
Verification of Mobile Ad Hoc Networks:

An Algebraic Approach

Fatemeh Ghassemia, Wan Fokkinkb, Ali Movaghara

aSharif University of Technology, Tehran, Iran
bVrije Universiteit, Amsterdam, The Netherlands

Abstract

We introduced Computed Network Process Theory to reason about protocols
for mobile ad hoc networks (MANETs). Here we explore the applicability
of our framework in two regards: model checking and equational reasoning.
The operational semantics of our framework is based on constrained labeled
transition systems (CLTSs), in which each transition label is parameterized
with the set of topologies for which this transition is enabled. We illustrate
how through model checking on CLTSs one can analyse mobility scenarios of
MANET protocols. Furthermore, we show how by equational theory one can
reason about MANETs consisting of a finite but unbounded set of nodes, in
which all nodes deploy the same protocol. Model checking and equational
reasoning together provide us with an appropriate framework to prove the
correctness of MANETs. We demonstrate the applicability of our framework
by a case study on a simple routing protocol.

Keywords: Process theory, local broadcast, mobility, axiomatization,
uniform MANET, symbolic verification

1. Introduction

Mobile ad hoc networks (MANETs) consist of mobile nodes equipped
with wireless transceivers to communicate with each other directly or along
multihop paths. Two nodes can effectively communicate if they are located in
the communication range of each other, defined by the underlying topology.

Email addresses: fghassemi@mehr.sharif.edu (Fatemeh Ghassemi),
w.j.fokkink@vu.nl (Wan Fokkink), movaghar@sharif.edu (Ali Movaghar)

Preprint submitted to Theoretical Computer Science March 28, 2011

Wireless communication is inherently unreliable; a node may not succeed
to communicate due to noise in the environment. Moreover, mobility of
nodes makes the underlying topology dynamic. The characteristics of wireless
communication and dynamism of the underlying topology require a suitable
framework for the modeling and verification of MANETs.

We introduced Restricted Broadcast Process Theory (RBPT) in [1] to
specify and verify MANET protocols, taking into account mobility of nodes.
Topology changes are modeled implicitly in the semantics, and thus one
can verify a network with respect to arbitrary topology changes. Computed
Network Process Theory (CNT) [2, 3] is an extension of RBPT with so-
called computed network terms and auxiliary operators, as an expedient
verification framework with a sound and complete axiom system, modulo
so-called rooted branching computed network bisimilarity. The operational
semantics of CNT is given by constrained labeled transition systems (CLTSs),
in which each transition label is parameterized by a set of topologies for which
this transition is enabled.

In this paper, we enhance and illustrate the applicability of our frame-
work for the verification of MANETs in two regards: model checking and
equational reasoning. We show how the semantic model of CLTSs makes it
possible to derive and analyse mobility scenarios for MANET protocols. We
exploit the mCRL2 toolset [4] to convert CNT specifications into CLTSs, and
then the CADP toolset [5] to verify properties.

To verify MANET protocols for large networks, or if one needs to deal
with infinite data domains, model checking is not readily applicable. Since
MANETs often consist of an arbitrary set of nodes that run the same proto-
cols, we develop a symbolic verification technique for such networks within
the CNT framework, based on the cones and foci method [6, 7, 8]. This tech-
nique works on a restricted class of specifications, called linear computed
network equations, in which the states are data objects, and rephrases the
question whether the system specification and implementation are equivalent
in terms of proof obligations on relations between data objects. We exploit
our equations to convert the parallel composition of an arbitrary number of
similar processes, modulo some data parameters, to a single linear equation
using the Composition Theorem from [9]. The Composition Theorem how-
ever is based on the assumption that communications are restricted to two
processes. Since in our framework wireless communication is an essential in-
gredient, we generalize the Composition Theorem to this setting. The linear
equation representing the MANET of similar nodes, and the desired external

2

behavior of this network (also expressed by a linear equation) are taken as
input to the symbolic verification technique, which reduces the question of
their behavioral equivalence to proving data equalities. The framework of
mCRL2 [10] allows for this tight integration between processes and data.

To the best of our knowledge, this paper is the first to address the sym-
bolic verification of MANETs. We use a simple routing protocol based on
ad hoc on-demand distance vector (AODV) routing protocol as a running
example, and prove that the protocol correctly routes data from a source to
a destination.

The structure of the paper is as follows. Section 2 explains the modeling
concepts and operational semantics underlying CNT. Section 3 explains the
formal framework: syntax and axioms. Section 4 presents a case study, and
shows how our semantic model is capable of deriving errors caused by the
mobility of nodes. In Section 5 we explain our symbolic verification approach,
and how it can be exploited to verify MANETs with similar nodes. Finally,
Section 6 summarizes our results and future work.

2. Concepts

In wireless communication, when a node transmits a message, only nodes
that are located in its transmission area can receive this message. For this
reason, the communication in wireless networks is called local broadcast. We
model the unreliable local broadcast service provided by the MAC-layer (of
each MANET node), in which the sender and receiver are synchronous and
receive actions carry (error-free) messages. A node B is connected to a node
A, if B is located within the transmission range of A. This connectivity rela-
tion between nodes, which is not necessarily symmetric, introduces a topology
concept. A topology is a function γ : Loc → IP (Loc) where A,B,C ∈ Loc
denote a finite set of addresses, which models the hardware addresses. The
network topology, due to the mobility of nodes in a MANET, is dynamic and
may change rapidly and unpredictably over time.

We model mobility implicitly in the semantics; each state is representative
of all possible topologies a network can meet, and a network can be at any
of these topologies. Each transition is constrained by a set of topologies for
which such a behavior is possible. We introduced network constraints in [2]
to formally specify the set of topologies. The set of addresses is extended with
the unknown address ?. A network constraint C is a set of connectivity pairs
 : Loc × Loc, such that the second address cannot be ?. The connectivity

3

pair ? A denotes that a node with address A is connected to an unknown
address from which it can receive data, while B A denotes that A is
connected to B and consequently B can send data to A. We write {B
A,C} instead of {B A,B C}. Each network constraint C represents
the set of topologies that satisfy the connectivity pairs in C, i.e., {γ|∀` ∈
Loc · C(`) ⊆ γ(`)}. Therefore, the empty network constraint {} denotes all
possible topologies. Let C denote the set of all network constraints that can
be defined over network addresses in Loc.

In this paper, compared to [3], we transfer network constraints from tran-
sition subscripts into transition labels, which are interpreted as the set of
topologies for which such a transition is enabled. This transmission of net-
work constraints from the transitions into the labels simplifies our framework,
as will be explained in Section 3.2. We override the definition of constrained
labeled transition systems (CLTSs), the operational behavior of MANETs,
given in [3] such that the previous results are preserved.

Let Msg denote a set of messages communicated over a network and
ranged over by m. Let Act be the network send and receive actions with
signatures nsnd : Msg × Loc and nrcv : Msg respectively. The send action
nsnd(m, `) denotes that the message m is transmitted from a node with the
address `, while the receive action nrcv(m) denotes that the message m is
ready to be received. Let Act τ = Act ∪ {τ}, ranged over by η.

Definition 1. A CLTS is defined by 〈S, L,→, s0〉, with S a set of states,
L ⊆ C × Act τ , →⊆ S × L × S a transition relation, and s0 ∈ s the initial

state. A transition (s, (C, η), s′) ∈→ is denoted by s
(C,η)−−→ s′.

Sn0 Sn1

(know(idn)!,r),‹-,-›

(know(xn)?,┴),‹-,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

(know(idn)!,r/2),‹xn≤idn,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

s2

s3

req!{B}

re
p!

{A
}

found!{B}

A
 B

req!{B}

{ }

req!{B}

{ }

rep!{A}
{ }

{ }

AB
C

A
B

C
A

B

C

(a) (b)

S1 S2

S3

Req!{B}

Rep
!{A

}
Found!{B}

Req!{B}

Rep!{A}

B AC B,

B AC B,

B AC B,

B A

C B,

B AC B,

Req!{B}

A
 B

B
 A

,

C
 B

,

A BB A,C B,

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7 H, 8

B, next=C C, next=D D B, next=? C

error(B)!

B, next=?l C

req(C)!

B, next=C

A, next=B B, next=A CA, next=B

(1) (2)

(3) (4)

s1

B A

s٢s١

nsnd(empNC,req(A),A)

s٠

nsnd(con(A,B,empNC),req(A),A)

nsnd(empNC,rep(B,A),B)

nsnd(con(B,A,empNC),rep(B,A),B)

nsnd(empNC,data(B),A)

…

…

A
D

C

B

A
D

C

B
A

D

C

BA
D

C

B

(1) (2) (3) (4)

A D

C

B
A D

C

B
A D

C

B

(1) (2) (3)

A D

C

B

A D

C

B
A

D
C

B

(1) (2) (3)

(a)

(b)

s١

req(A)!A

s٠

req(A)!{A}

rep(B,A)!{B}

{ }

A B

req(A)!A

{ }

{ }

s2s1

({ },nsnd(m1,A))

s0

({AkB},nsnd(m1,A))

({ },nsnd(m2,A))

({BkA},(nsnd(m2,B))

({ },nsnd(m3,B))

…

…

B A

B A

{ }

B A

{ }

nsnd(m1,A)
nsnd(m2,B)

nsnd(m1,A)

nsnd(m1,A) nsnd(m2,B)

nsnd(m2,B)

C, next=? D

nsnd(error(C),C)

C, next=? D

nsnd(req(C),C)

B, next=C

B, next=C C, next=B DB, next=C

(1) (2)

(3) (4)

nsnd(rep(B,C),B)

B, next=C C, next=D D

Figure 1: A part of the behavioral model of a MANET.

Suppose for a real MANET (a network with a set of nodes, each running
a process), its behavior is modeled by a CLTS partly shown in Figure 1.
Consider the behavior of the real MANET when all processes of nodes are

4

reset. We explain how the behavior of this MANET for the scenario depicted
in Figure 2 can be inferred from its CLTS model. Initially its CLTS is
in state s0 irrespective of the underlying topology. When the underlying
topology changes from 2.1 to 2.2 in the MANET, the state of its CLTS
is not changed, since each state is representative of any topology changes.
When the underlying topology is 2.2, the message m1 is sent by node A.
Since the underlying topology belongs to the network constraints {} and
{A B}, the CLTS implies that the behavior of MANET would become
state s0 or s1. Being in any of these states, when the underlying topology of
MANET changes to 2.3 and then 2.4, the state of its model is not changed.
However, when the underlying topology is 2.4, node B sends m2. Since a
transition with such an action does not belong to state s0, it can be inferred
that the previous behavior of MANET was s1. The model explains that since
the underlying topology belongs to the network constraints {} and {B A},
the next behavior of the MANET would be either s0 or s2.

Sn0 Sn1

(know(idn)!,r),‹-,-›

(know(xn)?,┴),‹-,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

(know(idn)!,r/2),‹xn≤idn,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

s2

s3

req!{B}

re
p!

{A
}

found!{B}

A
 B

req!{B}

{ }

req!{B}

{ }

rep!{A}
{ }

{ }

AB
C

A
B

C
A

B

C

(a) (b)

S1 S2

S3

Req!{B}

Rep
!{A

}
Found!{B}

Req!{B}

Rep!{A}

B AC B,

B AC B,

B AC B,

B A

C B,

B AC B,

Req!{B}

A
 B

B
 A

,

C
 B

,

A BB A,C B,

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7 H, 8

A, next=B B, next=C C B, next=? C

error(B)!

B, next=?l C

req(C)!

A, next=B

A, next=B B, next=A CA, next=B

(1) (2)

(3) (4)

s1

B A

s٢s١

nsnd(empNC,req(A),A)

s٠

nsnd(con(A,B,empNC),req(A),A)

nsnd(empNC,rep(B,A),B)

nsnd(con(B,A,empNC),rep(B,A),B)

nsnd(empNC,data(B),A)

…

…

A
D

C

B

A
D

C

B
A

D

C

BA
D

C

B

(1) (2) (3) (4)

A D

C

B
A D

C

B
A D

C

B

(1) (2) (3)

A D

C

B

A D

C

B
A

D
C

B

(1) (2) (3)

(a)

(b)

s١

req(A)!A

s٠

req(A)!{A}

rep(B,A)!{B}

{ }

A B

req(A)!A

{ }

{ }

s2s1

nsnd(m1,A)

s0

nsnd(m1,A)

nsnd(m2,A)

nsnd(m2,B)

nsnd(m3,B)

…

…

B A

B A

A B

{ }

B A

{ }

{ }B A

nsnd(m1,A)
nsnd(m2,B)

nsnd(m1,A)

nsnd(m1,A) nsnd(m2,B)

nsnd(m2,B)
Figure 2: A mobility scenario.

For the executions of the CLTS in Figure 1, such as s0
({A B},nsnd(m1,A))−−−−−−−−−−−−−−→

s1
({B A},nsnd(m2,B))−−−−−−−−−−−−−−→ s2, we can derive different mobility scenarios for the

real MANET, as shown in Figure 3.
Concluding, a CLTS defines the behavior of the corresponding MANET

for arbitrary topology changes, and an execution of the CLTS represents
multiple mobility scenarios.

3. Formal Framework: Computed Network Theory

To separate the manipulation of data from processes, we make use of
equational abstract data types [11]. Data is specified by equational specifi-
cations: one can declare data types (so-called sorts) and functions working
upon these data types, and describe the meaning of these functions by equa-
tional axioms. Following the approach of [12, 13], we consider Computed

5

Sn0 Sn1

(know(idn)!,r),‹-,-›

(know(xn)?,┴),‹-,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

(know(idn)!,r/2),‹xn≤idn,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

s2

s3

req!{B}

re
p!

{A
}

found!{B}

A
 B

req!{B}

{ }

req!{B}

{ }

rep!{A}
{ }

{ }

AB
C

A
B

C
A

B

C

(a) (b)

S1 S2

S3

Req!{B}

Rep
!{A

}
Found!{B}

Req!{B}

Rep!{A}

B AC B,

B AC B,

B AC B,

B A

C B,

B AC B,

Req!{B}

A
 B

B
 A

,

C
 B

,

A BB A,C B,

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7 H, 8

A, next=B B, next=C C B, next=? C

error(B)!

B, next=?l C

req(C)!

A, next=B

A, next=B B, next=A CA, next=B

(1) (2)

(3) (4)

s1

B A

s٢s١

nsnd(empNC,req(A),A)

s٠

nsnd(con(A,B,empNC),req(A),A)

nsnd(empNC,rep(B,A),B)

nsnd(con(B,A,empNC),rep(B,A),B)

nsnd(empNC,data(B),A)

…

…

A
D

C

B

A
D

C

B
A

D

C

BA
D

C

B

(1) (2) (3) (4)

A D

C

B
A D

C

B
A D

C

B

(1) (2) (3)

A D

C

B

A D

C

B
A

D
C

B

(1) (2) (3)

(a)

(b)

s١

req(A)!A

s٠

req(A)!{A}

rep(B,A)!{B}

{ }

A B

req(A)!A

{ }

{ }

s2s1

nsnd(m1,A)

s0

nsnd(m1,A)

nsnd(m2,A)

nsnd(m2,B)

nsnd(m3,B)

…

…

B A

B A

A B

{ }

B A

{ }

{ }B A

nsnd(m1,A)
nsnd(m2,B)

nsnd(m1,A)

nsnd(m1,A) nsnd(m2,B)

nsnd(m2,B)

Figure 3: Two mobility scenarios for an execution fragment of the CLTS in Figure 1.

Network Theory with equational abstract data types. We first explain the
set of data types considered in our framework, and then define the CNT
operators and their axioms.

3.1. Data Types

We treat the set of network addresses Loc, messages Msg and network
constraints C as data types within the CNT framework. By defining ap-
propriate functions over them, we can provide the axioms and operational
semantics of computed network terms. We use mCRL2 notation to define
data types: sort declares sort names, func specifies constructor and map
non-constructor functions, var declares variable names, and rew defines non-
constructor functions by means of rewrite rules. We assume that the function
if : Bool ×D ×D is defined for all data sorts D, which returns the first D
parameter if the boolean parameter equals true, otherwise the second D pa-
rameter is returned.

The data sort Bool is used in the conditional operator construct to change
the behavior of a process in terms of data values. This data sort is defined
by two constructors T and F . The conventional operators ∧, ∨ and ¬ can
be defined over it straightforwardly. The data sort Nat specifies the natural
numbers by the constant 0 and the unary function succ. We use 1, 2, . . . for
succ(0), succ(succ(0)), The definition of functions +, >, ≥ and eq are
straightforward.

Some data sort definitions are given in Figure 4. For a complete defini-
tion see [14]. The network addresses are generated from the constant ? and
the unary function adr . We use A,B, . . . to denote adr(?), adr(adr(?)),

6

sort Msg sort Loc
func req : Loc → Msg func ? :→ Loc

rep : Loc × Loc → Msg adr : Loc→ Loc
map isTypereq : Msg → Bool map eq : Loc× Loc→ Bool

eq : Msg ×Msg → Bool >: Loc× Loc→ Bool
var `, `1, `2, `3, `4 : Loc
rew eq(req(`1), req(`2)) = eq(`1, `2) sort C

eq(rep(`1, `2), rep(`3, `4)) = func empNC :→ C
eq(`1, `3) ∧ eq(`2, `4) con : Loc × Loc × C→ C

isTypereq(req(`)) = T map union : C× C→ C
isTypereq(rep(`1, `2)) = F subs : Loc × Loc × C→ C

include : C× C→ Bool

Figure 4: Data sorts used in the CNT framework.

The functions eq and > compare two network addresses. The network con-
straints are generated from the constant empNC and the con function which
adds a connectivity pair to network constraints. The function union merges
two network constraints such that the redundant connections are removed
and the connectivity pairs are sorted in terms of the connected addresses
(i.e. the second parameter in con). The function subs substitutes all occur-
rences of the address in its second parameter with the address in its first
parameter. The function include examines if the connectivity pairs of a net-
work constraint are included in another. We write C1 ∪ C2, C1 ⊆ C2 and
C[`/`′] instead of union(C1, C2), include(C1, C2) and subs(C, `, `′) respectively.
We also write {}, {A B}, {A B,C} for empNC , con(A,B, empNC),
con(A,B, con(A,C, empNC)).

A message can carry data parameters. For instance, in Figure 4, the
message req : Loc → Msg has one parameter of type Loc. The function
eq compares two messages. For each message name m defined in Msg , a
function isTypem : Mag → Bool is defined which examines if a message term
is constructed by the message name m.

The semantics of the data part (of a specification), denoted by ID, is
defined the same way as in [13]. It should contain the Bool domain with
distinct T and F constants, Loc, C, and Msg domains.

7

3.2. Computed Network Terms

Let D denote a data sort; u, v and d range over closed and open data
terms of sort D, respectively. Data terms are written as follows for the
different sorts: b is of type Bool , m is of type Msg , ` is of type Loc, and
C is of type C. Let d[d1/d2] denote substitution of d2 by d1 in the data
term d; this can be extended to computed network terms. Let A denote a
countably infinite set of process names which are used as recursion variables
in recursive specifications. This set can be split into two disjoint subsets
Ap and An. Without loss of generality we assume that process names and
messages have exactly one parameter.

The transmission of network constraints into labels allows to treat the
so-called computed network terms, introduced in [3], as prefixed terms, so
that the previous two-level syntax of CNT collapses to one:

t ::= 0 | β.t | t+ t | [b]t � t |
∑

d:D t | A(d) , A(d : D)
def
= t | [[t]]` |

t | t | t t | t ‖ t | (ν`)t | τm(t) | ∂m(t)

0 defines a deadlock process. The prefix operator in β.t denote a process
which performs β and then behaves as t. The action β can be of two types:

• rcv(m) and snd(m) actions, denoted by α, which model protocol receive
and send actions respectively. They model the interaction of a protocol
with its underlying MAC layer;

• (C, nrcv(m)), (C, nsnd(m, `)) and (C, τ) actions, denoted by (C, η), where
the first two actions are called the network receive and send actions
respectively. They model the interaction of multiple MAC layers in
a MANET. An action (C, η) represents the behavior η for the set of
topologies specified by C.

The process t1 + t2 behaves non-deterministically as t1 or t2. The conditional
construct [b]t1 � t2 behaves as t1 when ID |= b = T and as t2 when ID |=
b = F . The summation

∑
d:D t, which binds the name d to t, defines a non-

deterministic choice among t[u/d] for all closed u ∈ D. A process name is

declared by A(d : D)
def
= t, where A ∈ A, and d is a variable name that

may appear free in t, meaning that it is not within the scope of a sum
operator in t. Computed network terms are considered modulo α-conversion
of bound names. The function fn, which returns the set of free names, is
defined over computed network terms as usual. A term is closed if the set

8

of its free names is empty. The deployment of a process t at a network
address ` 6=? is specified as [[t]]`, which defines a single-node MANET. The
parallel composition t1 ‖ t2 defines two MANETs that communicate by local
broadcast; if there is a connectivity between nodes of t1 and t2 they may
communicate, otherwise the send/receive actions of t1 and t2 are interleaved.
CNT borrows from the process algebra ACP [15] the operators left merge
() and communication merge (|) to axiomatize parallel composition. Hiding
(ν`)t conceals the activities of a node with the address ` by renaming this
address to ? in network send/receive actions. For each message type m :
D → Msg , the operators τm(−) and ∂m(−) are defined; Abstraction τm(t)
renames network send/receive actions over messages of type m to τ , and
Encapsulation ∂m(t) forbids receiving messages of type m and renames them
to 0. We use τ{m1,...,mn}(t) and ∂{m1,...,mn}(t) to denote τm1(. . . (τmn(t)) . . .)
and ∂m1(. . . (∂mn(t)) . . .) respectively. We will use MANET, network and
computed network term interchangeably.

A computed network term t should be grammatically well-defined:

• If t ≡ [[t′]]`, then t′ has no network prefix action (C, η), deployment [[]],
parallel ‖, left merge , communication merge |, hiding (ν`), abstrac-
tion τm, encapsulation ∂m, and process name A(d) such that A ∈ An.

• If t ≡ rcv(m(d)).t′, then it should be in the context of a summation
like

∑
d:D, where m : D → Msg .

• If t ≡ α.t′, then it should be in the context of a deployment operator.

• If t ≡ A(d) where A ∈ Ap, then it should be in the context of a
deployment operator. Furthermore it should be defined by an equation

like A(d : D)
def
= t′ such that t′ has no network prefix action (C, η),

deployment [[]], parallel ‖, left merge , communication merge |, hiding
(ν`), abstraction τm, encapsulation ∂m, and process name A′(d) such
that A′ ∈ An. Moreover, each occurrences of A should be in the context
of an α prefix action in t′.

• If t ≡ B(d) where B ∈ An, then it should not be in the context of a
deployment operator. Furthermore it should be defined by an equation

like B(d : D)
def
= t′ such that t′ is well-defined.

Intuitively a computed network is grammatically well-defined if processes
deployed at a network address, called protocols, are defined by protocol ac-

9

tion prefix, choice, summation, conditional, deadlock operators and process
names. From now on we will only consider computer network terms that

are well-defined. For example, [[X(A)]]A ‖ [[Y (B)]]B where X(adr : Loc)
def
=

snd(req(A)).X(adr) and Y (adr : Loc)
def
=

∑
lx:Loc rcv(req(lx)).snd(rep(adr , lx)).

Y (adr) is a well-defined computed network term. The process name X de-
fines a protocol which sends req messages iteratively, while Y receives a req
and then sends a rep message.

3.3. Rooted Branching Computed Network Bisimilarity

Computed network terms are considered modulo rooted branching com-
puted network bisimilarity [3]. To define this equivalence relation, we intro-
duce the following notations:

• ⇒ denotes the reflexive and transitive closure of unobservable actions:

– t⇒ t;

– if t
(C,τ)−−→ t′ for some arbitrary network constraint C and t′ ⇒ t′′,

then t⇒ t′′.

• t 〈(C,η)〉−−−→ t′ iff t
(C,η)−−→ t′ or t

(C[`/?],η[`/?])−−−−−−−→ t′ and η is of the form nsnd(m, ?)
for some m.

Intuitively t ⇒ t′ expresses that after a number of topology changes, t can
behave like t′. Furthermore, an action like ({? B}, nsnd(req(?), ?)) can
be matched to an action like ({A B}, nsnd(req(A), A)), which is its 〈−〉
counterpart.

Definition 2. A binary relation R on computed network terms is a branching

computed network simulation if t1Rt2 and t1
(C,η)−−→ t′1 implies that either:

• η is of the form nrcv(m) or τ , and t′1Rt2; or

• there are t′2 and t′′2 such that t2 ⇒ t′′2
〈(C,η)〉−−−→ t′2, where t1Rt′′2 and t′1Rt′2.

R is a branching computed network bisimulation if R and R−1 are branching
computed network simulations. Two terms t1 and t2 are branching computed
network bisimilar, denoted by t1 'b t2, if t1Rt2 for some branching computed
network bisimulation relation R.

10

Definition 3. Two terms t1 and t are rooted branching computed network
bisimilar, written t1 'rb t2, if:

• t1
(C,η)−−→ t′1 implies there is a t′2 such that t2

〈(C,η)〉−−−→ t′2 and t′1 'b t′2;

• t2
(C,η)−−→ t′2 implies there is an t′1 such that t1

〈(C,η)〉−−−→ t′1 and t′1 'b t′2.

Rooted branching computed network bisimilarity is an equivalence re-
lation and constitutes a congruence with respect to the CNT operators;
see [3]. Intuitively two computed network terms are equivalent if they send
and receive a same set of messages for a set of topologies. However a re-
ceiving action which would not change the sending behavior of a node can
be removed. Therefore, an only receiving MANET (after its first action)
is equivalent to deadlock. It should be noted that a node like [[Y (B)]]B

is not equivalent to the sending node [[Y ′(B)]]B where Y ′(adr : Loc)
def
=∑

lx:Loc snd(rep(adr , lx)).Y ′(adr), since the latter sends iff it receives a re-
quest message while the former always sends.

3.4. Axioms

We define the behavior of operators through their axioms over closed
terms, which are sound with respect to rooted branching computed network
bisimilarity. The axioms of choice, conditional and summation operator are
given in Table 1. The axioms Ch1−4, Con1−2 and Sum1−4 are straightforward
(cf. [16]). The axiom Ch5 is new in our framework, denoting that a network
send action originated from a node of which the address is unknown can
be removed if there is a same action originating from a node with a known
address. The axiom Ch6 explains that if an action η is possible for a set of
topologies, then it is also possible for all subsets of this set.

Axioms for process names are given in Table 2. Unfold and Fold express

existence and uniqueness of a solution for the equation A(d : D)
def
= t, which

correspond to the Recursive Definition Principle (RDP) and Recursive Spec-
ification Principle (RSP) in ACP. An occurrence of a process name A in t is
called guarded if this occurrence is in the scope of an action prefix operator
(not (C, τ) prefix) and not in the scope of an abstraction operator [3]. A is
guarded in t if every occurrence of A in t is guarded.

Axioms for deployment, left and communication merge, and parallel op-
erators are given in Table 3. The axioms Dep3−5, Br , LM 1−4 and S1−3,5

are straightforward. Dep1 expresses that when a protocol sends a message

11

Table 1: Axioms for choice, conditional and summation operators.

Ch1 0 + t = t Sum1
∑

d:D t = t, d 6∈ fn(t)
Ch2 t1 + t2 = t2 + t1 Sum2

∑
d:D t =

∑
e:D t[e/d]

Ch3 t1 + (t2 + t3) = (t1 + t2) + t3 Sum3
∑

d:D t =
∑

d:D t+ t[u/d]
Ch4 t+ t = t Sum4

∑
d:D(t1 + t2) =

∑
d:D t1 +

∑
d:D t2

Con1 [b]t1 � t2 = t1, ID |= b = T Con2 [b]t1 � t2 = t2, ID |= b = F

Ch5 (C,nsnd(m, ?)).t+ 〈(C,nsnd(m, ?))〉.t = 〈(C,nsnd(m, ?))〉.t
Ch6 (C1, η).t+ (C2, η).t = (C1, η).t, C1 ⊆ C2

Table 2: Axioms for process names.

Unfold A(u) = t[u/d], A(d : D)
def
= t

Fold ∀d : D · t1(d) = t2[t1(d1)/A(d1)] · · · [t1(dn)/A(dn)]⇒
t1(d) = A(d), A(d : D)

def
= t2 if A is guarded in t

(denoted by snd), the message is sent into the network (denoted by nsnd),
irrespective of underlying topology (expressed by {}). Dep2 expresses that
when a protocol receives a message (denoted by rcv), it should receive it from
the network (denoted by nrcv) while it is connected to some sender whose
address is unknown (expressed by {? `}). It should be noted that Dep5

satisfies the second and third well-definedness rules given in Section 3.2.
The axioms Sync1−3 explain the synchronization of two MANETs. The

sending MANET (C1, nsnd(m1, `)).t1 can communicate with the receiving
MANET (C2, nrcv(m2)).t2, if the receiving addresses (denoted by C2) are
also connected to the sender ` (denoted by C1 ∪ C2[`/?]). Likewise two re-
ceiving MANETs synchronize on a message when the receiving addresses
of both MANETs are connected to the same unknown address (denoted by
C1 ∪ C2). Two sending MANETs cannot synchronize due to their signal col-
lision. When a MANET is communicating through a τ action, it cannot be
synchronized with another MANET, as indicated by axiom S4.

We return to the example at the end of Section 3.2. The behavior of

12

Table 3: Axioms for process names, deployment, left and communication merge, and
parallel operators.

Dep1 [[snd(m).t]]` = ({},nsnd(m, `)).[[t]]` Dep4 [[0]]` = 0
Dep2 [[rcv(m).t]]` = ({? `},nrcv(m)).[[t]]` Dep5 [[

∑
d:D t]]` =

∑
d:D[[t]]`

Dep3 [[t1 + t2]]` = [[t1]]` + [[t2]]`

Br t1 ‖ t2 = t1 t2 + t2 t1 + t1 | t2 S1 t1 | t2 = t2 | t1
LM 1 (C, η).t1 t2 = (C, η).(t1 ‖ t2) S2 (t1 + t2) | t3 = t1 | t3 + t2 | t3
LM 2 (t1 + t2) t3 = t1 t3 + t2 t3 S3 0 | t = 0
LM 3 0 t = 0 S4 (C, τ).t1 | t2 = 0
LM 4 (

∑
d:D t1) t2 =

∑
d:D t1 t2 S5 (

∑
d:D t1) | t2 =

∑
d:D t1 | t2

Sync1 (C1,nsnd(m1, `)).t1 | (C2,nrcv(m2)).t2 =
[eq(m1,m2)](C1 ∪ C2[`/?],nsnd(m1, `)).t1 ‖ t2 � 0

Sync2 (C1,nrcv(m1)).t1 | (C2,nrcv(m2)).t2 =
[eq(m1,m2)](C1 ∪ C2,nrcv(m1)).t1 ‖ t2 � 0

Sync3 (C1,nsnd(m1, `1)).t1 | (C2,nsnd(m2, `2)).t2 = 0

[[X(A)]]A ‖ [[Y (B)]]B can be calculated as follows:

[[X(A)]]A ‖ [[Y (B)]]B =
[[X(A)]]A [[Y (B)]]B + [[Y (B)]]B [[X(A)]]A + [[X(A)]]A | [[Y (B)]]B

[[X(A)]]A = ({}, nsnd(req(A), A)).[[X(A)]]A
[[Y (B)]]B =

∑
lx:Loc({? B}, nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B

[[X(A)]]A [[Y (B)]]B = ({}, nsnd(req(A), A)).[[X(A)]]A ‖ [[Y (B)]]B
[[Y (B)]]B [[X(A)]]A =∑

lx:Loc({? B}, nrcv(req(lx))).[[snd(rep(B, lx)).Y (B)]]B ‖ [[X(A)]]A
[[X(A)]]A | [[Y (B)]]B =

({A B}, nsnd(req(A), A)).[[X(A)]]A ‖ [[snd(rep(B,A)).Y (B)]]B

The axioms of hiding and encapsulation are given in Table 4. The hiding
operator (ν`) conceals the address of a node with the address ` from external
observers. Therefore, the behavior of a hidden node deploying process X,
(νC)[[X(C)]]C , is ({}, nsnd(req(?), ?)).(νC)[[X(C)]]C . Then the behavior of
[[X(A)]]A ‖ (νC)[[X(C)]]C , by application of axioms Dep1,2, Res2, Br , LM 1,
Sync1 and Ch5, equals ({}, nsnd(req(A), A)).[[X(A)]]A ‖ (νC)[[X(C)]]C . This
indicates that [[X(A)]]A ‖ (νC)[[X(C)]]C = [[X(A)]]A, since both are a solution

of Z
def
= ({}, nsnd(req(A), A)).Z by axiom Fold . Intuitively, the hidden node

C does not change the behavior of [[X(A)]]A from the point view of an external

13

Table 4: Axiomatization of hiding, abstraction and encapsulation operators.
Res1 (ν`)(t1 + t2) = (ν`)t1 + (ν`)t2 Res3 (ν`)0 = 0
Res2 (ν`)(C, η).t = (C[?/`], η[?/`]).(ν`)t Res4 (ν`)

∑
d:D t =

∑
d:D(ν`)t

Ecp1 ∂m((C,nsnd(m, `)).t) = (C,nsnd(m, `)).∂m(t)
Ecp2 ∂m((C,nrcv(m)).t) = [¬isTypem(m)](C,nrcv(m)).∂m(t) � 0

Abs1 τm((C, η).t) = (C, τm(η)).τm(t)
Abs2 τm(t1 + t2) = τm(t1) + τm(t2) Ecp3 ∂m(t1 + t2) = ∂m(t1) + ∂m(t2)
Abs3 τm(0) = 0 Ecp4 ∂m(0) = 0
Abs4 τm(

∑
d:D t) =

∑
d:D τm(t) Ecp5 ∂m(

∑
d:D t) =

∑
d:D ∂m(t)

T1 (C, η).((C′,nrcv(m)).t+ t) = (C, η).t
T2 (C, η).((C′, τ).(t1 + t2) + t2) = (C, η).(t1 + t2)

observer, since it assumes the action of C belongs to A.
The axiom Abs1 renames η actions carrying messages of type m to τm(η),

which is defined as follows:

τm(nrcv(m)) = if (isTypem(m), τ, nrcv(m))
τm(nsnd(m, `)) = if (isTypem(m), τ, nsnd(m, `))

The axiom Ecp2 explains that the encapsulation operator renames network
receive actions of messages of type m to 0. For example,

∂req([[X(A)]]A ‖ [[Y (B)]]B) =
({}, nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[Y (B)]]B) +
({A B}, nsnd(req(A), A)).∂req([[X(A)]]A ‖ [[snd(rep(B,A)).Y (B)]]B)

Axiom T1 removes a receive action that does not affect the behavior of a
network, while T2 removes a τ action which preserves the behavior of a net-
work after some topology changes. The remaining axioms in this table are
straightforward.

4. Case Study: A Simple Routing Protocol

We consider a simple routing protocol, which is similar to AODV [17] in its
basic concepts. In a MANET, each node can communicate with other nodes
indirectly by exploiting a routing protocol. In these protocols, all nodes act

14

as router and relay messages to the next hop for an intended destination. To
this aim, each node keeps the address of the next hop for some destinations
in a routing table. When a node needs to transmit data to a destination,
it first retrieves in its routing table the address of the next hop to which it
should send data. If the next hop is unknown, it initiates the route discovery
process. In this process, the node broadcasts a req(dst , adr) message, where
adr is the address of the node itself, to ask its neighbors whether they know a
route to a node with address dst . On receiving a req(dst , src) message, a node
examines its routing table; if it knows a route to the destination, it replies
by sending a rep(dst , adr , src) message, where adr and src are the addresses
of the receiving and requesting nodes respectively. Otherwise it rebroadcasts
req by substituting src for its own address. Each node, upon receiving the
rep(dst , nx , adr) message, updates its routing table by setting the address of
the next hop for dst to nx , and relays the message to its requesting neighbor,
if it is not the initiator of route discovery. When a node with address adr
detects that its route to dst is not valid anymore due to a link break-down, it
broadcasts the message error(dst , adr) to inform its neighbors that it cannot
be used as a router to dst . If a node that uses the address nx as the next
hop for transmitting data to dst receives error(dst , nx), then it erases this
routing record in its routing table, and informs its neighbors by replacing nx
by its own address.

4.1. Protocol Specification

To ease the process of verification, we decompose the specification of the
protocol into three processes, namely initiator, middle and destination. The
initiator node delivers its data to a middle node, to route its data to the
destination. The middle nodes find a route to the destination node, update
this route with regard to topology changes, and carry data along a route.
The destination node replies to requests, and receives data destined for it.

We specify a network composed of four nodes, where one nodes deploys
the initiator process, two nodes the middle process, and one node the des-
tination process. Since we focus on finding a route to a specific dst , we
model the routing table with a variable nx of sort Loc, and remove dst from
the parameter list of messages like req , rep and error . The specifications
of the initiator, middle and destination processes, called Init , Mid and Dst
respectively, are given in Figure 5. Process RtDy specifies the route discov-
ery process; src denotes the node for which the route discovery process was
initiated and should be replied.

15

Figure 5: The specifications of the initiator, middle and destination processes.

Init(adr , dst : Loc)
def
=∑

lx:Loc [¬eq(lx, ?) ∧ ¬eq(lx, adr) ∧ ¬eq(lx, dst)]snd(data(lx)).0 � 0

Mid(nx : Loc, adr : Loc)
def
=

[¬(eq(nx , ?))](∑
lx :Loc rcv(data(lx)).
[eq(lx , adr)]snd(data(nx)).Mid(nx , adr) �Mid(nx , adr) +∑
lx :Loc rcv(error(lx)).
[eq(lx ,nx)]snd(error(adr)).RtDy(adr , ?) �Mid(nx , adr) +

snd(error(adr)).RtDy(adr , ?) +∑
lx :Loc rcv(req(lx)).snd(rep(adr , lx)).Mid(nx , adr)) +

� (RtDy(adr , ?) +∑
lx :Loc rcv(req(lx)).RtDy(adr , lx))

RtDy(adr : Loc, src : Loc : Bool)
def
=

snd(req(adr)).
(
∑

lx :Loc

∑
ly:Loc rcv(rep(lx , ly)).(

[eq(ly , adr)]
[¬eq(src, ?)]snd(rep(adr , src)).Mid(lx , adr) �Mid(lx , adr)

�RtDy(adr , src)) + RtDy(adr , src))

Dst(adr : Loc)
def
=∑

lx :Loc rcv(req(lx)).snd(rep(adr , lx), 0)).Dst(adr) +∑
lx :Loc rcv(data(lx)).[eq(lx , adr)]0 �Dst(adr).

16

4.2. Protocol Analysis

The most fundamental error in routing protocol operations is failure to
route correctly. The correct operation of MANET routing protocols can be
defined as follows [18]: If from some point in time on there exists a path
between two nodes, then the protocol must be able to find some path between
the nodes. Furthermore, when a path has been found, and for the time it
stays valid, it must be possible to send packets along the path from the source
node to the destination node. A situation which violates the above property
is a routing loop, meaning that somewhere along the path from the source
to its destination a packet can enter a forwarding circle. We are going to
examine whether our simple routing protocol is loop-free. To this aim, we
encode the processes in mCRL2, to derive the CLTS of the MANET:

M0 ≡ ∂{req,rep,error ,data}([[Init(A,D)]]A ‖ [[Mid(?, B)]]B ‖
[[Mid(?, C)]]C ‖ [[Dst(D)]]D).

With regard to the fourth well-definedness rule, and by application of axioms
Dep1−5, Con1,2 and Fold , for every CNT term [[t(d)]]`, there is a network name

A(d : D)
def
= t′, where A ∈ An, such that [[t(d)]]` = A(d). To encode M0,

we first derive equivalent network names for [[Init(`, `′)]]`, [[Mid(`′, `, b)]]`, and
[[Dst(`)]]`, namely Initn(`, `′), Midn(`′, `, b), and Dstn(`).

The only difference between parallel composition of mCRL2 and CNT is
on their synchronization part; in mCRL2, two actions are synchronized if
they agree on the number and values of their parameters, while in CNT two
actions are synchronized if they agree on the message part, while some cal-
culations are performed on their network constraints (see axioms Sync1−3).
To model the local broadcast communication of CNT by the parallel com-
position of mCRL2, we define a set of actions nsnd i, nrcv j : C×Msg × Loc,
where 0 ≤ i,≤ n, 1 ≤ j ≤ n with n the number of nodes. The action
nrcv i({` `1, . . . , `i},m, `) denotes that the message m, when sent by the
node with address `, can be received by i nodes with addresses `1, . . . , `i,
because they are connected to the sender. And nsnd i({` `1, . . . , `i},m, `)
denotes that the node with address ` sends the message m while i nodes
with addresses `1, . . . , `i are connected to it and consequently can receive
m. To model the network constraint calculations, each ({}, nsnd(m, `)).t and
({? `}, nrcv(m).t (resulting from the axioms Dep1,2 in the previous step)
is encoded as

({},nsnd(m, `)).t :
nsnd0({},m, `).t +

17

∑
`1:Loc

([¬eq(`, `1)]nsnd1({` `1},m, `).t � 0+

∑
`2:Loc

([¬eq(`, `2) ∧ ¬eq(`1, `2)]nsnd2({` `1, `2},m, `).t � 0 +

. . . +∑
`n:Loc

([¬eq(`, `n) ∧ . . . ∧ ¬eq(`n−1, `n)]nsndn({` `1, . . . , `n},m, `).t � 0) . . .))

({? `},nrcv(m)).t :∑
`1:Loc

([¬eq(`, `1)]nrcv1({`1 `},m, `1).t � 0+

∑
`2:Loc

([¬eq(`, `2) ∧ ¬eq(`1, `2)]nrcv2({`1 `, `2},m, `1).t � 0 +

. . . +∑
`n:Loc

([¬eq(`, `n) ∧ . . . ∧ ¬eq(`n−1, `n)]nrcvn({`1 `, `2, . . . , `n},m, `1).t � 0) . . .))

where the sum, choice, conditional and action prefix operators are mCRL2
constructs with the same semantics as in CNT. A CNT term t with its
network receive and send actions encoded as above is denoted by =(t). The

CNT term ∂fM (t1 ‖ . . . ‖ tn), where M̃ is the set of all messages, is modeled by
the mCRL2 operators renaming ρ, allow ∇, communication Γ, and parallel
‖, where ρ{a→b} renames the action name a to b, ∇{a} renames all actions
except a to deadlock, and Γ{a|b→c} renames synchronized actions a and b to
c:

ρ{nsnd0→nsnd}(∇{nsnd0,nsnd}(
Γ{nsnd1|nrcv1→nsnd ,...,nsndn|nrcvn| . . . |nrcvn︸ ︷︷ ︸

n items

→nsnd}(=(t1) ‖ . . . ‖ =(tn)))).

Thus, the encoding of M0 is achieved by setting n to 4, and t1, t2, t3 and t4
to Initn(A,D), Midn(?, B), Midn(?, C), and Dstn(D) in the above formula.
The labeled transition system resulting from this encoding contains labels
of the form nsnd(C,m, `). Since only middle nodes look for a route to the
destination, the loop can only occur between the middle nodes B and C.
Therefore we can examine the existence of a loop by the following regular
µ-calculus formula [19]:

〈true?〉〈nsnd({B C}, data(C), B)〉
〈nsnd({C B}, data(B), C)〉true

18

where 〈true?〉 at the start of the formula denotes any system trace, and true
at the end of the formula any state. The CADP model checker confirms that
the above property holds, and returns the following execution:

M0
nsnd({B C},req(B),B)−−−−−−−−−−−−−−−−→M1

nsnd({C D},req(C),C)−−−−−−−−−−−−−−−−→M2
nsnd({D C},rep(D,C),D)−−−−−−−−−−−−−−−−−−→M3

M3
nsnd({C B},rep(C,B),C)−−−−−−−−−−−−−−−−−→M4

nsnd({},error(C),C)−−−−−−−−−−−−−→M5
nsnd({C B,D},req(C),C)−−−−−−−−−−−−−−−−−→M6

M6
nsnd({B C},rep(B,C),B)−−−−−−−−−−−−−−−−−→M7

nsnd({A B},data(B),A)−−−−−−−−−−−−−−−−→M8

M8
nsnd({B C},data(C),B)−−−−−−−−−−−−−−−−→M9

nsnd({C B},data(B),C)−−−−−−−−−−−−−−−−→M8 . . .

From this one can derive the following scenario during which a loop is formed.
Let B have a route to D through C (Figure 6(1)), and then the link between
C and D goes down. Next B loses the error message because of a temporary
link failure between C and B (Figure 6(2)). Then the link between C and B
becomes valid and C requests a path to D (Figure 6(3)). Finally B replies
and a loop is formed (Figure 6(4)). This scenario complies to the scenario
explained in [20]. However, there the model is verified against a specific
mobility scenario, while in our approach the model is verified against many
instances of mobility scenarios at the same time. Therefore, as explained
in Section 2, we can derive mobility scenarios leading to the (undesired)
property.

Sn0 Sn1

(know(idn)!,r),‹-,-›

(know(xn)?,┴),‹-,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

(know(idn)!,r/2),‹xn≤idn,-›

(know(xn)!,r),‹xn>idn,idn:=xn›

s2

s3

req!{B}

re
p!

{A
}

found!{B}

A
 B

req!{B}

{ }

req!{B}

{ }

rep!{A}
{ }

{ }

AB
C

A
B

C
A

B

C

(a) (b)

S1 S2

S3

Req!{B}

Rep
!{A

}
Found!{B}

Req!{B}

Rep!{A}

B AC B,

B AC B,

B AC B,

B A

C B,

B AC B,

Req!{B}

A
 B

B
 A

,

C
 B

,

A BB A,C B,

A, 1

B, 2

C, 3

D, 4

E, 5

F, 6

G, 7 H, 8

B, next=C C, next=D D B, next=? C

error(B)!

B, next=?l C

req(C)!

B, next=C

A, next=B B, next=A CA, next=B

(1) (2)

(3) (4)

s1

B A

s٢s١

nsnd(empNC,req(A),A)

s٠

nsnd(con(A,B,empNC),req(A),A)

nsnd(empNC,rep(B,A),B)

nsnd(con(B,A,empNC),rep(B,A),B)

nsnd(empNC,data(B),A)

…

…

A
D

C

B

A
D

C

B
A

D

C

BA
D

C

B

(1) (2) (3) (4)

A D

C

B
A D

C

B
A D

C

B

(1) (2) (3)

A D

C

B

A D

C

B
A

D
C

B

(1) (2) (3)

(a)

(b)

s١

req(A)!A

s٠

req(A)!{A}

rep(B,A)!{B}

{ }

A B

req(A)!A

{ }

{ }

s2s1

({ },nsnd(m1,A))

s0

({AkB},nsnd(m1,A))

({ },nsnd(m2,A))

({BkA},(nsnd(m2,B))

({ },nsnd(m3,B))

…

…

B A

B A

{ }

B A

{ }

nsnd(m1,A)
nsnd(m2,B)

nsnd(m1,A)

nsnd(m1,A) nsnd(m2,B)

nsnd(m2,B)

C, next=? D

nsnd(error(C),C)

C, next=? D

nsnd(req(C),C)

B, next=C

B, next=C C, next=B DB, next=C

(1) (2)

(3) (4)

nsnd(rep(B,C),B)

B, next=C C, next=D D

Figure 6: A scenario leading to a loop formation in the simple routing protocol.

A solution to prevent loop-formation is assigning a sequence number to
each route, to track changes in the underlying topology (and using hop counts
to choose the shorter path). When there is a topology change, the sequence
number is incremented. Thus the protocol is refined as follows: each node
sends its req by appending its known sequence number (for the destination),

19

to indicate the freshness of the route required. Each node also keeps the
sequence number for each destination in its routing table, and replies to a
request only if its sequence number is at least as much as the one in the re-
quest message. When a route expires, the node should keep the incremented
sequence number for that destination, to remember the sequence number
for which it should initiate the request, as remarked in [20]. We have also
experienced this in model checking, as otherwise a loop is formed.

We revised our code by assigning a sequence number (and a hop count)
to each route (as shown in Section 5.4). To keep the state space finite, we
specified that a Mid process can only detect a link breakage once, since it
causes an increase in the sequence number. By model checking we are sure
that the protocol is correct for scenarios leading to one link breakage with
three middle nodes. We will verify the correctness of the improved protocol
for an arbitrary number of link breakages and number of middle nodes in
Section 5.4, using a symbolic verification technique.

5. Symbolic Verification

To prove the correctness of a communication protocol, it is common to
prove a network composed of a number of nodes each deploying the protocol
-referred to as the implementation- equivalent to a more abstract description
-the specification- of the desired external behavior.

We rephrase the question whether the implementation of a MANET and
its specification are equivalent in terms of proof obligations on relations be-
tween data objects. This technique is based on the cones and foci method [6].
A restricted class of CNT specifications, called linear computed network
equations, are considered, in which the states are data objects. To prove
equivalence of an implementation and a specification, given in this linear
format, a state mapping between the data objects of the implementation
and specification is given. The proof is completed by showing that the state
mapping constitutes a branching computed network bisimulation.

5.1. Linear Computed Network Equations and Invariants

A linear computed network equation (LCNE) is a computed network term
consisting of only action prefix, summation and conditional operators; it does
not contain any parallel, encapsulation, abstraction and hiding operators.
An LCNE is basically a vector of data parameters together with a list of
condition, action and effect triples, describing for each state under which

20

condition an action may happen and what is its effect on the vector of data
parameters. Each computed network term can be transformed into an LCNE
using the axioms (cf. [21]). In this paper we do not discuss the algorithm
transforming a network specification into an LCNE, but will only consider
one example in Section 5.3.

Without loss of generality, we assume that each message constructor
has exactly one parameter. Let the set of (concrete) actions be Act c =
{nsnd(m(−), `), nrcv(m(−))|∀m : Dm → Msg , ∀` ∈ Loc}, ranged over by
η(−).

Definition 4. A linear computed network equation is a CNT specification of
the form

A(d : D)
def
=

∑
η:Actc∪{τ}

∑
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).A(gη(d, e)) � 0

where hη : D × E → Bool, Cη : D × E → C, fη : D × E → Dm and
gη : D × E → D for each η ∈ Act c ∪ {τ}.

The LCNE in Definition 4 has exactly one CLTS as its solution (modulo
strong bisimilarity). In this CLTS, the states are data elements d : D, where
D may be a Cartesian product of n data types, i.e. (d1, . . . , dn), the transition
labels are the network send and receive actions of messages parameterized
with data, and the transition constraints are network constraints parameter-
ized with data. The LCNE expresses that state d can send/receive message
η(fη(d, e)) for the set of topologies specified by Cη(d, e) to end up in state
gη(d, e) under the condition that hη(d, e) is true.

Definition 5. A mapping I : D → Bool is an invariant for an LCNE,
written as in Definition 4, if for all η ∈ Act c ∪ {τ}, d : D and e : E,

I(d) ∧ hη(d, e)⇒ I(gη(d, e)).

Invariants can be used to characterize the set of reachable states of an
LCNE. Namely, if I(d) and it is possible to perform η(fη(d, e)) (since hη(d, e)
holds), then I holds in the resulting state gη(d, e).

5.2. Equivalence Checking by using State Mappings

The system implementation and specification, both given in linear format,
are branching computed network bisimilar, if there exists a state mapping φ

21

between them satisfies the transfer conditions of Definition 2. An invariant
I can be imposed; then the transfer conditions only need to hold in states
where I is true, and consequently equivalence between implementation and
specification is only guaranteed to hold in states where I is true.

To allow infinite sequences of τ -transitions in the implementation, we
leave the abstraction operator τfM around it, to ensure that it has a unique

solution. The set of communications over M̃ is defined by IfM as

{nsnd(C,m, `), nrcv(C,m)|∃m ∈ M̃ · isTypem(m)}.

Let 〈η〉 denote η or, η[`/?] and η is of the form nsnd(m, ?). Depending on the
value of 〈η〉, for any binary relation �, rη(e, d)�r′〈η〉(e, d′) iff rη(e, d)�r′η(e, d′)
or rη(e, d)[`/?]� r′η[`/?](e, d′).

Proposition 1. Let the LCNE Imp be of the form

Imp(d : D)
def
=

∑
η∈Actc∪{τ}

∑
e:E

[hη(d, e)](Cη(d, e), η(fη(d, e))).Imp(gη(d, e)) � 0

Furthermore, let the LCNE Spec be of the form

Spec(d′ : D′)
def
=

∑
η∈Actc\IfM

∑
e:E

[h′η(d
′, e)](C ′η(d′, e), η(f ′η(d

′, e))).Spec(g′η(d
′, e))�0

Let I : D → Bool be an invariant for Imp, and φ : D → D′ a state mapping.
If for all η ∈ Act c \ IfM and ητ ∈ IfM , φ satisfies the following conditions:

1. ∀e : E(hητ (d, e)⇒ φ(d) = φ(gητ (d, e)));

2. ∀e : E, hη(d, e) implies that either η is a receive action such that φ(d) =
φ(gη(d, e)), or h′〈η〉(φ(d), e) holds for some 〈η〉 such that fη(d, e) =

f ′〈η〉(φ(d), e), C ′〈η〉(φ(d), e) ⊆ Cη(d, e), and φ(gη(d, e)) = g′〈η〉(φ(d), e);

3. ∀e : E, h′η(φ(d), e) implies that either η is a receive action such that

φ(d) = g′η(φ(d), e), or there exists d∗ such that d
ητ1−→C1 . . .

ητn−→Cn
d∗, where ητ1 , . . . , ητn ∈ IfM , and for some 〈η〉, h〈η〉(d∗, e) holds with
f〈η〉(d

∗, e) = f ′η(φ(d), e), C〈η〉(d∗, e) ⊆ C ′η(φ(d), e), and φ(g〈η〉(d
∗, e)) =

g′η(φ(d), e));

then for all d : D with I(d), τfM(Imp(d)) 'b Spec(φ(d)).

22

See Appendix A for the proof. Since each state of the specification
defines the external behavior of the implementation with regard to any pos-
sible topology changes, the mapped state of the implementation should not
be changed by τ -transitions (which may be triggered due to some topology
changes), as implied by the first criterion. And each state of the implementa-
tion has the same observable behavior as its mapped state in the specification,
directly or after some some topology changes, as implied by the second and
third criterion.

Due to mobility of nodes, MANET protocols usually contain mechanisms
to examine if a node connection to some other node exists or not. For in-
stance, a node may examine whether it is still connected to its next hop for a
destination in a routing protocol, or to its leader in a leader election protocol.
Such mechanisms are modeled by non-deterministic behavior in the protocol
specification, which restarts some part of the process (like route discovery
in a routing protocol). Due to such mechanisms, in each state of the imple-
mentation, the observable behavior may change after a set of τ -transitions.
On the other hand, since we assume arbitrary mobility for MANET nodes,
each state of the specification defines the behavior of a MANET for any
possible topology change. Therefore, we lack a collection of so-called focus
points [6, 7]: states in the implementation that can be matched to some state
in the specification with the same observable behavior.

For example, to show that ∀n : Nat ·N(n) 'b M(n), where

N(n : Nat)
def
= [n ≥ 1]({}, nsnd(data(B), A)).N(n+ 1) � 0 +

[n ≥ 1]({}, nsnd(data(B), ?)).N(n+ 2) � 0

M(b : Bool)
def
= [eq(b, T)]({}, nsnd(data(B), A)).M(b) � 0

it suffices to show that φ(n) = if (n ≥ 1, T, F) satisfies the second and third
conditions of Proposition 1 (as there is no abstraction):

• When n ≥ 1 holds, two actions η1 ≡ nsnd(data(−), A) and η2 ≡
nsnd(data(−), ?) are possible. For the first action, fη1(n) = B, Cη1(n) =
{}, and gη1(n) = n + 1. Since φ(n) = T , h′η1(T) while fη1(n) =
f ′η1(T), C ′η1(T) ⊆ Cη1(n), and φ(gη1(n)) = g′η1(T). For the second
action, fη2(n) = B, Cη2(n) = {}, and gη2(n) = n + 2. The only ac-
tion of M is again matched to this action, since 〈nsnd(data(−), ?)〉 =
nsnd(data(−), A), while fη2(n) = f ′〈η2〉(T), C ′〈η2〉(T) ⊆ Cη2(n), and

φ(gη2(n)) = g′〈η2〉(T).

23

• The only action of M when eq(φ(n ≥ 1), T)) is η ≡ nsnd(data(−), A),
and the same action is enabled in N when n ≥ 1, with the same
parameter and network constraint.

5.3. Linearization of Uniform MANETs

In practice a MANET often consists of an arbitrary set of similar nodes:
each node is identified by a unique network address, and deploys the same
protocols. In this section we show how our symbolic verification approach
can be exploited to verify such networks. To this aim, we first provide a
general recursive specification for MANETs with similar nodes, and then
derive a linear computed network equation as a solution of the recursive
specification, using the CNT axioms, data axioms and induction. The derived
linear equation is strongly bisimilar to the original recursive equation.

Without loss of generality, we assume that each message constructor has
exactly one parameter. We assume that each process P (`, d) is defined using
a linear process equation (LPE) [22] of the form:

P (` : Loc, d : D)
def
=∑

m∈Msg

∑
e:Em

[hms(`, d, e)]snd(m(fms(`, d, e))).P (`, gms(`, d, e)) � 0 +

[hmr(`, d, e)]rcv(m(fmr(`, d, e))).P (`, gmr(`, d, e)) � 0
(1)

where hms/mr : Loc × D × Em → Bool , fms/mr : Loc × D × Em → Dm and
gms/mr : Loc ×D × Em → D for each m ∈ Msg .

As we do not want to fix the addresses of nodes in the MANET before-
hand, we use two auxiliary data sorts: LocList which is a list of network
addresses of nodes, and similar to the approach of [9], DTable which is a
table indexed by network addresses, where each entry maintains the state
of the node at the corresponding network address. We also exploit for each
m ∈ Msg an auxiliary data sort EListm, which is a list of elements of sort
Em, the auxiliary data type used in functions of messages (see equation 1).

The sort LocList is defined below. Lists are generated from the empty
list empL and add , which places a new address in the list. The function has
examines if an element belongs to the list; include examines if the first list
is included in the second list; remove removes an address from the list; head
returns the first element of the list; size returns the length of the list; nodup
examines if the list has no duplicated item; and eq compares two lists.

To increase readability, we write binary functions in infix manner, and
use symbols ∅, ., ∈, ⊆, \, | | and `l[0] for empL, add , has , include, remove,

24

size and head(`l), respectively. The data sort EListm for m ∈ Msg is defined
in the same way as LocList , but using the constant empEm.

sort LocList
func empL :→ LocList

add : Loc × LocList → LocList
map has : Loc × LocList → Bool

include, eq : LocList × LocList → Bool
remove : LocList × Loc → LocList
head : LocList → Loc
size : LocList → Nat
nodup : LocList → Bool

var `l, `l1, `l2 : LocList , `, `1, `2 : Loc
rew has(`, empL) = F LA1

has(`1, add(`2, `l)) = if (eq(`1, `2), T, has(`1, `l)) LA2

include(empL, `l) = T LA3

include(add(`, `l1), `l2) = has(`, `l2) ∧ include(`l1, `l2) LA4

remove(empL, `) = empL LA5

remove(add(`1, `l), `2) =
if (eq(`1, `2), remove(`l, `2), add(`1, remove(`l, `2))) LA6

head(add(`, `l)) = ` LA7

size(empL) = 0 LA9

size(add(`, `l)) = size(`l) + 1 LA10

nodup(empL) = T LA11

nodup(add(`, `l)) = ¬has(`, `l) ∧ nodup(`l) LA12

eq(`l1, `l2) = include(`l1, `l2) ∧ include(`l2, `l1) LA13

Tables are generated from the constant empT and an operation upd ,
which places a new entry in the table. The function get gets an entry from
the table using its index. The function upd all gm(` . `l, e . el , dt) updates the
list of entries ` . `l in the table using the function gm : Loc ×D × Em → D;
the entry ` is updated by gm(`, get(`, dt), e), which uses the network address
`, the previous value at the entry, and an auxiliary value e. Intuitively
this function is helpful to update a set of receiver nodes that communicate
with a sender over message m. Similarly the function and allhm,fm,f ′

m
(`1 .

`l, `2, e2, e1 . el , dt) examines a boolean expression on a list of entries `1 . `l
using functions hm : Loc ×D × Em → Bool and fm, f

′
m : Loc ×D × Em →

Dm; for each entry `1, it examines if hm(`1, get(`1, dt), e1) evaluates to true
and if f ′m(`1, get(`1, dt), e1) is equal to fm(`2, get(`2, dt), e2). Intuitively this
function is helpful to examine if a set of nodes can synchronize with each

25

other upon receiving a message of type m, i.e., whether the conditions of
their actions are true (examined by hm) and their message parameters are
equal to each other (examined by fm, f

′
m).

sort DTable
func empT :→ DTable

upd : Loc ×D ×DTable → DTable
map get : Loc ×DTable → D

upd allgm : LocList × EListm ×DTable → DTable
and allhm,fm,f ′

m
: LocList × Loc × Em × EListm ×DTable → Bool

var `, `1, `2 : Loc, `l : LocList ,
d : D, dt : DTable,
e, e1, e2 : Em, el : EListm

rew get(`1, upd(`2, d, dt)) = if (eq(`1, `2), d, get(`1, dt)) TA1

upd allgm(empL, el , dt) = dt TA2

upd allgm(add(`, `l), add(e, el), dt) =
upd(`, gm(`, get(`, dt), e), upd allgm(`l, el , dt)) TA3

and allhm,fm,f ′
m

(empL, `, e, el , dt) = T TA4

and allhm,fm,f ′
m

(add(`1, `l), `2, e2, add(e1, el), dt) =
and(hm(`1, get(`1, dt), e1), and(eq(fm(`2, get(`2, dt), e2),
f ′m(`1, get(`1, dt), e1)), and allhm,fm,f ′

m
(`l, `2, e2, el , dt))) TA5

Axioms TA2−5 are schematic and can be defined for all functions gms/mr ,
hms/mr , fms/mr in equation (1) for any m ∈ Msg .

In the remainder we write dt[`] instead of get(`, dt). The following net-
work recursive specification puts nodes deploying process P at network ad-
dresses of `l in parallel.

Manet(`l : LocList , dt : DTable)
def
=

[eq(`l, ∅)]0 � [[P (`l[0], dt[`l[0]])]]`l[0] ‖ Manet(`l \ `l[0], dt).
(2)

Below we present the core lemma of this section. It gives an expansion of
Manet , where all operators for parallelism have been removed. The resulting
network has the list `l and the table dt as parameters. In essence, the com-
plexity of the computed network Manet is now encoded using the list and
table operations.

Lemma 1 says that in the network X, the node with network address
k ∈ `l may send the message m, parameterized by data from this node, if it is
ready to send (as indicated by hms(k, dt[k], e)) to a list `s (without duplicates)
of receiver nodes with addresses in `l \ k that are all ready to receive such

26

a message (examined by and allhmr ,fms ,fmr). Table entries with indices in `s
and k are updated as a result of this communication (using upd all gmr). The
function C(`, `s) = {` `′|`′ ∈ `s} specifies the network constraint for this
behavior of the network, indicating there is a communication link from ` to
each node in `s. Nodes in the network X may also receive a message m from
an unknown address ?; the receiving nodes must have network addresses in
`s, where `s ⊆ `l ∧¬eq(`s, ∅)∧ nodup(`s), and must be ready to receive such
a message (examined by and allhmr ,fmr ,fmr). All table entries with indices in
`s are updated as a result of this receive action (using upd all gmr).

Lemma 1. The MANET Manet as defined in equations 1 and 2 is a solution
for the MANET X in equation 3 below.

X(`l : LocList , dt : DTable)
def
=∑

m∈Msg

∑
k:Loc

∑
`s:LocList

∑
e:Em

∑
el :EListm

[k ∈ `l ∧ `s ⊆ `l \ k ∧ nodup(`s) ∧ |`s| = |el |∧
hms(k, dt[k], e) ∧ and allhmr ,fms ,fmr (`s, k, e, el , dt)]

(C(k, `s), nsnd(m(fms(k, dt[k], e)), k)).
X(`l, upd(k, gms(k, dt[k], e), upd all gmr (`s, el , dt))) � 0 +∑

m∈Msg

∑
`s:LocList

∑
el :EListm

[`s ⊆ `l ∧ ¬eq(`s, ∅) ∧ nodup(`s) ∧ |`s| = |el |∧
and allhmr ,fmr ,fmr (`s, `s[0], el [0], el , dt)]

(C(?, `s), nrcv(m(fmr(`s[0], dt[`s[0]], el [0])))).
X(`l, upd all gmr (`s, el , dt)) � 0.

(3)

See [14] for the proof. The following Composition Theorem is a corollary
of Lemma 1 and the axiom Fold .

Theorem 1. Manet(`l, dt) = X(`l, dt).

5.4. Verification of the Improved Routing Protocol

The revised versions of the processes of Figure 5, which exploit sequence
numbers to trace the freshness of routes and hop counts to choose the shortest
paths, are specified in Figures 7 and 8.

Then the linear format of these specifications are given in Figures 9 and 10
(see [14] for explanations how the linear formats are derived). In each sum-
mand of the LPEs (and LCNEs later), we only present the parameters whose
values are changed: d/x denotes that the parameter x is assigned the data
term d. Moreover, b and ¬b denote eq(b, T) and eq(b, F) respectively. In

27

Figure 7: The revised specifications of the middle process.

Mid(nx : Loc, hp : Nat, sq : Nat, adr : Loc)
def
=

[¬(eq(nx, ?))](∑
lx:Loc rcv(data(lx)).[eq(lx, adr)]
snd(data(nx)).Mid(nx, hp, sq, adr)
�Mid(nx, hp, sq, adr) +∑

lx:Loc rcv(error(lx)).
[eq(lx, nx)]snd(error(adr)).RtDy(sq + 1, adr, ?)

�Mid(nx, hp, sq, adr) +
snd(error(adr)).RtDy(sq + 1, adr, ?) +∑

lx:Loc

∑
sx:Nat rcv(req(lx, sx)).

[sq ≥ sx]snd(rep(adr, lx, sq, hp)).Mid(nx, hp, sq, adr)
�RtDy(sx, adr, lx))

� (RtDy(sq, adr, ?) +∑
lx:Loc

∑
sx:Nat rcv(req(lx, sx)).RtDy(max(sx, sq), adr, lx))

RtDy(sq : Nat, adr : Loc, src : Loc)
def
=

snd(req(adr, sq)).
(
∑

lx:Loc

∑
ly:Loc

∑
sx:Nat

∑
hpx:Nat rcv(rep(lx, ly, sqx, hpx)).(

[eq(ly, adr) ∧ sx ≥ sq]
([¬eq(src, ?)]snd(rep(adr, src, sqx, hpx+ 1)).Mid(lx, hpx+ 1, sqx, adr)
�Mid(lx, hpx+ 1, sqx, adr))

�RtDy(sq, adr, src))
+RtDy(sq, adr, src)

Figure 8: The revised specification of destination process.

Dst(sq : Nat, adr : Loc)
def
=∑

lx:Loc

∑
sx:Nat rcv(req(lx, sx)).

snd(rep(adr, lx,max(sqx, sq), 0)).Dst(max(sqx, sq), adr)∑
lx:Loc rcv(data(lx)).[eq(lx, adr)]0 �Dst(sq, adr).

28

these specifications, all request and reply messages carry the sequence num-
ber of the path they request for or reply to, while reply messages also carry
the hop count of the path. When a process broadcasts the message error
to inform its neighbors that it cannot be used as a router, it increments its
sequence number, which will be used later in the route discovery process.
Therefore, a node that has not received an error message on a route for a
destination, cannot reply to a request message, since its sequence number is
less than the sequence number of the request message. The dih parameter in
process Mid is introduced during the linearization process to indicate when
data is hold by the node.

Figure 9: The linearized equations of the initiator and destination processes.

Init(s : Nat , adr , dst : Loc)
def
=∑

lx:Loc [eq(s, 0) ∧ ¬eq(lx, ?) ∧ ¬eq(lx, adr) ∧ ¬eq(lx, dst)]
snd(data(lx)).Init(1/s) � 0

Dst(s : Nat , src : Loc, sq : Nat , adr : Loc)
def
=∑

lx:Loc

∑
sx:Nat [eq(s, 0)]rcv(req(lx, sx)).

Dst(1/s,max(sx, sq)/sq, lx/src) � 0 +
[eq(s, 1)]snd(rep(adr , src, sq, 0)).Dst(0/s) � 0 +∑

lx:Loc [eq(s, 0)]rcv(data(lx)).Dst(if (eq(lx, adr), 2, s)/s) � 0.

The desired external behavior of a MANET running the routing protocol
is given by the process Routing in Figure 11. The intuition behind this
specification is: when data is held by a middle node (n ≥ 1) and there is
no routing loop on its route to the destination, the distance that the data
message should pass to reach the destination, specified by n, is at most N ,
where N is the number of middle nodes. However, when there is a movement
or an error among the nodes including the next node on the route (and the
next hop is not the destination, i.e. n > 1), the route and consequently the
distance to pass may change. This change is specified by arbitrary changes
of n to a value less than N (since the middle node holding the data would
not participate in the route discovery of its next hop, the number of middle
nodes participating in the route discovery is at most N − 1). For a network
with only the known address B, the data message begins its journey from
some initiator (that itself does not know any route to the destination) with
n = 0, until it reaches the destination B, in the mean time moving between

29

Figure 10: The linearized equation of the middle process.

Mid(s : Nat , nx, src : Loc, sq, hp : Nat , adr : Loc, dih : Bool)
def
=

[dih]snd(data(nx)).Mid(F/dih) � 0 +∑
lx:Loc [eq(s, 0) ∧ ¬eq(nx, ?) ∧ ¬dih]
rcv(data(lx)).Mid(if (eq(lx, adr), T, dih)/dih) � 0 +

[(eq(s, 0) ∧ eq(nx, ?)) ∨ s ≥ 3]
snd(req(adr , sq)).Mid(4/s, if (eq(s, 0), ?, src)/src) � 0 +∑
lx:Loc

∑
sx:Nat [¬dih ∧ eq(s, 0)]rcv(req(lx, sx)).

Mid(if (sx > sq ∨ eq(nx, ?), 3, 2)/s, lx/src,max(sq, sx)/sq) � 0 +
[eq(s, 2)]snd(rep(adr , src, sq, hp)).Mid(0/s) � 0 +∑

lx:Loc

∑
dx:Loc

∑
sx:Nat

∑
hx:Nat [eq(s, 4)]

rcv(rep(lx, dx, sx, hx)).
Mid(if (eq(dx, adr) ∧ sx ≥ sq, if (¬eq(src, ?), 2, 0), s)/s,

if (eq(dx, adr) ∧ sx ≥ sq, lx, nx)/nx,
if (eq(dx, adr) ∧ sx ≥ sq, sx, sq)/sq,

if (eq(dx, adr) ∧ sx ≥ sq, (hx+ 1), hp)/hp) � 0 +
[eq(s, 1) ∨ (¬dih ∧ eq(s, 0) ∧ ¬eq(nx, ?))]snd(error(adr)).

Mid(3/s, ?/src, (sq + 1)/sq) � 0 +∑
lx:Loc [¬dih ∧ eq(s, 0) ∧ ¬eq(nx, ?)]
rcv(error(lx)).Mid(if (eq(lx, nx), 1, s)/s) � 0

Figure 11: The desired external behavior.

Routing(n,N : Nat ,fin : Bool)
def
=

[(¬fin ∧ n > 1) ∨ eq(n, 0)]
({},nsnd(data(?), ?)).Routing(T/fin) � 0 +∑
h:Nat [(¬fin ∧ n > 1 ∧ h < N) ∨ (eq(n, 0) ∧ h ≤ N)]
({},nsnd(data(?), ?)).Routing(h/n) � 0 +

[¬fin ∧ eq(n, 1)]({},nsnd(data(B), ?)).Routing(T/fin) � 0

30

(middle nodes with) unknown addresses. If a next hop loses the data or the
destination receives the data, there is no further data message. The boolean
variable fin is false as long as the initiator or a middle node holds the data.
In any state, either the data is safely transferred to the next hop (while
the distance of the next hop may change in case the next hop is not the
destination), or the next hop may lose it (and consequently fin is updated
to true). Due to arbitrary mobility of nodes, always a route is found from
any middle node to the destination. Therefore, the desired external behavior
specifies that data always reaches its destination, unless it is lost on the way.

We are going to prove that the parallel composition of a node with the
initiator process, a finite number of nodes deploying the middle process,
specified by nMid using equation 2, and a node with the destination process,
behaves like Routing :

nMid(`l : LocList , ξt : ΞTable)
def
=

[eq(`l, ∅)]0 � ([[Mid(ξt[`l[0]])]]`l[0] ‖ nMid(`l \ `l[0], ξt))

where nodup(`l), Ξ : Nat × Loc2 × Nat2 × Loc × Bool , and ΞTable is a
table containing elements of sort Ξ. Let ξ ∈ Ξ represent the sequence
〈s, nx, src, hp, sq, adr , dih〉. getdih(`, ξt) returns the dih element of the en-
try with index ` in the table ξt : ΞTable, and upddih(`, b, ξt) updates such an
element. We use dih i or ξt[i].dih to denote getdih(i, ξt). Our goal is to derive
the following equation (Theorem 2):

({}, τ).Routing(0, |`l|, F) = ({}, τ).τfM2
(∂fM1

((νA)
[[Init(0, A,B)]]A ‖ (ν`l)nMid(`l, ξt) ‖ [[Dst(0, ?, 0, B)]]B))

(4)

where M̃1 = {req , rep, error , data}, M̃2 = {req , rep, error}, (ν`l) abbreviates
(ν`1) . . . (ν`n) for all `1, . . . , `n ∈ `l, A,B 6∈ `l, and for all i ≤ |`l|, the ith

entry of table ξt is 〈0, ?, ?, 0, 0, i, F 〉. The initial τ actions specify the initial
route discoveries of middle nodes. To prove equation 4 regarding Lemma 2,
we exploit the symbolic verification technique to show that:

Routing(0, |`l|,fin) 'b τfM2
(InitnMidDst(0, `l, ξt, 0, ?, 0))

where

InitnMidDst(sA : Nat , `l : LocList , ξt : ΞTable, sB : Nat , srcB : Loc, sqB : Loc)
def
=∑

lx:Loc

∑
ls:LocList

[eq(sA, 0) ∧ ls ⊆ `l ∧
∧
i∈ls

(eq(si, 0) ∧ ¬eq(nxi, ?) ∧ ¬dihi)] (1)

31

({},nsnd(data(?), ?)).InitnMidDst(1/sA, ∀i∈lsif (eq(lx, i), T, dihi)/dihi) � 0 +∑
k:Loc

∑
ls:LocList

[k ∈ `l ∧ ls ⊆ (B . `l \ k) ∧ dihk (2)∧
i∈ls\B

(eq(si, 0) ∧ ¬eq(nxi, ?) ∧ ¬dihi ∧ (B ∈ ls⇒ eq(sB, 0)))]

(if (B ∈ ls, {? B}, {}),nsnd(data(if (eq(nxk, B), B, ?)), ?)).
InitnMidDst(F/dihk, ∀i∈ls\Bif (eq(nxk, i), T, dihi)/dihi,

if (B ∈ ls ∧ eq(nxk, B), 2, sB)/sB) � 0 +∑
k:Loc

∑
ls:LocList

[k ∈ `l ∧ ls ⊆ (B . `l \ k) ∧ ((eq(sk, 0) ∧ eq(nxk, ?)) (3)

∨ sk ≥ 3)
∧

i∈ls\B

(¬dihi ∧ eq(si, 0) ∧ (B ∈ ls⇒ eq(sB, 0)))]

(if (B ∈ ls, {? B}, {}),nsnd(req(?, sqk), ?)).
InitnMidDst(4/sk, if (eq(sk, 0), ?, srck)/srck, ∀i∈ls\B(

if (sqk > sqi ∨ eq(nxi, ?), 3, 2)/si, k/srci,max(sqi, sqk)/sqi),
if (B ∈ ls, 1, sB)/sB, if (B ∈ ls,max (sqk, sqB), sqB)/sqB,

if (B ∈ ls, k, srcB/srcB)) � 0+∑
k:Loc

∑
ls:LocList

[k ∈ `l ∧ ls ⊆ (`l \ k) ∧ eq(sk, 2)
∧

i∈ls\B

eq(si, 4)] (4)

({},nsnd(rep(?, ?, sqk, hpk), ?)).InitnMidDst(0/sk, (
∀i∈lsif (eq(srck, i) ∧ sqk ≥ sqi, if (¬eq(srci, ?), 2, 0), si)/si,

if (eq(srck, i) ∧ sqk ≥ sqi, k, nxi)/nxi,
if (eq(srck, i) ∧ sqk ≥ sqi, sqk, sqi)/sqi,

if (eq(srck, i) ∧ sqk ≥ sqi, hpk + 1, hpi)/hpi)) � 0+∑
ls:LocList

[eq(sB, 1) ∧ ls ⊆ `l ∧ ¬eq(ls, ∅)
∧
i∈ls

eq(si, 4)] (5)

({},nsnd(rep(B, ?, sqB, 0), B)).InitnMidDst((
∀i∈lsif (eq(srcB, i) ∧ sqB ≥ sqi, if (¬eq(srci, ?), 2, 0), si)/si,

if (eq(srcB, i) ∧ sqB ≥ sqi, B, nxi)/nxi,
if (eq(srcB, i) ∧ sqB ≥ sqi, sqB, sqi)/sqi,

if (eq(srcB, i) ∧ sqB ≥ sqi, 0, hpi)/hpi), 0/sB) � 0+∑
k:Loc

∑
ls:LocList

[k ∈ `l ∧ ls ⊆ (`l \ k) ∧ (eq(sk, 1) (6)

32

∨ (¬dihk ∧ eq(sk, 0) ∧ ¬eq(nxk, ?)))
∧
i∈ls

(¬dihi ∧ eq(si, 0) ∧ ¬eq(nxi, ?))]

({},nsnd(error(?), ?)).InitnMidDst(3/sk, ?/srck, (sqk + 1)/sqk,
∀i∈lsif (eq(k, nxi), 1, si)/si) � 0

where
∧
i∈`s examines a boolean expression on, and ∀i∈`s updates, a set of

entries, implemented like the functions and allhm,fm,f ′
m

and upd all gm , respec-
tively. For instance,

∧
i∈ls eq(si, 4) and ∀i∈lsif (eq(k, nxi), 1, si)/si) are equal

to and all(ls, ξt) and upd all(ls, k, ξt) respectively, where:

and all(∅, ξt) = T
and all(` . `l, ξt) = eq(ξt[`].s, 4) ∧ and all(`l, ξt)
upd all(∅, `′, ξt) = empT
upd all(` . `l, `′, ξt) = upd s(`, if (eq(`′, ξt[`].nx), 1, ξt[`].s), upd all(`l, `′, ξt)).

Lemma 2.

InitnMidDst(sA, `l, ξt, sB, srcB, sqB) =
∂fM1

((νA)[[Init(sA, A,B)]]A ‖ (ν`l)nMid(`l, ξt) ‖ [[Dst(sB, srcB, sqB, B)]]B).

Proof. We first expand nMid(`l, ξt) by application of Composition The-
orem 1 (see [14]), and then ∂fM1

((νA)[[Init(sA, A,B)]]A ‖ (ν`l)nMid(`l, ξt) ‖
[[Dst(sB, srcB, sqB, B)]]B) by application of parallel, hiding, and encapsulation
and LA1−13 axioms. We conclude the proof by application of Fold .

We introduce the state mapping φ : Nat×LocList×ΞTable×Nat×Loc×
Nat → Nat2×Bool , where φ(sA, `l, ξt, sB, srcB, sqB) = (n,N, fin) is defined:

n = if (¬fin, if (eq(sA, 0), 0,∃i∈`l · dih i ⇒ hpi), any value)
N = |`l|
fin =

∧
i∈`l ¬dih i ∧ eq(sA, 1)

As long as data is held by some node in the network (¬fin), the value of 0
for n denotes that the data is held by the initiator (that does not know any
route to the destination) while the value n ≥ 1 denotes that the data is held
by a middle node and so this value specifies the distance that data message
should pass to reach the destination. Therefore, when data is not held by
the initiator (¬eq(sA, 0)), its value is the hop count of middle node holding
the data. The maximum distance that the data message can pass equals the
number of middle nodes. Since fin implies no further data transmission, it

33

becomes true if the middle nodes and the initiator do not have the data. The
values of sB, srcB and sqB do not affect φ, so we write φ(sA, `l, ξt) instead of
φ(sA, `l, ξt, sB, srcB, sqB).

Invariants of InitnMidDst(sA, `l, ξt, sB, srcB, sqB) are:

I1 ≡ eq(si, 0) ∨ eq(si, 1) ∨ eq(si, 2) ∨ eq(si, 3) ∨ eq(si, 4) ∨ eq(si, 5)

I2 ≡ (eq(sB, 0) ∨ eq(sB, 1) ∨ eq(sB, 2)) ∧ (eq(sA, 0) ∨ eq(sA, 1))

I3 ≡ eq(nxi, j) ∨ eq(nxi, ?)

I4 ≡ dih i ⇒ eq(sA, 1) ∧ ∀k∈`l∧¬eq(k,i)¬dihk

I5 ≡ dih i ⇒ eq(si, 0) ∧ ¬eq(nxi, ?)

I6 ≡ eq(nxi, j) ∧ eq(sj, 0)⇒ ¬eq(nxj, ?)

I7 ≡ eq(nxi, j) ∧ si ≤ 2⇒ sqj ≥ sqi ∧ hpi > 0

I8 ≡ eq(nxi, j) ∧ eq(sqi, sqj) ∧ si ≤ 2⇒ eq(hpi, hpj + 1)

I9 ≡ eq(nxi, B)⇔ eq(hpi, 1) ∧ sqB ≥ sqi

I10 ≡ eq(si, 3) ∨ eq(si, 4)⇔ eq(nxi, ?)

I11 ≡ si ≤ 2⇒ ¬eq(srci, ?)

where i, j ∈ `l such that ¬eq(i, j).
Invariants I1−3 define the ranges of variables. Intuitively I4 explains that

only one middle node or the initiator can hold the data, and I5 explains this
is when that node has a route to the destination (¬eq(nx, ?)) and stays in
the state 0. Each next hop always has a route unless it is involved in another
route discovery (when ¬eq(sj, 0)), as stated by I6. Invariants I7,8 imply that
on a route from a middle node to the destination, either the sequence numbers
increase, or the sequence numbers are equal (denoting to a stable route) and
the hop counts decrease. When a middle node is directed connected to the
destination, its hop count is 1, as explained by I9. The existence of a route
in the node i is inferred by the condition si ≤ 2, as implied by I10. By I11, a
node may send a reply to a node with address srci if it is involved in a route
discovery.

Lemma 3. I1−11 are invariants of InitnMidDst(sA, `l, ξt, sB, srcB, sqB).

Proof. We only prove invariants I7 and I8 together; the others can be proved
with a similar argumentation. We start from a state with eq(si, 0)∧eq(sj, 0)∧
eq(nxi, j)∧eq(sqi, sqj)∧eq(hpi+1, hpj)∧eq(nxj, k)∧¬eq(i, k). According to
the values of dih i and dihj, three cases can be considered. We examine the

34

activities of node i and j in these states, to trace how sqi, sqj and hpi, hpj
are changed. We use x′ to denote the updated value of x in the next state:

• dih i: In this state, according to I4, ¬dihj. By summand 2, node i may
send a data message, and two cases can be distinguished. If j ∈ ls,
a state with ¬dih ′i ∧ dih ′j is reached, otherwise a state with ¬dih ′i is
reached. Both cases are examined later. By summand 6, node j may
send an error while i 6∈ ls (since dih i), and a state with eq(s′j, 3)∧sq′j =
sqj + 1 is reached. From this state, only states with eq(nxi, j) ∧ sqj >
sqi∧dih i are reached, unless node i sends data which is examined later.
By summand 6, node j may receive an error message from any node
other than i and a state with eq(s′j, 1). Again from this state, node j
may send an error message, and a state with eq(s′j, 3) ∧ sq′j = sqj + 1
is reached as discussed before. By summand 3, node j may receive a
request from any node other than i. Depending on the value of the
carried sequence number, a state with eq(s′j, 2) or eq(s′j, 3) is reached.
In the former case, node j can only send a reply message by summand
4, and then a state with eq(s′j, 0) is reached again. In the latter case, a
state with eq(s′j, 3) ∧ sq′j = sqj + 1 is reached as discussed before.

• dihj: In this state, according to I4, it holds that ¬dih i. By summand 2,
node j may send a data message, and only a state with ¬dih i∧¬dihj is
reached (which is discussed later). By summand 6, node i may send an
error while j 6∈ ls (since dihj), and a state with eq(s′i, 3)∧ sq′i = sqi + 1
is reached. From this state, only states with eq(si, 0) ∧ ¬eq(nxi, j)
are reached, unless node j sends data which is examined later. By
summand 6, node i may receive an error, but since it was from a node
other than j, its state is not changed. By summand 3, node i may
receive a request from any node other than j. Depending on the value
of carried sequence number, a state with eq(s′i, 2) or eq(s′i, 3) is reached.
In the former case, node i can only send a reply message by summand
4, and then a state with eq(s′i, 0) is reached again. In the latter case, a
state with eq(s′i, 3) ∧ sq′i = sqi + 1 is reached, as discussed before.

• ¬dih i ∧¬dihj: By summands 3, 6, 2 and 1, the following cases need to
be considered:

– By summand 3, node i may receive a request from any node other
than j (since ¬eq(nxj, ?)), and depending on the value of its car-
ried sequence number, a state with eq(s′i, 2) or eq(s′i, 3) ∧ sq′i =

35

sqi + 1 is reached. In the former case, node i can only send a
reply message, and again a state with eq(s′i, 0) is reached. In the
latter case, by summand 3, node i may send a request, and a state
with eq(s′i, 4) is reached, while depending on j ∈ ls, node j may
receive such a request. If node j receives such a request, then
eq(s′j, 3)∧ eq(src′j, i)∧ sq′j = sqj + 1 holds. From this state, j may
find a path to the destination, and reply to i, so by summand 4,
a state with eq(si, 0) ∧ eq(nxi, j) ∧ eq(sqi, sqj) ∧ eq(hpi, hpj + 1)
can be reached. However if a node other than j replies to i,
then a state with eq(si, 0) ∧ ¬eq(nxi, j) is reached. If node j
does not receive such a request, then node i may send the re-
quest again by summand 3 until it receives a reply. If j never
receives these requests, then states with eq(si, 0)∧¬eq(nxi, j) are
reached, but if j receives one of these requests of i, then a state
with eq(s′j, 3) ∧ eq(src′j, i) ∧ sq′j = sqj + 1 is reached, as already
discussed.

– By summand 3, node j may receive a request from any node other
than i (since ¬eq(nxi, ?)). With a similar argumentation as in the
previous case, suppose that a state with eq(s′j, 3) ∧ sq′j = sqj +
1 ∧ ¬eq(src′j, i) is reached. From this state two sets of states can
be reached. Either node i may not send or receive any request
with a higher sequence number than its own, and consequently
only states with eq(si, 0) ∧ eq(nxi, j) ∧ sqj > sqi can be reached.
Or node i may send or receive a request with a higher sequence
number, in which case states with eq(si, 0) ∧ ¬eq(nxi, j) can be
reached (since ¬eq(src′j, i)).

– By summand 3, both nodes i, j may receive a request from a
node k, and depending on the carried sequence number, the next
states of both are 2 or 3. The first case is straightforward, as
discussed in the previous cases. In the second case, a state with
eq(s′l, 3) ∧ eq(src′l, k) ∧ sq′l = sql + 1 where l ∈ {i, j} is reached.
From this state, only states with eq(si, 0) ∧ ¬eq(nxi, j) can be
reached.

– By summand 6, node j may send an error message, and depending
on i ∈ ls, node i may receive. If node i does not receive it, then a
state with eq(s′j, 3)∧sq′j = sqj+1∧eq(src′j, ?) is reached. From this
state two sets of states can be reached. Either node i may not send

36

or receive any request with a higher sequence number than its own,
and consequently only states with eq(si, 0)∧ eq(nxi, j)∧ sqj > sqi
can be reached. Or node i may send or receive a request with
a higher sequence number, in which case states with eq(si, 0) ∧
¬eq(nxi, j) can be reached (since eq(src′j, ?)). If node i receives
the error, a state with eq(s′j, 3)∧sq′j = sqj+1∧eq(src′j, ?)∧eq(s′i, 1)
is reached. From this state, only states with eq(si, 0)∧¬eq(nxi, j)
can be reached (since eq(src′j, ?)).

– By summand 6, node i may send an error message, and no matter
whether j receives it or not, a state with eq(s′i, 3) ∧ sq′i = sqi +
1 is reached. By summand 3, node i may send a request, and
as discussed before, depending on whether j may receive such
requests and then sends a reply to i, two sets of states can be
reached: either eq(si, 0)∧ eq(nxi, j)∧ eq(sqi, sqi)∧ eq(hpi, hpj + 1)
or eq(si, 0) ∧ ¬eq(nxi, j).

– By summand 6, node i, j may receive an error from a node l.
Depending on nxl, one of the nodes i, j would receive it, and a
state with eq(nx′i, 2) or eq(nx′j, 2) is reached. In any of these state,
node i or j may send an error, which was discussed before.

– By summands 2 and 1, node i, j may receive data from a node l
where dih l. Depending on nx l, one of the nodes i, j may receive
it, and a state with ¬dih ′l ∧ dih ′i or ¬dih ′l ∧ dih ′j is reached, as
discussed before.

Lemma 4. For all sA, `l : LocList with nodup(`l), ξt, sB, srcB, sqB and
A,B 6∈ `l such that the invariants of I1−11 are satisfied, then

τfM2
(InitnMidDst(sA, `l, ξt, sB, srcB, sqB)) 'b Routing(φ(sA, `l, ξt)).

Proof. According to Proposition 1, the following conditions should be ex-
amined. Let ητ ∈ IfM1

where IfM1
= {nsnd(C,m, `), nrcv(C,m)|∃m ∈ M̃1 ·

isTypem(m)}. We use x′ to denote the updated value of x in the next state.

1. Two cases need to be considered for the states of InitnMidDst : the
data is held by node A, i.e. eq(sA, 0), or by a middle node i ∈ `l (since
if no node holds the data, no ητ action can make dihj for some node
j or eq(sA, 0), and consequently the mapped state, i.e. ¬fin, would

37

not change). If eq(sA, 0), then the mapped state is eq(n, 0) and no
ητ action can change sA. If dih i, then the mapped state is eq(n, hpi),
while ¬fin ∧ eq(N, |`l|). The hpi may change if node i receives a rep
message by summand 4 or 5 (when eq(si, 4)). But by invariant I5 and
dih i, eq(si, 0) holds and so it cannot receive such a message. Since an
ητ by another node would not change hpi and dih i, the mapped state
is not changed by any ητ .

2. Only communications of InitnMidDst over messages data are visible,
which are only possible when dih i for some node i ∈ `l or eq(sA, 0).
Therefore three classes of states can be considered.

• eq(sA, 0): By invariant I4,
∧
i∈`l ¬dih i holds. In these states, for

any arbitrary lx : Loc and ls : LocList , InitnMidDst performs
nsnd(data(?), ?) for all possible topologies {} by summand 1, while
node lx may receive or may not receive such data (depending on
lx ∈ ls∧eq(slx, 0)∧¬eq(nxlx, ?)). If node lx does not receive such
data, a state with eq(s′A, 1)

∧
i∈`l ¬dih i is reached, and this scenario

is matched with a same action and network constraint of Routing
which makes eq(fin ′, F). If node lx receives this message, a state
with dih ′lx is reached. This scenario can be matched with a same
action and network constraint of Routing , by which eq(n′, hplx).

• dih i∧eq(nxi, j)∧hpi > 1: By invariant I4, eq(sA, 1)
∧
j∈`l,¬eq(i,j) ¬dihj

holds. In these states, for any arbitrary ls : LocList , InitnMidDst
performs nsnd(data(?), ?) by summand 2 with the network con-
straint {? B} or {} depending on B ∈ ls, while node j
may receive or may not receive such data (depending on j ∈
ls∧ eq(sj, 0)∧¬eq(nxj, ?)). If node j does not receive such a mes-
sage, a state with ¬dih ′i ∧ eq(sA, 1)

∧
j∈`l,¬eq(i,j) ¬dihj is reached,

and this scenario is matched by the sending data action of Routing
with the network constraint {} which makes eq(fin ′, F). If the next
hop (node j) receives, then this scenario can be matched by the
sending data action of Routing with the network constraint {}, by
which eq(n′, hpj).

• dih i ∧ eq(nxi, j) ∧ eq(hpi, 1): By invariant I9, eq(j, B), and by
invariant I4, eq(sA, 1)

∧
j∈`l,¬eq(i,j) ¬dihj. In these states, for any

arbitrary ls : LocList , InitnMidDst performs nsnd(data(B), ?) by
summand 2 with the network constraint {? B} or {} depending
on B ∈ ls, and a state with ¬dih ′i ∧ eq(sA, 1)

∧
j∈`l,¬eq(i,j) ¬dihj is

38

reached. This scenario is matched by a sending data action of
Routing with the network constraint {} which makes eq(fin ′, F).

3. Four cases can be considered for φ(sA, `l, ξt), i.e. the states of Routing :

• fin : In this case no action can be performed. The same holds for
InitnMidDst , since the mapping state is

∧
i∈`l ¬dih i ∧ eq(sA, 1),

and by summands 2 and 1, data can be sent when eq(sA, 0) or
dih i for some i ∈ `l;
• eq(n, 0): In this case Routing can make two ({}, nsnd(data(?), ?))

transitions, either to a state with ¬fin ′, or for some h < N to a
state eq(n′, h). This state is mapped from states of InitnMidDst
with eq(sA, 0). The first transition of Routing can be matched by
the transitions of summand 1 such that the data sent by node A
is not received by node lx (lx 6∈ ls ∨ (¬eq(slx, 0) ∨ eq(nxlx, ?))).
By invariants I7,8 the hop count of each middle node is at most
the number of middle nodes participating in the route discovery.
Therefore, for any value of h, this state can do some ητ actions,
due to arbitrary mobility of nodes, such that for some address
lx ∈ `l, ¬eq(nx′i, ?) ∧ eq(s′i, 0) ∧ eq(hp′i, h) holds, while the data is
still held by sA. Then this state can perform a sending data action
with the network constraint {} by summand 1 for eq(lx, i)∧ i ∈ ls
such that a state with dih ′lx is reached. The second transition of
Routing is matched to these data transitions.

• n > 1∧¬fin: Similar to the previous case, Routing can make two
({}, nsnd(data(?), ?)) transitions, either to a state with ¬fin ′, or
for some h < N to a state with eq(n′, h). This state is mapped
from states of InitnMidDst with dih i ∧ eq(hpi, n) ∧ eq(nxi, j) for
some arbitrary address j ∈ `l ∧ n > 0. The first transition of
Routing can be matched by the transitions of summand 2 such
that the data sent by node i is not received by node j (j 6∈ ls ∨
(¬eq(sj, 0)∨ eq(nxj, ?))). By invariants I7,8 the hop count of each
middle node is less than the number of middle nodes participating
in the route discovery. Therefore, for any value of h, this state
can do some ητ actions, due to the arbitrary mobility changes
of nodes, such a state with ¬eq(nx′j, ?) ∧ eq(s′j, 0) ∧ eq(hp′j, h) is
reached, while the data is still held by i. Then this state can
perform a sending data action with the network constraint {} by
summand 2 for arbitrary ls such that j ∈ ls and a state with dih ′j

39

is reached. The second transition of Routing is matched to this
data transition.

• ¬fin∧n = 1: In this case, Routing can perform ({}, nsnd(data(B), ?)),
by which fin is set to F . By invariant I9, the state of InitnMidDst
implies that eq(dih i, T) ∧ eq(hpi, 1) ∧ eq(nxi, B) for some node i.
By summand 2, InitnMidDst can perform nsnd(data(B), ?) for
some ls : LocList such that B 6∈ ls, while the value of dih i is set
to false.

Corollary 1. For all sA : Nat, `l : LocList with nodup(`l), ξt, sB, srcB, sqB
and A,B 6∈ `l such that the invariants of I1−11 are satisfied,

({}, τ).Routing(φ(sA, `l, ξt)) 'rb ({}, τ).τfM2
(∂fM1

((νA)
[[Init(sA, A,B)]]A ‖ (ν`l)nMid(`l, ξt) ‖ [[Dst(sB, srcB, sqB, B)]]B)).

Equation 4 is a direct result of following corollary.

Theorem 2. For all `l : LocList with nodup(`l), ξt such that for all i ≤ |`l|
the ith entry of table ξt holds 〈0, ?, ?, 0, 0, i, F 〉:

({}, τ).Routing(0, |`l|, F) 'rb ({}, τ).τfM2
(∂fM1

((νA)
[[Init(0, A,B)]]A ‖ (ν`l)nMid(`l, ξt) ‖ [[Dst(0, ?, 0, B)]]B)).

6. Conclusions and Future Work

In this paper, we enhanced and illustrated the applicability of our frame-
work CNT, tailored for the specification and verification of MANETs. To
this aim, we examined the applicability of the CNT operational semantics,
constrained labeled transition systems, in model checking. Through model
checking we can examine the behavior of a MANET for arbitrary mobility of
nodes through one model, without the need to specify mobility changes. The
constraints added to the transition labels allow us to derive mobility scenarios
for each MANET behavior. Then we extended our framework with symbolic
verification technique based on cones and foci, and demonstrated its applica-
tion to the verification of MANETs with an arbitrary number of nodes which
deploy the same protocol. We aim to establish a framework for mechanical
protocol verification following the approach of [8]. Our algebraic framework
is the first one that addresses the verification of networks with an arbitrary

40

number of nodes. In [23] an approach using a model checker (SPIN) and
a theorem prover (HOL) was presented to reason about such networks; the
theorem prover uses the facts proved by model checker. However, breaking
down a proof to these facts is not straightforward. The symbolic verification
approach provides a more natural proof framework for such networks.

Our framework is applicable in wireless networks in which communication
is based on non-blocking and lossy local broadcast, if it is extended with the
static location binding operator of [24] which restricts the arbitrary mobility
of nodes.

References

[1] F. Ghassemi, W. Fokkink, A. Movaghar, Restricted broadcast process
theory, in: Proc. 6th Conference on Software Engineering and Formal
Methods (SEFM’08), IEEE, 345–354, 2008.

[2] F. Ghassemi, W. Fokkink, A. Movaghar, Equational reasoning on ad
hoc networks, in: Proc. 3rd Conference on Fundamentals of Software
Engineering (FSEN’09), vol. 5961 of Lecture Notes in Computer Science,
Springer, 113–128, 2009.

[3] F. Ghassemi, W. Fokkink, A. Movaghar, Equational reasoning on mobile
ad hoc networks, Fundamenta Informaticae 103 (2010) 1–41.

[4] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, M. van Weerden-
burg, The formal specification language mCRL2, in: Proc. Methods for
Modelling Software Systems (MMOSS’06), vol. 06351 of Dagstuhl Sem-
inar Proceedings, Schloss Dagstuhl, 2006.

[5] H. Garavel, R. Mateescu, F. Lang, W. Serwe, CADP 2006: A tool-
box for the construction and analysis of distributed processes, in: Proc.
19th Conference on Computer Aided Verification (CAV’07), vol. 4590 of
Lecture Notes in Computer Science, Springer, 158–163, 2007.

[6] J. F. Groote, J. Springintveld, Focus points and convergent process op-
erators: A proof strategy for protocol verification, J. Log. Algebr. Pro-
gram. 49 (1-2) (2001) 31–60.

[7] W. Fokkink, J. Pang, Cones and foci for protocol verification revis-
ited, in: Proc. 6th Conference on Foundations of Software Science and

41

Computational Structures (FoSSaCS’06), vol. 2620 of Lecture Notes in
Computer Science, Springer, 267–281, 2003.

[8] W. Fokkink, J. Pang, J. van de Pol, Cones and foci: A mechanical
framework for protocol verification, Formal Methods in System Design
29 (1) (2006) 1–31.

[9] J. F. Groote, J. v. Wamel, The parallel composition of uniform processes
with data, Theoretical Computer Science 266 (1-2) (2001) 631–652.

[10] W. Fokkink, Modelling Distributed Systems, Springer, 2007.

[11] H. Ehrich, J. Loeckx, M. Wolf, Specification of Abstract Data Types,
John Wiley, 1996.

[12] J. F. Groote, A. Ponse, µCRL: A base for analysing processes with data,
in: Proc. 3rd Workshop on Concurrency and Compositionality, GMD-
Studien Nr. 191, 125–130, 1991.

[13] J. F. Groote, A. Ponse, Syntax and semantics of µCRL, in: Work-
shop on Algebra of Communicating Processes, Workshops in Comput-
ing, Springer, 26–62, 1995.

[14] F. Ghassemi, W. Fokkink, A. Movaghar, Verification of Mobile
Ad Hoc Networks: An Algebraic Approach, Tech. Rep., Com-
puter Engineering Department, Sharif University of Technology,
http://mehr.sharif.edu/ fghassemi/TSC-WEB.pdf, 2011.

[15] J. Bergstra, J. W. Klop, Process algebra for synchronous communica-
tion, Information and Control 60 (1-3) (1984) 109–137.

[16] B. Luttik, Choice Quantification in Process Algebra, Ph.D. thesis, Uni-
versity of Amsterdam, 2002.

[17] C. E. Perkins, E. M. Belding-Royer, Ad-hoc on-demand distance vector
routing, in: Proc. 2nd Workshop on Mobile Computing Systems and
Applications (WMCSA’99), IEEE, 90–100, 1999.

[18] O. Wibling, J. Parrow, A. Pears, Automatized verification of ad hoc
routing protocols, in: Proc. 24th IFIP WG6.1 International Confer-
ence on Formal Techniques for Networked and Distributed Systems

42

(FORTE’04), vol. 3235 of Lecture Notes in Computer Science, Springer,
343–358, 2004.

[19] R. Mateescu, M. Sighireanu, Efficient on-the-fly model-checking for reg-
ular alternation-free mu-calculus, Science of Computer Programming
46 (3) (2003) 255–281.

[20] D. Obradovic, Formal Analysis of Routing Protocols, Ph.D. thesis, Uni-
versity of Pennsylvania, 2001.

[21] Y. Usenko, Linearization in µCRL, Ph.D. thesis, Eindhoven University
of Technology, 2002.

[22] M. Bezem, J. F. Groote, Invariants in process algebra with data,
in: Proc. 5th International Conference of Concurrency Theory (CON-
CUR’94), vol. 836 of Lecture Notes in Computer Science, Springer, 401–
416, 1994.

[23] K. Bhargavan, D. Obradovic, C. A. Gunter, Formal verification of stan-
dards for distance vector routing protocols, Journal of the ACM 49 (4)
(2002) 538–576.

[24] J. C. Godskesen, A Calculus for Mobile Ad-hoc Networks with Static
Location Binding, Electronic Notes in Theoretical Computer Science
242 (1) (2009) 161–183.

Appendix A. Proof of Proposition 1

We exploit semi-branching computed network bisimilarity introduced in

[3] to prove Proposition 1. In the next definition, t
[(C,η)]−−−→ t′ denotes either

t
(C,η)−−→ t′, or t = t′ if η is of the form nrcv(m) or τ .

Remark 1. As axiom Ch6 explains, if t
(C1,η)−−−→ t′, then t

(C2,η)−−−→ t′ for any
C1 ⊆ C2.

Definition 6. A binary relation R on computed network terms is a semi-

branching computed network simulation, if t1Rt2 implies whenever t1
(C,η)−−→ t′1:

• there are t′2 and t′′2 such that t2 ⇒ t′′2
[〈(C,η)〉]−−−−→ t′2, t1Rt′′2 and t′1Rt′2.

43

R is a semi-branching computed network bisimulation if R and R−1 are semi-
branching computed network simulations. Computed networks t1 and t2 are
semi-branching computed network bisimilar if t1Rt2, for some semi-branching
computed network bisimulation relation R.

Theorem 3. Two computed network terms are related by a branching com-
puted network bisimulation if and only if they are related by a semi-branching
computed network bisimulation [3].

To prove Proposition 1, in view of Theorem 3, instead of showing that
the state mapping relation φ : D → D′ constitutes a branching computed
network bisimulation, we show that it constitutes a semi-branching computed
network bisimulation on the reachable states of D, overapproximated by the
invariant I. We assume without loss of generality that D and D′ are disjoint.
Define R ⊆ D × D′ as the smallest relation such that whenever I(d) for a
d : D, then dRφ(d). Then we show that R satisfies the transfer conditions of
Definition 6. Let sRt such that t = φ(s). By definition of R we have I(s).

• If s
(C,η)−−→ s′, there are two cases to consider:

1. If η = τ , then it must be generated by application of the ab-
straction function τfM on an action ητ ∈ IfM , while hητ (s, e), s

′ =
gητ (s, e) and C = Cητ (s, e) for some e : E. By matching criterion 1,
φ(gητ (s, e)) = t. Moreover, I(s) and hητ (s, e) together imply that
I(gητ (s, e)). Hence, by definition of R, gητ (s, e)Rt.

2. If η 6= τ , then hη(s, e), s
′ = gη(s, e) and C = Cη(s, e) for some

η ∈ Act c \ IfM and e : E. By matching criterion 2, either η
is a receive action such that φ(gη(s, e)) = t, or there is an 〈η〉
such that h′〈η〉(t, e), fη(s, e) = f ′〈η〉(t, e), C ′〈η〉(t, e) ⊆ Cη(s, e) and

φ(gη(s, e)) = g′〈η〉(t, e). Moreover, I(s) and hη(s, e) together imply

I(gη(s, e)). In the former case, by definition of R, gη(s, e)Rt. In
the latter case, by remark 1 and 〈(Cη(s, e), η)〉 = (C〈η〉(s, e), 〈η〉),
t
〈(Cη(s,e),η)〉−−−−−−−→ g′〈η〉(t, e) and consequently gη(s, e)Rg′〈η〉(t, e).

• If t
η−→C t′, then h′η(t, e), t

′ = g′η(t, e) and C = C ′η(t, e) for some η ∈
Act c\IfM and e : E. By matching criterion 3, either η is a receive action

such that t = t′, or there is an s∗ : D such that s
ητ1−→C1 . . .

ητn−→Cn s∗
with ητ1 , . . . , ητn ∈ IfM and h〈η〉(s

∗, e), f〈η〉(s
∗, e) = f ′η(t, e), C〈η〉(s∗, e) ⊆

44

C ′η(t, e) and φ(g〈η〉(s
∗, e)) = g′η(t, e) in the CLTS for Imp. Invariant I

and matching criterion 1 hold for all states on this ητ -path. Repeatedly
applying matching criterion 1, we get φ(s∗) = φ(s) = t. The former
case is straightforward since I(s∗), and by definition of R, s∗Rt. In
the latter case by remark 1 and 〈(C ′η(t, e), η)〉 = (C ′〈η〉(t, e), 〈η〉), s ⇒

s∗
〈(C′

η(t,e),η)〉−−−−−−−→ g〈η〉(s
∗, e). Moreover, I(s∗) and h〈η〉(s

∗, e) together imply
I(g〈η〉(s

∗, e)). So by definition of R, s∗Rt and g〈η〉(s
∗, e)Rg′η(t, e).

Concluding, R is a semi-branching computed network bisimulation.

45

