
1

Real-time Connectors for Deterministic Data-flow
Irfan Hamid∗, Elie Najm∗

∗GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

Email: {firstname.lastname}@enst.fr

Abstract— In this paper we introduce deterministic bridge
connectors, a type of construct that ensures deterministicdata-
flow communication in asynchronous real-time systems. We also
present a methodology for generating these connectors automat-
ically from the application’s architecture description in order
to reduce programmer effort and the chance of error. Finally,
we provide a process algebraic verification of the determinism
property of these connectors.

Index Terms— Ada, Ravenscar, real-time, code generation,
connectors, AADL.

I. I NTRODUCTION

Vehicle control systems are one of the most safety-critical
categories of software. Stringest standards of code review
must be met before deployment on-board the platform. Such
systems are invariably implemented in the form of control laws
that take input data from sensors, carry out transformations on
that data and apply the outputs to actuators (figure 1). There
are—invariably—two orthogonal sets of requirements that are
always leveraged on such systems:

• Timing requirements that relate to the timeliness of
the produced results. The validity of results is strongly
dependant upon the time at which they are available.

• Functional requirements that describe the output of the
system as a function of the input provided, i.e.: they
describe the algorithmic portion of the control law’s
response loop.

One of the properties that these systems must always exhibit
is determinism, i.e.: two equivalent runs with the same inputs
should produce the same results, every time. One approach to
achieving this determinism is to use a synchronous reactive
language such as Lustre [1] to implement the control laws. In
this paradigm there is only one thread of execution and the
entire functionality of the control system iscollapsedinto it.
The variousfunctional nodesof the model are then executed
in a synchronous lockstep fashion. Another approach is to
write asynchronous multithreaded control applications, which
run atop an operating system and behave in an asynchronous
manner, communicating with each other [2]. The advantages of
a multithreaded asynchronous control system is the possibility
of higher processor utilization as well as flexibility of adding
threads later in the design stage. This approach also allows
designers topiggybacknon-control system threads such as
alarm and status monitors onto the same partition.

In all control systems, the communication is carried out in
the form of dataflows as this is the paradigm that is most
native to control law concepts. The system architecture is
usually represented in a block structured formalism. Such

Fig. 1. Control loop and its block diagram representation

an architecture is shown in figure 1. The blackbox above
computes thetransfer function. In an asynchronous control
system this would be refined to a set of periodic threads that
exchange data among themselves to compute the final value
of the output (as shown in the lower part of the figure).

The simplest method of implementing a dataflow between
two co-located threads is to use a shared variable protected
against concurrent access by a mutex. However, this introduces
the danger of non-determinism in the dataflow, due normally
to auxiliary load on the system. From the set of periodic
threads in a system consider two (τs and τl) with periods
Pshort and Plong respectively such thatPlong = 3×Pshort. The
priority of τs is higher than that ofτl , thus, the single job
of τl in each mutual hyperperiod is executed between jobs
of τs. If τs produces dataα to be consumed byτl then the
non-determinism shown in figure 2 might result: in the first
hyperperiod,τl is launched just afterτs finishes its first job
and writesα1, this is read byτl as the value of the dataflow.
In the next hyperperiod, due to extraneous factors—such as a
sporadic alarm thread firing—τl is executed after thesecond
job of τs and it readsα5 instead of the expectedα4.

Vice versa, if τl produces a dataflowβ to be read byτs

then the following non-determinism might occur (also shown
in figure 2): in the first hyperperiod,τl finishesafter the last
job of τs and thus all three jobs ofτs in this hyperperiod useβ0

(an initial value). However, in the next hyperperiod,τl finishes
just before last job ofτs and that job readsβ2 instead ofβ1.

This type of non-determinism is unacceptable in control
applications. To guard against this breach, the protocol given
in figure 3 is widely used in industry. All dataflow values are
taken from the last job of the previous mutual hyperperiod
of both threads involved in the dataflow. This eliminates non-
determinism due to auxiliary load or scheduling decisions by
the RTOS.

2

Fig. 2. Non-determinism in dataflow across two hyperperiods.

Fig. 3. A delayed communication protocol that ensures determinism.

We present an efficient method for implementing this type
of deterministic dataflow among hard real-time threads using
a connector abstraction. The protocol is given in section II
and its properties are explained. Our proposed solution to
implement the protocol is given in section III. The details
of implementation as well as the tool support developed are
given in section IV. The verifications carried out are detailed
in section V. Finally, the article is rounded up with our
conclusions and discussion of future work.

II. D ETERMINISTIC PROTOCOL AND ITSPROPERTIES

In this section we will formulate the mathematical properties
of the dataflow. But before that can be done, we need to
explicitly state the assumptions and hypotheses that can be
made upon the system and the consequences thereof:

• The system is hard real-time. Periodic tasks are guar-
anteed to be dispatched at the start of each period
(dispatching is taken to mean being put in the ready state,
not necessarily being given the processor).

• Deadlines are met, otherwise the schedulability has been
breached and the system should go into a graceful degrade
mode.

• Both the source and destination threads are periodic with
Plong =r×Pshort and r 6= 1.

• The source thread writes to the dataflow at each job, the
destination thread reads from the dataflow at each job,
this is a reasonable assumption for a control system.

• The scheduler is preemptive and priority based.
• Priority assignment is rate monotonic [3], i.e.: priority

of τs is greater than the priority ofτl . Thus, at the start
of each mutual hyperperiodPlong the threadτs will be
executedbeforeτl , even though both were made ready
simultaneously.

A. Protocol

Given the above assumptions we can obtain a mathematical
model for the dataflow protocol such that determinism is
maintained. For the dataflow from a high-frequency to low-
frequency thread everyrth write from the source thread is

Fig. 4. Protocol threadp transfering values in the double buffer at the start
of each mutual hyperperiod.

used. Similarly, for a dataflow from a low-frequency to high-
frequency thread every write from the source thread is read
r times. The notationτl (i)← α j signifies that theith job of
threadτl gets jth instance of the dataflow (α j). For the example
of figure 2 wherePlong = 3×Pshort, the first few dataflows are:

τs(1)← β0, τs(2)← β0, τs(3)← β0, τs(4)← β1

τl (1)← α0, τl (2)← α3, τl (3)← α6, τl (4)← α9
(1)

We can generalize this into the following equations:

∀i : τs(i× r +1)← βi . . .τs(i× r + r)← βi

∀i : τl (i)← αr×(i−1)

}

r = Plong/Pshort

(2)

These equations collapse correctly for the degenerate case
of r = 1 by stipulating that the value from the previous job
of the source thread be used. The previous job falls in the
previous hyperperiod by definition as there is one job of each
thread in one hyperperiod forr = 1.

B. Suboptimal Implementation

A suboptimal—yet correct—manner of implementation
would be to introduce a special thread to assure the protocol.
The dataflow would be implemented via a double buffered
variable protected by a mutex. The source thread would write
to the back buffer and the destination thread would read from
the front buffer. A special protocol thread with priority greater
than that of both the producer and consumer threads and
period equal toPlong would be created. This thread would
copy the back buffer to the front buffer at the start of each
mutual hyperperiod. The evolution of such a system is shown
in figure 4. This approach has multiple drawbacks:
• Increases the number of threads in the system.
• Introduces an impact from the non-functional architecture

(periods of the two threads, the type of the dataflow etc.)
towards the functional code of the protocol thread.

• Involves direct manipulation of priorities (threadp has
longer period but higher priority thanτs, non-conformant
with RMA).

III. D ETERMINISTIC BRIDGE EXCHANGERS

We propose an alternative approach for the implementation
of the dataflow protocol. Our proposal consists of using a
connector abstraction. Connectors are defined in [4] as:

3

Connectors mediate interactions among components: that
is, they establish the rules that govern component interaction
and specify any auxiliary mechanisms required.

One of the main advantages of using a connector abstraction
is that we can clearly separate components and communication
mechanisms, which are two orthogonal concerns of a system.
Our dataflow presents an ideal case where the components are
the threads that participate in the dataflow. If we can subsume
the functionality of the protocol into a certain connector
then we can eliminate any pollution of functional code with
communication logic.

We call astepper deterministic bridge exchanger(stepper
DBX) the connector that implements a dataflow from a high-
frequency thread to a low-frequency thread. Conversely, we
call the connector that implements a dataflow from a low-
frequency thread to a high-frequency one astagger determinis-
tic bridge exchanger(stagger DBX). Both types of connectors:
• Have an internal double buffer of the same data type as

the dataflow, called theback storeand thefront store.
• Expose proceduresSet_Value and Get_Value, these

procedures are concurrency safe.
Below we give an abstract overview of both types of

connectors. Detailed implementation and their integration into
our existing tools is given in section IV.

A. Stepper DBX

This connector serves to implement a dataflow from a high-
frequency thread,τs, to a low-frequency threadτl . The source
thread computes a new value and callsSet_Value on the
connector each time it is dispatched. The destination thread
callsGet_Value each time it is dispatched to read the dataflow.
From the assumptions made on the system we know that in
each mutual hyperperiodPlong, there will ber = Plong/Pshort

invocations ofSet_Value and one invocation ofGet_Value.
Also, at the start of eachPlong, it will be Set_Value which
will be invoked first, asτs has a higher priority.

In order to implement the deterministic dataflow protocol, a
stepper DBX embeds buffer handling logic into theSet_Value
procedure. This procedure must save the data provided by the
source thread as well as copy data from the back store to the
front store at every invocation corresponding to the first job
in a Plong hyperperiod.

1) On the first dispatch of every hyperperiod—i.e.: on
invocation number∀i ∈ N : i × r + 1 of Set_Value—
the procedure copies the back store into the front store.

2) On the last dispatch of every hyperperiod—i.e.: on
invocation number∀i ∈ N : i× r + r of Set_Value—the
procedure copies the provided data into the back store.

3) Every invocation ofGet_Value returns the front store
to the caller (the destination thread).

The procedureGet_Value simply returns the value of the
front store to the calling thread. The pseudocode for the
procedureSet_Value is given below.

We call this connector a stepper exchanger because itsteps
over a certain number of input data to the dataflow. It is
apparent that only everyrth data value is copied into the back
store.

Procedure Set_Value(in Data)
Invocation: static integer initialized to 0
Data : input for dataflow, provided by source thread
r : integer corresponding toPlong/Pshort

begin
Invocation← Invocation + 1
if Invocation = 1 then

Front_Store← Back_Store
end
if Invocation = r then

Back_Store← Data
Invocation← 0

end
return

end

B. Stagger DBX

A stagger DBX implements a deterministic dataflow from
a low-frequency thread to a high-frequency thread. The
Set_Value andGet_Value procedures of a stagger DBX are
called by the threadsτl and τs respectively. Therefore, in
accordance with the properties enunciated, we can deduce that
it is the Get_Value procedure that is invoked at the start of
each mutual hyperperiodPlong. In eachPlong, there will be
r = Plong/Pshort jobs ofτs and the same number of invocations
of Get_Value. Conversely, in eachPlong there will be one job
of τl and one invocation ofSet_Value.

In order to implement the deterministic dataflow protocol, a
stagger DBX embeds buffer handling logic into theGet_Value
procedure. This procedure must return the data present in the
front store as well as copy the back store to the front store
at every invocation corresponding to the first job in aPlong

hyperperiod.

1) On the first dispatch of every hyperperiod—i.e.: on
invocation number∀i ∈N : i× r +1 of Get_Value—the
procedure copies the back store into the front store.

2) Every invocation ofSet_Value copies the data provided
by the source thread into the back store.

We call this connector a stagger exchanger because it
staggerson a dataflow value a certain number of times before
getting a new one. The procedureSet_Value simply copies
the value passed by the thread into the back buffer of the
exchanger. The pseudocode for the procedureGet_Value is
given below.

IV. I MPLEMENTATION AND TOOLING

We integrated the stepper and stagger DBX into ARC [5],
our code generator that transforms system architectures speci-
fied in the AADL [6] architecture description language to Ada
Ravenscar [7] source code1. Below we provide an introduction
to both AADL and the Ravenscar Profile of Ada before
moving on to an explanation of how the deterministic bridge
exchangers are implemented in our tooling.

1Available athttp://aadl.enst.fr/arc/

4

ProcedureGet_Value(out Data)
Invocation: static integer initialized to 0
Data : output for dataflow, sent to destination thread
r : integer corresponding toPlong/Pshort

begin
Invocation← Invocation + 1
if Invocation = 1 then

Front_Store← Back_Store
end
if Invocation = r then

Invocation← 0
end
Data← Front_Store
return

end

A. AADL

The Architecture Analysis and Design Language [6] is a
new architecture description language designed specifically for
real-time systems such as avionics and automotive control.
It uses a component-centric model to define the system ar-
chitecture. System descriptions in AADL consist of a set of
components, each of which exposes well-defined interfaces.
These interfaces are connected together to form a communi-
cation topology among the components. Component categories
defined in the language include software (processes, threads,
data, and subprogram) as well as hardware (processors, de-
vices, buses and memories).

As AADL is an architecture description language—its main
concern being the system architecture—it allows primarilythe
description of non-functional aspects of the components. These
include, among others, the periods of threads, their deadlines,
their stack sizes, their interface specifications etc. Functional
aspects such as source code for software components is given
separately.

Among the various different types of interfaces that can be
put on components in AADL (calledfeaturesin the language),
aredata ports. Two connected data ports on different com-
ponents behave like a dataflow channel. A value written on
the source side becomes visible on the destination side. Data
ports also have associatedqualifiers, which are AADL data
components which give the data type of the flow implemented
by these ports.

AADL components can also haveproperties assigned to
them. Properties are name/value pairs that represent certain
aspects of components. Among others, properties are used to
give the periods and dispatch protocols for threads. Users can
also define their own properties which are project and/or tool
specific.

B. Ada Ravenscar

The Ada programming language provides rich tasking and
inter-task communication constructs. It provides constructs
within the language that are usually relegated to an operating
system by other languages, e.g.: POSIX threads and mutexes
used by the C programming language.

The Ada Ravenscar Profile [7] is a profile (restriction)
of the Ada programming language’s rich tasking constructs.
This profile aims to ease the schedulability analysis of the
system. Furthermore, through the judicious use of the priority
ceiling protocol [8], it eliminates the posssibility of deadlock
in the system. It also includes restrictions on the dynamic
creation/destruction of tasks and memory allocation in order to
make the system deterministic and suitable for high-integrity
applications.

The Ada programming language providestaskswhich im-
plement the same functionality as POSIX threads.Protected
objectsare like C++ classes in that they expose an interface
and contain private data. Furthermore, access to the procedures
of protected objects are concurrency-safe. Thus, protected
objects can be used to implement inter-task communication.
In fact, the Ravenscar Profile stipulates thatonly protected
objects be used to implement inter-task communication. Also
stipulated by the profile is that all protected objects follow the
priority ceiling protocol [8] in order to guard against deadlock
and to avoid unbounded priority inversion.

As a consequence, a Ravenscar-compliant Ada runtime is
guaranteed to be smaller and simpler than a complete Ada
runtime. For our tests, we have used the Open Ravenscar
Kernel [9], which is an open source kernel available from
UPM.

C. AADL to Ravenscar Converter

The ARC tool is an open source Eclipse plugin that con-
verts AADL system descriptions to Ada Ravenscar source
code. In [5] we gave a mapping for translating the software
components and entities of AADL—processes, threads, data,
ports, connections etc.—into Ada Ravenscar source code. This
allows us to automatically generate aframework2 tailored to
our system architecture. This framework containsholesfor the
functional code in the form of callback procedures of periodic
and sporadic tasks.

In our original mapping, we proposed the transformation
of AADL threads to Ada tasks, either periodic or sporadic,
depending upon the thread’s AADL properties. Data ports
were transformed to protected objects we namedexchangers.
In essence, an exchanger is a protected object with two
proceduresGet_Value and Set_Value and an internal 1-
place buffer of the same type as the data port it implements
to accomodate the data. As an example, listing 1 gives
the specification of an exchanger protected object generated
automatically to implement a connection between two data
ports of typeInteger.

2A framework is the execution support for the system, such as tasks,
protected objects for communication among tasks and stubs to access the
generated communication infrastructure. For details on the code generation
rules, refer tohttp://aadl.enst.fr/arc/doc/.

5

protected type Integer_Exchanger
(P r i o r i t y _ P : System . Any_Pr io r i t y) is

procedure Set_Value (D : in Data_Type) ;
procedure Get_Value (D : out Data_Type ;

F : out Boolean) ;
private

pragma P r i o r i t y (P r i o r i t y _ P) ;
Data : I n t ege r ;
Fresh : Boolean := False ;

end Integer_Exchanger ;

Listing 1. Ada package specification of theInteger_Exchanger

This implementation is perfectly valid for applications
where deterministic communication is not a requirement. E.g.:
a moving map display where the display thread has a period
of 500 ms and the data from the GPS is refreshed every 100
ms. A slight amount of non-determinism in this application
would be neither noticeable nor critical.

D. Integration of DBX in Ada and ARC

We have implemented both types of DBX connectors—the
stagger and stepper—as generic Ada packages that can be
instantiated with the following information:

• The priority ceiling.
• The step/stagger factor, this is the valuer = Plong/Pshort.
• The data classifier (type) of the data ports that are to be

implemented.

The specification of the generic package that implements
a stepper DBX connector is given in listing 2. The generic
package has only a protected object instance that serves as
the exchanger. The specification for a stagger DBX connector
is similar, the difference is in theSet_Value andGet_Value
procedures’ implementations.

generic
P r i o r i t y _ P : System . Any_Pr io r i t y ;
Factor_P : I n t ege r ;
type Data_Type_P is pr ivate ;

package Stepper_DBX is
protected Stepper_DBX_Instance is

procedure Set_Value (D : in Data_Type_P) ;
procedure Get_Value (D : out Data_Type_P ;

F : out Boolean) ;
private

pragma P r i o r i t y (P r i o r i t y _ P) ;
Back_Store : Data_Type_P ;
Front_Store : Data_Type_P ;
I nvoca t ion : I n t ege r := 0;
Fresh : Boolean := False ;

end Stepper_DBX_Instance ;
end Stepper_DBX ;

Listing 2. Ada package specification of the DBX connector

In our original work on ARC, we defined a property set
Ravenscar in AADL to aid in code generation. To use AADL
as a design and code generation vehicle for DBX connectors
as well, we added a new property to the existingRavenscar
property set. The new property—of type boolean—isIs_DBX,
and is applied to AADL connections and has a default value
of False. If this property is set explicitly toTrue by the
designer then instead of a normal exchanger, a stepper or
stagger exchanger DBX is instantiated by ARC to correspond
to the data ports’ connection. The following conditions are
tested before instantiating a DBX:

Fig. 5. An AADL system model with two threads and a deterministic data
connection of typeInteger being transformed to Ravenscar code through
instantiation of a generic package.

1) The connection must be a data connection, not an
event or event data connection and have the property
associationIs_DBX => True.

2) Both threads must have the property association
Dispatch_Protocol => Periodic.

3) The period of one thread must be a perfect multiple
of the period of the other, this can be verified by
examination of both threads’Period property.

A stepper or a stagger DB exchanger is instantiated in
case all three of the above conditions are met. Whether
it is a stepper or a stagger DBX depends on whether the
source thread has the shorter period or not. In addition to
the instantiation of the DBX connector, stub procedures are
generated in the functional packages of both threads which
allow easy access to the DBX in question. On the side
of the source thread is generated a stub procedure named
Set_<portName>. On the side of the destination thread is
generated a stub namedGet_<portName>. These procedures
simply call theSet_Value andGet_Value procedures of the
actual exchanger. An example of such a transformation is given
in figure 5.

This creates, in effect, a complete deterministic commu-
nication framework and generates an API to access these
communication constructs. This aids greatly in implementing
the entire system since the designer now needs to focus only
on the functional (algorithmic) part of the system. Among the
advantages of this approach are:

• Eliminates impact from system architecture to functional
code. As all protocol information is embedded inside
the connector thus the functional part need only interact
with the tasking/communication framework through the
provided API.

• Reduces programmer effort through the use of automatic
code generation. This has an auxiliary consequence of
reducing errors as well.

• Aids in the certification process for on-board software.
This point will be explained in the next section when we
present a verification of our connectors.

6

V. V ERIFICATION

In this section we give details of the verifications we
carried out on the stepper and stagger DBX connectors using
LOTOS [10]. We use the CADP toolbox [11] in order to
perform the verification. CADP stands for Construction and
Analysis of Distributed Processes and is a toolbox that allows
the compilation and analysis of LOTOS specifications. We use
the LOTOS language in order to verify that our generated
DBX connectors do not have any non-deterministic behavior
and that the prescribed communication protocol is respected.

A. Overview of LOTOS

LOTOS stands for Language of Temporal Order Specifi-
cations. It is a process algebra inspired by CCS [12] and
CSP [13] that uses the concepts of observable actions carried
out by independant processes. Processes synchronize upon ac-
tions. Actions are taken overgatesand may potentially involve
an exchange of data between the gates of the synchronized
processes.

The actions a LOTOS process can undertake are written
in the form a; b; c which means the process engages ina
followed byb and finallyc. Actions of the sortg?x signify that
an action is taken ongateg and offersx as the associated data.
This action would need to be synchronized by a corresponding
action of the sorth!x which signifies a gateh receiving data
x.

B. Connector Specifications in LOTOS

In order to verify the correct behavior of our connectors,
we implemented their specification in LOTOS. On running
them in parallel with LOTOS blocks that behave as the threads
on both sides of the dataflow, we were able to carry out a
verification of correctness. It is possible to determine, given
a certain communication configuration—i.e.:Pshort, Plong and
direction of dataflow—whether or not the automatically instan-
tiated stepper or stagger exchanger will preserve determinism.

Figure 6 shows a graphical representation of the the spec-
ification of a stepper exchanger. From theStart state, it
can engage in either aGET_VALUE or a SET_VALUE action.
These correspond to a call to the exchanger’sGet_Value
and Set_Value procedures. TheSET_VALUE action accepts
incoming data, whereasGET_VALUE offers data available in
the front store. It is obvious from the diagram that theInv
variable is incremented at eachSET_VALUE action (and wraps
around to 1 afterFactor number of calls). The variable
Factor representsr = Plong/Pshort. The variablesBack_Store
and Front_Store are the same as those given in the pseu-
docode in section III and model the internal buffers. A similar
diagrammatic representation for a stagger DBX is given in
figure 7.

This block can be combined in parallel with blocks that
specify the behaviors of the two threads in order to verify the
correctness of the communication (figure 8). The two threads’
behavior blocks should take into account the following hy-
potheses:

1) At the start of the mutual hyperperiod, it should beτs

that should be launched first.

Fig. 6. The block defining behavior of a stepper exchanger.

Fig. 7. The block defining behavior of a stagger exchanger.

2) There should ber (Factor) number of jobs ofτs per
hyperperiod, and 1 job ofτl per hyperperiod.

3) At each job the source thread should engage in a
SET_VALUE action and the destination thread in a
GET_VALUE action.

We can construct our source thread behavior block in such
a fashion that the it writes a predefined pattern of data. If
the destination thread does not receive the correct sequence of
data, it raises a specialERROR action which if present, signals a
non-deterministic run. The labelled transition system will also
show a counter-example of therun that violated the rules.

We carried out verifications of both stepper and stagger
DBX connectors for factors of 2, 3 and 4. We found no errors
in all six scenarios. We used the CADP toolset to generate
labelled transition systems from our LOTOS specifications.
Figure 9 shows the labelled transition system generated for
a stepper exchanger with a factor of 4 in parallel with two
threads that use it to implement dataflow. The authors of [14]
also use a process algebra to specify connectors, but they use
it to detect deadlock in connector specifications, whereas we
use it to verify determinism.

We also built test applications that we compiled onto
the Open Ravenscar Kernel and ran on a simulator for the

Fig. 8. Three LOTOS blocks combined in parallel. Two are for threads and
the third is for a DBX connector. The gates are shown on each block. One
channel (connection between gates) is for theSet_Value interface and the
other forGet_Value.

7

Fig. 9. Labelled transition system of a stepper DBX with a factor of 4 being
used by two threads to implement dataflow. The absence ofERROR actions
signifies that this system is not violating the determinism property.

ERC32 platform3. No errors were reported for stepper and
stagger DBX connectors at factors of 2, 3 and 4. Source and
destination thread periods were between 1 ms and 80 ms.

C. Application to Certification

DO-178B [15] is a widely accepted and applied standard
for avionics software. It divides on-board software into one
of five categories according to its safety requirements. These
levels are given in table I. Level A software is the software of
highest criticality, and it is at this level that all controlsoftware
must be certified. The standard stipulates that Level A certified
software must undergo Modified Condition/Decision Coverage
(MCDC) testing. This code coverage method requires a test
case to verify each condition that can affect the outcome of a
decision. A compound conditional such asif(a>0 && b<5)
would result in four MCDC test cases witha≤ 0, a> 0, b< 5
andb≥ 5.

Generating such test cases by hand is not feasible. There-
fore, Level A certification usually requires instrumented com-
pilers that identify and generate test cases. However, in
case of moderate to complex software the number of test
cases generated may be very large and thus testing becomes
expensive. Our approach of verified exchangers for deter-
ministic communication can reduce the cost of certification
by providing verification artifacts in support of certification.
This can potentially allow the certification authority to forego
MCDC coverage of the exchangers as their behaviour has been

3The test applications, LOTOS specifications for the stepperand stagger
DBX and different threads are available athttp://aadl.enst.fr/arc/
doc/. A detailed case study of deterministic dataflow control is also available
at said URL in open source.

TABLE I

DO-178B/ED-12B SAFETY CRITICALITY LEVELS, COURTESY OF[17]

Software level Failure condition Outcome
Level A Catastrophic Death or injury
Level B Hazardous/Severe-major Injury
Level C Major Unsafe workload
Level D Minor Increased workload
Level E No effect None

formally verified and all conditions examined through the use
of an exhaustive state-space search.

Furthermore, the LOTOS code that was written by hand
to verify the behaviour of the stepper and stagger DBX
connectors may easily be generated automatically by ARC. It
can traverse the entire system model, locate and identify DBX
connections by their properties, and generate corresponding
LOTOS specifications for the connectors and the threads
which they are connected to. These automatically generated
specificatioins can potentially replace the MCDC test cases
for every DBX connector in the system, thereby significantly
reducing certification cost. In fact, the UK defence software
standard Def Stan 00-55 [16] promotes proof of correctness
in the design rather than absence of errors. Research has
shown that there is a correlation between both approaches [17].
Automatic generation of a process algebraic specification from
AADL was also given in [18] where the authors use a process
algebra to determine the schedulability of the system.

VI. CONCLUSION AND FUTURE WORK

We considered a problem in real-time control systems that is
usually solved by synchronous methodologies and techniques.
We proposed a light-weight and elegant solution to the prob-
lem for asynchronous systems. We integrated our proposed
methodology into our existing tool.

We also provided verification of the correct behavior of
our proposed solution. A path to verification of an arbitrary
communication configuration using our approach is also given.
We have also provided a justification for the use of this veri-
fication in lieu of testing for standard certification processes.
Our methodology provides a robust and automatic manner for
constructing connectors for co-located threads. This reduces
programmer effort and the chance for bugs in the system.

Our ARC tool is based on the OSATE AADL parser [19].
The OSATE toolkit represents a parsed AADL tree in the
form of an EMF model. This allows creation of completely
model-driven tools. We also use an intermediate meta-modelto
represent the Ravenscar elements. Code generation is done by
traversal of the Ravenscar meta-model. This will facilitate the
writing of code generators for Ravenscar-compliant languages
such as Ravenscar-Java [20].

Our future work will consist of a detailed case study
involving the re-engineering of an existing reference avion-
ics architecture to use the AADL/Ravenscar approach. Fur-
thermore, a model traceability plugin is planned that will
provide hypertext reporting between artifacts in AADL and
the resulting generated source code. Such type of traceability
documentation is very useful in certification processes.

8

Another interesting axis of research is the investigation into
graceful degrade and/or fault tolerance of these connectors in
case of overruns by tasks. We intend to investigate how to
carry out a synergistic combination of the presented connectors
together with the new temporal fault handling mechanisms
introduced in Ada 2005.

REFERENCES

[1] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous
Dataflow Programming Language Lustre,”Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, September 1991.

[2] P. L. Butler and J. P. Jones, “Modular Control Architecture for Real-time
Synchronous and Asynchronous Systems,” inProc. SPIE Vol. 1964, p.
287-298, Applications of Artificial Intelligence 1993: Machine Vision
and Robotics, Kim L. Boyer; Louise Stark; Eds., K. L. Boyer and
L. Stark, Eds., Mar. 1993, pp. 287–298.

[3] L. Sha, M. H. Klein, and J. B. Goodenough, “Rate MonotonicAnalysis
for Real-Time Systems,”Computer, vol. 26, no. 3, pp. 73–74, 1993.

[4] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a Taxonomy
of Software Connectors,” inICSE ’00: Proceedings of the 22nd Inter-
national Conference on Software Engineering. New York, NY, USA:
ACM Press, 2000, pp. 178–187.

[5] I. Hamid, B. Zalila, E. Najm, and J. Hugues, “A GenerativeApproach
to Building a Framework for a Hard Real-Time System,” in31st Annual
IEEE-NASA Goddard Software Engineering Workshop, Baltimore, MD,
2007.

[6] SAE, Architecture Analysis & Design Language (AS5506), September
2004, available at http://www.sae.org.

[7] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the useof the Ada
Ravenscar Profile in high integrity systems,” 2003.

[8] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,”IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[9] J. A. de la Puente, J. F. Ruiz, and J. Zamorano, “An Open Ravenscar
Real-Time Kernel for GNAT,” in Ada-Europe ’00: Proceedings of
the 5th Ada-Europe International Conference on Reliable Software
Technologies. London, UK: Springer-Verlag, 2000, pp. 5–15.

[10] T. Bolognesi and E. Brinksma, “Introduction to the ISO specification
language LOTOS,”Comput. Netw. ISDN Syst., vol. 14, no. 1, pp. 25–
59, 1987.

[11] J.-C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis, “A Toolbox for the Verification of LOTOS Programs,” in
ICSE ’92: Proceedings of the 14th international conferenceon Software
engineering. New York, NY, USA: ACM Press, 1992, pp. 246–259.

[12] R. Milner, A Calculus of Communicating Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1982.

[13] C. A. R. Hoare, “Communicating Sequential Processes,”Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[14] B. Spitznagel and D. Garlan, “A Compositional Approachfor Construct-
ing Connectors,” inWICSA ’01: Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA’01). Washington, DC,
USA: IEEE Computer Society, 2001, p. 148.

[15] RTCA and EUROCAE,DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, RTCS and EUROCAE, 1992.

[16] UK Ministry of Defence,Requirements for Safety Related Software in
Defence Equipment, Def Stan 00-55.

[17] P. Parkinson and F. Gasperoni, “High-Integrity Systems Development
for Integrated Modular Avionics Using VxWorks and GNAT,” inAda-
Europe ’02: Proceedings of the 7th Ada-Europe International Confer-
ence on Reliable Software Technologies. London, UK: Springer-Verlag,
2002, pp. 163–178.

[18] O. Sokolsky, I. Lee, and D. Clark, “Schedulability Analysis of AADL
Models,” in IPDPS ’06: 20th International Parallel and Distributed
Processing Symposium, April 2006.

[19] SEI, “Open Source AADL Tool Environment,” http://la.sei.cmu.edu/
aadl/currentsite/tool/osate.html, 2006.

[20] J. Kwon, A. Wellings, and S. King, “Ravenscar-Java: A High-Integrity
Profile for Real-Time Java,”Concurrency and Computation: Practice
and Experience, vol. 17, no. 5-6, pp. 681–713, 2005.

[21] M. Bordin and T. Vardanega, “Automated Model-Based Generation of
Ravenscar-Compliant Source Code,” inECRTS ’05: Proceedings of
the 17th Euromicro Conference on Real-Time Systems (ECRTS’05).
Washington, DC, USA: IEEE Computer Society, 2005, pp. 59–67.

