
making its formal verification a challenging task.

2 N. Gaspar, L. Henrio, E. Madelaine

1.1 Context

This work occurs in the context of the Spinnaker Project, a French collaborative
project between INRIA and several industrial partners, where we intend to con-
tribute for the widespread adoption of RFID-based technology. To this end, our
contribution comes with the design and implementation of a non-intrusive, flexi-
ble and reliable solution that can integrate itself with other already deployed sys-
tems. Specifically, we developed the HyperManager, a general purpose moni-
toring application with autonomic features. This was built using GCM/ProAc-
tive1 — a Java middleware for parallel and distributed programming that follows
the principles of the GCM component model. For the purposes of this project,
it had the goal to monitor the E-Connectware2 (ECW) framework in a loosely
coupled manner.

For the sake of clarity let us describe one of the real life scenarios faced in
a industrial context. An hotel needs to keep track of the bed sheets used by
their customers. Every bed sheet used has an embedded RFID sensor chip that
uniquely identifies it. At every shift, the hotel maids go through all the rooms
recovering these bed sheets and putting them in a laundry cart. By reaching
the end of the rooms corridor, the laundry cart emits to another physical device
running the ECW Gateway software the bed sheets’ identifiers. For each corridor
there might be several laundry carts and one device running the ECW Gateway.
After receiving the bed sheets’ identifiers the ECW Gateways emit this informa-
tion along with their own identifier to yet another physical device runs the ECW
Server. Once the information reaches the top of this hierarchy it can be used to
whatever purpose, namely bed sheets traceability.

Abstracting away this particular scenario, one can see it in a hierarchical
manner as depicted by Figure 1.

...

HyperManager Server

ECW
Server

HyperManager Gateway

ECW
Gateway

HyperManager Gateway

ECW
Gateway

...

...

Rfid devices Rfid devices

Fig. 1. Hierarchical Representation of our Case Study

1 http://proactive.activeeon.com/index.php
2 http://www.tagsysrfid.com/Products-Services/RFID-Middleware

Formally Reasoning on a Reconfigurable Component-Based System 3

Regarding our previously described scenario, this hierarchical view should
pose no doubt. For each of the n floors of the hotel there are m laundry carts
that communicate in a one-to-one style with a gateway. On the other hand, the
gateways communicate with the server on a n-to-one style.

Moreover, the architecture depicted by Figure 1 also includes our HyperMan-
ager application. Indeed, it is deployed alongside the pre-existent distributed
system, performing its monitoring on all ECW components. The careful reader
will notice that the flow of requests go both from the HyperManager Server to the
HyperManager Gateway, and vice-versa. Indeed, these follow the pull and push
styles of communication, respectively. More details regarding these mechanisms
will be discussed at a later stage.

1.2 Contributions

This paper discusses an industrial case study of a reconfigurable monitoring
application. On the one hand, it should be noted that we aim at real-life appli-
cations, indeed, our models go upto the intricacies of the middleware itself. This
has the direct consequence of promoting the use of formal methods within the
industry.

On the other hand, we go beyond previous work [5] by including reconfigu-
ration capabilities. This yields bigger space-states and inherently new issues to
deal with. Investigating the feasibility of such undertakings is within the scope
of this paper too. To the best of our knowledge this is the first work address-
ing the challenges of behavioural specification and verification of reconfigurable
component-based applications.

1.3 Organisation of the Paper

The remaining of this paper is organised as follows. Section 2 gives the main
ingredients our behavioural semantics for specifying GCM applications. Then,
Section 3 presents our general purpose monitoring application - The Hyper-
Manager. Section 4 details its simplified behavioural model, i.e. without sup-
port for structural reconfigurations, and its proven properties. The impact of
adding reconfiguration capabilities is discussed in Section 5. Related work is
discussed in Section 6. For last, Section 7 concludes this paper.

2 pNets - A Behavioural Semantics for GCM
Applications

This section provides a brief overview of our behavioural semantics modelling
GCM/ProActive applications — pNets. For the sake of space, we omit some of
the underlying definitions. For a detailed account of its intricacies the interested
reader is pointed to [1].

As an illustrative example, the internals of a GCM primitive component
featuring three service methods — m1, m2 and m3 — and two client methods
— m4 and m5 — are depicted by Figure 2.

4 N. Gaspar, L. Henrio, E. Madelaine

Primitive Component Example

M1 M3

!Recycle m5(p5)
!Recycle m4(p4)

GetValue m4(p4, val)

Serve m*(fid∗, arg)

Queue PM m5

PM m4

Body

...

Call m*(arg)!R m1(fid1, val)
!R m2(fid2, val)
!R m3(fid3, val)

!R m*(fid∗)

!R *(val)

?Q m3(fid3, arg)
?Q m2(fid2, arg)
?Q m1(fid1, arg)

?R m5(p5, val)

?R m4(p4, val)

!Q m5(p5, arg)

!Q m4(p4, arg)

GetValue m5(p5, val)

New m5(p5)

G
e
tP

ro
x
y
m
*

New m4(p4)

Proxy m4[p4]

Proxy m5[p5]

Fig. 2. pNet Representing a Primitive Component

Invocation on service methods — Q m* — go through a Queue, that dis-
patches the request — Serve m* — to the Body. Serving the request consists in
performing a Call m* to the adequate service method, represented by the Mi

boxes in the figure. Once a result is computed, a synchronized R m* action is
emitted. This synchronization occurring between the service method and the
Body stems from the fact that GCM primitive components are mono-threaded.
Moreover, the careful reader will notice the fidi, i∈{1,2,3} in the figure. These
are called futures and act as promises for replies, leveraging asynchrony between
components.

Service methods interact with external components by means of client in-
terfaces. This requires obtaining a proxy — GetProxy m*, New mi, i∈{4,5} —
in order to be able to invoke client methods — Q mi, i∈{4,5}. The reply —
R mi, i∈{4,5} — goes to the proxy used to call the external component. Then,
a GetValue mi, i∈{4,5} is performed in order to access the result in the method
being served. Finally, Recycle mi, i∈{4,5} actions can be performed in order to
release the proxies.

The behaviour of the Queue and the Body elements should pose no doubt. The
former acts as priority queue with a First in, First Out (FIFO) policy, raising
an exception if its capacity is exceeded. The latter dispatches the requests to the
appropriate method and awaits its return, thus preventing the service of other
requests in parallel.

The handling of proxies however, is not as straightforward and deserves a
closer look. Figures 3 and 4 illustrate the behaviour of the Proxies and Proxy
Managers, respectively. Upon reception of a New mi action, a Proxy waits for
the reply of the method invoked with it — R m —, making thereafter its result
available — GetValue m. The proxy becomes then available on the reception of
a Recycle m action.

The behaviour of the Proxy Manager is slightly more elaborated. This main-
tains a pool of proxies, keeping track of those available and those already al-

Formally Reasoning on a Reconfigurable Component-Based System 5

Fig. 3. Behaviour of Proxy
Fig. 4. Behaviour of the Proxy
Manager

located. On the reception of a GetProxy m action, it activates a new proxy
— New m — if there is one available. Should that not be the case, an Er-
ror(NoMoreProxy) action is emitted. As expected, a Recycle m action frees a
previously allocated proxy.

3 The HyperManager

The HyperManager is a general purpose monitoring application that was
developed in the context of the Spinnaker Project3. The goal was to deliver a
modular solution that would be capable of monitoring a distributed application
and react to certain events. As such, the HyperManager is itself a distributed
application, deployed alongside the target application to monitor.

Generally, when performing a monitoring task in an application one may
consider two types of events: pull and push. The former stands for the usual
communication scenario where the request comes from the client and then re-
sponded by the server. The latter however, is when the server pushes data to
clients independently from a client’s request. Both styles of communication are
employed in the HyperManager application.

As illustrated by Figure 5, the server (composite) component of our moni-
toring application features three primitive components that are responsible for
the application logic. The JMX Indicators component features only one service
method: it accepts requests about a particular JMX indicator and replies its
status. This encapsulates business code and interacts directly with ECW.

The Pull Component however, includes three service methods and four client
interfaces. As the component’s name indicates, it is responsible for pulling infor-
mation and emitting it as pull events. The service methods HMStartMonitoring-
Method and HMStopMonitoringMethod are responsible for starting and stopping

3 Project OSEO ISIS. http://www.spinnaker-rfid.com/

6 N. Gaspar, L. Henrio, E. Madelaine

HyperManager Server

HMStartMonitoringMethod

HMStopMonitoringMethod

HMGatewayMulticastMethod

Pull Component

 JMXIndicatorsMethod

JMX Indicators

Server PrimitiveHMServerMethod

Push Event

HMLoopMethod

Pull Event

Fig. 5. HyperManager Server Component

the pulling activity, respectively. Typically, these are the methods called by the
administrator. The remaining service method, HMLoopMethod, may pose some
doubt. Indeed, it is called from one of its own client’s interface. Being a ProAc-
tive application, it follows the active object paradigm where explicit threading
is discouraged. As such, making a method loop requires this method to send
itself a request before concluding its execution.

While in the monitoring loop, the HMLoopMethod method pulls information
regarding its own local JMX indicators and those of its gateways via a multicast.
The last remaining client interface serves the purpose of reporting the pulled
information as pull events.

Last, the Server Primitive component receives push information from the HM
Gateways — typically to alert the occurrence of some anomaly — and emits it as
push events. In our implementation both push and pull events are then displayed
in some application with graphical interface for administration purposes.

The description of the HyperManager’s gateway component follow the
same spirit. Figure 6 depicts its constitution.

..
HyperManager Gateway

HMStartMonitoringMethod

HMStopMonitoringMethod

Push Component

 JMXIndicatorsMethod

JMX Indicators

Gateway PrimitiveHMGatewayMethod

HMLoopMethod

HMServerMethod

Fig. 6. HyperManager Gateway Component

Formally Reasoning on a Reconfigurable Component-Based System 7

It is also composed by three primitive components. As expected, the JMX
Indicators component has the same semantics has described above.

The Push Component features the same service methods has the Pull Compo-
nent. Its semantics however, are slightly different. While looping it will check for
the status of its JMX indicators, and communicate with the HyperManager
server if some anomaly is encountered — which will then trigger a push event.

As for the Gateway Primitive component, its sole purpose is to reply to the
pulling requests from HyperManager server.

4 HyperManager’s Behavioural Model

Modelling the HyperManager in our behavioural semantics pNets [1] requires
us to provide a behaviour for each service method. In the following we illustrate
this by providing an user-version LTS for all of them — i.e. we omit all the
machinery involving futures and proxies. Moreover, for more material on this
case study the reader is invited to its companion website4.

Regarding our modelling and verification workflow, we build our behavioural
models by encoding the involved processes in the Fiacre specification language
[3]. Then, the flac compiler translates it to Lotos [4]. From there we can use
the CADP toolbox [7]. Typically, we use bcg open for space-state generation —
in conjunction with distributor if performing it on a distributed setting —, svl
scripts for managing space-state replication, label renaming and build products
of transition systems. For last, evaluator4 for model-checking our space-state
against MCL (Model Checking Language) [10] formulas — an extension of the
alternation-free regular µ-calculus with facilities for manipulating data.

To optimize the size of the model, the composite components have no request
queue and requests are directly forwarded to the targeted primitive component.
This has no influence in the system’s semantics as the primitives’ request queues
are sufficient for dealing with asynchrony and requests from the sub-components
are directly dispatched too. Moreover, we set the primitive components with
re-entrant calls with a queue of size 2, and the remaining of size 1.

4.1 The HM Gateway

The JMX Indicators primitive component only features one service method: JMXIndi-
catorsMethod. Its behaviour is modelled by Figure 7. For the sake of simplicity,
we only model two types of indicators: MemoryUsage and DeviceStatus. The lat-
ter takes into account an identifier, returning its availability status. This relates
to the status of a RFID reader transmitting to the ECW Gateway. While the
former simply returns the stability status of the memory.

The service method offered by the Gateway Primitive component has also a
fairly simple behaviour. It is illustrated by Figure 8. It acts merely has a request
forwarder for the JMX Indicators component.

4 http://www-sop.inria.fr/members/Nuno.Gaspar/HyperManager.php

8 N. Gaspar, L. Henrio, E. Madelaine

s_mem

s_init

Call_JMXIndicatorsMethod ?
Memory_Usage

s_dev

Call_JMXIndicatorsMethod ?
DeviceStatus(id)

R_JMXIndicatorsMethod !
 memory_usage(Stable)

R_JMXIndicatorsMethod !
 memory_usage(Unstable)

R_JMXIndicatorsMethod !
 device_status(Available)

R_JMXIndicatorsMethod !
 device_status(Unavailable)

Fig. 7. Behaviour of the JMXIndi-
catorsMethod

s1s_init

Call_GatewayMethod ? args

s1

Q_JMXIndicatorsMethod ! args

s2

GetValue_JMXIndicatorsMethod ? reply

R_GatewayMethod ! jmx_reply

Fig. 8. Behaviour of the HMGate-
wayMethod

Regarding the Push Component, the HMStartMethod and HMStopMethod
methods enable/disable the looping process. This is achieved by a shared variable
among processes that acts as a flag. Invoking HMStartMethod will set our flag
variable started to true and perform an invocation to HMLoopMethod. On the
other hand, HMStopMethod will set the flag to false. Their behaviour is rather
trivial and therefore omitted for the sake of space. In practice, the involved labels
are GuardQuery, GuardReply?b:bool, SetFalse and SetTrue; their meaning should
be obvious from their names.

The last remaining service method to describe is the most interesting one —
the loop method.

s2
s1s_init

Call_HMLoopMethod ?

R_HMLoopMethod !

[started]

s_stop

not [started]

s3

Q_JMXIndicatorsMethod ? jmx_args

s4

GetValue_JMXIndicatorsMethod ? jmx_reply

s7

R_HMLoopMethod !

[noAnomaly (jmx_reply)]

not [noAnomaly (jmx_reply)]s5
s6

Q_ServerMethod ! jmx_reply

Q_HMLoopMethod !

Fig. 9. Behaviour of the HMLoopMethod at the Gateway level

As illustrated by Figure 9, the actual looping only occurs if our flag variable is
set to true, otherwise we just return without performing any significant action.
While looping, we check our JMX indicators. Should an anomaly be detected we
report it to the HM Server. Last, before returning we send a request to ourselves
— Q HMLoopMethod — in order to be able to continue looping while our flag
variable evaluates to true.

Formally Reasoning on a Reconfigurable Component-Based System 9

Model Generation and Proven Properties Table 1 illustrates the relevant
information concerning Gateway’s space state built using the CADP toolbox.

States Transitions File Size

hmgateway.bcg 14.931.628 147.485.103 ∼ 295 mb
hmgateway-min.bcg 14.931.628 147.485.103 ∼ 296 mb

Table 1. Numbers Regarding the Gateway Model

The entry suffixed by -min mean that minimization by branching bissimu-
lation was applied. We note that the minimization process fails to produce a
reduced transition system. However, there is an increase in the file size even
though the number of states and transitions remained equal. This can be jus-
tified by the fact that bcg min inserts information in the produced file stating
that it came from a minimization process. In any case, this overhead is rather
negligible.

Having this space-state generated we can now prove some properties regard-
ing the expected behaviour of our model. For instance, one could wonder about
this rather unusual looping mechanism. Once setting our flag to true, we continue
looping until we receive a request to stop monitoring.

Property 1. ["Q_HMSTARTMETHOD" . "Q_HMLOOPMETHOD" .

(not "Q_HMSTOPMETHOD")* . "GUARDREPLY !FALSE"] false

Naturally, we also want to avoid overloading the HM Server with unnecessary
messages. As such, we want to ensure that we cannot push data if not in the
presence of an anomaly. This can be modelled as follows:

Property 2.
[((not "R_JMXINDICATORS_ToPush !MEMORY_USAGE (UNSTABLE)")* .

"Q_SERVERMETHOD.*") |

((not "R_JMXINDICATORS_ToPush !DEVICE_STATUS ((UNAVAILABLE, IDTWO))")* .

"Q_SERVERMETHOD.*") |

((not "R_JMXINDICATORS_ToPush !DEVICE_STATUS ((UNAVAILABLE, IDONE))")* .

"Q_SERVERMETHOD.*")

] false

Both properties are naturally proved true.

4.2 The HM Server

Similarly as seen for the HM Gateway component, our HM Server component also
features a JMX Indicators primitive component. This however, is naturally not
endowed with indicators for the RFID devices statuses. Technically, we attach

10 N. Gaspar, L. Henrio, E. Madelaine

to the LTS modelling its behaviour (Figure 7) a context that constraints its
requests. Moreover, HMStartMethod and HMStopMethod methods exhibit the
same behaviour as described above.

As seen above, upon detection of an anomaly, the HM Gateway component
pushes the relevant information to the HM Server. Then, it is emitted as a push
event as depicted by Figure 10. The careful reader will notice that the emit-
ted event also contains the information regarding the HM Gateway from which
the anomaly originated. This should come as no surprise as there can be sev-
eral of them, and properly identifying the source of an abnormal situation is of
paramount importance.

As depicted by Figure 11, the looping process for the HM Server proceeds in
a similar fashion as the one from the HM Gateway: the flag variable started’s
valuation determines whether we enter the looping process or if we just return.
While looping we pull information from the local JMX indicators and emit it as
a pull event.

s1

s_init

Call_ServerMethod_i ? server_args

s2

Push_Event !
 From_Gateway_i, server_args

R_ServerMethod_i !

Fig. 10. Behaviour of the HM-
ServerMethod

s2
s1s_init

Call_HMLoopMethod ?

R_HMLoopMethod !

[started]

s_stop

not [started]

s3

Q_JMXIndicatorsMethod ? jmx_args

s4

GetValue_JMXIndicatorsMethod ? jmx_reply

s5

Pull_Event ! {FromServer, jmx_reply}

s6
Q_GatewayMulticastMethod ? gw_args

GetValue_GatewayMulticastMethod ? gmulti_reply

s7

[i < ACTIVE_Gateways]

Pull_Event ! origin, data
i++

s8

Q_HMLoopMethod !

R_HMLoopMethod !

not [i < ACTIVE_Gateways]

i := 0

origin, data := gmulti_reply[i]

Fig. 11. Behaviour of the HMLoopMethod at the
Server level

Moreover, via a multicast interface we also pull information from the bound
gateways. This, will make us emit as many pull events as the number of bound
gateways. Last, we perform a request to ourselves in order to continue looping.

Model Generation and Proven Properties Table 2 illustrates the relevant
information concerning HM Server’s space-state.

States Transitions File Size

hmserver.bcg 12.787.376 187.589.422 ∼ 363 mb
hmserver-min.bcg 12.787.376 187.589.422 ∼ 396 mb

Table 2. Numbers Regarding the Server Model

Formally Reasoning on a Reconfigurable Component-Based System 11

As in the case of our HM Gateway model, the minimization process failed to
produce a smaller space-state. However, this time we get a 9% increase in the
file size, not so much negligible as the increase noticed for the HM Gateway’s
space-state.5

A rather trivial property we can expect to hold is that we can reach a state
which explodes one of the request queues. This can be modelled in MCL as
follows:

Property 3. < true* . ’QUEUEEXCEPTION_SERVERPRIMITIVE !.*’> true

As mentioned above, we omitted all the machinery involving proxies while
describing the service methods’ behaviour. However, this is naturally included in
our generated model. For instance, the HMLoopMethod method needs to request
a proxy in order to be able to invoke JMX Indicators’s service method. This is
naturally encoded as follows:

Property 4. [(not "GETPROXY_JMXINDICATORSMETHOD.*")* .

"Q_JMXINDICATORSMETHOD_FromPullComponent.*"] false

As expected, both properties hold in our model.

4.3 System Product, Model Generation and Proven Properties

We attempted to generate a system product constituted by two HM Gateways
and one HM Server components. However, even on a machine with 90 GB of
RAM, we experienced the so common space-state explosion phenomena.

This arises often in the analysis of complex systems. To this end, commu-
nication hiding comes as an efficient and pragmatic approach for tackling this
issue. Indeed, it allows to specify the communication actions that need not to
be observed for verification purposes, thus yielding more tractable space-states.

Table 3 illustrates the effects of applying this technique to our model. The
sole communication actions being hidden are the ones involved in (1) the request
transmission from the Queue to the adequate method — Serve and Call —, (2)
the proxy machinery —GetProxy , New and Recycle —, and (3) finally in the
guard of the looping methods — GuardQuery, GuardReply, SetFalse and SetTrue.

The lines suffixed by -hidden indicate the results obtained by hiding the
mentioned communication actions in the minimized HM Gateway and HM server
space-states. For both, no effect is noticed on the size of the LTS. However,
there is a decrease in the file size. This is due to the fact that the hiding process
yields several τ -transitions, which facilitates file compression. This has the conse-
quence of leveraging the posteriori minimization process. Indeed, we even obtain
a reduction by two orders of magnitude (!) for the HM Gateway space-state.

The HyperManager comes as a monitoring application that should be able
to properly trace the origin of an anomaly. As such, one behavioural property

5 In fact, we encountered another peculiar situation where minimization pro-
duced a smaller space-state, yet a bigger file size: http://cadp.forumotion.com/
t374-bcg-file-size-after-minimization

12 N. Gaspar, L. Henrio, E. Madelaine

States Transitions File Size

hmgateway-min-w-hidden.bcg 14.931.628 147.485.103 ∼ 287 mb
hmgateway-min-w-hidden-min.bcg 409.374 4.007.232 ∼ 8.5 mb

hmserver-min-w-hidden.bcg 12.787.376 187.589.422 ∼ 375 mb
hmserver-min-w-hidden-min.bcg 5.761.504 85.157.420 ∼ 179 mb

SystemProduct.bcg 342.047.684 3.026.114.393 ∼ 5.27 gb
SystemProduct-min.bcg 259.340.044 2.396.896.830 ∼ 4.83 gb

Table 3. Relevant numbers regarding our generated model

that we expect to hold is that whenever an abnormal situation is detected by a
HM Gateway, it is fairly inevitable to be reported as a push event that correctly
identifies its origin.

First, we shall use MCL’s macros capabilities to help us build our formula:

macro GETVALUE_1_MEMORY () =

"GETVALUE_JMXINDICATORSMETHOD_Push_1 !MEMORY_USAGE (UNSTABLE)"

end_macro

macro PUSH_1_MEMORY () =

("PUSH_EVENT !PUSH_EVENT (UNSTABLEMEMORYUSAGE, FIRSTGATEWAY)")

end_macro

...

The above macros should be self-explanatory. The former represents the detec-
tion of an anomaly coming from the first HM Gateway — the model is instan-
tiated with two HM Gateways, thus we differentiate their actions by suffixing
them adequately. The latter stands for the emission of the push event corre-
sponding to that anomaly. The macros for the remaining relevant actions are
defined analogously.

Moreover, we define the following macro generically encoding the fair in-
evitability that after an anomaly the system emits a push.

macro FAIRLY_INEVITABLY_A_PUSH (ANOMALY, PUSH) =

[true* . "ANOMALY" . (not "PUSH")*]

< (not PUSH)* . PUSH > true

end_macro

Having our macros defined, we can now write our formula of interest:

Property 5.
(FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_MEMORY, PUSH_1_MEMORY) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_MEMORY, PUSH_2_MEMORY) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_DEVICE_1, PUSH_1_DEVICE_1) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_1_DEVICE_2, PUSH_1_DEVICE_2) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_DEVICE_1, PUSH_2_DEVICE_1) and

FAIRLY_INEVITABLY_A_PUSH(GETVALUE_2_DEVICE_2, PUSH_2_DEVICE_2)

)

As expected, this property holds for our model.

Formally Reasoning on a Reconfigurable Component-Based System 13

5 The Case Study Reloaded: On Structural
Reconfigurations

As seen so far, the HyperManager acts as a monitoring application with two styles
of communication: pull and push. However, it also needs to cope with structural
reconfigurations. This means that at runtime the architecture of the application
can evolve by, say, establishing new bindings and/or removing existing ones.

For GCM applications bind and unbind operations are handled by the com-
ponent owning the client interface that is supposed to be reconfigurable. This
should come as no surprise, indeed, it follows the same spirit as in object-oriented
languages: an object holds the reference to a target object; it is this object that
must change the reference it holds.

In our case-study, these reconfigurations can occur both at the server level
— when pulling data from the bound gateways —, and at gateway level —
when pushing data to the server. The difference lies at the fact that the server
communicates via a multicast interface, unlike the gateways that establish a
standard 1-to-1 communication. Therefore, these are dealt in a different manner.

5.1 HM Reconfigurable Gateway

Let us first illustrate how a singleton client reconfigurable interface is modelled
in pNets. As depicted by Figure 12, for each client reconfigurable interface there
exists a binding controller.

Primitive with Binding Controller

M

Queue

!Q m(f, t, arg)

[t=S1.Itf] Q m(f, arg)

[t=S2.Itf´] Q m(f, arg)

Body

!Q m(f, arg)

!Bound(t)

Error(”unbound”)

BCItfj

!Unbound !Bound(t)

?Unbind

Call m*(...)

!Unbound

Bind Itfj(t)

S2

S1

?Q Bind Itfj(t)
?Q Unbind Itfj

!Q m(f, arg)

Serve * Unbind Itfj

?Bind(t)

Fig. 12. Binding Controller

Indeed, we allow for reconfigurations by defining two new request messages
for the binding and unbinding of interfaces. These are delegated to a binding
controller that upon method invocation over these reconfigurable interfaces will
check if they are indeed bound, emitting an error if it is not the case. Moreover,
the target of the invocation is decided by checking its passed reference. For this

14 N. Gaspar, L. Henrio, E. Madelaine

reason one must know statically what are the possible target interfaces that a
reconfigurable interface can be bound too.

In practice, to our HM Gateway model discussed in Subsection 4.1 we add the
request messages Q BIND SERVERMETHOD and Q UNBIND SERVERMETHOD.
Since we only have one reconfigurable interface we can avoid adding an explicit
parameter — unlike shown in Figure 12, where we demonstrate a more gen-
eral case. Moreover, since the gateways can only be bound to one target — the
server — the binding controller only needs to keep a state variable regarding its
boundedness.

As expected, these changes have a considerable impact in the size of our
model. This is illustrated by Table 4.

States Transitions File Size

hmgateway-reconfig.bcg 354.252.868 4.178.400.886 ∼ 8.45 gb
hmgateway-reconfig-min.bcg 354.104.012 4.176.956.686 ∼ 8.54 gb

Table 4. Gateway with Reconfigurable Interface

All the properties proven in Subsection 4.1 still hold for this new HM Gateway
model, with a natural overhead in model-checking them in a much bigger space-
state. However, for this new model we are more interested in addressing the
reconfiguration capabilities. For instance, provided that our interface is bound,
it will not yield an UNBOUND action upon method invocation.

Property 6.
< true* . "Q_BIND_SERVERMETHOD" . (not "Q_UNBIND_SERVERMETHOD")* .

"Q_SERVERMETHOD" . (not "Q_UNBIND_SERVERMETHOD")* . "UNBOUND" > true

The above property is proved false, indicating that indeed a path in our space-
state yielding an UNBOUND action despite the interface being bound will not
occur.

5.2 HM Reconfigurable Server

As an illustrative example, the pNet of a primitive component featuring a re-
configurable client multicast interface and two service methods — m1 and m2 —
is depicted by Figure 13.
In short, the machinery involved for dealing with this kind of interfaces mainly
differs from reconfigurable singleton interfaces in that we must keep track of the
target’s statuses boundedness. Indeed, the emission of a new proxy — New mi,i∈{1,2}
— is synchronized in a similar manner, however we also transmit the current
status of the multicast interface (i.e. the G variable in the figure). This status will
be taken into account when invoking one of the client methods — Q mi,i∈{1,2}.
In practice, G is a boolean vector whose element’s valuation determine the in-
terface’s boundedness.

Formally Reasoning on a Reconfigurable Component-Based System 15

Multicast Example

GrPM m1

GrPM m2

Method m

GrProxy m1[p]

New m1(p)
New m2(p)

!R m(f, val)

GetProxy m1
GetProxy m2

?R m1((p, id), val)

?R m2((p, id), val)

!R m(val)

?Q Unbind Itfj(t)

?Q m(f, arg)

?Q Bind Itfj(t)

Bind Itfj(t)

Unbind Itfj(t)

!Q m1(p, arg)
!Q m2(p, arg)

!Q m1(p,G, arg)

!Q m2(p,G, arg)

GrProxy m2[p]

!MC(G)

New m1(p,G)

New m2(p,G)

Recycle m2(p)
Recycle m1(p)

∀m in {m1,m2}
WaitN m(p, n)
R WaitN m(p, vect)

GetNth m(p, n, val)
GetValue m(p, vect)

Serve unbind Itfj(t)
Serve bind Itfj(t)
Serve m(f, arg)

Itfj Itfj

Body

Queue

!Call m(arg)

Fig. 13. pNet Example for Reconfigurable Multicast Interface

Table 5 demonstrates the impact of adding reconfiguration capabilities to
our HM Server model.

States Transitions File Size

hmserver-reconfig.bcg 931.640.080 16.435.355.306 ∼ 32.93 gb

Table 5. Server with Reconfigurable Multicast Interface

The generated space-state for our HM Server model nearly attained 1 billion
states.6 Our attempts to minimize it revealed to be unsuccessful due to the lack
of memory. These were carried out on a workstation with ∼90 GB of RAM.

It is worth noticing that while we were not able to minimize the produced
space-state, we were still able to model-check it against the same properties
discussed in Subsection 4.2.

5.3 Model Generation and Proven Properties

As seen in Subsection 4.3, building the product of our system already showed to
be delicate. Abstraction techniques such as communication hiding were already

6 As mentioned in Subsection 4.2, for our HM Server model, the JMX Indicators com-
ponent is generated with a context not contemplating the request of device statuses.
Previous experiments not considering this context produced a HM Server model with
the following characteristics: 4.148.563.680 states, with 74.268.977.628 transitions,
on a 154.2 GB file. It is interesting to note the huge impact that (the lack of) a
contextual space-state generation on one of its components can provoke.

16 N. Gaspar, L. Henrio, E. Madelaine

required to build our system. Thus, it should come as no surprise that we face
the same situation here.

However, it should be noted that the hiding process itself, produced little
effect on the file size, and no effect on the space-states. It mainly acted as a means
to leverage a posteriori minimization process, allowing for a very significant
space-state reduction. Table 6 illustrates the results obtained by following the
same approach as above.

States Transitions File Size

hmgateway-reconfig-min-w-hidden.bcg 354.104.012 4.176.956.686 ∼ 8.15 gb
hmgateway-reconfig-min-w-hidden-min.bcg 11.090.974 127.799.874 ∼ 283.5 mb

hmserver-reconfig-min-w-hidden.bcg 931.640.080 16.435.355.306 ∼ 31.28 gb

Table 6. Relevant Numbers Regarding our Generated Model with Reconfigurable In-
terfaces

We obtained a significant space-state reduction for the HM Gateway model,
but we were unable to minimize the HM Server. Indeed, communication hiding
may leverage space-state reduction, but still requires that the minimization pro-
cess is able to run, therefore not solving the lack of memory issue. This is a rather
embarrassing situation as we would expect a significant space-state reduction as
well for the HM Server.

While communication hiding revealed to be a valuable tool, minimization is
still a bottleneck if the input space-state is already too big. Thus, we need to
shift this burden to the lower levels of the hierarchy. Indeed, both HM Server
and HM Gateway components are the result of a product between their primitive
components. Moreover, these are themselves the result of a product between
their internals – request queue, body, proxies ...

Table 7 illustrates the results obtained by hiding the same communication
actions as in the above approaches, but before starting to build any product.

States Transitions File Size

hidden-hmgateway-reconfig.bcg 3.483.000 43.193.346 ∼ 85.46 mb
hidden-hmgateway-reconfig-min.bcg 3.073.108 39.373.968 ∼ 83.95 mb

hidden-hmserver-reconfig.bcg 210.121.904 3.890.791.694 ∼ 7.52 gb
hidden-hmserver-reconfig-min.bcg 177.604.848 3.288.937.718 ∼ 6.61 gb

SystemProduct-reconfig.bcg 539.979.906 6.041.011.217 ∼ 11.44 gb

Table 7. Relevant Numbers Regarding our Generated Model with Reconfigurable In-
terfaces

Indeed, following this approach proved to be fruitful as we were able to
generate the system product. Yet, minimization remained still out of reach.

Formally Reasoning on a Reconfigurable Component-Based System 17

Nevertheless, we are still in a position to model-check some properties of interest.
For instance, pulling information via a multicast emission is now predicated with
a boolean array whose element’s valuation determines its boundedness. As an
example, a rather simple liveness property is the following one:

Property 7.
<true* . "Q_GATEWAYMULTICASTMETHOD !ARRAY(FALSE FALSE) !MEMORYUSAGE"> true

Initially, both HM Gateways are bound, the above property tell us that we can
indeed unbind both of them.

6 Related Work

Many works can be found in the literature embracing a behavioural seman-
tics approach for the specification and verification of distributed systems. Yet,
literature addressing the aspects of reconfigurable applications remains scarce.
Nevertheless, we must cite the work around BIP (Behaviour, Interaction, Pri-
ority) [2] — a framework encompassing rigorous design principles. It allows the
description of the coordination between components in a layered way. Moreover,
it has the particularity of also permitting the generation of code from its models.
Yet, structural reconfigurations are not supported.

Another rather different approach that we must refer is the one followed
by tools specifically tailored for architectural specifications. For instance, in [9]
Inverardi et. al. discusses CHARMY, a framework for designing and validating
architectural specifications. It offers a full featured graphical interface with the
goal of being more user friendly in an industrial context. Still, architectural
specifications remain of static nature.

Looking at the interactive theorem proving arena we can also find some re-
lated material. In [6] Boyer et. al. propose a reconfiguration protocol and prove
its correctness in The Coq Proof Assistant. This work however, focuses on the
protocol itself, and not in the behaviour of a reconfigurable application. More-
over, in [8] we presented Mefresa — a Mechanized Framework for Reasoning
on Software Architectures. This discusses a (re)configuration language and its
underlying formal semantics for reasoning at the architectural level.

7 Final Remarks

In the realm of component-based systems, behavioural specification is among the
most employed approaches for the rigorous design of applications. It leverages the
use of Model-Checking techniques, by far the most widespread formal method
in the industry. Yet, verification in the presence of structural reconfigurations
remains still as a rather unaddressed topic. This can be justified by the inherent
complexity that such systems impose. However, playing a significant role for the
increase in systems availability, and key ingredient in the autonomic computing
arena, tackling its demands should be seen of paramount importance.

18 N. Gaspar, L. Henrio, E. Madelaine

In this paper we discussed the specification and formal verification of a re-
configurable monitoring application as an industrial case-study. Modelling our
HyperManager application upto the intricacies of the middleware lead us to
a combinatorial explosion in the set of states. This, is further aggravated by the
inclusion of reconfigurable interfaces. Even the use of compositional and con-
textual space-state generation techniques revealed to be insufficient. While this
could be solved by further increasing the available memory in our workstation,
it is worth noticing that this approach is not always feasible in practice. As usual
in the realm of formal verification, abstraction is the key. Taking advantage of
CADP’s facilities for communication hiding, one can specify actions that need
not to be observed for our verification purposes, which further enhances the ef-
fects of posteriori minimization by branching bissimulation. This illustrates the
pragmatic rationale of formal verification by Model-Checking — the most likely
reason behind its broad acceptance in the industry.

References

1. Rabéa Ameur-Boulifa, Ludovic Henrio, Eric Madelaine, and Alexandra Savu. Be-
havioural Semantics for Asynchronous Components. RR RR-8167, December 2012.

2. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and
J. Sifakis. Rigorous component-based system design using the bip framework.
IEEE Software, 28(3):41–48, 2011.

3. B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad,
J. Stoecker, and F. Vernadat. The syntax and semantics of FIACRE. RR, 2009.

4. Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specification lan-
guage lotos. Comput. Netw. ISDN Syst., 14(1):25–59, March 1987.

5. Rabéa Ameur Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine. Veri-
fying safety of fault-tolerant distributed components. In International Symposium
on Formal Aspects of Component Software (FACS 2011), 2011.

6. Fabienne Boyer, Olivier Gruber, and Damien Pous. Robust reconfigurations of
component assemblies. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13. IEEE Press, 2013.

7. Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2010:
A Toolbox for the Construction and Analysis of Distributed Processes. In Tools
and Algorithms for the Construction and Analysis of Systems - TACAS 2011.

8. Nuno Gaspar, Ludovic Henrio, and Eric Madelaine. Bringing Coq Into the World
of GCM Distributed Applications. International Journal of Parallel Programming,
2013. HLPP’2013 Special Issue.

9. P. Inverardi, H. Muccini, and P. Pelliccione. Charmy: An extensible tool for archi-
tectural analysis. In ESEC-FSE’05, ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. Research Tool Demos, September 5-9, 2005.

10. Radu Mateescu and Damien Thivolle. A model checking language for concurrent
value-passing systems. In Proceedings of the 15th international symposium on
Formal Methods, FM ’08, pages 148–164, Berlin, Heidelberg, 2008. Springer-Verlag.

