
Verification of Timed Erlang/OTP Components
Using the Process AlgebraµCRL

Qiang Guo John Derrick
Department of Computer Science

The University of Sheffield
Regent Court, 211 Portobello Street, S1 4DP, UK

{Q.Guo, J.Derrick}@dcs.shef.ac.uk

Abstract
Recent work has looked at how Erlang programs could be model-
checked via translation into the process algebraµCRL. Rules for
translating Erlang programs and OTP components intoµCRL have
been defined and investigated. However, in the existing work, no
rule is defined for the translation oftimeoutevents intoµCRL. This
could degrade the usability of the existing work as in some real
applications,timeoutevents play a significant role in the system
development. In this paper, by extending the existing work, we
investigate the verification of timed Erlang/OTP components in
µCRL. By using an explicittick action in theµCRL specification,
a discrete-time timing model is defined to support the translation
of timed Erlang functions intoµCRL. Two small examples are
presented, which demonstrates the applications of the proposed
approach.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Verification

Keywords Erlang, OTP, Process algebraµCRL, Timeout events,
Verification

1. Introduction
Erlang [1] is a concurrent functional programming language with
explicit support for real-time and fault-tolerant distributed systems.
It is available under an Open Source Licence from Ericsson. Since
being developed, its use has spread to a variety of sectors such as
TCP/IP programming (HTTP, SSL, Email, Instant messaging, etc),
web-servers, databases, advanced call control services, banking,
3D-modelling.

A unique feature of Erlang is the Open Telecom Platform (OTP)
architecture where generic components are encapsulated as design
patterns, each of which solves a particular class of problem. Thus,
for the development of fault-tolerant systems containing soft real-
time requirements, the use of OTP components helps to reduce the
complexity of system design while increasing the robustness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-675-2/07/0010. . . $5.00

Although Erlang has many high-level features, verification can
be still non-trivial. One possible way to verify an Erlang program
is to abstract it into a formal model, upon which model checking
[11] techniques can be applied. This approach has recently been
applied to the verification of Erlang programs and OTP components
[2, 3, 5, 7] where the process algebraµCRL [14] has been used as
the formal language upon which verification is carried out.

The translation from Erlang toµCRL is performed in two
stages. First, a source to source transformation is applied, resulting
in Erlang code that is optimised for the verification, but has identi-
cal behaviour. Second, this output is translated toµCRL. A toolset,
etomcrl, has been developed to automate the process of translation
of an Erlang program into aµCRL specification.

Erlang/OTP software is usually written according to strict de-
sign patterns that make extensive use of software components. En-
capsulated in the extensive OTP library are a variety of design
patterns, each of which is intended to solve a particular class of
problem. Solutions to each such problem come in two parts. The
generic part is provided by OTP as a library module and the spe-
cific part is implemented by the programmer in Erlang. Typically
these specific callback functions embody algorithmic features of
the system, whilst the generic components provide for fault toler-
ance, fault isolation and so forth. Translations of the callback mod-
ules of the OTP generic servers and supervisors have been investi-
gated in [2, 3, 6, 7].

In addition to generic servers and supervisors, OTP provides
further generic components including finite state machines (FSMs),
event handlers, and applications. These considerably simplify the
building of systems. In [15], the verification of OTP FSM programs
usingµCRL has been studied, and a model is proposed to support
the translation of an Erlang FSM program intoµCRL. In order to
define the correct translation, and techniques proposed in [16] are
applied to deal with the presence of overlapping patterns in pattern
matching.

For some OTP components such as the FSM, timing restrictions
might be applied, meaning that the execution of a function must
be completed within a defined time period. If the function fails to
do so, atimeoutevent is generated and the correspondingtimeout
function will be activated to process the event.

However, no existing work has defined rules for the translation
of timeout events intoµCRL. This could dramatically degrade
the usability of the existing work as in some real applications,
timeoutevents play a significant role in the system development.
In this paper, by extending the existing work, we investigated the
verification of timed Erlang/OTP components inµCRL. By using
an explicit tick event, a discrete-time timing model is defined to
support the translation of timed Erlang functions intoµCRL. Two

small examples are presented, which demonstrates the applications
of the proposed approach.

The rest of this paper is organized as follows: Section 2 briefly
introduces the Erlang programming language and the process alge-
bra µCRL; Section 3 reviews the related work for the translation
of Erlang programs and OTP components intoµCRL; Section 4
investigates the translation of timed OTP components intoµCRL;
Section 5 illustrates two small examples; conclusions are finally
drawn in Section 6.

2. Preliminaries
2.1 Erlang

Erlang [1] is a functional programming language, and as such an
Erlang program consists of a set of modules, each of which define
a number of functions. Functions that are accessible from other
modules need to be explicitly declared asexport. A function named
f namein the modulemoduleand with arityN is often denoted as
module:fname/N.

Erlang is a concurrent programming language, and as such pro-
vides a light-weight process model. Several concurrent processes
can run in the same virtual machine, each of which being called
a node. Each process has a unique identifier to address the pro-
cess and a message queue to store the incoming messages. Erlang
has an asynchronous communication mechanism where any pro-
cess can send (using the! operator) a message to any other pro-
cess of which it happens to know theprocess identifier. Sending is
always possible and non-blocking; the message arrives in the un-
bounded mailbox of the specified process. The latter process can
inspect its mailbox by thereceive statement. A sequence of pat-
terns can be specified to read specific messages from the mailbox.
When reading a message, a process is suspended until a match-
ing message arrives or timeout occurs. A distributed system can be
constructed by connecting a number of virtual machines.

2.2 OTP

A unique feature of Erlang is the OTP architecture, which is de-
signed to support the construction of fault-tolerant systems contain-
ing soft real-time requirements. Each OTP design pattern solves a
particular class of problems, and solutions to each such problem
come in two parts: the generic part and the specific part. The first
is provided as a library module, while, the second is implemented
by the programmer where the necessary algorithms are applied.
Generic servers, supervisors and finite state machines are three key
components which account for over 80% of OTP compliant code.

2.2.1 Generic servers

The genservermodule provides a standard set of interface func-
tions for synchronous and asynchronous communication, debug-
ging support, error and timeout handling, and other administra-
tive tasks. A generic server is implemented by providing acall-
back modulewhere (callback) functions are defined specifying the
concrete actions of the server such as server state handling and re-
sponse to messages. When a client wants to synchronously commu-
nicate with the server, it calls the standardgenserver:callfunction
with a certain message as an argument. If an asynchronous com-
munication is required, thegenserver:castis invoked where no
response is expected after a request is sent to the server. Atermi-
natefunction is also defined in the call back module. This function
is called by the server when it is about to terminate, which allows
the server to do any necessary cleaning up.

2.2.2 Supervisors

Erlang/OTP supports fault-tolerance by using thesupervision tree,
which is a structure where the processes in the internal nodes

(supervisors) monitor the processes in the external leafs (children).
A supervisor is a process that starts a number of child processes,
monitors them, handles termination and stops them on request.
The children themselves can also be supervisors, supervising its
children in turn.

2.2.3 Finite state machines

The gen fsm module supports the implementation of finite state
machines, and these are used extensively in a variety of contexts.
A (deterministic) FSMM can be described as a set of relations
of the formState(S) × Event(E) → (Action(A), State(S))
whereS, E andA are finite and nonempty sets of states, events
and actions respectively. For an implementation using thegen fsm
module,gen fsmis started by callingstart link(Code)to register a
newgen fsmprocess.

start link(Code)→
gen fsm:startlink({local, fsmname},

callbackmodulename, Code, []).

If the registration succeeds, the new process calls the callback
function callbackmodulename:init(Code) where the initial state
and the corresponding state data are set.

The state transition rules are written as a number of state func-
tions that conform to the following convention:

StateName(Event, StateData)→
... code for actions ...;
{next state,StateName′,StateData′,Timer}.

A state function ends up by returning the name of the next state
and an updated state data.Timer is an optional element. IfTimer is
set to a value, a timer is instantiated, and atimeoutevent will be
generated when the time-up occurs.

The functionsendeventis defined to trigger a transition. When
sendeventis executed, thegen fsmmodule automatically calls the
current statefunction.

2.2.4 Example - a door with code lock

An example of a door with a code lock system is modelled by OTP
FSM. The initial design, illustrated in Figure 1, consists of two
states,lockedandopen, and a system code for opening the door.
Initially, the door is set tolockedwhile the code is set to a word.
The door switches between states, driven by an external event. A
timing restriction is applied for the system. If the door is switched
to theopenstate and no action is performed within a defined period,
a timeoutevent is generated, which activates thetimeoutfunction
to close the door.

Figure 1. FSM - door with code lock.

The Erlang/OTP implementation is shown in Figure 2 where the
functionbutton is defined to simulate the receiving of a password.
The actionsend event triggers a state transition where a state
function is executed, in this example eitherlockedor open.

A password is generated from an external action and is eval-
uated to open the door or not. The timer for the stateopenis set

-module(fsmdoor).
-export([startlink/1, button/1, init/1]).
-export([locked/2, open/2]).

start link(Code)→
gen fsm:startlink(local, fsm door, fsmdoor, Code, []).

init(Code)→
{ok, locked, Code}.

button(Password)→
gen fsm:sendevent(fsmdoor,{button, Password}).

locked({button, Password}, Code)→
case Password of

Code→
action:dounlock(),
{next state, open, Code, 20000};

Wrong→
action:displaymessage(),
{next state, locked, Code}.

open({button, Password}, Code)→
action:dolock(),
{next state, locked, Code};

open(timeout, Code)→
action:displaymessage(),
action:dolock(),
{next state, locked, Code}.

Figure 2. The Erlang code for a door with code lock.

to 20,000ms. If the door is switched toopenand no action is per-
formed within 20,000ms, atimeoutevent is generated, which en-
ables the functionopen(timeout,Code)to process the event.

2.3 The process algebraµCRL

The process algebraµCRL (micro Common Representation Lan-
guage) [14] is an extension of the process algebra ACP [4], where
equationalabstract data typeshave been integrated into the process
specification to enable the specification of both data and process
behaviour (in a way similar to LOTOS [9]).

A µCRL specification comprises two parts: the data types and
the processes. Processes are declared using the keywordproc, and
contains actions representing atomic events that can be performed.
These actions must be explicitly declared using the keywordact.
Data types used inµCRL are specified as the standard abstract data
types, using sorts, functions and axioms. Sorts are declared using
the keywordsort, functions are declared using the keywordfunc
andmapis reserved for additional functions. Axioms are declared
using the keywordrew, referring to the possibility to use rewriting
technology for the evaluation of terms.

A number of process-algebraic operators are defined inµCRL,
these being: sequential composition (·), non-deterministic choice
(+), parallelism (‖) and communication (|), encapsulation (∂), hid-
ing (τ), renaming (ρ) and recursive declarations. A conditional ex-
pressiontrue C condition B false allows data elements to influ-
ence the flow of control in a process, and an alternative quantifica-
tion operator (

∑
) provides the possibly infinite choice over some

sorts.
In µCRL, parallel processes communicate via the synchroniza-

tion of actions. The communication in a process definition is de-
scribed by its communication specification, denoted by the key-
word comm. This describes which actions may synchronize on the

level of the labels of actions. For example, incommin|out, each
action in(t1, ..., tk) can communicate without(t′1, ..., t

′
m) pro-

videdk = m andti andt′i denote the same element fori = 1, ..., k.

3. Related work
3.1 Translating Erlang syntax

Translating Erlang intoµCRL was initially studied in [3, 5, 6, 7].
A toolset,etomcrl, was developed for automating the process of
translation. The translation from Erlang toµCRL is performed
in two stages. First, a source to source transformation is applied,
resulting in Erlang code that is optimized for the verification, but
has identical behaviour. Second, this code is translated toµCRL.

The actual translation is quite involved due to particular lan-
guage features in Erlang. For example, Erlang makes use of higher-
order functions, whereasµCRL is 1st order; Erlang is dynamically
typed, butµCRL is statically typed; in Erlang communication can
take place in a computation, inµCRL it cannot. However,µCRL
is sufficiently close that such a translation is feasible, and model
checking on it computationally traceable even if the translation is
involved.

sort
Term

func
pid: Natural→ Term
int: Natural→ Term
nil: → Term
cons: Term # Term→ Term
tuplenil: Term→ Term
tuple: Term # Term→ Term
true:→ Term
false:→ Term

Figure 3. The translation scheme for Erlang data types.

Because Erlang is dynamically typed it is necessary to define in
µCRL a data typeTermwhere all data types defined in Erlang are
embedded. The translation of the Erlang data types toµCRL is then
basically a syntactic conversion of constructors as shown in Figure
3.

Atoms in Erlang are translated toµCRL constructors;true and
false represent the Erlang booleans;int is defined for integers;
nil for the empty list;cons for a list with an element (the head)
and a rest (the tail);tuplenil for a tuple with one element;tu-
ple for a tuple with more than one element; andpid for process
identifiers. For example, a list[E1, E2, ..., En] is translated to
µCRL ascons(E1, cons(E2, cons(..., cons(En, nil)))). A tuple
{E1, E2, ..., En} is translated toµCRL as
tuple(E1, tuple(E2, ..., tuplenil(En))).

Variables in Erlang are mapped directly to variables inµCRL.
Operators are also translated directly, specified in aµCRL li-
brary. For example,A + B is mapped tomcrl plus(A,B), where
mcrl plus(A,B)= int(plus(termto nat(A), termto nat(B))).

Higher-order functions in an Erlang code are flattened into first-
order alternatives. These first-order alternatives are then translated
into rewrite rules.

Program transformation is defined to cope with side-effect func-
tions. With a source-to-source transformation, a function with side-
effects is either determined as a pure computation or a call to an-
other function with side-effects.Stacksare defined inµCRL where
pushandpopoperations are defined as communication actions. The
value of a pure computation is pushed into a stack and is popped
when it is called by the function.

3.2 Overlapping in pattern matching

Erlang makes extensive use of pattern matching in its function
definitions. The toolsetetomcrltranslates pattern matching in a way
where overlapping patterns are not considered. This might induce
faults in theµCRL specification in our translation, and we need to
use techniques to cope with the occurrence of overlapping patterns.

In Erlang, evaluation of pattern matching works from top to
bottom and from left to right. When the first pattern is matched,
evaluation terminates after the corresponding clauses are executed.
However, theµCRL toolset instantiator does not evaluate rewriting
rules in a fixed order. If there exists overlapping between patterns,
the problem of overlapping in pattern matching occurs, which could
lead to the system being represented by a faulty model.

A solution to the problem of overlapping in pattern matching
was discussed by Benac-Earle [5], however, the solution was not
implemented in the toolsetetomcrl. Subsequently, Guoet al. [16]
proposed a different solution, whereby an Erlang program with
overlapping patterns is transformed into a counterpart program
without overlapping patterns. The rewriting operation rewrites all
pattern matching clauses in the original code into some calling
functions. A calling function is activated by a guard that is de-
termined by the functionpatternsmatch. Functionpatternsmatch
takes the predicate of the pattern matching clauses and one pattern
as arguments and istrue iff the predicate matches the pattern.

A data structure called the Structure Splitting Tree (SST) is
defined and applied for pattern evaluation, and its use guarantees
that no overlapping patterns will be introduced to the transformed
program. The evaluation of an SST is equivalent to the search of
nodes in a tree, and thus is of linear complexity.

3.3 Translating OTP components

3.3.1 Translating generic servers

Thegenservermodule defines a Server/Clients structure of Erlang
programs. Thegenservermodule is translated into a set of commu-
nicated processes inµCRL. Communication between two Erlang
processes, which can be asynchronous, is translated via defining
two process algebra processes, one of which is a buffer, while the
other implements the logic.

The synchronous communication is modelled by the synchro-
nizing actions of process algebra. One action pair is defined to syn-
chronize the sender with the buffer of the receiver, while another
action pair to synchronize the active receive in the logic part with
the buffer. In this way the asynchronous communication and the Er-
lang message queue is simulated directly in theµCRL abstraction.

3.3.2 Translating finite state machines

Translation of the Erlang finite state machine (FSM) design pattern
was studied in [15]. By extending the approach discussed in [3, 6,
7], a model was proposed to support the translation of an Erlang
FSM component intoµCRL. The translation of the Erlanggen fsm
module intoµCRL is comprised of two parts,simulating state
managementandtranslating the state functions.

Simulating state management

A (one place) stack is used in theµCRL specification to simulate
the management of FSM states and state data. The translation rules
are given in Figure 4, where three actions,s event, r event and
send event, are defined respectively. A command, generated from
an external action is sent out to some other processes by action
s event. This command is received through actionr event and is
used for further processing;s event : r event = send event.

An Erlang FSM state is assigned with aµCRL state name
(“s ” plus the state name) and a state process (“fsm” plus the
state name). For example, stateS1 is given aµCRL state name

act
s event, revent, sendevent: Term
s command, rcommand, cmmcommand: Term

comm
s event| r event = sendevent
s command| r command = cmmcommand

proc
write(Val:Term) =

wcallresult (Val)

read(Cmd:Term)=
sum(Val:Term, recallresult(Val).

fsm S1(Cmd,element (2,Val))
C is s S1(element(1,Val))B

fsm S2(Cmd,element (2,Val))
C is s S2(element(1,Val))B

...
fsm Sn(Cmd,element(2,Val))

C is s Sn(element(1,Val))B delta)

fsm changestate =
sum(Cmd:Term, revent(Cmd).read(Cmd))

fsm init(S:Term,Data:Term) =
fsm next state(S,Data)

fsm next state(S:Term,Data:Term) =
wcallresult(tuple(S,tuplenil(Data))).

sum(Cmd:Term,rcommand(Cmd). sevent(Cmd).
fsm changestate)

fsm S1(Cmd:Term, Data:Term) =
pre defined actions ...
fsm next state(nexState, newdata)

....
fsm Sn(Cmd:Term, Data:Term) =

pre defined actions ...
fsm next state(nextState,newdata)

Figure 4. Rules for translating Erlang FSM state processes.

s S1 and a state processfsm S1. The current stateand the
state dataare coded in a tuple with the form oftuple(state,
tuplenil(state data)) and saved in the stack. The stack used for
managing states and data is defined in a way where only one ele-
ment can be read/written. This ensures that only onecurrent state
is available.

The processwrite is defined to push thecurrent stateand the
state dataonto the stack while a process calledread is used to
pop thecurrent stateand thestate datafrom the stack. The process
fsm init(State:Term, Data:Term) is defined to initially push
tuple(Init State, tuplenil(State Data)) onto the stack. The
processfsm next state(State:Term, Data:Term) updates the
current stateand thestate datain the stack.

The processfsm next state will receive commands through
the actionr command. The actionr command communicates
with the actions command which is externally performed. When
a command is received, the processfsm state change, guarded
by the actions event, is enabled. It passes the command to the
processread where thecurrent stateand thestate dataare read
from stack. Thecurrent statedetermines which state process is
about to be activated.

A state processfsm Si starts by calling itsµCRL state func-
tion Si(Command : Term, Data : Term). FunctionSi re-
turns a tuple with the form oftuple(next state, tuple(new data,
tuplenil(index))) wherenext state shows the next state;new data
the updated state data. Theindex saves an index number for the
sequence of actions to be selected.

Translating state functions

The translation of an Erlang state function intoµCRL starts by
splitting the function into two parts, one of which defines a series
of µCRL state functions while the other a set of action sequences.
Every set of action sequences is translated into a pre-defined action
set in µCRL. According to the order that patterns occur in the
Erlang function, the pre-defined action sets are uniquely indexed
with a set of integers. For example, in Figure 5, the set of action
sequences{actions(1), ...,actions(n)} is indexed with an integer
set{1, ..., n} where integeri identifies the pre-defined action set
actions(i).

Si(N)
case N of→

P1 →
actions(1);

P2 →
actions(2);

...
Pn →

actions(n).

Figure 5. An Erlang FSM state function with pattern matching.

The selection of aµCRL state function for execution is de-
termined by the pattern of function arguments. By the end, the
µCRL function returns a tuple with the form oftuple(next state,
tuple(new data, tuplenil(index))) wherenext state returns the
next state,new data the updated state data andindex the index of
the action sequence that needs to be performed.

To eliminate any potential overlapping between patterns, tech-
niques proposed in [16] are applied. Specifically, pattern matching
clauses in the program are replaced by a series of case functions.
These case functions are guarded by thepatterns match function
that takes the predicate of pattern matching clauses and one pat-
tern as arguments, then if the predicate matches the pattern, func-
tion patternsmatchreturnstrue; otherwise,false, and this elimi-
nates the overlapping between patterns and ensures that the index
returned by theµCRL state function is deterministic and unique.
Figure 6 illustrates the translation rules for the Erlang state func-
tion shown in Figure 5.

When the state processfsm Si starts, it first calls theµCRL
state functionSi(Cmd, Data). Si returns an index numberi
that determines which action sequenceaction(i) is about to
be performed. The processfsm Si ends up by calling process
fsm next state, updating thecurrent stateand thestate datain
the stack.

3.4 Model checking Erlang withµCRL

Once an Erlang program is translated into aµCRL specification,
one can check the system properties by using some existing tools
such as CADP [10]. The toolset CADP provides a number of tools
for system behaviour checking. It includes an interactive graphical
simulator, a tool for the visualization of labelled transition systems
(LTSs), several tools for computing bisimulations and a model
checker.

Properties one wishes to check with the CADP model checker
are formalized in the regular alternation-freeµ-calculus (a frag-

rew
Si(Args) =

Si case0(patternsmatch(Args,P1),Args)
Si case0(true,Args) =

tuple(Sj ,tuple(Data,tuplenil(1)))
Si case0(false,Args) =

Si case1(patternsmatch(Args,P2),Args)
Si case1(true,Args) =

tuple(Sk,tuple(Data,tuplenil(2)))
...

Si case(n-1)(true,Args) =
tuple(Su,tuple(Data,tuplenil(n-1)))

Si case(n-1)(false,Args) =
Si casen(patternsmatch(Args,Pn),Args)

Si casen(true,Args) =
tuple(Sv,tuple(Data,tuplenil(n)))

proc
fsm Si(Cmd:Term,Data:Term) =

actions(1).
fsm next state(element(1,Si(Cmd,Data)),

element(2,Si(Cmd,Data)))
C element(3,Si(Cmd,Data))=1B

(actions(2).
fsm next state(element(1,Si(Cmd,Data)),

element(2,Si(Cmd,Data)))
C element(3,Si(Cmd,Data))=2B

...
(actions(n).
fsm next state(element(1,Si(Cmd,Data)),

element(2,Si(Cmd,Data)))
C element(3,Si(Cmd,Data))=nB

delta)...)

Figure 6. Translation rules for Erlang state function.

ment of the modalµ-calculus), a first-order logic with modalities,
and least and greatest fixed point operators [19]. Automation for
property checking can be achieved by using the Script Verification
Language (SVL). SVL provides a high-level interface to all CADP
tools, which enables an easy description and execution of complex
performance studies.

4. Translating timed Erlang/OTP components
into µCRL

All existing work so far translates Erlang programs without taking
timeoutevents into account. However, in some real applications,
timeout events play a significant role in the OTP design. This
section studies the translation oftimeout events intoµCRL and
defines rules to support the translation of timed Erlang functions.

4.1 Defining a timer in µCRL

Two approaches might be considered to extend the existing work
for coping with timeoutevents. The first is to use a timed exten-
sion toµCRL, while, the second to define atimer in the untimed
µCRL. A timed version ofµCRL is defined in [13] where time
is incorporated as an abstract data type. However, without further
modification, a timedµCRL cannot be used by some of existing
tools. Moreover, timedµCRL is incompatible with liberalization
(translating a specification into the intermediate format) and partial
order reduction [13].

This work considers the use of the second approach. Atimer
and an explicit timing actiontick are incorporated in theµCRL

sort var
Timer t:Timer

func n:Natural
off:→ Timer rew
on: Natural→ Timer expire(off)=F

map expire(on(n))=eq(0,n)
pred: Timer→ Timer pred(on(n))=on(pred(n))
expired: Timer→ bool pred(off)=off
set: Timer # Natural→ Timer set(t,n)=on(n)
reset: Timer→ Timer reset(t)=off

Figure 7. The syntax of aµCRL timer

specification. Atimer [8], syntactically illustrated in Figure 7, has
two states,on andoff. TheµCRL functionset(t:Timer, x:Natural)
instantiates a timer with an integer while theµCRL functionex-
pired(t:Timer)evaluates whether the time-up occurs. A timer peri-
odically calls theµCRL functionpred(t:Timer)to count down the
value of timing. To do so, theµCRL functionpred(x:Natural)with
an integer as its argument needs to be defined before the definition
of timer. TheµCRL functionpred(x:Natural)determines the time
elapse unit for atimer, namely,pred(x)= x - timeelapseunit. For
example, if the time elapse unit is defined as 1, thenpred(3)= 2 and
pred(2)= 1.

As is common with other approaches to modelling time explic-
itly in a process algebra, an explicit timing actiontick is defined.
During the timing, the timer is periodically evaluated by theµCRL
functionexpired. If the value of the timing does not come to zero,
before calling theµCRL functionpred to count down the timer by
one unit, the actiontick is performed once, standing for the passing
of one time elapse unit; otherwise, atimeoutevent is generated.

4.2 Translating timed Erlang functions

For an Erlang function with timing restrictions, execution of the
function needs to be completed within the defined time period. If
the Erlang function fails to do so, atimeoutevent will be generated
and the correspondingtimeout function is invoked to process the
event.

To incorporatetimeoutevents in the translation, for those Erlang
functions with timing restrictions, two processes are defined in
µCRL, one of which deals withtiming, while, the other copes
with count down. When the timing begins, thetiming process will
be called. Thetiming process will either call another process (the
execution of this function is completed within the defined time
period) or activate thecount downprocess (counts down the timer
by one unit). When going through thecount downprocess, the
timer is evaluated. If the timer does not expire, atick action will
be performed once, stating the passing of one time elapse unit.
Afterwards, thetimingprocess is called; otherwise, atimeoutevent
will be generated and the correspondingtimeoutprocess is enabled
to process the event.

For example, the state functionlockedof the Erlang FSM pro-
gram shown in Figure 2 has a timing restriction of 20,000ms. If
the door is switched toopenand no action is performed within
20,000ms, atimeout event is generated, which will activate the
function open(timeout,Code)to first give a warning message and
then close the door. The Erlang state function is translated into
µCRL as shown in Figure 8. The processfsm locked calls the
processtiming locked by the end of execution, instantiating and
initiating a timer. Thetiming lockedwill either move to the pro-
cessfsmnextstatedriven by an action within the defined time, or
count the timer down by one unit (onetick action is performed).
A time out event will be generated once time-up occurs, leading to
thewarning messagesanddo lock actions being performed.

proc
fsm locked(Cmd:Term,Data:Term,x:Natural) =

do unlock . lockedtiming(Cmd,Data, on(x))
C term to bool(equal(element(int(1),element(int(3),

locked(Cmd,Data))),int(1)))B
warningmessage .
fsm next state(element(int(1),locked(Cmd,Data)),

element(int(2),locked(Cmd,Data)))

locked timing(Cmd:Term,Data:Term,t:Timer) =
countdown locked(Cmd,Data,t) +
fsm next state(element(int(1),locked(Cmd,Data)),

element(int(2),locked(Cmd,Data)))

countdown locked(Cmd:Term,Data:Term,t:Timer)
tick . lockedtiming(Cmd,Data,pred(t))

C not(expired(t))B
time out . warningmessage .
fsm next state(slocked,tuplenil(abc))

Figure 8. Translating rules for timed Erlang functions.

4.3 Coping with synchronization

The gen fsmmodule defines a functionsyncsendevent(FSMRef,
Event, Timer)to provide synchronized communications between
FSMs whereFSMRefpoints to the Erlang FSM process to which
an event is about to send.Timeris an optional element. WhenTimer
is set and an event is sent out, a reply message is expected to arrive
within the defined time period; otherwise, a timeout will occur and
the Erlang program will be terminated.

The functionsyncsendeventitself is a timed Erlang function.
Thus, translation rules defined in subsection 4.2 can be applied.
Figure 9 illustrates the translation scheme.

act
sync read, syncsend, syncevent : Term

comm
sync read| syncsend = syncevent

proc
syncsendevent(CmdList:Term,x:Natural) =

s command(head(CmdList)) .
syncsendeventtiming(CmdList,x,on(x))

syncsendeventtiming(CmdList:Term,x:Natural,t:Timer) =
countdown syncsendevent(Cmd,x,t) +
sum(Reply:Term, syncread(Reply).

syncsendevent(tail(CmdList), x))

countdown syncsendevent(Cmd:Term,x:Natural,t:Timer)
tick . syncsendeventtiming(Cmd,x,pred(t))

C not(expired(t))B
time out . delta

Figure 9. Coping with synchronization communication between
FSMs.

The function is translated into two processes inµCRL. The pro-
cesssyncsendeventreads a command from the command list and
then sends it off through actions command1. Once a command
is sent off, a timer is instantiated and initialized in the process
syncsendeventtiming. The process expects to read a reply mes-
sage through actionsyncread. If the µCRL FSM process does not

1 Action s commandis defined in Figure 4

return the message within the defined time period, atimeoutevent
is generated and the program is terminated.

5. Experiments
Two small examples are presented in this section to illustrate the
applications of the proposed approach.

5.1 A door with code lock

A door with a code lock system, illustrated in Figure 1, is explained
in Section 2.2.4. The system is simulated with the Eralng/OTP
FSM, and the implementation is shown in Figure 2. The program
is translated intoµCRL by applying the rules defined in [3, 15]
and Section 4. In the simulation, the system code is set toabc.
A sequence of external actions[{abb}, {abc}] is initialized in the
µCRL specification, stating that two passwords,abb andabc, are
consecutively inputted.

Once the Erlang program is translated intoµCRL, a standard
toolset such as CADP [10] can be applied to check the system prop-
erties. The toolset CADP provides a tool for generating the labelled
transition systems (LTSs) and a model checker for checking system
behaviour. Figure 10 demonstrates the LTS for a door with code
system derived from theµCRL specification.

Figure 10. LTS derived from the door with code lock system.

Design properties of the system can then be verified with the
CADP model checker. The system properties should be formalized
in the regular alternation-freeµ-calculus (a fragment of the modal
µ-calculus) [19]. Thus once we have a specification inµCRL,
applying model-checking approaches is standard.

For example, in this experiment, a property involving intimeout
event can be formulated as:

[true * . “do unlock” . (not ‘tick . tick’) . “time out”] false

stating that “Without being delayed for 20,000ms (twotick actions
are performed),time out event cannot be generated”. Since this
property has been defined in the original design, when applying
the CADP model checker, the toolset should returntrue if the
Erlang program is correctly implemented (at least in terms of this
property).

Another property with timing issue one might wish to check can
be formulated as:

[true * . “do unlock” *] <‘tick . tick . tick’ . “i” > true

stating that “When the actiondo unlockis performed, there exists a
transition such that the internal action can still be performed when
the time-up occurs”. Since in the original design, this property

is not defined, when checking with the CADP, the toolset should
returnfalse.

The system design properties can be formulated with a set of
µ-calculus logic expresses and saved in a SVL file. Through evalu-
ating the SVL file, the process of verification can be automatically
accomplished within a couple of seconds.

The example studied in this subsection is comparatively simple
and is easy to be verified. A more complicated system, coffee ma-
chine system is presented in the next subsection to further illustrate
the application of the proposed approach.

5.2 Coffee machine

A coffee machine has three states, these being,selection, payment
andremove. The stateselectionallows a buyer to choose the type
of drink, while, the statepaymentdisplays the price of a selected
drink and requires payment for the drink. When a buyer selects a
drink, if within the defined time period, no action is performed, the
machine will reset to theselectionstate. When in the statepayment,
if the buyer does not pay enough coins in the defined period, the
machine will return all pre-paid coins and reset to theselection
state; otherwise, the machine goes to the stateremovewhere the
drink is prepared and the change is returned.

Four types of drink are sold:tea, cappuccino, americanoand
espresso. A buyer can complete the purchase of a drink within the
defined time period, or cancel the current transaction to claim back
all pre-paid coins. The designs of the system is shown in Figure 11.
The program initially sets the current state toselection. A timing
restriction of 20,000ms is set to the state functionpayment.

Figure 11. FSM - coffee machine.

Four actionsdisplayprice, pay coin, return coinandremovecup
are defined in theµCRL specification wheredisplaypricedisplays
the price for a selected drink;pay coin requires a buyer to pay
coins for the drink;return coin returns the changes if more coins
have been paid for the drink, or gives back the pre-paid coins if the
transaction is cancelled. In theµCRL specification, the time elapse
unit is defined as 10,000ms which states that atick action in the
LTS stands for the passing of 10,000ms.

To initiate the process of buying drinks, two sequences of exter-
nal actions are constructed. The first simulates “selectingcappuc-
cino (£5 for a cup), paying£4 and then trying to take the drink
away”, while, the second simulates “selectingtea (£4 for a cup),
paying £5 and then taking the drink away”. The sequences are
coded in the lists[{selection, cappuccino, 5}, {pay, 4}, {cup
remove}] and [{selection, tea, 4}, {pay, 5}, {cup remove}],
and are initialized in theµCRL specification respectively.

Figure 12. LTS: Buying tea with the payment higher than the
price.

Figure 13. LTS: Buying cappuccino with the payment less than
the price.

The LTSs can then be derived through the use of CADP. They
are presented in Figure 12 and Figure 13 respectively. Figure 12
shows the LTS on buying a cup of tea with the payment higher than
the price, while, Figure 13 demonstrates the LTS on buying a cup
of cappuccino with the payment less than the price.

Model checking using the CADP model checker can then be
applied. Properties involving in timing issues can be formalized
as discussed. For example, to check “There existstime out events
when buying cappuccino and, when thetime out is performed, all
pre-paid coins should be returned”, the property can be formalized
as:

<true * . “cmd(tuple(selection,tuple(cappuccino,
tuplenil(int(s(s(s(s(s(0))))))))))” * . (not “timeout”) * .
“cmd(tuple(pay,tuplenil(int(s(s(s(s(0))))))))” *><true * .
“time out” *. “return coin(int(s(s(s(0)))))”> true

Similarly, to check “After a drink is selected and partially paid,
without time delay, the pre-paid coins cannot be returned”, the
property is formalized as:

[(not “time out”) * .
(“return coin(int(s(s(s(0)))))” or
“return coin(int(s(s(s(s(0))))))”)] false

6. Conclusions and future work
Erlang is a concurrent functional programming language with ex-
plicit support for real-time and fault-tolerant distributed systems.
Generic components encapsulated as design patterns are provided
by the Open Telecom Platform (OTP) library. Although Erlang has
many high-level features, verification is still non-trivial. One possi-
ble approach is to perform an abstraction of an Erlang program into
the process algebraµCRL, upon which standard verification tools
can be applied.

Previous work has investigated the verification of Erlang pro-
grams and OTP components withµCRL. Rules that supports the
translation of Erlang syntax and OTP supervisor, generic server and
finite state machines are proposed and studied respectively. How-
ever, in the existing work, no rule is defined to deal withtimeout
event. This could dramatically degrade the usability of the existing
work since in some real applicationstimeoutevents play a signifi-
cant role in the system design. For example, in the telecommunica-
tion protocols, a sender often requires an acknowledgement within
a defined time period after a message is sent out. Failing to do so
leads to the assumption of data losing.

In this paper, by extending the existing work, we investigated
the verification of timed Erlang/OTP components with the process
algebraµCRL. By using an explicittick event, a discrete-time
timing model is defined to support the translation of timed Erlang
functions intoµCRL. This inclusion of explicittick events is, of
course, not new and has been investigated as a means to include
timings in process algebras such as CSP [17] and LOTOS (which
owe much to toolsets for timed automata such as UPPAAL [20]).

We demonstrated the applications of the proposed approach
with two small examples. These examples are first modelled by
Erlang/OTP FSM with timing restrictions, and then translated into
µCRL according to the proposed schema. System properties were
also verified by using the standard toolset CADP.

All LTSs presented in this paper were derived through manually
translating Erlang FSM programs into aµCRL specification. We
are currently upgrading the toolsetetomcrlwhere the translation of
timeoutevents will be incorporated.

Acknowledgements
This work is supported by the UK Engineering and Physical Sci-
ences Research Council (EPSRC) grant EP/C525000/1. We would
like to thank the developers of the tool sets ofµCRL and CADP for
permitting the use of tools for system verification.

References
[1] J. Armstrong, R. Virding, C. Wikstr̈om, and M. Williams.Concurrent

Programming in Erlang. Prentice-Hall, second edition, 1996.

[2] T. Arts, C. Benac-Earle, and J. Derrick. Verifying Erlang code: a
resource locker case-study. In Lars-Henrik Eriksson and Peter Lind-
say, editors,Formal Methods Europe: Getting IT Right, Copenhagen,
Denmark, volume 2391 ofLNCS, pages 184–203. Springer-Verlag,
July 2002.

[3] T. Arts, C. Benac-Earle, and Juan José Sánchez Penas. Translating
Erlang to µCRL. In The Fourth International Conference on
Application of Concurrency to System Design (ACSD’04), pages
135–144. IEEE Computer Society, June 2004.

[4] J. C. M. Baeten and W. P. Weijland.Process Algebra. Cambridge
University Press, 1990.

[5] C. Benac-Earle.Model checking the interaction of Erlang compo-
nents. PhD thesis, The University of Kent, Canterbury, Department
of Computer Science, 2006.

[6] C. Benac-Earle and Lars-Åke Fredlund. Verification of Language
Based Fault-Tolerance. In Roberto Moreno-Dı́az, Franz Pichler, and
Alexis Quesada-Arencibia, editors,EUROCAST, pages 140–149.
Springer-Verlag, February 2005.

[7] C. Benac-Earle, Lars-Åke Fredlund, and J. Derrick. Verifying Fault-
Tolerant Erlang Programs. In K. Sagonas and J. Armstrong, editors,
Proceedings of ACM SigPlan Erlang 2005 Workshop, pages 26–34.
ACM Press, September 2005.

[8] S. Blom, N. Ioustinova, and N. Sidorova. Timed verification with
µCRL. In Manfred Broy and Alexandre V. Zamulin, editors,5th
Andrei Ershov International Conference on Perspectives of System
Informatics PSI’2003, volume 2890 ofLNCS, pages 178–192.
Springer-Verlag, July 2003.

[9] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification
Language LOTOS.Computer Networks and ISDN Systems, 14(1):25–
29, 1987.

[10] CADP. http://www.inrialpes.fr/vasy/cadp/.

[11] E. Clarke, O. Grumberg, and D. Long.Model Checking. MIT Press,
1999.

[12] Lars-Åke Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and
G. Chugunov. A verification tool for Erlang.International Journal on
Software Tools for Technology Transfer, 4(4):405–420, August 2003.

[13] J. F. Groote. The syntax and sematics of timedµCRL. InSEN R9709,
CWI, Amsterdam, 1997.

[14] J. F. Groote and A. Ponse. The syntax and sematics ofµCRL. In
Algebra of Communicating Processes 1994, Workshop in Computing,
pages 26–62, 1995.

[15] Q. Guo. Verifying Erlang/OTP Components inµCRL. In John
Derrick and J̈uri Vain, editors,FORTE’07, volume 4574 ofLNCS,
pages 227–246. Springer-Verlag, June 2007.

[16] Q. Guo and J. Derrick. Eliminating overlapping of pattern matching
when verifying Erlang programs inµCRL. In 12th International
Erlang User Conference (EUC’06), Stockholm, Sweden, 2006.

[17] C. A. R. Hoare.Communicating Sequential Processes (Prentice-Hall
International Series in Computer Science). Prentice Hall, April 1985.

[18] F. Huch. Verification of Erlang programs using abstract interpretation
and model checking.ACM SIGPLAN Notices, 34(9):261–272, 1999.

[19] D. Kozen. Results on the propositionalµ-calculus. Theortical
Computer Science, 27:333–354, 1983.

[20] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

A. µCRL specification for a door with code lock
system

sort
Timer

func
off: → Timer
on: Natural→ Timer

map
pred: Timer→ Timer
expire: Timer→ Bool

var
t: Timer
n: Natural

rew
expire(off) = F
expire(on(n)) = eq(0,n)
pred(on(n)) = on(pred(n))
pred(off) = off

%————————————————–

sort
TermStack

func
empty:→ TermStack
push: Term # TermStack→ TermStack

map
is top: Term # TermStack→ Bool
is empty: TermStack→ Bool
pop: TermStack→ TermStack
top: TermStack→ Term
eq: TermStack # TermStack→ Bool

var
S1,S2: TermStack
T1,T2: Term

rew
is top(T1,empty) = F
is top(T1,push(T2,S1)) = eq(T1,T2)
is empty(empty) = T
is empty(push(T1,S1)) = F
pop(push(T1,S1)) = S1
top(push(T1,S1)) = T1
eq(empty,S2) = isempty(S2)
eq(push(T1,S1),S2) = and(istop(T1,S2),eq(S1,pop(S2)))

act
rcallvalue,wcallresult,pushcallstack: Term
rcallresult,wcallvalue,popcallstack: Term

comm
rcallvalue| wcallresult = pushcallstack
rcallresult| wcallvalue = popcallstack

proc
CallStack(S:TermStack) =

sum(Value:Term,

rcallvalue(Value).CallStack(push(Value,S))) +
(deltaC is empty(S)B

wcallvalue(top(S)).CallStack(pop(S)))

%————————————————–

act
s event, revent, sendevent: Term
s command, rcommand, cmd: Term
do lock
do unlock
warningmessage
tick
time out

comm
s event| r event = sendevent
s command| r command = cmd

map
patternsmatching: Term # Term→ Term
locked: Term # Term→ Term
open: Term # Term→ Term
lockedcase0 0: Term # Term # Term→ Term
lockedcase0 1: Term # Term # Term→ Term

var
Command, Data: Term
Pattern1, Pattern2: Term

rew
locked(Command, Data) =

lockedcase0 0(patternsmatching(Command,
element(int(1),Data)),Command,Data)

lockedcase0 0(true, Command, Data) =
tuple(sopen,tuple(Data,tuplenil(tuplenil(int(1)))))

lockedcase0 0(false, Command, Data) =
lockedcase0 1(patternsmatching(donot care,

do not care),Command,Data)
lockedcase0 1(true, Command, Data) =

tuple(slocked, tuple(Data,tuplenil(tuplenil(int(2)))))
open(Command, Data) =

tuple(slocked, tuple(Data,tuplenil(tuplenil(int(1)))))
patternsmatching(Pattern1, Pattern2) =

equal(Pattern1,Pattern2)

proc
write(Val:Term) =

wcallresult(Val)

read(Command:Term) =
sum(Val:Term, rcallresult(Val).

(fsm locked(Command,element(int(2),Val),on(2))
C is s locked(element(int(1),Val))B

(fsm open(Command,element(int(2),Val),on(2))
C is s open(element(int(1),Val))B delta)))

fsm locked(Command:Term,Data:Term,t:Timer) =
do unlock.lockedtiming(Command,Data,t)

C term to bool(equal(element(int(1),element(int(3),
locked(Command,Data))),int(1)))B

warningmessage.
fsm next state(element(int(1),

locked(Command,Data)),
element(int(2),locked(Command,Data)))

locked timing(Command:Term,Data:Term,t:Timer) =
countdown locked(Command,Data,t) +
fsm next state(element(int(1),

locked(Command,Data)),element(int(2),
locked(Command,Data)))

countdown locked(Command:Term,Data:Term,t:Timer) =
tick.
locked timing(Command,Data,pred(t))

C not(expire(t))B
time out.
do lock.
fsm next state(slocked,tuplenil(abc))

fsm open(Command:Term,Data:Term,t:Timer) =
do lock.fsm next state(slocked, tuplenil(abc))

fsm changestate =
sum(Command:Term, revent(Command).read(Command))

fsm init(S:Term, Data:Term) =
fsm next state(S,Data)

fsm next state(S:Term, Data:Term) =
wcallresult(tuple(S,tuplenil(Data))).

sum(Command:Term,
r command(Command).sevent(Command).
fsm changestate)

fsm command(Command:Term, CmdSet:Term) =
s command(hd(CmdSet)).
fsm command(tl(CmdSet), CmdSet)

C is nil(Command)B
s command(hd(Command)).
fsm command(tl(Command), CmdSet)

init
encap(scommand,rcommand,

fsm command(nil, cons(abb,cons(abc, nil)))‖
hide(pushcallstack,popcallstack,

encap(rcallvalue,wcallvalue,rcallresult,wcallresult,
s event,revent,CallStack(empty)‖

fsm init(s locked,tuplenil(abc))‖
fsm changestate)))

	Introduction
	Preliminaries
	Erlang
	OTP
	Generic servers
	Supervisors
	Finite state machines
	Example - a door with code lock

	The process algebra CRL

	Related work
	Translating Erlang syntax
	Overlapping in pattern matching
	Translating OTP components
	Translating generic servers
	Translating finite state machines

	Model checking Erlang with CRL

	Translating timed Erlang/OTP components into CRL
	Defining a timer in CRL
	Translating timed Erlang functions
	Coping with synchronization

	Experiments
	A door with code lock
	Coffee machine

	Conclusions and future work
	CRL specification for a door with code lock system

