Verification of Timed Erlang/OTP Components
Using the Process Algebra:CRL

Qiang Guo John Derrick

Department of Computer Science
The University of Sheffield
Regent Court, 211 Portobello Street, S1 4DP, UK

{Q.Guo, J.Derrick}@dcs.shef.ac.uk

Abstract Although Erlang has many high-level features, verification can

Recent work has looked at how Erlang programs could be model- P€ Still non-trivial. One possible way to verify an Erlang program

checked via translation into the process al L. Rules for is to abstract it into a formallmodel,. upon which model checking
translating Erlang programs and F6TP comp%?gﬁft{sﬂmaL have [11] _technlques can l:_)e applied. This approach has recently been
been defined and investigated. However, in the existing work, no applleéi to the verification of Erlang programs and OTP components
rule is defined for the translation imeoutevents intquCRL. This [2113,[5 [7] where the process algetpr_@_RL_ l14.] has peen used as
could degrade the usability of the existing work as in some real the formal language upon which verification is carried out.

applicationstimeoutevents play a significant role in the system The tr_anslatlon from Erlang taCRL is _perf_ormed_ in two
development. In this paper, by extending the existing work, we stages. First, a source to source transformation is applied, resulting

; : P ; . in Erlang code that is optimised for the verification, but has identi-
investigate the verification of timed Erlang/OTP components in in ; -) !

LCRL. By using an explicitick action in thexCRL specification, cal behaviour. Second, this output is translated@RL. A toolset, .

a discrete-time timing model is defined to support the translation eiomerl has been developed to automate the process of translation
of timed Erlang functions intuCRL. Two small examples are ©f @n Erlang program into ACRL specification.

presented, which demonstrates the applications of the proposed . E1ang/OTP software is usually written according to strict de-
sign patterns that make extensive use of software components. En-

approach. capsulated in the extensive OTP library are a variety of design
Categories and Subject DescriptorsD.2.4 [Software Engineer- patterns, each of which is intended to solve a particular class of
ing]: Software/Program Verification problem. Solutions to each such problem come in two parts. The
generic part is provided by OTP as a library module and the spe-
General Terms Verification cific part is implemented by the programmer in Erlang. Typically

i these specific callback functions embody algorithmic features of
Keywords Erlang, OTP, Process algeu&RL, Timeout events, e system, whilst the generic components provide for fault toler-

Verification ance, fault isolation and so forth. Translations of the callback mod-
ules of the OTP generic servers and supervisors have been investi-
1. Introduction gated in[[2[B 5,17].

. . . . In addition to generic servers and supervisors, OTP provides
Erlang [1] is a concurrent functional programming language with ¢, ther generic components including finite state machines (FSMs),
explicit support for real-time and fault-tolerant distributed systems. o\ ent handlers, and applications. These considerably simplify the
Itis available under an Open Source Licence from Ericsson. Since ijging of systems. I [15], the verification of OTP FSM programs
being developed, its use has spread to a variety of sectors such agging ,CRL has been studied, and a model is proposed to support
TCP/IP programming (HTTP, SSL, Emall, Instant messaging, etq), the translation of an Erlang FSM program int€RL. In order to
web-servers, databases, advanced call control services, bankinggefine the correct translation, and techniques proposédin [16] are

3D-modelling. applied to deal with the presence of overlapping patterns in pattern
A unique feature of Erlang is the Open Telecom Platform (OTP) mpaF;ching. P ppIng p P

architecture where generic components are encapsulated as design £ some OTP components such as the FSM, timing restrictions
patterns, each of which solves a particular class of pr_oblem. Thus, might be applied, meaning that the execution of a function must
for the development of fault-tolerant systems containing soft real- po"completed within a defined time period. If the function fails to
time requirements, the use of OTP components helps to reduce they, 5o gimeoutevent is generated and the correspondimgout
complexity of system design while increasing the robustness. functién will be activated to process the event.

However, no existing work has defined rules for the translation
of timeout events intouCRL. This could dramatically degrade
the usability of the existing work as in some real applications,

Permission to make digital or hard copies of all or part of this work for personal or limeoutevents play a significant role in the system development.
classroom use is granted without fee provided that copies are not made or distributedIn this paper, by extending the existing work, we investigated the
for profit or commercial advantage and that copies bear this notice and the full citation yerification of timed Erlang/OTP components;i€RL. By using

on the first page. To copy otherwise, to republish, to post on servers or to redistribute an explicittick event, a discrete-time timing model is defined to

to lists, requires prior specific permission and/or a fee. . R . .
Erlang'07, October 5, 2007, Freiburg, Germany. support the translation of timed Erlang functions iplGRL. Two

Copyright© 2007 ACM 978-1-59593-675-2/07/0010. .. $5.00

small examples are presented, which demonstrates the applicationgsupervisors) monitor the processes in the external leafs (children).

of the proposed approach. A supervisor is a process that starts a number of child processes,
The rest of this paper is organized as follows: Sedtjon 2 briefly monitors them, handles termination and stops them on request.

introduces the Erlang programming language and the process algeThe children themselves can also be supervisors, supervising its

bra uCRL; Sectior| B reviews the related work for the translation children in turn.

of Erlang programs and OTP components ipBRL; Sectior| #

investigates the translation of timed OTP components i@&L; 2.2.3 Finite state machines

Section 3 illustrates two small examples; conclusions are finally The genfsm module supports the implementation of finite state

drawn in Sectiofll6. machines, and these are used extensively in a variety of contexts.
A (deterministic) FSMM can be described as a set of relations

2. Preliminaries of the form State(S) x Event(E) — (Action(A), State(S))

21 E where S, E and A are finite and nonempty sets of states, events
. rlang . . . ; .

and actions respectively. For an implementation usingyrefsm
Erlang [1] is a functional programming language, and as such an module,genfsmis started by callingtartlink(Code)to register a
Erlang program consists of a set of modules, each of which define newgenfsmprocess.
a number of functions. Functions that are accessible from other)
modules need to be explicitly declaredexport A function named startllnk(c_:odep
f_namein the modulemoduleand with arityN is often denoted as genfsm:startlink({local, fsmnamg,
module:fname/N callbackmodulename, Code, []).

Erlang is a concurrent programming language, and as such pro-If the registration succeeds, the new process calls the callback
vides a light-weight process model. Several concurrent processesfunction callback modulenameinit(Code) where the initial state
can run in the same virtual machine, each of which being called and the corresponding state data are set.

a node Each process has a unique identifier to address the pro- The state transition rules are written as a number of state func-
cess and a message queue to store the incoming messages. Erlanigns that conform to the following convention:

has an asynchronc_)us communication mechanism where any pro- StateName(Event, StateData)

cess can send (using theoperator) a message to any other pro- . .

cess of which it happens to know theocess identifierSending is cogetfct)r a;tl?nl\sl rﬁ tateDataTi

always possible and non-blocking; the message arrives in the un- {nextstate,StateNarhiStateDataTimer}.
bounded mailbox of the specified process. The latter process canA state function ends up by returning the name of the next state
inspect its mailbox by theeceive statement. A sequence of pat- and an updated state daf@meris an optional element. [fimeris
terns can be specified to read specific messages from the mailboxset to a value, a timer is instantiated, antinseoutevent will be
When reading a message, a process is suspended until a matchgenerated when the time-up occurs.

ing message arrives or timeout occurs. A distributed system can be The functionsendeventis defined to trigger a transition. When
constructed by connecting a number of virtual machines. sendeventis executed, thgenfsmmodule automatically calls the

current statefunction.
2.2 OTP

A unique feature of Erlang is the OTP architecture, which is de-
signed to support the construction of fault-tolerant systems contain- An example of a door with a code lock system is modelled by OTP
ing soft real-time requirements. Each OTP design pattern solves aFSM. The initial design, illustrated in Figufg 1, consists of two
particular class of problems, and solutions to each such problemstatesJockedandopen and a system code for opening the door.
come in two parts: the generic part and the specific part. The first Initially, the door is set tdockedwhile the code is set to a word.
is provided as a library module, while, the second is implemented The door switches between states, driven by an external event. A
by the programmer where the necessary algorithms are applied.timing restriction is applied for the system. If the door is switched
Generic servers, supervisors and finite state machines are three keyo theopenstate and no action is performed within a defined period,
components which account for over 80% of OTP compliant code. atimeoutevent is generated, which activates timeoutfunction

to close the door.

2.2.4 Example - a door with code lock

2.2.1 Generic servers

The genservermodule provides a standard set of interface func-
tions for synchronous and asynchronous communication, debug- Send Frent/Password
ging support, error and timeout handling, and other administra- Hend EyeiOutes -
tive tasks. A generic server is implemented by providingadi-
back moduleavhere ¢€allback) functions are defined specifying the

concrete actions of the server such as server state handling and re- Bend Eventny

sponse to messages. When a client wants to synchronously commu-

nicate with the server, it calls the standgeh server:callfunction {timeout, 20000ms }Awarning
with a certain message as an argument. If an asynchronous com-

munication is required, thgenserver:castis invoked where no Figure 1. FSM - door with code lock.

response is expected after a request is sent to the servem:

natefunction is also defined in the call back module. This function

is called by the server when it is about to terminate, which allows The Erlang/OTP implementation is shown in Figife 2 where the
the server to do any necessary cleaning up. functionbutton is defined to simulate the receiving of a password.
The actionsend_cvent triggers a state transition where a state
function is executed, in this example eitheckedor open

Erlang/OTP supports fault-tolerance by using s@ervision treg A password is generated from an external action and is eval-
which is a structure where the processes in the internal nodesuated to open the door or not. The timer for the stgienis set

2.2.2 Supervisors

-module(fsmdoor).
-export([startlink/1, button/1, init/1]).
-export([locked/2, open/2]).

startlink(Code)—
genfsm:startlink(local, fsm.door, fsmdoor, Code, []).

init(Code)—
{ok, locked, Codé.

button(Password)-
genfsm:sendevent(fsmdoor, { button, Passworg.

locked(button, Password Code)—
case Password of

Code—
action:daunlock(),
{nextstate, open, Code, 200p0

“Wrong—
action:displaymessage(),
{nextstate, locked, Code

open(button, Password Code)—
action:dalock(),
{nextstate, locked, Code
open(timeout, Code)»
action:displaymessage(),
action:dalock(),
{nextstate, locked, Code

Figure 2. The Erlang code for a door with code lock.

to 20,000ms. If the door is switched epenand no action is per-
formed within 20,000ms, imeoutevent is generated, which en-
ables the functiompen(timeout,Codéd process the event.

2.3 The process algebra,CRL

The process algebr@CRL (micro Common Representation Lan-
guage)[[14] is an extension of the process algebra ACP [4], where
equationahbstract data typebave been integrated into the process

level of the labels of actions. For example,dommin|out, each
action in(t1, ..., t;) can communicate witlout(t1,...,t,,) pro-
videdk = m andt; andt; denote the same elementfoe 1, ..., k.

3. Related work
3.1 Translating Erlang syntax

Translating Erlang intg.CRL was initially studied in[[B3,5.16.]7].

A toolset, etomcr| was developed for automating the process of
translation. The translation from Erlang {€CRL is performed

in two stages. First, a source to source transformation is applied,
resulting in Erlang code that is optimized for the verification, but
has identical behaviour. Second, this code is translatpdRL.

The actual translation is quite involved due to particular lan-
guage features in Erlang. For example, Erlang makes use of higher-
order functions, wheregsCRL is 1st order; Erlang is dynamically
typed, butuCRL is statically typed; in Erlang communication can
take place in a computation, @CRL it cannot. HoweveruCRL
is sufficiently close that such a translation is feasible, and model
checking on it computationally traceable even if the translation is
involved.

sort
Term

func
pid: Natural— Term
int: Natural— Term
nil: — Term
cons: Term # Term- Term
tuplenil: Term— Term
tuple: Term # Term— Term
true: — Term
false:— Term

Figure 3. The translation scheme for Erlang data types.

Because Erlang is dynamically typed it is necessary to define in
#CRL a data typdermwhere all data types defined in Erlang are
embedded. The translation of the Erlang data typeg€XaL is then
basically a syntactic conversion of constructors as shown in Figure

specification to enable the specification of both data and procesd3.

behaviour (in a way similar to LOTOS[9]).
A uCRL specification comprises two parts: the data types and
the processes. Processes are declared using the kegmardnd

Atoms in Erlang are translated f@CRL constructorstrue and
false represent the Erlang boolearist is defined for integers;
nil for the empty list;consfor a list with an element (the head)

contains actions representing atomic events that can be performedand a rest (the tail)tuplenil for a tuple with one elementu-

These actions must be explicitly declared using the keyveatd
Data types used inCRL are specified as the standard abstract data

ple for a tuple with more than one element; apidl for process
identifiers. For example, a ligtE1, E», ..., E,] is translated to

types, using sorts, functions and axioms. Sorts are declared usinguCRL ascons(E1, cons(E2, cons(...,cons(En,nil)))). A tuple

the keywordsort, functions are declared using the keywduhc
andmapis reserved for additional functions. Axioms are declared
using the keywordew, referring to the possibility to use rewriting
technology for the evaluation of terms.

A number of process-algebraic operators are defingddRL,
these being: sequential compositiol fion-deterministic choice
(+), parallelism {|) and communication|), encapsulationd), hid-
ing (7), renaming p) and recursive declarations. A conditional ex-
pressiontrue <1 condition > false allows data elements to influ-
ence the flow of control in a process, and an alternative quantifica-
tion operator §) provides the possibly infinite choice over some
sorts.

In uCRL, parallel processes communicate via the synchroniza-

{E\, Es, ..., E,, } is translated tquCRL as
tuple(E1, tuple(Esz, ..., tuplenil (Ey))).

Variables in Erlang are mapped directly to variableg@RL.
Operators are also translated directly, specified ipGRL li-
brary. For exampleA + B is mapped tomcrl_plus(A,B) where
mcrl_plus(A,B)= int(plus(termto_nat(A), termto_nat(B)))

Higher-order functions in an Erlang code are flattened into first-
order alternatives. These first-order alternatives are then translated
into rewrite rules.

Program transformation is defined to cope with side-effect func-
tions. With a source-to-source transformation, a function with side-
effects is either determined as a pure computation or a call to an-
other function with side-effectStacksare defined inCRL where

tion of actions. The communication in a process definition is de- pushandpopoperations are defined as communication actions. The
scribed by its communication specification, denoted by the key- value of a pure computation is pushed into a stack and is popped
word comm This describes which actions may synchronize on the when it is called by the function.

3.2 Overlapping in pattern matching act
s_event, revent, sengevent: Term

Erlang mak xtensiv f rn matching in its function
ang makes extensive use of patte atching ts functio s.command, rrommand, cmncommand: Term

definitions. The toolsedtomcrltranslates pattern matching in a way
where overlapping patterns are not considered. This might induce
faults in thepxCRL specification in our translation, and we need to
use techniques to cope with the occurrence of overlapping patterns.

In Erlang, evaluation of pattern matching works from top to
bottom and from left to right. When the first pattern is matched,
evaluation terminates after the corresponding clauses are execute
However, theuCRL toolset instantiator does not evaluate rewriting
rules in a fixed order. If there exists overlapping between patterns,
the problem of overlapping in pattern matching occurs, which could
lead to the system being represented by a faulty model.

A solution to the problem of overlapping in pattern matching
was discussed by Benac-Earlé [5], however, the solution was not
implemented in the toolse&ttomcrl Subsequently, Guet al. [16]
proposed a different solution, whereby an Erlang program with
overlapping patterns is transformed into a counterpart program
without overlapping patterns. The rewriting operation rewrites all
pattern matching clauses in the original code into some calling
functions. A calling function is activated by a guard that is de-
termined by the functiopatternsmatch Functionpatternsmatch
takes the predicate of the pattern matching clauses and one pattern
as arguments and feue iff the predicate matches the pattern.

A data structure called the Structure Splitting Tree (SST) is
defined and applied for pattern evaluation, and its use guarantees
that no overlapping patterns will be introduced to the transformed
program. The evaluation of an SST is equivalent to the search of
nodes in a tree, and thus is of linear complexity.

comm
s_event| r_event = sendevent
s.command r_.command = cmntommand

g, Proc
* write(Val:Term) =
wecallresult (Val)

read(Cmd:Term)=
sum(Val:Term, recallresult(Val).
fsm_S,; (Cmd,element (2,Val))
< is_s.S; (element(1,Val))>
fsm_S;(Cmd,element (2,Val))
< is_.s.S;(element(1,Val))>

fsr.risn(Cmd,element(Z,VaI))
< is_s.S, (element(1,Val)y delta)

fsm._changestate =
sum(Cmd:Term, event(Cmd).read(Cmd))

fsminit(S:Term,Data: Term) =
fsm_next state(S,Data)

fsm_next state(S:Term,Data:Term) =
wecallresult(tuple(S,tuplenil(Data))).
sum(Cmd:Term command(Cmd). gvent(Cmd).

3.3 Translating OTP component:
saing P S fsm_changestate)

3.3.1 Translating generic servers

Thegenservermodule defines a Server/Clients structure of Erlang ~ fsm.S1(Cmd:Term, Data:Term) =
programs. Thgenservermodule is translated into a set of commu- pre.defined actions ...

nicated processes imCRL. Communication between two Erlang fsm_nextstate(nexState, newdata)
processes, which can be asynchronous, is translated via defining .-

two process algebra processes, one of which is a buffer, while the fsm.S,(Cmd:Term, Data:Term) =
other implements the logic. pre.defined actions ...

The synchronous communication is modelled by the synchro- fsm_nextstate(nexiState, newdata)
nizing actions of process algebra. One action pair is defined to syn-
chronize the sender with the buffer of the receiver, while another
action pair to synchronize the active receive in the logic part with
the buffer. In this way the asynchronous communication and the Er-
lang message queue is simulated directly ingl#RL abstraction.

Figure 4. Rules for translating Erlang FSM state processes.

s.S1 and a state procesgsm_S;. The current stateand the
state dataare coded in a tuple with the form aluple(state,

] o)) tuplenil(state_data)) and saved in the stack. The stack used for
Translation of the Erlang finite state machine (FSM) design pattern managing states and data is defined in a way where only one ele-

was studied in[15]. By extending the approach discussed Il [3, 6, ment can be read/written. This ensures that only cureent state
7], a model was proposed to support the translation of an Erlang js qvailable.

3.3.2 Translating finite state machines

FSM component intpCRL. The translation of the Erlargenfsm The processurite is defined to push theurrent stateand the
module into CRL is comprised of two partsimulating state state dataonto the stack while a process calleend is used to
managemendndtranslating the state functions pop thecurrent stateand thestate datarom the stack. The process
. . fsm_init(State:Term, Data:Term) is defined to initially push
Simulating state management tuple(Init_State, tuplenil(State_Data)) onto the stack. The

A (one place) stack is used in theCRL specification to simulate processfsm_next_state(State:Term, Data:Term) updates the
the management of FSM states and state data. The translation rulesurrent stateand thestate datan the stack.

are given in Figurg]4, where three actiorszvent, r_event and The procesgsm_next_state will receive commands through
send_event, are defined respectively. A command, generated from the actionr_ command. The actionr_command communicates
an external action is sent out to some other processes by actionwith the actions_command which is externally performed. When

s_event. This command is received through actiarvent and is a command is received, the procgssn. state_change, guarded

used for further processing;event : r_event = send_event. by the actions_event, is enabled. It passes the command to the
An Erlang FSM state is assigned with &CRL state name processread where thecurrent stateand thestate dataare read

(“s_" plus the state name) and a state process (“fspius the from stack. Thecurrent statedetermines which state process is

state name). For example, stafe is given apCRL state name about to be activated.

A state procesgsm_S; starts by calling itsuCRL state func-
tion S;(Command : Term, Data : Term). FunctionS; re-
turns a tuple with the form dfuple(next_state, tuple(new_data,
tuplenil(indezx))) wherenext_state shows the next statepw_data
the updated state data. Thedex saves an index number for the
sequence of actions to be selected.

Translating state functions

The translation of an Erlang state function int€RL starts by
splitting the function into two parts, one of which defines a series

of uCRL state functions while the other a set of action sequences.
Every set of action sequences is translated into a pre-defined action

set in uCRL. According to the order that patterns occur in the

Erlang function, the pre-defined action sets are uniquely indexed

with a set of integers. For example, in Fig{ife 5, the set of action
sequences$actions(1), ...,actions(n)} is indexed with an integer
set{1, ..., n} where integer identifies the pre-defined action set
actions(i).

Si(N)
case N of—
P1 i
actions(1);
P2 i
actions(2);

P, —>”

actions(n).

Figure 5. An Erlang FSM state function with pattern matching.

The selection of guCRL state function for execution is de-
termined by the pattern of function arguments. By the end, the
#CRL function returns a tuple with the form oéfiple(next_state,
tuple(new_data, tuplenil(index))) wherenext_state returns the
next statenew_data the updated state data andiex the index of
the action sequence that needs to be performed.

rew
Si(Args) =
S;_case0(patternsmatch(ArgsP:),Args)
S,_caseO(true,Args) =
tuple(S tuple(Data,tuplenil(1)))
S,_case0(false,Args) =
S;_casel(patternsmatch(ArgsP.),Args)
S,_casel(true,Args) =
tuple(S;,tuple(Data,tuplenil(2)))

S;_case(n-1)(true,Args) =
tuple(S,,tuple(Data,tuplenil(n-1)))
S,_case(n-1)(false,Args) =
S;_casen(patternsmatch(Args,R),Args)
S,_casen(true,Args) =
tuple(S, ,tuple(Data,tuplenil(n)))

proc
fsm_S;(Cmd:Term,Data: Term) =
actions(1).
fsm_next state(element(1,8Cmd,Data)),
element(2,4Cmd,Data)))
< element(3,9Cmd,Data))=1>
(actions(2).
fsm_next state(element(1,8Cmd,Data)),
element(2,3Cmd,Data)))
< element(3,3Cmd,Data))=2>

(actions(n).
fsm_nextstate(element(1,8Cmd,Data)),
element(2,9Cmd,Data)))
<1 element(3,9Cmd,Data))=n>
delta)...)

Figure 6. Translation rules for Erlang state function.

To eliminate any potential overlapping between patterns, tech- ment of the modaji-calculus), a first-order logic with modalities,
niques proposed in [16] are applied. Specifically, pattern matching and least and greatest fixed point operators [19]. Automation for
clauses in the program are replaced by a series of case functionsproperty checking can be achieved by using the Script Verification
These case functions are guarded byphgerns_match function Language (SVL). SVL provides a high-level interface to all CADP
that takes the predicate of pattern matching clauses and one pattools, which enables an easy description and execution of complex
tern as arguments, then if the predicate matches the pattern, funcferformance studies.
tion patternsmatchreturnstrue; otherwise false and this elimi-

nates the overlapping between patterns and ensures that the inde. Translating timed Erlang/OTP components
returned by theuCRL state function is deterministic and unique. into 4CRL

Figure[® illustrates the translation rules for the Erlang state func-
All existing work so far translates Erlang programs without taking

tion shown in Figurgs.

When the state procegsm_S; starts, it first calls thesCRL timeoutevents into account. However, in some real applications,
state functionS;(Cmd, Data). S; returns an index number timeout events play a significant role in the OTP design. This
that determines which action sequeneetion(:) is about to section studies the translation tineoutevents intoxCRL and
be performed. The procegsm_S; ends up by calling process defines rules to support the translation of timed Erlang functions.
fsm_next_state, updating thecurrent stateand thestate datain

the stack. 4.1 Defining a timer in uCRL

. . Two approaches might be considered to extend the existing work
3.4 Model checking Erlang with uCRL for coping withtimeoutevents. The first is to use a timed exten-
Once an Erlang program is translated intp@RL specification, sion to uCRL, while, the second to definet@ner in the untimed
one can check the system properties by using some existing toolsuCRL. A timed version ofuCRL is defined in[[1B] where time
such as CADP[10]. The toolset CADP provides a number of tools is incorporated as an abstract data type. However, without further
for system behaviour checking. It includes an interactive graphical modification, a timed.CRL cannot be used by some of existing
simulator, a tool for the visualization of labelled transition systems tools. Moreover, timed:CRL is incompatible with liberalization
(LTSs), several tools for computing bisimulations and a model (translating a specification into the intermediate format) and partial
checker. order reduction [13].

Properties one wishes to check with the CADP model checker This work considers the use of the second approactimér
are formalized in the regular alternation-freecalculus (a frag- and an explicit timing actionick are incorporated in theCRL

sort var
Timer t:Timer
func n:Natural
off:— Timer rew
on: Natural— Timer expire(off)=F
map expire(on(n))=eq(0,n)

pred: Timer— Timer
expired: Timer— bool

set: Timer # Naturak Timer
reset: Timer— Timer

pred(on(n))=on(pred(n))
pred(off)=off
set(t,n)=on(n)
reset(t)=off

Figure 7. The syntax of a«CRL timer

specification. Atimer [8], syntactically illustrated in Figurg] 7, has
two statespn andoff. The uCRL functionset(t:Timer, x:Natural)
instantiates a timer with an integer while tp€RL function ex-
pired(t: Timer)evaluates whether the time-up occurs. A timer peri-
odically calls theuCRL functionpred(t:Timer)to count down the
value of timing. To do so, theCRL functionpred(x:Natural)with

an integer as its argument needs to be defined before the definition

of timer. The uCRL functionpred(x:Natural)determines the time
elapse unit for aimer, namely,pred(x)= X - time.elapseunit. For
example, if the time elapse unitis defined as 1, e (3)= 2 and
pred(2)= 1.

As is common with other approaches to modelling time explic-
itly in a process algebra, an explicit timing actitick is defined.
During the timing, the timer is periodically evaluated by fHeRL
function expired If the value of the timing does not come to zero,
before calling thexCRL functionpredto count down the timer by
one unit, the actiotick is performed once, standing for the passing
of one time elapse unit; otherwisetimeoutevent is generated.

4.2 Translating timed Erlang functions

For an Erlang function with timing restrictions, execution of the
function needs to be completed within the defined time period. If
the Erlang function fails to do so,temeoutevent will be generated
and the correspondingmeoutfunction is invoked to process the
event.

To incorporatdimeoutevents in the translation, for those Erlang
functions with timing restrictions, two processes are defined in
#CRL, one of which deals withiming, while, the other copes
with count downWhen the timing begins, thaming process will
be called. Theiming process will either call another process (the
execution of this function is completed within the defined time
period) or activate theount dowrprocess (counts down the timer
by one unit). When going through theount downprocess, the
timer is evaluated. If the timer does not expirejck action will
be performed once, stating the passing of one time elapse unit.
Afterwards, theaiming process is called; otherwisetimeoutevent
will be generated and the correspondiimgeoutprocess is enabled
to process the event.

For example, the state functidockedof the Erlang FSM pro-
gram shown in Figurg]2 has a timing restriction of 20,000ms. If
the door is switched t@penand no action is performed within
20,000ms, aimeoutevent is generated, which will activate the
function open(timeout,Codép first give a warning message and
then close the door. The Erlang state function is translated into
#CRL as shown in Figurg]8. The procefssnlocked calls the
processtiming_locked by the end of execution, instantiating and
initiating a timer. Thetiming_lockedwill either move to the pro-
cessfsmnextstatedriven by an action within the defined time, or
count the timer down by one unit (oriiek action is performed).

A time.out event will be generated once time-up occurs, leading to
thewarning messageanddo_lock actions being performed.

proc
fsm_locked(Cmd:Term,Data: Term,x:Natural) =
do_unlock . lockedtiming(Cmd,Data, on(x))
< termto_bool(equal(element(int(1),element(int(3),
locked(Cmd,Data))),int(1)))

warningmessage .

fsm_next state(element(int(1),locked(Cmd,Data)),

element(int(2),locked(Cmd,Data)))

lockedtiming(Cmd:Term,Data: Term,t:Timer) =
countdown locked(Cmd,Data,t) +
fsm_next state(element(int(1),locked(Cmd,Data)),
element(int(2),locked(Cmd,Data)))

countdownlocked(Cmd:Term,Data: Term,t:Timer)
tick . lockedtiming(Cmd,Data,pred(t))
<1 not(expired(t)>
time_out . warningmessage .
fsm_next state(slocked,tuplenil(abc))

Figure 8. Translating rules for timed Erlang functions.

4.3 Coping with synchronization

The genfsmmodule defines a functiosyncsendevent(FSMRef,
Event, Timer)to provide synchronized communications between
FSMs where=SMRefpoints to the Erlang FSM process to which
an eventis about to seritimeris an optional element. Whérimer
is set and an event is sent out, a reply message is expected to arrive
within the defined time period; otherwise, a timeout will occur and
the Erlang program will be terminated.

The functionsyncsendeventitself is a timed Erlang function.
Thus, translation rules defined in subsecfiorj 4.2 can be applied.
Figure[illustrates the translation scheme.

act

syncread, syncsend, synevent : Term
comm

syncread| syncsend = synevent
proc

syncsendevent(CmdList:Term,x:Natural) =
s.command(head(CmdList)) .
syncsendeventtiming(CmdList,x,on(x))

syncsendeventtiming(CmdList: Term,x:Natural,t: Timer) =
countdown__syncsendevent(Cmd,x,t) +
sum(Reply:Term, syncead(Reply).
syncsendevent(tail(CmdList), x))

countdown.syncsendevent(Cmd:Term,x:Natural,t:Timer)
tick . syncsendeventtiming(Cmd,x,pred(t))
< not(expired(t)>
time_out . delta

Figure 9. Coping with synchronization communication between
Ms.

The function is translated into two processegs@RL. The pro-
cesssyncsendeventreads a command from the command list and
then sends it off through actioscommanfi Once a command
is sent off, a timer is instantiated and initialized in the process
syncsendeventtiming. The process expects to read a reply mes-
sage through actiogsyncread If the uCRL FSM process does not

1 Action s.commands defined in FigurH4

return the message within the defined time periotin@outevent is not defined, when checking with the CADP, the toolset should

is generated and the program is terminated. returnfalse
The system design properties can be formulated with a set of
5. Experiments u-calculus logic expresses and saved in a SVL file. Through evalu-

o)] ating the SVL file, the process of verification can be automatically

Two small examples are presented in this section to illustrate the accomplished within a couple of seconds.
applications of the proposed approach. The example studied in this subsection is comparatively simple

. and is easy to be verified. A more complicated system, coffee ma-
5.1 Adoor with code lock chine system is presented in the next subsection to further illustrate
A door with a code lock system, illustrated in Fig[ife 1, is explained the application of the proposed approach.
in Section[2.2]4. The system is simulated with the Eralng/OTP
FSM, and the implementation is shown in Figife 2. The program 5.2 Coffee machine

is translated intq.CRL by applying the rules defined inl[8.115] A coffee machine has three states, these beielgction payment
and Sectioff 4. In the S|mqlat|on, the system C.‘?d‘? IS sgbtn andremove The stateselectionallows a buyer to choose the type
A sequence of external actiofifubb}, {abc}] is initialized in the of drink, while, the statgpaymentdisplays the price of a selected
HCRL sng|f|c_at|on, stating that two passwords andabc, are drink and requires payment for the drink. When a buyer selects a
consecutively inputted. drink, if within the defined time period, no action is performed, the

Once the Erlang program is translated ipGRL, a standard machine will reset to theelectiorstate. When in the stapmyme
; : . nt
toolset such as CADP[10] can be applied to check the system prop-i¢ yhe 1y ,ver does not pay enough coins in the definé?é)eriod, the
erties. The toolset CADP provides a tool for generating the labelled machine will return all pre-paid coins and reset to teection

transition systems (LTSs) and a model checker for checking SYsteMgiaia- otherwise. the machine goes to the stateovewhere the
behaviour. Figur§ J0 demonstrates the LTS for a door with code drink’is prepared and the change is returned.

system derived from theCRL specification. Four types of drink are soldea cappuccing americanoand
espressoA buyer can complete the purchase of a drink within the
defined time period, or cancel the current transaction to claim back
all pre-paid coins. The designs of the system is shown in F[ggre 11.
The program initially sets the current statestdection. A timing
restriction of 20,000ms is set to the state funci@yment

Start

{timeout, 2000ms} <Drisplay Make Selections

<Warning ages
<Ret oine>

{ selection, e, Price}
<DisplayFrices

Cancel
<Give Change=
<Display Make Selection=

Cup_removed
",

Figure 10. LTS derived from the door with code lock system. {pay, Coin), Total>—Price Retgue
<Give Changes
<Make Drinle>
: . - . <Display Pick Drink>
Design properties of the system can then be verified with the er oo Bt

CADP model checker. The system properties should be formalized <%§;]1ay New Aot

in the regular alternation-freg-calculus (a fragment of the modal

p-calculus) [19]. Thus once we have a specificationui@RL, Figure 11. FSM - coffee machine.

applying model-checking approaches is standard.

For example, in this experiment, a property involvingimeout
event can be formulated as: Four actionglisplay price, pay.coin, return_.coinandremovecup
are defined in the@CRL specification wherdisplay.price displays
the price for a selected drinlgay.coin requires a buyer to pay
stating that “Without being delayed for 20,000ms (ttiak actions coins for the drinkyreturn_coin returns the changes if more coins
are performed)fime.out event cannot be generated”. Since this have been paid for the drink, or gives back the pre-paid coins if the
property has been defined in the original design, when applying transaction is cancelled. In theCRL specification, the time elapse

[true * . “do_unlock” . (not ‘tick . tick’) . “time_out”] false

the CADP model checker, the toolset should rettmre if the unit is defined as 10,000ms which states théitk action in the
Erlang program is correctly implemented (at least in terms of this LTS stands for the passing of 10,000ms.
property). To initiate the process of buying drinks, two sequences of exter-
Another property with timing issue one might wish to check can nal actions are constructed. The first simulates “selectampuc-
be formulated as: cino (£5 for a cup), paying£4 and then trying to take the drink
[true * . “do_unlock”] <‘tick . tick . tick’ . “" > true away”, while, the second simulates “selectieg (£4 for a cup),

paying £5 and then taking the drink away”. The sequences are
stating that “When the actioio_unlockis performed, there existsa coded in the lists[{selection, cappuccino, 5}, {pay, 4}, {cup-
transition such that the internal action can still be performed when remove}] and [{selection,tea,4}, {pay, 5}, {cup_remove}],

the time-up occurs”. Since in the original design, this property and are initialized in thegCRL specification respectively.

@ (41 37 eniléeup—removed 29
\ cmd(tuplenikenyFEfioved))
timdy_out il

v— , —()

pe(#(s(s(s(U\)
send_event(tuple(pay,i

send_event(tuple(] erllint(s(s(s(s(0)))))}))

send_event(tuple(selection buptertea tuplenil(int(s(s(s(0))))})

emd(tuple(selectionupleTteauplenil(int (s (s(s(0)))))))

Figure 12. LTS: Buying tea with the payment higher than the
price.

(L5 (s(5(50)))))

send_event(tople(pay topt

cmdituple(pay,wpledil(int(s(s(s(=(0)))))

sencl_event(tuple(pay-bapterMTTIE (5(s(s(s (0)) 1))

serrl_event(tuple{selection, opleniliintis(s(s(s(s(0))))))

tuplenil(int(s(s(s(sisi@))))))1)

Figure 13. LTS: Buying cappuccino with the payment less than
the price.

Model checking using the CADP model checker can then be
applied. Properties involving in timing issues can be formalized
as discussed. For example, to check “There existe out events
when buying cappuccino and, when tiir@e_out is performed, all
pre-paid coins should be returned”, the property can be formalized
as:

<true * . “cmd(tuple(selection,tuple(cappuccino,
tuplenil(int(s(s(s(s(s(0))))))))" * . (not “timeout”) * .
“cmd(tuple(pay,tuplenil(int(s(s(s(s(0))))))))=*<true * .
“time_out” *. “return_coin(int(s(s(s(0)))))> true

Similarly, to check “After a drink is selected and partially paid,
without time delay, the pre-paid coins cannot be returned”, the
property is formalized as:

[(not “time_out”) * .
(“return_coin(int(s(s(s(0)))))" or
“return_coin(int(s(s(s(s(0))))))")] false

6. Conclusions and future work

Erlang is a concurrent functional programming language with ex-
plicit support for real-time and fault-tolerant distributed systems.
Generic components encapsulated as design patterns are provided
by the Open Telecom Platform (OTP) library. Although Erlang has
many high-level features, verification is still non-trivial. One possi-
ble approach is to perform an abstraction of an Erlang program into
the process algebyaCRL, upon which standard verification tools
can be applied.

Previous work has investigated the verification of Erlang pro-
grams and OTP components wWitfCRL. Rules that supports the
translation of Erlang syntax and OTP supervisor, generic server and
finite state machines are proposed and studied respectively. How-
ever, in the existing work, no rule is defined to deal witheout
event. This could dramatically degrade the usability of the existing
work since in some real applicatiotimeoutevents play a signifi-
cant role in the system design. For example, in the telecommunica-
tion protocols, a sender often requires an acknowledgement within
a defined time period after a message is sent out. Failing to do so
leads to the assumption of data losing.

In this paper, by extending the existing work, we investigated
the verification of timed Erlang/OTP components with the process
algebrapuCRL. By using an explicittick event, a discrete-time
timing model is defined to support the translation of timed Erlang
functions intopCRL. This inclusion of explicitick events is, of
course, not new and has been investigated as a means to include
timings in process algebras such as CSP [17] and LOTOS (which
owe much to toolsets for timed automata such as UPPAAL [20]).

We demonstrated the applications of the proposed approach
with two small examples. These examples are first modelled by
Erlang/OTP FSM with timing restrictions, and then translated into
#CRL according to the proposed schema. System properties were
also verified by using the standard toolset CADP.

All LTSs presented in this paper were derived through manually
translating Erlang FSM programs intopdCRL specification. We
are currently upgrading the toolsetomcrlwhere the translation of
timeoutevents will be incorporated.

The LTSs can then be derived through the use of CADP. They Acknowledgements
are presented in Figufe]12 and Fig[iré 13 respectively. Flgyre 12 This work is supported by the UK Engineering and Physical Sci-
shows the LTS on buying a cup of tea with the payment higher than ences Research Council (EPSRC) grant EP/C525000/1. We would
the price, while, Figurg 13 demonstrates the LTS on buying a cup like to thank the developers of the tool setg.6fRL and CADP for

of cappuccino with the payment less than the price.

permitting the use of tools for system verification.

References

[1] J. Armstrong, R. Virding, C. Wikstim, and M. Williams.Concurrent
Programming in Erlang Prentice-Hall, second edition, 1996.

[2] T. Arts, C. Benac-Earle, and J. Derrick. Verifying Erlang code: a
resource locker case-study. In Lars-Henrik Eriksson and Peter Lind-
say, editorsFormal Methods Europe: Getting IT Right, Copenhagen,

Denmark volume 2391 oLLNCS pages 184-203. Springer-Verlag,
July 2002.

T. Arts, C. Benac-Earle, and Juan d&inchez Penas. Translating
Erlang to xCRL. In The Fourth International Conference on
Application of Concurrency to System Design (ACSD'@é8ges
135-144. IEEE Computer Society, June 2004.

[4] J. C. M. Baeten and W. P. WeijlandProcess Algebra Cambridge
University Press, 1990.

[5] C. Benac-Earle.Model checking the interaction of Erlang compo-

13

—_

nents PhD thesis, The University of Kent, Canterbury, Department

of Computer Science, 2006.

[6] C. Benac-Earle and Lakke Fredlund. Verification of Language
Based Fault-Tolerance. In Roberto Moren@® Franz Pichler, and
Alexis Quesada-Arencibia, editorEUROCAST pages 140-149.

Springer-Verlag, February 2005.

—

[7

—

Proceedings of ACM SigPlan Erlang 2005 Workshpages 26—34.
ACM Press, September 2005.

S. Blom, N. loustinova, and N. Sidorova. Timed verification with
pCRL. In Manfred Broy and Alexandre V. Zamulin, editofsth

8

—_

Andrei Ershov International Conference on Perspectives of System

Informatics PSI1'2003 volume 2890 ofLNCS pages 178-192.
Springer-Verlag, July 2003.

[9

—

Language LOTOSComputer Networks and ISDN Systefi(1):25—
29, 1987.

[10] CADRP. http://www.inrialpes.frivasy/cadp/

[11] E. Clarke, O. Grumberg, and D. Lonylodel CheckingMIT Press,
1999.

[12] LarsAke Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and

G. Chugunov. A verification tool for Erlandnternational Journal on
Software Tools for Technology Transfé(4):405-420, August 2003.

[13] J. F. Groote. The syntax and sematics of tim&RL. In SEN R9709,

CWI, Amsterdaml997.
[14] J. F. Groote and A. Ponse. The syntax and sematigsCéL. In

Algebra of Communicating Processes 1994, Workshop in Computing

pages 26—62, 1995.

[15] Q. Guo. Verifying Erlang/OTP Components irtCRL. In John
Derrick and diri Vain, editors,FORTE'07, volume 4574 ofLNCS
pages 227-246. Springer-Verlag, June 2007.

[16] Q. Guo and J. Derrick. Eliminating overlapping of pattern matching

when verifying Erlang programs inCRL. In 12th International
Erlang User Conference (EUC’06), Stockholm, Swe@006.

[17] C. A. R. Hoare.Communicating Sequential Processes (Prentice-Hall
International Series in Computer SciencEyentice Hall, April 1985.

[18] F. Huch. Verification of Erlang programs using abstract interpretation
and model checkingACM SIGPLAN Notices34(9):261-272, 1999.

[19] D. Kozen. Results on the propositionaicalculus. Theortical
Computer Scien¢®7:333-354, 1983.

[20] K. Larsen, P. Pettersson, and W. Yi.PEAAL in a Nutshell. Int.

Journal on Software Tools for Technology Transfgfl—2):134-152,

October 1997.

C. Benac-Earle, Laréke Fredlund, and J. Derrick. Verifying Fault-
Tolerant Erlang Programs. In K. Sagonas and J. Armstrong, editors,

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification

A. uCRL specification for a door with code lock
system

sort
Timer

func
off: — Timer
on: Natural— Timer

map
pred: Timer— Timer
expire: Timer— Bool

var
t: Timer
n: Natural

rew
expire(off) = F
expire(on(n)) = eq(0,n)
pred(on(n)) = on(pred(n))
pred(off) = off

%

sort
TermStack

func
empty: — TermStack
push: Term # TermStack>- TermStack

map
is_top: Term # TermStack- Bool
is_.empty: TermStack- Bool
pop: TermStack— TermStack
top: TermStack— Term
eq: TermStack # TermStaeck Bool

var
S1,S2: TermStack
T1,T2: Term

rew
is_top(T1l,empty) = F
is_top(T1,push(T2,S1)) = eq(T1,T2)
is.empty(empty) =T
is_empty(push(T1,S1)) = F
pop(push(T1,S1)) =S1
top(push(T1,S1))=T1
eq(empty,S2) = iempty(S2)
eq(push(T1,S1),S2) = and(isp(T1,S2),eq(S1,pop(S2)))

act
rcallvalue,wcallresult,pushallstack: Term
rcallresult,wcallvalue,papallstack: Term

comm
rcallvalue| wcallresult = pustrallstack
rcallresult| weallvalue = popcallstack

proc
CallStack(S:TermStack) =
sum(Value:Term,

rcallvalue(Value).CallStack(push(Value,S))) +
(delta< is_.empty(S)>
wecallvalue(top(S)).CallStack(pop(S)))

%

act
s.event, revent, sengevent: Term
s_.command, rcommand, cmd: Term
do_lock
do_unlock
warningmessage
tick
time_out

comm
s.event| r_event = sendevent
s.command r.command = cmd

map
patternsmatching: Term # Term- Term
locked: Term # Term— Term
open: Term # Term— Term
locked.case0_0: Term # Term # Term- Term
lockedcaseO_1: Term # Term # Term— Term

var
Command, Data: Term
Patternl, Pattern2: Term

rew
locked(Command, Data) =
locked case0_0(patternsmatching(Command,
element(int(1),Data)),Command,Data)
locked case0_0(true, Command, Data) =
tuple(sopen,tuple(Data,tuplenil(tuplenil(int(1)))))
locked case0_0(false, Command, Data) =
locked case0_1(patternsmatching(danot.care,
do_not care),Command,Data)
locked case0_1(true, Command, Data) =
tuple(slocked, tuple(Data,tuplenil(tuplenil(int(2)))))
open(Command, Data) =
tuple(slocked, tuple(Data,tuplenil(tuplenil(int(1)))))
patternsmatching(Patternl, Pattern2) =
equal(Patternl,Pattern2)

proc
write(Val:Term) =
wecallresult(Val)

read(Command:Term) =
sum(Val:Term, rcallresult(Val).
(fsm_locked(Command,element(int(2),Val),on(2))
< is_s_locked(element(int(1),Val}

(fsm_open(Command,element(int(2),Val),on(2))

< is_s.open(element(int(1),Val)} delta)))

fsm_locked(Command:Term,Data: Term,t:Timer) =
do_unlock.lockedtiming(Command,Data,t)
< term.to_bool(equal(element(int(1),element(int(3),
locked(Command,Data))),int(1)})
warningmessage.
fsm_next state(element(int(1),
locked(Command,Data)),

element(int(2),locked(Command,Data)))

lockedtiming(Command:Term,Data: Term,t:Timer) =
countdown locked(Command,Data,t) +
fsm_nextstate(element(int(1),
locked(Command,Data)),element(int(2),
locked(Command,Data)))

countdown.locked(Command:Term,Data:Term,t:Timer) =
tick.
lockedtiming(Command,Data,pred(t))
< not(expire(t))>
time_out.
do_lock.
fsm_nextstate(slocked,tuplenil(abc))

fsm_open(Command:Term,Data: Term,t:Timer) =
do_lock.fsmnextstate(slocked, tuplenil(abc))

fsm_changestate =

sum(Command:Term,event(Command).read(Command))

fsmLinit(S:Term, Data:Term) =
fsm_next state(S,Data)

fsm_next state(S:Term, Data:Term) =
wecallresult(tuple(S,tuplenil(Data))).
sum(Command:Term,
r_.command(Command)asvent(Command).
fsm_changestate)

fsm_.command(Command:Term, CmdSet:Term) =
s.command(hd(CmdSet)).
fsm_.command(tl(CmdSet), CmdSet)
< is_nil(Command)>
s.command(hd(Command)).
fsm_command(tl(Command), CmdSet)

init
encap(scommand,icommand,
fsm_.command(nil, cons(abb,cons(abc, nil)))
hide(pushcallstack,popcallstack,
encap(rcallvalue,wcallvalue,rcallresult,wcallresult,
s_event,revent,CallStack(empty)
fsmuinit(s_locked,tuplenil(abc))|
fsm.changestate)))

	Introduction
	Preliminaries
	Erlang
	OTP
	Generic servers
	Supervisors
	Finite state machines
	Example - a door with code lock

	The process algebra CRL

	Related work
	Translating Erlang syntax
	Overlapping in pattern matching
	Translating OTP components
	Translating generic servers
	Translating finite state machines

	Model checking Erlang with CRL

	Translating timed Erlang/OTP components into CRL
	Defining a timer in CRL
	Translating timed Erlang functions
	Coping with synchronization

	Experiments
	A door with code lock
	Coffee machine

	Conclusions and future work
	CRL specification for a door with code lock system

