
Probabilistic Analysis of Embedded Systems

Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Abstract This chapter provides a gentle introduction into compositional modeling
of systems that involve nontrivial real-time and probabilistic aspects. It revolves
around the language MODEST, a Modelling and Description language for Stochastic
and Timed systems. The language supports the compositional description of reactive
systems while covering both functional and non-functional system aspects such as
quantified component failure rates and hard and soft real-time. A running example
illustrates the language constructs. Afterwards, this example is used to highlight
different avenues to analyse such models that have been implemented in a tool suite.
Among them, we find probabilistic timed model checking as well as discrete event
simulation.

1 Introduction

There is a growing awareness among embedded software designers that the classi-
cal computer science approach—to abstract from physical aspects—is too limited
and too restricted for contemporary and upcoming design challenges [1, 13]. In-
stead, abstractions of software that leave out “non-functional” aspects such as cost,
efficiency, and robustness need to be adapted to current needs.

Embedded software controls the core functionality of many systems. It is om-
nipresent: it controls telephone switches and satellites, drives the climate control
in our offices, runs pacemakers, is at the heart of our power plants, and makes our

Arnd Hartmanns
Saarland University – Computer Science, e-mail: arnd@cs.uni-saarland.de

Holger Hermanns
Saarland University – Computer Science, e-mail: hermanns@cs.uni-saarland.de

Joost-Pieter Katoen
University of Twente, RWTH Aachen University – Computer Science, e-mail: katoen@cs.rwth-
aachen.de

1

Page 184



2 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

cars and TVs work. Whereas traditional software has a rather transformational na-
ture mapping input data onto output data, embedded software is different in many
respects. Most importantly, embedded software is subject to complex and perma-
nent interactions with its—mostly physical—environment via sensors and actuators.
Software in embedded systems does not typically terminate and interaction usually
takes place with multiple concurrent processes at the same time. Reactions to the
stimuli provided by the environment should be prompt (timeliness or responsive-
ness), i.e., the software has to “keep up” with the speed of the processes with which
it interacts. As it executes on devices where several other activities go on, non-
functional properties such as efficient usage of resources (e.g., power consumption)
and robustness are important. High requirements are put on performance and de-
pendability, since the embedded nature complicates tuning and maintenance.

Embedded software is an important motivation for the development of modelling
techniques that, on the one hand, provide an easy migration path for design engi-
neers and, on the other hand, support the description of quantitative system aspects.
This has resulted in various extensions of light-weight formal notations such as SDL
(System Description Language) and UML (Unified Modeling Language), and in the
development of a whole range of more rigorous formalisms based on, for example,
stochastic process algebras, or appropriate extensions of automata such as timed
automata [2] and probabilistic automata [16]. Light-weight notations are typically
closer to engineering techniques, but lack a formal semantics; rigorous formalisms
do have such a formal semantics, but their learning curve is typically too steep from
a practitioner’s perspective and they mostly have a restricted expressiveness.

This paper surveys MODEST [3], a description language that has a rigid formal
basis (i.e., semantics) and incorporates several ingredients from light-weight nota-
tions such as exception handling, modularization, atomic assignments, iteration, and
simple data types. The paper also illustrates advanced tool support, all by means of
a running example.

MODEST is a compositional specification formalism: the description of com-
plex behaviour is obtained by combining the descriptions of simpler components.
This provides an elegant way to specify concurrent computations, inherited from
process algebra. MODEST is enhanced with convenient language ingredients like
simple data-structures and a notion of exception handling. It is capable to express a
rich class of non-homogeneous stochastic processes and is therefore most suitable
to capture non-functional system aspects. MODEST may be viewed as an overarch-
ing notation for a wide spectrum of prominent models in computer science, rang-
ing from labeled transition systems to timed automata [2, 4], probabilistic variants
thereof [5], and stochastic processes such as Markov chains and (continuous-time
and generalised) Markov decision processes [8, 10, 15, 16].

MODEST takes a single-formalism, multi-solution approach. Our view is to have
a single system specification that addresses various aspects of the system under con-
sideration. Analysis thus refers to the same system specification rather than to differ-
ent (and potentially inconsistent) specifications of system perspectives like in UML.
Analysis takes place by extracting simpler models from MODEST specifications that
are tailored to the specific property of interest. For instance, to check reachability

Page 185



Probabilistic Analysis of Embedded Systems 3

properties, a possible strategy is to “distill” an automaton from the MODEST speci-
fication and feed it into an existing model checker such as SPIN [11] or CADP [7].
For probabilisitic timed models, we implement a translational model checking ap-
proach [9], using the PRISM tool as backend. On the other hand, to carry out an
evaluation of the stochastic process underlying a MODEST specification, we sup-
port discrete-event simulation.

2 Modelling with MODEST

In this section, we will introduce the MODEST language syntax and its semantic ba-
sis by modelling a simple communication scenario. We will introduce the language
features and constructs step-by-step, starting with a very basic functional model
which we then extend to include timed, probabilistic and stochastic behaviour.
While the focus of this section is on the language syntax and the types of behaviours
than can be modelled, we will also give brief insights into the underlying semantics
where useful for a deeper understanding.

2.1 Syntax and Semantics Basics

The scenario we are going to model in MODEST is a simple communication setting
where a sender continuously tries to send messages to some receiver over an unre-
liable channel that may lose, but not reorder or create messages. We will refine our
models in the following sections; let us start with a very basic functional description
of sender, receiver and channel for now.

In the MODEST language, being inspired by classic process-algebraic languages
such as CCS, CSP and LOTOS, everything is a process. Processes can perform
actions, and in this way transition into a different process. One of the most basic
processes in MODEST is tau, which can perform a single action named tau, transi-
tioning into a process than cannot do anything, which we denote by� if it expresses
a situation corresponding to “successful termination”. Processes can also be given
names, allowing them to be reused in other places.

Our first example, the Receiver process shown in Figure 1, uses the sequential
composition construct ; to combine several basic processes (that each just perform
an action) into a sequence of processes that each still perform a single action, but
then transition into the next one. While the semantics of the ; construct is intuitively
clear, a formal definition of the semantics of all constructs of the MODEST language
is necessary for formal verification. The result of applying this semantics [3] to a
given process is an automaton whose states correspond to MODEST processes, and
whose edges are labelled with actions and represent the transitions between pro-
cesses. For now, the resulting automaton is just a labelled transition system (LTS),
the simplest submodel supported by the MODEST language.

Page 186



4 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

process Receiver()

{
receive data;

send ack;

report data;

Receiver()

}

⇒

Fig. 1 The most basic model of a receiver

Figure 1 also shows the LTS corresponding to the Receiver process. The be-
haviour of the receiver is thus to—upon receiving some data from the communi-
cation channel—first send an acknowledgment back to the sender, then report the
arrival of the message (presumably to some upper network layer), and finally start
over again and wait for new data. In the following, we may sometimes omit location
labels and certain parts of the edge labels for clarity; however, keep in mind that a
location always corresponds to a MODEST process.

2.2 Nondeterminism

An important feature of many modelling formalisms, including MODEST, is to allow
nondeterministic specifications. A nondeterministic choice is a choice between two
different courses of action without any information about the likelihood of one of
them or the circumstances that may lead to it. As such, it can be used to model
the complete absence of knowledge about the actual behaviour of a system; it can
be used to intentionally leave an implementation choice in a specification; and it
allows an open model to react on stimulus from a yet unknown environment.

We use a nondeterministic choice for the latter purpose in our first model of the
sender: To allow guaranteed delivery, the sender waits for an acknowledgment from
the receiver that the message it just sent has arrived before moving on to the next
one. Since the communication channels are lossy, the actual data or the receiver’s
acknowledgment may be lost, so the sender may have to repeat its transmission. We
use a nondeterministic choice between receiving an acknowledgment and detect-
ing that a message has been lost, which will eventually be resolved by the actual
behaviour of the environment.

The MODEST model for the sender and the corresponding LTS is shown in Fig-
ure 2. The alt construct is used to specify the nondeterministic choice between
receiving an acknowledgment and detecting message loss, the latter of which is en-
capsulated in a dedicated process Timeout that we specify as

alt { :: timeout send :: timeout ack }

for this first model. Note that instead of calling Sender() after the receipt of an
acknowledgment or timeout to start over again, we chose MODEST’s loop construct,
do, which causes some process to be repeated ad infinitum or until it issues the spe-
cial break action.

Page 187



Probabilistic Analysis of Embedded Systems 5

process Sender()

{
do {

:: send data;

alt {
:: receive ack

:: Timeout()

}
}

}

⇒

Fig. 2 The most basic model of a sender

process Channel()

{
receive;

alt {
:: send

:: drop

};
Channel()

}

⇒

Fig. 3 A simple lossy communication channel

The only component of our communication scenario that still needs to be mod-
elled is the channel. Its model, shown in Figure 3, again uses a nondeterministic
choice. However, this time, it represents an “absence of knowledge” case: We do
not know anything about the channel except for the fact that it may lose messages,
so after receiving a message on one end, we just nondeterministically allow both
possibilities—successful propagation of the message to the other end (send) or
message loss (drop).

2.3 Processes Running in Parallel

Although we now have MODEST processes that represent all components of our
communication scenario—sender, receiver and channel—we still need to obtain a
single model for the whole system that also includes the interactions between the
different components. Since these components usually represent distinct physical
entities that mostly run independently from each other, possibly with different pro-
cessing speeds, their composition is best represented by letting them run in parallel
without further restrictions, allowing their actions to occur interleaved in any order.
Only if the components actively interact with each other may we need to model a
synchronisation between them.

In MODEST, this kind of parallel composition is implemented by the par con-
struct: The parallel composition of n processes P1 to Pn, par { :: P1 . . . :: Pn },
allows the processes to perform their actions in any order, unless an action is shared
by at least two processes. In that case, in order to perform such a shared action, all
the processes that contain the action have to perform it at the same time, as a sin-

Page 188



6 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

par {
:: Sender()

:: relabel {receive, send, drop} by {send data, receive data, timeout send}
Channel() // Channel from sender to receiver

:: relabel {receive, send, drop} by {send ack, receive ack, timeout ack}
Channel() // Channel from receiver to sender

:: Receiver()

}

Fig. 4 MODEST code for the parallel composition of sender, receiver and communication channels

Fig. 5 LTS of the parallel composition of sender, receiver and communication channels

gle step. This synchronisation on shared actions allows us to model communication
between processes.

Figure 4 shows the parallel composition of the sender, one instance of the
Channel process to model the channel from sender to receiver, another instance
to model the channel from receiver to sender, and the receiver itself. We use the
relabel construct to rename actions in such a way that sender and receiver syn-
chronise with the two channels as intended.

In our example, the LTS corresponding to the parallel composition (Figure 5) is
still relatively small, but this is only because the individual processes synchronise
very often. In theory, the size of the LTS of a parallel composition is only bounded
by the product of the numbers of states of the individual processes, and may thus
grow large very quickly.

2.4 Data Exchange

The basic model of the communication scenario we developed so far has one serious
problem: The receiver will report every receipt of a message from the channel, even
if it is just a retransmission after a lost acknowledgment. This is clearly undesirable
behaviour, but in order to fix it, we need a way to distinguish different messages. A
classic solution is that of the Alternating Bit Protocol: If we can guarantee that there
is at most one message in transit at any time, it suffices to include a single bit in
every message that is flipped between subsequent messages. The receiver stores the

Page 189



Probabilistic Analysis of Embedded Systems 7

bool channel bit;

process Sender()

{
bool bit;

do {
:: send data {= channel bit = bit =};

alt {
:: receive ack {= bit = !bit =}
:: Timeout()

}
}

}

process Receiver(bool last bit)

{
bool bit;

receive data {= bit = channel bit =};
urgent send ack;

alt {
:: when(bit != last bit) report data

:: when(bit == last bit) tau

};
Receiver(bit)

}

Fig. 6 Transmission of an alternating bit between sender and receiver

value from the last reported message, and if a new message arrives with the same
value, it clearly is a retransmission.

MODEST supports data in the form of global and process-local variables, includ-
ing parameters to processes, which can be of Boolean, integer, bounded integer or
real type, arrays thereof, or user-defined composite types. In order to transmit a sin-
gle bit, a Boolean variable is sufficient. The necessary modifications to the model
are shown in Figure 6: A global variable channel bit is added that represents
the bit of the message that is currently being transmitted, and sender and receiver
get local variables or parameters to keep track of the current and previous bits.

Aside from the variable declarations, we see two new language features in the
modified model, namely assignments and the when construct, or guard. Assign-
ments are associated with an action and enclosed in brackets ({= . . . =}). They are
executed atomically when the action is performed; in particular, the textual order
of the assignments in MODEST code inside a {= . . . =} block does not matter. The
variables can then be used to put constraints on when an action can actually be
performed by using the when construct.

2.5 Time

Up to this point, the detection of message loss was implemented by the process

alt { :: timeout send :: timeout ack }

Page 190



8 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

const int TD; // maximum channel transmission delay

const int TS; // sender timeout

process Timeout()

{
clock c;

when(c >= TS) urgent(c >= TS) tau // timeout: retransmit

}

process Channel()

{
clock c;

receive {= c = 0 =};
alt {

:: urgent(c >= TD) send

:: urgent tau // silently drop the message

};
Channel()

}

Fig. 7 Adding a transmission delay and realistic timeout detection

where the two timeout * actions just synchronised with the drop actions that
the channels performed when they lost a message. This is, of course, a significant
abstraction from reality where message lost is usually detected by the passage of a
certain amount of time, after which a timeout occurs. Fortunately, time is supported
in MODEST as well, in a way that is almost identical to how time is modelled in
Timed Automata (TA, see Chapters 2 and 3), so we can now make our model more
realistic w.r.t. timeouts.

Just like TA, MODEST has clock variables, which can be also be used in expres-
sions in guards and deadlines. Deadlines (or urgency constraints, written in MOD-
EST as urgent(d)where d is an expression of Boolean type) are used to constrain
the passage of time; they are the MODEST analogue to invariants in TA. In contrast
to invariants, however, they are not associated with states, but with the actions pos-
sible in a process. If the deadline of any action possible in a process becomes true
(we say that the action becomes urgent), time cannot pass any more and some edge
has to be taken.

Figure 7 shows how to use these new constructs to put realistic timeouts into our
model. The transmission of a message through a channel now takes up to TD time
units (which is achieved by resetting clock c to zero and then prefixing the channel’s
send action with urgent(c >= TD)), and the Timeout process is modified
such that it actually waits some time—precisely TS time units—before terminating
and thereby causing a retransmission, leaving the bit unchanged. The corresponding
automaton is shown in Figure 8—note that guards, deadlines and assignments are
stored symbolically on the transitions.

Page 191



Probabilistic Analysis of Embedded Systems 9

Fig. 8 Automaton for the channel with transmission delay

process Channel()

{
clock c;

receive palt {
:98: urgent(c >= TD) send

: 2: urgent tau // silently drop the message

};
Channel()

}

Fig. 9 A timed probabilistic lossy channel

2.6 Probabilistic Choices

Although our model of the communication scenario has become significantly more
realistic through the addition of “real” timeouts, there still is one more problem
with the current channel model: The decision whether or not to lose a message is
currently a nondeterministic one. While this is a good model for complete absence
of information about the frequency of message losses, one possible resolution of
this choice is to always drop the message, i.e., a completely non-functional chan-
nel. In order to avoid this situation, we either need so-called fairness assumptions
which may enforce that eventually some message is not lost, or we just have to put
information about the frequentness of message loss into the model.

Let us pursue the latter option for this example. Experiments may have shown
that for a typical implementation of this kind of channel, a single message is lost
with a probability of 2%, independent of any other conditions. This probabilistic
choice between two options is available in MODEST via the palt construct, as
shown in Figure 9: After receiving a message at one end of the channel, it is now
lost with probability 2

98+2 = 2%, and it successfully arrives at the other end (pos-
sibly with some delay) with probability 98%. The probabilities used in the palt
construct are actually weights, so we could equivalently have written 49 and 1 in-
stead of 98 and 2, and they are not restricted to constant values as in the example,
but can be arbitrary expressions.

For the previous examples, the semantics of our model was an automaton with
variables and edges that consisted of an action, a guard, a deadline, and assignments.
When we add the palt construct, however, the model becomes slightly more in-
volved because we need to represent the probabilistic branching in the automaton.
As shown in Figure 10, edges can now target multiple locations, with a probabil-
ity given for each branch. (Formally, the edges now relate a source location with
a probability distribution over target locations and assignments.) This is also why

Page 192



10 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Fig. 10 Automaton for the channel with transmission delay and probabilities

the palt construct has to be prefixed with an action—it needs an existing edge to
which it can add probabilistic branching.

2.7 Random Timing

The model built so far for our communication scenario could already be consid-
ered complete; however, let us add one more refinement by explicitly modelling the
arrival of new messages for the sender. We will add a queue of messages that peri-
odically grows and out of which the Sender process takes a message as soon as
the transmission of the previous one is successfully completed.

The time between the arrivals of “customers”, in our case messages, to a queue
is usually assumed to be exponentially distributed with some rate parameter λ . To
model these delays, we can take advantage of the possibility to draw samples from
random variables distributed according to a number of predefined distributions in
MODEST: for example, the statement

{= delay = Exponential(3.14) =},

assigns a value to the variable delay (which is of type real) that is randomly cho-
sen according to the exponential distribution with rate 3.14. We can then use this
variable in guards and urgency constraints to achieve a delay that is of exponen-
tially distributed length, as long as we resample before using it again:

urgent(c >= delay) when(c >= delay) . . .

This now allows us to implement the queue of messages as shown in Figure 11.
We have also modified the sender by adding a get data action that synchronises
with the Queue process, taking out one message.

2.8 More Syntax

The full communication scenario model (Figure 11) concludes our tour of the MOD-
EST language. We have seen that MODEST can be used to build models of real-
time systems with probabilistic or stochastic behaviour, including how its process-
algebraic nature can be used to specify a complex system in terms of its natural
components, which themselves remain small and easy to understand.

Page 193



Probabilistic Analysis of Embedded Systems 11

action get data;

action receive data, send ack, report data;

action send data, receive ack;

action receive, send;

const int TD; // maximum channel transmission delay

const int TS; // sender timeout

const real AR; // data arrival rate

bool channel bit;

process Timeout() { ... }

process Sender(bool bit)

{
get data;

do {
:: urgent send data {= channel bit = bit =};

alt {
:: receive ack; urgent break

:: Timeout()

}
};
Sender(!bit)

}

process Receiver(bool last bit) { ... }

process Channel() { ... }

process Queue()

{
clock c;

int items;

real delay;

do {
:: urgent(c >= delay) when(c >= delay)

{= items += 1, delay = Exponential(AR), c = 0 =}
:: when(items > 0) urgent(items > 0)

get data; urgent {= items -= 1 =}
}

}

par {
:: Queue()

:: Sender(false)

:: relabel {receive, send} by {send data, receive data}
Channel() // Channel from sender to receiver

:: relabel {receive, send} by {send ack, receive ack}
Channel() // Channel from receiver to sender

:: Receiver(true)

}

Fig. 11 The full model

MODEST is an expressive language, and although we essentially covered the
types of behaviours that are expressible in MODEST, we were not able to present
all of its syntactic features. Most notably, it also support exceptions as known from
modern programming languages that can be thrown at some point in a model and
be caught at another, but also several useful shorthands that, for example, allow the
use of invariants as known from timed automata instead of deadlines.

Page 194



12 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Submodel Probability distributions? Clocks/Time? Nondeterminism?

STA arbitrary arbitrary yes

GSMP arbitrary arbitrary no

PTA finite integer bounds yes

TA none integer bounds yes

PA/MDP finite no yes

LTS none no yes

CTMDP exponential + finite exponential delays yes

CTMC exponential + finite exponential delays no

DTMC finite no no

Table 1 MODEST submodels

3 Analysing MODEST Models

The ultimate goal of modelling any kind of system is to be able to analyse the model,
and in particular verify the presence or absence of certain good or bad properties.
Due to the enormous expressiveness of MODEST, no currently known analysis tech-
nique can be used for arbitrary MODEST models. However, certain submodels of
MODEST (Table 1) can easily be identified, e.g. by the absence of certain language
constructs, and efficient analysis techniques targeted to several of these submodels
exist:

Two very general submodels underlying MODEST are probabilistic timed au-
tomata (PTA, [5]) and generalized semi-Markov processes (GSMP, [8]). The STA
corresponding to a MODEST model is a PTA if only probability distribution with
finite support set occur. The complete model of our running example from the pre-
vious section is thus not a PTA because it uses the exponential distribution, but the
one developed up to Section 2.6 is. We will show how to analyse this model in the
first part of this section. On the other hand, regardless of the probability distribution
appearing, a MODEST model corresponds to a GSMP, provided it is fully determin-
istic. Unfortunately, this condition is difficult to assure — in particular, the parallel
composition is not closed under determinism: fully deterministic processes running
in parallel may behave nondeterministically.

3.1 Model-Checking PTA Models

For the formal verification of MODEST models that correspond to PTA, a set of
properties to be checked has to be defined. As PTA combine probabilistic and real-
time behaviour, we can refer to both probabilities and time in these properties. Some
classes of probabilistic timed properties that can efficiently be verified are

• probabilistic reachability properties: “What is the probability of ever reaching
an error state?”,

Page 195



Probabilistic Analysis of Embedded Systems 13

• probabilistic time-bounded reachability properties: “What is the probability of
reaching an error state within n time units?”, and

• expected-time reachability properties: “What is the expected time until an error
state is reached?”.

Because PTA can contain nondeterminism, the answers to all of these properties
depend on how the nondeterminism is resolved. All of them thus exist in a maximum
and minimum variant: If asked for the maximum (minimum) probability of reaching
an error state, all possible ways to resolve nondeterministic choices are considered
and the highest (lowest) probability is returned.

Let us now analyse the model of the communication scenario developed up to
Section 2.6 in terms of correctness and performance. The most basic correctness
criterion for such a communication protocol is that the probability of eventually
succeeding, which we may, for example, detect by the receipt of an acknowledg-
ment, is 1. This can be specified inside the model as

property success = P(<> did(receive ack)) >= 1.0;

For TD= 1 and TS= 4, this property is indeed satisfied. Now that we are confident
that the protocol used is correct, we can study performance aspects. A requirement
may for example be that, in the worst case, the probability of completing a trans-
mission within 7 time units is close to 100%. For the same values for TD and TS,
we will see that it is actually 99.843% using

property Pmin(<> did(receive ack) && time <= 7.0);

Lastly, we can also find out what the actual expected time until successful transmis-
sion is. Using the following properties—

property success time min = Tmin(did(receive ack));

property success time max = Tmax(did(receive ack));

—we see that it lies between 1.649 and 2.165 time units, depending on how the
nondeterministic choice of the actual transmission delay in the channel is resolved.

3.2 Discrete-Event Simulation for GSMP Models

Models using probability distributions with infinite support, such as the exponential
distribution, can be analysed using discrete-event simulation. Since discrete event
simulation relies on the execution and evaluation of large batches of concrete traces
of a model, this model either needs to be deterministic (i.e., a GSMP), or the non-
determinism has to be resolved in some way specified by the user in order to obtain
a GSMP.

There are many different methods to resolve nondeterminism, and the particu-
lar method employed may skew the analysis results in unexpected and sometimes
counterintuitive ways. For example, two distinct possibilities to resolve nondeter-
minism over time – such as for the transmission delay in our running example – are
to always choose the earliest or the latest possible point in time. For our example,

Page 196



14 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

Fig. 12 Simulation results for the communication scenario

the results we obtain this way for the expected time to success do coincide with
the actual lowest and highest values, but it is easy to construct a model where, for
example, the inverse is the case. Understanding that the method to resolve nondeter-
minism can influence the results and taking this into account when interpreting the
results is thus crucial.

When analysing the final model of our communication scenario via discrete-
event simulation, we can still check the properties presented for the PTA model
above, but also new measures such as the actual throughput of the system in terms of
successfully transmitted messages per time unit and the average length of the queue
over time. The former can be achieved by simply counting the number of times
that the report data action is performed via MODEST’s support for transition
rewards:

increment count for {report data} by {1} Receiver(true)

At the end of a simulation run, we then observe the value of count/time. To
measure the average queue length, we need to use a rate reward that grows (linearly)
over time at the speed of the current queue length. We can specify this in MODEST

by introducing a new variable items reward of type real and setting its derivative
to be the queue length:

der(items reward) = items;

Again, we let the simulator observe the value of items reward/time at the end
of each simulation run.

Discrete-event simulation is usually used to perform a large number of simula-
tion runs and then compute a statistical evaluation of the collected results. To obtain
numbers for the measures introduced above, we collect 1000 random traces for dif-
ferent model time lengths with uniformly random resolution of nondeterminism, but
a deterministic transmission delay of 1 time unit and TS= 4; the results are plotted
in Figure 12. We see that the throughput of the system is limited to about 0.46 mes-
sages per time unit due to the communication delays and the lengths of the timeouts
in case a message is lost; as expected, the queue length appears to grow without
bounds for arrival rates close to or larger than that value; slowly so for AR = 0.5,
but already significantly for AR= 0.75.

Page 197



Probabilistic Analysis of Embedded Systems 15

Fig. 13 mime, the integrated modelling environment for MODEST

3.3 Tool Support

The analysis of MODEST models is today supported by two sets of tools: The newly
developed Modest Toolset and the original Modest Tool Environment, MOTOR.

3.3.1 The Modest Toolset

The MODEST Toolset, developed at Saarland University, currently consists of three
tools: mcpta, which allows model-checking MODEST models of PTA [9]; modes,
a discrete-event simulator for MODEST, and mime, an integrated modelling envi-
ronment that combines a MODEST editor with syntax and error highlighting with
direct access to the model analysis capabilities of mcpta and modes (Figure 13).
The MODEST Toolset is cross-platform and can be downloaded at

www.modestchecker.net

mcpta transforms MODEST models corresponding to PTA into probabilistic,
but untimed models and hands these over to the PRISM probabilistic model-
checker [14] for analysis. This process is fully automated, and all classes of proper-
ties introduced in Section 3.1 are supported.

modes’ focus is on discrete-event simulation with a sound treatment of nonde-
terminism. Its default behaviour is therefore to reject nondeterministic models, but
it allows the user to override this behaviour by explicitly choosing one out of a set

Page 198



16 Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen

of predefined resolution methods. Additionally, modes can be configured to detect
and ignore certain kinds of spurious nondeterminism, i.e. choices that do not actu-
ally influence the final result. When this option is used, modes can analyse (certain)
nondeterministic models while the user can rest assured that the values obtained are
unaffected by any particular resolution of nondeterminism.

3.3.2 MoTor and Möbius

MOTOR [12] is the original set of tools designed to interface MODEST with dif-
ferent existing analysis backends such as CADP [7] for functional verification and
MÖBIUS [6] for discrete-event simulation. Today, the MÖBIUS backend is mostly
used for high-performance and distributed simulation of MODEST models; see the
following chapter for an extensive case study. In contrast to modes, nondetermin-
istic choices over different actions are always resolved in a uniformly probabilistic
way, while a maximal progress semantics is used for nondeterministic delays (that
is, as soon as an action is possible, it is taken, even when the model would allow
more time to pass).

MOTOR is available from the University of Twente at
fmt.cs.utwente.nl/tools/motor/

3.3.3 Analysing other Submodels

While not yet supported by the tools introduced above, several other submodels of
MODEST are easy to analyse with well-established model-checking tools once the
MODEST code is translated into the respective tool’s formalism: For example, the
timed automata subset could be analysed using UPPAAL, while the one correspond-
ing to continuous-time Markov chains (CTMC) could also be translated to PRISM.
Since Markov decision processes (MDP) and discrete-time Markov chains (DTMC)
are special cases of PTA, mcpta can already be used in combination with PRISM to
analyse these submodels.

4 Summary

Summary/conclusion HH: TODO HH:.

References

1. IEEE Computer, special issue on embedded systems, 2000.
2. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994.

Page 199



Probabilistic Analysis of Embedded Systems 17

3. Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen.
MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE
Transactions on Software Engineering, 32(10):812–830, 2006.

4. Sébastien Bornot and Joseph Sifakis. An algebraic framework for urgency. Inf. Comput.,
163(1):172–202, 2000.

5. Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman. Automatic verification of the
IEEE-1394 root contention protocol with KRONOS and PRISM. Electr. Notes Theor. Comput.
Sci., 66(2), 2002.

6. Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem Derisavi, Jay M. Doyle,
William H. Sanders, and Patrick G. Webster. The Möbius framework and its implementation.
IEEE Trans. Software Eng., 28(10):956–969, 2002.

7. Hubert Garavel, Radu Mateescu, Frédéric Lang, and Wendelin Serwe. Cadp 2006: A tool-
box for the construction and analysis of distributed processes. In Werner Damm and Holger
Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 158–163.
Springer, 2007.

8. Peter W. Glynn. A GSMP formalism for discrete event systems. In Proceedings of the IEEE,
volume 77, pages 14–23. 1989.

9. Arnd Hartmanns and Holger Hermanns. A Modest approach to checking probabilistic timed
automata. In QEST ’09: Proceedings of the 2009 Sixth International Conference on the Quan-
titative Evaluation of Systems, pages 187–196, Washington, DC, USA, 2009. IEEE Computer
Society.

10. Holger Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume
2428 of Lecture Notes in Computer Science. Springer, 2002.

11. Gerard J. Holzmann. Software analysis and model checking. In Ed Brinksma and Kim Guld-
strand Larsen, editors, CAV, volume 2404 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2002.

12. Joost-Pieter Katoen, Henrik C. Bohnenkamp, Ric Klaren, and Holger Hermanns. Embedded
software analysis with MOTOR. In Marco Bernardo and Flavio Corradini, editors, SFM,
volume 3185 of Lecture Notes in Computer Science, pages 268–294. Springer, 2004.

13. Edward A. Lee. Embedded software. Advances in Computers, 56:56–97, 2002.
14. David Parker. Implementation of Symbolic Model Checking for Probabilistic Systems. PhD

thesis, University of Birmingham, 2002.
15. M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley

Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John
Wiley & Sons Inc., New York, 1994. A Wiley-Interscience Publication.

16. Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.
Nord. J. Comput., 2(2):250–273, 1995.

Page 200


