Real-time Connectors for Deterministic Data-flow

Irfan Hamid', Elie Najm"
*GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
Email: {firstnane. | ast name} @nst.fr

Abstract—In this paper we introduce deterministic bridge Fig. 1. Control loop and its block diagram representation
connectors, a type of construct that ensures deterministicata-
flow communication in asynchronous real-time systems. We sb X y
present a methodology for generating these connectors autmt- @—v y = f(x)
ically from the application’s architecture description in order Sensor Actuator
to reduce programmer effort and the chance of error. Finally, A

we provide a process algebraic verification of the determirsim
property of these connectors.

Index Terms—Ada, Ravenscar, real-time, code generation,
connectors, AADL.

I. INTRODUCTION

Vehicle control systems are one of the most safety-critical
categories of software. Stringest standards of code review _) o
must be met before deployment on-board the platform. Su@f architecture is shown n figure 1. The blackbox above
systems are invariably implemented in the form of contraida computes. therransfer funpnon In an asynch.ron.ous control
that take input data from sensors, carry out transformatiom system this would be refined to a set of periodic threads that

that data and apply the outputs to actuators (figure 1). Thé&¥ehange data among themselves to compute the final value

are—invariably—two orthogonal sets of requirements that 227 te output (as shown in the lower part of the figure).
always leveraged on such systems: The simplest method of implementing a dataflow between

. Timing requirements that relate to the timeliness dwvo co-located threads is to use a shared variable protected
the produced results. The validity of results is stronglg9@inst concurrentaccess by a mutex. However, this inteslu

dependant upon the time at which they are available. he danger of non-determinism in the dataflow, due normally

« Functional requirements that describe the output of th@ auxiliary load on the system. From the set of periodic
system as a function of the input provided, i.e.: thesgureads in a system consider twos @nd 1) with periods

describe the algorithmic portion of the control law'dshort and Flong respectively such thaong = 3xPshor- The
response loop. priority of 15 is higher than that of;, thus, the single job
f.T) in each mutual hyperperiod is executed between jobs

One of the properties that these systems must always exhb Itrs. If 1 produces datar to be consumed by, then the

is determinism, i.e.: two equivalent runs with the same fapu - S . : '
q PYhon-determinism shown in figure 2 might result: in the first

. n
should produce the same results, every time. One a roach) 10 . . . - L

uid proa L Y PP hyperperiod;t; is launched just afters finishes its first job
achieving this determinism is to use a synchronous reactiv

. nd writesay, this is read byr; as the value of the dataflow.
language such as Lustre [1] to implement the control laws. Jn .
. . . . N the next hyperperiod, due to extraneous factors—such as a
this paradigm there is only one thread of execution and t

e . - .
entire functionality of the control system t®llapsedinto it. sporadic alarm thread firing#-is executed after theecond
The variousfunctional nodesf the model are then execute

JOb of 15 and it readss5 instead of the expecteal;.

in a synchronous lockstep fashion. Another approach is toVice versa, ift produces a dataflo to be read byrs
write asynchronous multithreaded control applicationisiciv then the following non-determinism might occur (also shown
run atop an operating system and behave in an asynchrontufigure 2): in the first hyperperiod; finishesafter the last
manner, communicating with each other [2]. The advantafjed®P 0f Ts and thus all three jobs at in this hyperperiod usBo
a multithreaded asynchronous control system is the pdiggibi (@n initial value). However, in the next hyperperiadfinishes
of higher processor utilization as well as flexibility of adg just before last job ofs and that job readB; instead off;.
threads later in the design stage. This approach also allow§his type of non-determinism is unacceptable in control
designers topiggybacknon-control system threads such aapplications. To guard against this breach, the protoo@rgi
alarm and status monitors onto the same partition. in figure 3 is widely used in industry. All dataflow values are

In all control systems, the communication is carried out itaken from the last job of the previous mutual hyperperiod
the form of dataflows as this is the paradigm that is mosf both threads involved in the dataflow. This eliminates-non
native to control law concepts. The system architecture determinism due to auxiliary load or scheduling decisions b
usually represented in a block structured formalism. Suthe RTOS.

Fig. 2. Non-determinism in dataflow across two hyperperiods Fig. 4. Protocol threag transfering values in the double buffer at the start
of each mutual hyperperiod.

+~—— Hyperperiod ————~——— Hyperperiod ——,
F F ~——— Hyperperiod ————~——— Hyperperiod)
‘ o1 2 o I
Thread T . - — - - ‘
Back_Store:a ‘1 i
Front_Store: i -
Thread 17— _store:[=] i)
Thread p I >
Back_Store:[Bg].. | [B| [Ba] 1 [B2)
Front_Store:[=] "{Bo| [Bo] +[B2]
Fig. 3. A delayed communication protocol that ensures detésm. Thread T, _,_._._I } ._I >
3 By Y 3

Hyperperiod . Hyperperiod

Thread T, j
0.

used. Similarly, for a dataflow from a low-frequency to high-
frequency thread every write from the source thread is read
r times. The notatiort (i) < o signifies that thé'" job of
threadr, getsj!" instance of the datafloverf). For the example

of figure 2 wherePong = 3% Pshort, the first few dataflows are:

We present an efficient method for implementing this type
of deterministic dataflow among hard real-time threadsgisin Ts(1) < Bo, Ts(2) < Po, Ts(3) < Po, Ts(4) < P1
a connector ab_stract|on. The_ protocol is given in section Il (1) — do, T(2) — aa, T (3) — g, T(4) — dg (1)
and its properties are explained. Our proposed solution to) o) .
implement the protocol is given in section Ill. The details e can generalize this into the following equations:
of implementation as well as the tool support developed are

By~

Thread 17— :

given in section IV. The verifications carried out are de@il Vi:tg(ixr+1) « Bi...Ts(i xr+r) < B
in section V. Finally, the article is rounded up with our Vi (i) — G I = Plong/Pshort
conclusions and discussion of future work. @)

These equations collapse correctly for the degenerate case
of r =1 by stipulating that the value from the previous job
In this section we will formulate the mathematical propesti of the source thread be used. The previous job falls in the
of the dataflow. But before that can be done, we need peevious hyperperiod by definition as there is one job of each
explicitly state the assumptions and hypotheses that cantheead in one hyperperiod for= 1.
made upon the system and the consequences thereof:
o The system is hard real-time. Periodic tasks are gu#: Suboptimal Implementation
anteed to be dispatched at the start of each periody gypoptimal—yet correct—manner of implementation
(dispatching is taken to mean being put in the ready stai,|q be to introduce a special thread to assure the protocol
not necessarily being given the processor). The dataflow would be implemented via a double buffered
« Deadlines are met, otherwise the schedulability has begfyiaple protected by a mutex. The source thread would write
breached and the system should go into a graceful degrggdéne pack buffer and the destination thread would read from
mode. o __ the front buffer. A special protocol thread with priorityegter
« Both the source and destination threads are periodic Wi, that of both the producer and consumer threads and
Plong =T X Pshort andr 751-) eriod equal toRghg would be created. This thread would
« The source thread writes to the dataflow at each job, tBEpy the back buffer to the front buffer at the start of each

destination thread reads from the dataflow at each jqRyyal hyperperiod. The evolution of such a system is shown
this is a reasonable assumption for a control system. j, figure 4. This approach has multiple drawbacks:

« The scheduler is preempive and priority based. « Increases the number of threads in the system.

» Priority assignment is rate monotonic [3], i.e.: priority « Introduces an impact from the non-functional architecture

of 15 is greater than the priority ofj. Thus, at the start (peri

X . periods of the two threads, the type of the dataflow etc.)
of eacth dlt”?L:ctuaI hyperpetrrl]oaonﬁ :)he;hthreadrs W(;” be q towards the functional code of the protocol thread.
executedbetorer;, even though both were made ready | q1ves direct manipulation of priorities (thregdhas

simultaneously. longer period but higher priority thary, non-conformant
with RMA).

II. DETERMINISTIC PROTOCOL AND ITSPROPERTIES

A. Protocol

Given the above assumptions we can obtain a mathematical ~ !!l. DETERMINISTIC BRIDGE EXCHANGERS
model for the dataflow protocol such that determinism is We propose an alternative approach for the implementation
maintained. For the dataflow from a high-frequency to lowsf the dataflow protocol. Our proposal consists of using a
frequency thread every'" write from the source thread isconnector abstraction. Connectors are defined in [4] as:

Connectors mediate interactions among components: tha@rocedure Set _Val ue(i n Dat a)

is, they establish the rules that govern component intevact |nvocation: static integer initialized to 0

and specify any auxiliary mechanisms required. Data - input for dataflow, provided by source thread
One of the main advantages of using a connector abstraction integer corresponding tBiong/Pshort

is that we can clearly separate components and communicatiobegin

mechanisms, which are two orthogonal concerns of a system.| Invocation+ Invocation + 1
Our dataflow presents an ideal case where the components are if Invocation = 1then
the threads that participate in the dataflow. If we can sulesum Front_Store— Back_Store
the functionality of the protocol into a certain connector end
then we can eliminate any pollution of functional code with if Invocation = r then
communication logic. Back_Store— Data

We call astepper deterministic bridge exchanggtepper endlnvocat|on<— 0
DBX) the connector that implements a dataflow from a high- return

frequency thread to a low-frequency thread. Conversely, weend
call the connector that implements a dataflow from a low-
frequency thread to a high-frequency ongtagger determinis-

tic bridge exchangefstagger DBX). Both types of connectors:

« Have an internal double buffer of the same data type gs

Stagger DBX

the dataflow, called thback storeand thefront store A stagger DBX implements a deterministic dataflow from
« Expose procedureSet Val ue and Get _Val ue, these a low-frequency thread to a high-frequency thread. The
procedures are concurrency safe. Set _Val ue andGet _Val ue procedures of a stagger DBX are

Below we give an abstract overview of both types ofalled by the threads, and ts respectively. Therefore, in
connectors. Detailed implementation and their integraitito ~ accordance with the properties enunciated, we can dedate th

our existing tools is given in section IV. it is the Get _Val ue procedure that is invoked at the start of
each mutual hyperperioBlong. In eachPgng there will be
A. Stepper DBX I = Plong/ Pshort Jobs of ts and the same number of invocations

Rf Get _Val ue. Conversely, in eacRiong there will be one job

This connector serves to implement a dataflow from a hlgof 1 and one invocation oSet _Val ue.

frequency thread, to a low-frequency thread . The source In order to implement the deterministic dataflow protocol, a

thread computes a new value and cék Val ue on the . "
connector each time it is dispatched. The destination mre%tagger DBX embeds buffer handling logic into Ge _Val ue

callsCGet _Val ue each time it is dispatched to read the dataflovﬁrocedure' This procedure must return the data presenein th

From the assumptions made on the system we know that iont store as well as copy the back store to the front store

each mutual hyperperiolong, there will ber = Plong/Pshor E{]every _m(\j/ocatlon corresponding to the first job irPgng
invocations ofSet _Val ue and one invocation oet _Val ue. yperperiod. _)))
Also, at the start of eacRiong, it Will be Set _Val ue which 1) On the first dispatch of every hyperperiod—i.e.: on
will be invoked first, asts has a higher priority. invocation numbe¥i € N:ixr+1 of Get _Val ue—the

In order to implement the deterministic dataflow protocol, a Procedure copies the back store into the front store.
stepper DBX embeds buffer handling logic into Se¢_Value =~ 2) Everyinvocation ofet _Val ue copies the data provided
procedure. This procedure must save the data provided by the by the source thread into the back store.
source thread as well as copy data from the back store to th&\ve call this connector a stagger exchanger because it
front store at every invocation corresponding to the fir§t jostaggerson a dataflow value a certain number of times before

in a Rong hyperperiod. getting a new one. The proceduet Val ue simply copies
1) On the first dispatch of every hyperperiod—i.e.: othe value passed by the thread into the back buffer of the
invocation numberi € N:ixr+1 of Set_Value— exchanger. The pseudocode for the procediete Val ue is

the procedure copies the back store into the front stogiven below.
2) On the last dispatch of every hyperperiod—i.e.: on
invocation numbe¥i € N:ixr+r of Set_Val ue—the
procedure copies the provided data into the back store.
3) Every invocation ofGet _Val ue returns the front store We integrated the stepper and stagger DBX into ARC [5],
to the caller (the destination thread). our code generator that transforms system architectuess-sp
The proceduréet _Val ue simply returns the value of the fied in the AADL [6] architecture description language to Ada
front store to the calling thread. The pseudocode for tiRavenscar [7] source cotiéBelow we provide an introduction
procedureSet _Val ue is given below. to both AADL and the Ravenscar Profile of Ada before
We call this connector a stepper exchanger becausieps moving on to an explanation of how the deterministic bridge
over a certain number of input data to the dataflow. It isxchangers are implemented in our tooling.
apparent that only eveny" data value is copied into the back
store. 1Available athttp://aadl . enst.fr/arc/

IV. IMPLEMENTATION AND TOOLING

Procedure GCet _Val ue(out Dat a) The Ada Ravenscar Profile [7] is a profile (restriction)

Invocation: static integer initialized to 0 of the Ada programming language’s rich tasking constructs.

Data - output for dataflow, sent to destination thread This profile aims to ease the schedulability analysis of the

r . integer corresponding tBong/Pshort system. Furthermore, through the judicious use of the ipyior

begin ceiling protocol [8], it eliminates the posssibility of d#ack
Invocation+— Invocation + 1 in the system. It also includes restrictions on the dynamic
if Invocation = 1then creation/destruction of tasks and memory allocation ireotd

Front_Store— Back_Store make the system deterministic and suitable for high-iritygr

end applications.

if Invocation = r then

Invocation— 0 The Ada programming language provideskswhich im-

plement the same functionality as POSIX thredémtected

end i _ . .
Data < Front Store objectsare like C++ classes in that they expose an interface
return - and contain private data. Furthermore, access to the puoeed

end of protected objects are concurrency-safe. Thus, pratecte
objects can be used to implement inter-task communication.
In fact, the Ravenscar Profile stipulates tlatly protected
objects be used to implement inter-task communicationo Als
A. AADL stipulated by the profile is that all protected objects folkhe

The Architecture Analysis and Design Language [6] is priority ceiling protocol [8] in order to guard against démak
new architecture description language designed spetyfical and to avoid unbounded priority inversion.
real-time systems such as avionics and automotive controI.A
It uses a component-centric model to define the system

S a consequence, a Ravenscar-compliant Ada runtime is

hi S d _ in AADL ist of [iaranteed to be smaller and simpler than a complete Ada
chitecture. System descriptions in consist of & set Ql,niime For our tests, we have used the Open Ravenscar

components, each of which exposes well-defined interfacR%mel [9], which is an open source kernel available from
These interfaces are connected together to form a comm M ’

cation topology among the components. Component categorie
defined in the language include software (processes, thread
data, and subprogram) as well as hardware (processors, de-
vices, buses and memoaories).
As AADL_ is an architecture d.escrlptlon. Ianguage.—|ts maip AAD| to Ravenscar Converter
concern being the system architecture—it allows primahy
description of non-functional aspects of the componerttesé
include, among others, the periods of threads, their deeslli The ARC tool is an open source Eclipse plugin that con-
their stack sizes, their interface specifications etc. Fanal Verts AADL system descriptions to Ada Ravenscar source

aspects such as source code for software components is giz@#e. In [5] we gave a mapping for translating the software
separately. components and entities of AADL—processes, threads, data,
Among the various different types of interfaces that can [ROts, connections etc.—into Ada Ravenscar source cods. Th
put on components in AADL (calleféaturesin the language), allows us to automatically generateframeworK tailored to
aredata ports. Two connected data ports on different comour system architecture. This framework contdingesfor the
ponents behave like a dataflow channel. A value written d#nctional code in the form of callback procedures of peidod
the source side becomes visible on the destination sidex D&Rd sporadic tasks.
ports also have associategialifiers which are AADL data In our original mapping, we proposed the transformation
components which give the data type of the flow implemented AADL threads to Ada tasks, either periodic or sporadic,
by these ports. depending upon the thread’s AADL properties. Data ports
AADL components can also haveroperties assigned to were transformed to protected objects we naraechangers
them. Properties are name/value pairs that representircerta essence, an exchanger is a protected object with two
aspects of components. Among others, properties are usegrgceduresGet Val ue and Set_Val ue and an internal 1-
give the periods and dispatch protocols for threads. Usans glace buffer of the same type as the data port it implements
also define their own properties which are project and/of to® accomodate the data. As an example, listing 1 gives
specific. the specification of an exchanger protected object gerterate
automatically to implement a connection between two data

B. Ada Ravenscar ports of typel nt eger .

The Ada programming language provides rich tasking and
inter-task communication constructs. It provides corcifu

within the Ianguage that are usua”y relegated to an Op'gati 2A framework is the execution support for the system, such asst
rotected objects for communication among tasks and stlaEcdess the

system by other Ianguage_zs, e.g.: POSIX threads and mUteS@ﬁrated communication infrastructure. For details @ dbde generation
used by the C programming language. rules, refer toht t p: // aadl . enst. fr/arc/ doc/ .

protected type Integer_Exchanger
(Priority_P : System.Any_Priority) is
procedure Set_Value (D : in Data_Type);
procedure Get_Value (D : out Data_Type;

F : out Boolean);
private
pragma Priority (Priority_P);
Data : Integer;
Fresh : Boolean := False;

end Integer_Exchanger;

Listing 1. Ada package specification of thet eger _Exchanger

This implementation is perfectly valid for applications

where deterministic communication is not a requiremerg.:E.

a moving map display where the display thread has a period
of 500 ms and the data from the GPS is refreshed every 100

ms. A slight amount of non-determinism in this applicatio
would be neither noticeable nor critical.

D. Integration of DBX in Ada and ARC

We have implemented both types of DBX connectors—the
stagger and stepper—as generic Ada packages that can be

instantiated with the following information:
o The priority ceiling.
 The step/stagger factorthis is the valug = Pong/Pshort-
« The data classifier (type) of the data ports that are to
implemented.

The specification of the generic package that implement

a stepper DBX connector is given in listing 2. The gener

package has only a protected object instance that serves

the exchanger. The specification for a stagger DBX connec
is similar, the difference is in th8et Val ue andCGet Val ue
procedures’ implementations.

generic
Priority_P : System.Any_Priority ;
Factor_P : Integer;

type Data_Type_P is private;
package Stepper_DBX is
protected Stepper_DBX_lInstance is
procedure Set_Value (D : in Data_Type_P);
procedure Get_Value (D : out Data_Type P;
F : out Boolean);
private
pragma Priority (Priority_P);
Back_Store : Data_Type_P;
Front_Store : Data_Type_P;
Invocation : Integer 0;
Fresh : Boolean False;
end Stepper_DBX_lInstance ;
end Stepper_DBX;

Listing 2. Ada package specification of the DBX connector

In our original work on ARC, we defined a property set

Ravenscar in AADL to aid in code generation. To use AADL

as a design and code generation vehicle for DBX connectors

as well, we added a new property to the existRagenscar
property set. The new property—of type boolean-+ssDBX,

and is applied to AADL connections and has a default value®

of Fal se. If this property is set explicitly toTrue by the

Fig. 5. An AADL system model with two threads and a deterntioisata
connection of type nteger being transformed to Ravenscar code through
instantiation of a generic package.

_Taul _ _Tau2
/ src_port »—}(dst_port /

7 {Is_DBX => True;} 7
{Period => 30ms;
Dispatch_Protocol => Periodic;}

{Period => 10ms;
Dispatch_Protocol => Periodic;}

<Transform

package Tau2_dst_port is new Stepper DBX (239, 3, Integer);

—-- API stubs for Taul thread's package --
procedure Set_src_port (D : in Integer);

n

—-- API stubs for Tau2 thread's package --
procedure Get_dst_port (D : out Integer);

1) The connection must be a data connection, not an
event or event data connection and have the property
associatiori s_DBX => True.

Both threads must have the property association
Di spatch_Prot ocol => Peri odic.

The period of one thread must be a perfect multiple
of the period of the other, this can be verified by

examination of both thread®eri od property.

2)

3)
be

icSA stepper or a stagger DB exchanger is instantiated in

case all three of the above conditions are met. Whether

{Eﬁg a stepper or a stagger DBX depends on whether the
source thread has the shorter period or not. In addition to
the instantiation of the DBX connector, stub procedures are
generated in the functional packages of both threads which
allow easy access to the DBX in question. On the side
of the source thread is generated a stub procedure named
Set _<port Name>. On the side of the destination thread is
generated a stub nam&dt <port Nanme>. These procedures
simply call theSet _Val ue andGet _Val ue procedures of the
actual exchanger. An example of such a transformation engiv

in figure 5.

This creates, in effect, a complete deterministic commu-
nication framework and generates an API to access these
communication constructs. This aids greatly in implenmenti
the entire system since the designer now needs to focus only
on the functional (algorithmic) part of the system. Among th
advantages of this approach are:

Eliminates impact from system architecture to functional
code. As all protocol information is embedded inside
the connector thus the functional part need only interact
with the tasking/communication framework through the
provided API.

Reduces programmer effort through the use of automatic
code generation. This has an auxiliary consequence of

designer then instead of a normal exchanger, a stepper or
stagger exchanger DBX is instantiated by ARC to corresponde
to the data ports’ connection. The following conditions are
tested before instantiating a DBX:

reducing errors as well.

Aids in the certification process for on-board software.
This point will be explained in the next section when we
present a verification of our connectors.

V. VERIFICATION Fig. 6. The block defining behavior of a stepper exchanger.

In this section we give details of the verifications we /lnv := Inv-+1, Front_Store := Back_Store
carried out on the stepper and stagger DBX connectors using
LOTOS [10]. We use the CADP toolbox [11] in order to
perform the verification. CADP stands for Construction and
Analysis of Distributed Processes and is a toolbox thateallo
the compilation and analysis of LOTOS specifications. We use GET_VALUEIFront_Store
the LOTOS language in order to verify that our generated
DBX connectors do not have any non-deterministic behavior
and that the prescribed communication protocol is resgecte

/Front_Store := NaN

/Inv := 1, Back_Store := x

A. Overview of LOTOS

LOTOS stands for Language of Temporal Order Spechli:-lg' v
cations. It is a process algebra inspired by CCS [12] and et Btorer o
CSP [13] that uses the concepts of observable actions darrie nvi= nvel
out by independant processes. Processes synchronize ¢pon a
tions. Actions are taken ovegatesand may potentially involve
an exchange of data between the gates of the synchronized
processes.

The actions a LOTOS process can undertake are written
in the forma; b; ¢ which means the process engagesin
followed byb and finallyc. Actions of the sorg?x signify that
an action is taken ogateg and offersx as the associated data.
This action would need to be synchronized by a corresponding
action of the sorh! x which signifies a gaté receiving data
X.

The block defining behavior of a stagger exchanger.

SET_VALUE?x

GET_VALUE!x

/Back_Store := x

/x := Front_Store,
Inv:=1

2) There should be (Fact or) number of jobs ofts per

B. Connector Specifications in LOTOS hyperperiod, and 1 job ofi per hyperperiod.

In order to verify the correct behavior of our connectors, 3) At each job the source thread should engage in a

we implemented their specification in LOTOS. On running SET_VALLE action and the destination thread in a

them in parallel with LOTOS blocks that behave as the threads GET_VALUE action.) .
on both sides of the dataflow, we were able to carry out aWe can construct our source thread behavior block in such

verification of correctness. It is possible to determineggi & fashion that the it writes a predefined pattern of data. If
a certain communication configuration—i.Bsort, Plong and the destination thread does not receive the correct sequenc

direction of dataflow—whether or not the automaticallyamst 92t it raises a specieRRCR action which if present, signals a

tiated stepper or stagger exchanger will preserve detésmin non-deterministic run. The labelled tran_smon systen algo

Figure 6 shows a graphical representation of the the spSBOW @ counter-example of thran that violated the rules.
ification of a stepper exchanger. From tBeart state, it We carried out verifications of both stepper and stagger
can engage in either GET VALUE or a SET_VALUE action. DBX cqnnectors_for factors of 2, 3 and 4. We found no errors
in all six scenarios. We used the CADP toolset to generate
labelled transition systems from our LOTOS specifications.
Figure 9 shows the labelled transition system generated for
a stepper exchanger with a factor of 4 in parallel with two
threads that use it to implement dataflow. The authors of [14]
also use a process algebra to specify connectors, but tleey us
it to detect deadlock in connector specifications, whereas w
yse it to verify determinism.

We also built test applications that we compiled onto

fhe Open Ravenscar Kernel and ran on a simulator for the

These correspond to a call to the exchang€s Val ue
and Set Val ue procedures. The&ET VALUE action accepts
incoming data, whereaSET_VALUE offers data available in
the front store. It is obvious from the diagram that the
variable is incremented at ea8BT_VALUE action (and wraps
around to 1 afterFactor number of calls). The variable
Fact or represents = Piong/Pshor. The variable$ack_St or e
and Front _Store are the same as those given in the pse
docode in section Il and model the internal buffers. A samil
diagrammatic representation for a stagger DBX is given
figure 7.

This block can be combined in paraIIeI with blocks th ig. 8. Three LOTOS blocks combined in parallel. Two are foeads and

specify the behaviors of th? tW(_J thre.ads in order to veri® thne third is for a DBX connector. The gates are shown on eaobkblOne
correctness of the communication (figure 8). The two thread®annel (connection between gates) is for iee_Val ue interface and the

behavior blocks should take into account the following hyrther forGet _Val ue.

potheses:
1) At the start of the mutual hyperperiod, it should e
that should be launched first. Get_Value Set_Value

T

A

TABLE |
Fig. 9. Labelled transition system of a stepper DBX with @daof 4 being
used by two threads to implement dataflow. The absencERRER actions ~ DO-178B/ED-12B 3FETY CRITICALITY LEVELS, COURTESY OF[17]

signifies that this system is not violating the determinisropgrty.

Software level | Failure condition Outcome

Level A Catastrophic Death or injury
Level B Hazardous/Severe-major Injury

Level C Major Unsafe workload
Level D Minor Increased workload
Level E No effect None

formally verified and all conditions examined through the us
of an exhaustive state-space search.

Furthermore, the LOTOS code that was written by hand
to verify the behaviour of the stepper and stagger DBX
connectors may easily be generated automatically by ARC. It
can traverse the entire system model, locate and identif)t DB
connections by their properties, and generate correspgndi
LOTOS specifications for the connectors and the threads
which they are connected to. These automatically generated
specificatioins can potentially replace the MCDC test cases
for every DBX connector in the system, thereby significantly
reducing certification cost. In fact, the UK defence sofevar
standard Def Stan 00-55 [16] promotes proof of correctness
in the design rather than absence of errors. Research has
shown that there is a correlation between both approacfigs [1
Automatic generation of a process algebraic specificatiom f
AADL was also given in [18] where the authors use a process
&Igebra to determine the schedulability of the system.

ERC32 platform. No errors were reported for stepper an
stagger DBX connectors at factors of 2, 3 and 4. Source and
destination thread periods were between 1 ms and 80 ms. VI. CONCLUSION AND FUTURE WORK

We considered a problem in real-time control systems that is
C. Application to Certification usually solved by synchronous methodologies and techsique
DO-178B [15] is a widely accepted and applied standaMye proposed a light-weight and elegant solution to the prob-
for avionics software. It divides on-board software intoeonlem for asynchronous systems. We integrated our proposed
of five categories according to its safety requirementss&hemethodology into our existing tool.
levels are given in table I. Level A software is the softwafe o We also provided verification of the correct behavior of
highest criticality, and it is at this level that all contsmftware our proposed solution. A path to verification of an arbitrary
must be certified. The standard stipulates that Level Afgati communication configuration using our approach is alsorgive
software must undergo Modified Condition/Decision CoveragVe have also provided a justification for the use of this veri-
(MCDC) testing. This code coverage method requires a tdigiation in lieu of testing for standard certification proses.
case to verify each condition that can affect the outcome ofQur methodology provides a robust and automatic manner for
decision. A compound conditional such iag a>0 & b<5) constructing connectors for co-located threads. This ceslu
would result in four MCDC test cases wigh< 0,a>0,b<5 programmer effort and the chance for bugs in the system.
andb > 5. Our ARC tool is based on the OSATE AADL parser [19].
Generating such test cases by hand is not feasible. Thefbe OSATE toolkit represents a parsed AADL tree in the
fore, Level A certification usually requires instrumentedne form of an EMF model. This allows creation of completely
pilers that identify and generate test cases. However, fitodel-driven tools. We also use an intermediate meta-niodel
case of moderate to complex software the number of teggpresent the Ravenscar elements. Code generation is gone b
cases generated may be very large and thus testing becotraxersal of the Ravenscar meta-model. This will faciittite
expensive. Our approach of verified exchangers for det&riting of code generators for Ravenscar-compliant laggsa
ministic communication can reduce the cost of certificatiostich as Ravenscar-Java [20].
by providing verification artifacts in support of certifigat. Our future work will consist of a detailed case study
This can potentially allow the certification authority tardgo involving the re-engineering of an existing reference avio
MCDC coverage of the exchangers as their behaviour has bégn architecture to use the AADL/Ravenscar approach. Fur-
thermore, a model traceability plugin is planned that will

3The test applications, LOTOS specifications for the stegpet stagger provide hypertext reporting between artifacts in AADL and
DBX and different threads are available bttt p://aadl.enst.fr/arc/

doc/ . A detailed case study of deterministic dataflow controllé® available the resultmg_ ge.nerated source COde_-. Su?h type of tradgabil
at said URL in open source. documentation is very useful in certification processes.

Another interesting axis of research is the investigatida i
graceful degrade and/or fault tolerance of these conreator
case of overruns by tasks. We intend to investigate how to
carry out a synergistic combination of the presented caongc
together with the new temporal fault handling mechanisms
introduced in Ada 2005.

REFERENCES

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “Thec8sonous
Dataflow Programming Language Lustrd?foceedings of the IEEE
vol. 79, no. 9, pp. 1305-1320, September 1991.

[2] P.L.Butler and J. P. Jones, “Modular Control Architeetfior Real-time
Synchronous and Asynchronous Systems,Pmc. SPIE Vol. 1964, p.
287-298, Applications of Artificial Intelligence 1993: Muge Vision
and Robotics, Kim L. Boyer; Louise Stark; Ed&. L. Boyer and
L. Stark, Eds., Mar. 1993, pp. 287-298.

[3] L. Sha, M. H. Klein, and J. B. Goodenough, “Rate MonotoAitalysis
for Real-Time Systems,Computer vol. 26, no. 3, pp. 73-74, 1993.

[4] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a Temy
of Software Connectors,” ilCSE '00: Proceedings of the 22nd Inter-
national Conference on Software EngineeringNew York, NY, USA:
ACM Press, 2000, pp. 178-187.

[5] I. Hamid, B. Zalila, E. Najm, and J. Hugues, “A Generatikpproach
to Building a Framework for a Hard Real-Time System,3ibst Annual
IEEE-NASA Goddard Software Engineering Workst®gltimore, MD,
2007.

[6] SAE, Architecture Analysis & Design Language (AS55086¢ptember
2004, available at http://www.sae.org.

[7] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the of¢he Ada
Ravenscar Profile in high integrity systems,” 2003.

[8] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inhenice Protocols:
An Approach to Real-Time SynchronizationlEEE Transactions on
Computersvol. 39, no. 9, pp. 1175-1185, 1990.

[9] J. A. de la Puente, J. F. Ruiz, and J. Zamorano, “An OpereRstar
Real-Time Kernel for GNAT,” in Ada-Europe '00: Proceedings of
the 5th Ada-Europe International Conference on Reliabldtv&oe
Technologies London, UK: Springer-Verlag, 2000, pp. 5-15.

[10] T. Bolognesi and E. Brinksma, “Introduction to the IS@esification
language LOTOS,Comput. Netw. ISDN Systwol. 14, no. 1, pp. 25—
59, 1987.

[11] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, (drigaez, and
J. Sifakis, “A Toolbox for the Verification of LOTOS Prograrhsn
ICSE '92: Proceedings of the 14th international conferenoeSoftware
engineering New York, NY, USA: ACM Press, 1992, pp. 246-259.

[12] R. Milner, A Calculus of Communicating SystemSecaucus, NJ, USA:
Springer-Verlag New York, Inc., 1982.

[13] C. A.R. Hoare, “Communicating Sequential Processésfthmun. ACM
vol. 21, no. 8, pp. 666-677, 1978.

[14] B. Spitznagel and D. Garlan, “A Compositional ApprodchConstruct-
ing Connectors,” inWICSA '01: Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA!01)Washington, DC,
USA: IEEE Computer Society, 2001, p. 148.

[15] RTCA and EUROCAEDO-178B, Software Considerations in Airborne
Systems and Equipment CertificatidRTCS and EUROCAE, 1992.

[16] UK Ministry of Defence,Requirements for Safety Related Software in
Defence EquipmenDef Stan 00-55.

[17] P. Parkinson and F. Gasperoni, “High-Integrity SysteBevelopment
for Integrated Modular Avionics Using VxWorks and GNAT,” inda-
Europe '02: Proceedings of the 7th Ada-Europe InternatloBanfer-
ence on Reliable Software Technologielsondon, UK: Springer-Verlag,
2002, pp. 163-178.

[18] O. Sokolsky, I. Lee, and D. Clark, “Schedulability Agsais of AADL
Models,” in IPDPS '06: 20th International Parallel and Distributed
Processing Symposiympril 2006.

[19] SEI, “Open Source AADL Tool Environment,” http:/l@iscmu.edu/
aadl/currentsite/tool/osate.html, 2006.

[20] J. Kwon, A. Wellings, and S. King, “Ravenscar-Java: Aghtintegrity
Profile for Real-Time Java,Concurrency and Computation: Practice
and Experiencevol. 17, no. 5-6, pp. 681-713, 2005.

[21] M. Bordin and T. Vardanega, “Automated Model-Based &ation of
Ravenscar-Compliant Source Code,” ECRTS '05: Proceedings of
the 17th Euromicro Conference on Real-Time Systems (EORBJS’
Washington, DC, USA: IEEE Computer Society, 2005, pp. 59-67

