
Using LOTOS Patterns to Characterize

Architectural Styles

Maritta Heisel� and Nicole L�evy�

� FG Softwaretechnik� Technische Universit�at Berlin� Sekr� FR ���� Franklinstr�
��	�
� D�����
 Berlin� Germany� heisel�cs�tu�berlin�de

� CRIN�CNRS� BP� ��
� F������ Vand�uvre�les�Nancy� France� nlevy�loria�fr

Abstract� We show how the formal description language LOTOS can
be used to de�ne software architectures and how patterns over LOTOS
can serve to characterize architectural styles� We characterize styles by
giving characteristics of the involved processes� a top�level communica�
tion pattern� and constraints that are su�cient conditions for a concrete
architectural description to be an instance of a given style� Three style
characterizations are presented and illustrated by an example�

� Introduction

Architectural styles are a mechanism to make system design knowledge explicit
and thus amenable to reuse� They characterize designs in terms of the system
components and the connectors that enable communication between compo�
nents �AAG���� Problems are how to represent styles in such a way that unam�
biguous criteria can be stated to decide whether a given design conforms to some
style and how a style representation can help to develop concrete architectures�

Informal circle�and�line drawings have shown their limitations and today� for�
mal languages are proposed to represent software architectures� New languages
for architectural descriptions have been developed� but they are still in a matur�
ing phase� and few are provided with tools �Cle�	��

In this paper� we address these problems in three ways
 �rst� we demonstrate
that LOTOS �BB�
� is a suitable language to express architectural designs� Sec�
ond� we contribute to a clari�cation of the meaning of architectural styles by
characterizing such styles as LOTOS patterns� Third� we show how the patterns
can support designers in the development of concrete software architectures�

LOTOS as an Architectural Description Language� Using LOTOS to
express architectural designs has several advantages

� LOTOS consists of two parts� an algebraic speci�cation language to de�ne
data� and a process algebra to de�ne the behavior of a system� Hence� the
communication between system components in an architecture can be de�
scribed using the process algebraic parts of LOTOS� and the algebraic spec�
i�cation language can be used to specify the data transformations that are
performed by the system�

� Architectural descriptions in LOTOS are formal and hence have an unam�
biguous semantics� They can be subject to proofs and analyses�

� Existing tools� such as CADP �Caesar�Aldebaran Distribution Package�
�FGM����� can be employed to analyze and animate architectures de�ned
in LOTOS�

� LOTOS is an ISO standard� The use of a standardized language relieves
system designers of the burden to learn an extra architectural description
language� These can be quite rich and complex� see e�g� �LKA�����

Style Characterizations� We characterize an architectural style by �i� re�
quirements on the processes specifying the components of a system� �ii� a com�
munication pattern de�ning its top�level behavior� and �iii� constraints� which
provide su�cient conditions for an architectural description to be an instance of
the style� These conditions can be checked mechanically�

Design Support� The style characterizations provide designers with patterns
that simply have to be instantiated to obtain a concrete architecture� An instanti�
ation can be performed recursively such that an architecture can combine several
architectural styles� Architectures can be mechanically checked for conformance
with the style� Furthermore� the architectural descriptions can be analyzed and
animated using existing tools� No new tools need to be developed�

In Section �� we explain the general approach we take to express architectural
designs in LOTOS and styles as LOTOS patterns� The approach is illustrated
by characterizing three architectural styles
 repository �Section ��� pipe��lter
�Section �� and event�action �Section ��� In Section 	� we present three di�erent
designs for a robot� following the three architectural styles� The tool CADP is
used to compare the alternative designs� The concluding section discusses our
approach in the context of related work�

� Expressing Architectural Designs and Styles with
LOTOS

Architectural designs and styles are usually described in terms of components
and connectors between them� In our approach� system components are modeled
as processes� These processes usually perform some data transformation� They
may consist of another architectural description� representing the design of a
subsystem� In this way� hierarchical composition of architectures is possible�
Connectors are no separate syntactic entities but are realized by the kind of
communication that takes place between the component processes�

LOTOS speci�cations are composed of interacting processes� They can be
parameterized by abstract data types� A process can exchange typed values with
another process and call functions to transform data� Communication between
processes in LOTOS is synchronous� i�e� two processes must participate in a
common action at the same time� Gates are used to synchronize processes and
to exchange data� To synchronize� two processes must contain an action via the
same gate g� To exchange data� one of them must contain an action g � v� t
which reads a value v of type t via gate g� The other process must contain an
action g � exp that writes a value exp of type t onto the gate g� It is also
possible to read or write more than one value in the same action�

We use this kind of communication by rendez�vous to describe the communi�
cation between the components of a system� Data are described using abstract

data types with conditional equations and an initial semantics� They are used for
describing process parameters and values exchanged by the processes via gates�

Each architectural description must be a valid LOTOS expression� regardless
of the style it belongs to� It consists of two parts� The behavior part describes
the overall behavior of the architecture� i�e� the interaction of its parts� The local
de�nitions part contains the de�nition of the processes involved in the behavior
part and the necessary de�nitions of abstract data types� The syntactical struc�
ture of an architectural description is

behaviour behav expr where local def list

LOTOS patterns are obtained from LOTOS by abstraction� i�e� by replacing
concrete LOTOS expressions by metavariables� Both parts of an architectural
description� i�e�� behav expr as well as local def list � can be subject to ab�
straction� In the following� concrete LOTOS expressions are set in teletype�
and metavariables are set in italics teletype �

A characterization of an architectural style consists of

� component characteristics� which describe properties of the involved
component processes�

� a communication pattern� which characterizes the top�level behavior of
the system by a LOTOS pattern�

� constraints� which� when ful�lled� guarantee that an architectural descrip�
tion conforms to the style�

Such representations make style characteristics explicit and can serve as a guide�
line for designers� In the following� we present characterizations of three di�erent
architectural styles�

� Repository Style

Garlan and Shaw �GS��� describe the repository style as follows

� In a repository style there are two distinct kinds of components
 a
central data structure represents the current state� and a collection of
independent components operate on the central data store��

In our modeling� we suppose that the central data structure � the shared memory
� contains data accessible via indices selecting parts of the stored data�

Component Characteristics
We consider three kinds of components operating on the shared memory
 com�
ponents that only read �part of� the memory� components that only change the
memory� and components that do both� There is no interaction between com�
ponents
 they behave independently and communicate only with the repository
and the environment�

The three kinds of components are illustrated in Fig� �� The system interface
is represented by black squares� If a component wants to change the shared
memory� it sends the message WR �write request�� This causes the shared memory
to set a lock� Only then can the new value be passed� using the gate W �write��
If a component wants to read the shared memory� it sends the message RR �read
request�� If no lock is set the value is passed via the gate R �read�� It may happen

 W WR RR R

 WR RR R W RWR

Shared_Memory

 R W RWR

 Write
Component

Read
Component

Read_Write
Component

Fig� �� General view of repository style architecture

that a value to be written into the shared memory depends on a value that was
read previously� In this case� no other write operation should be allowed between
the read and the write action� For this purpose� the message RWR �read�write
request� is used�

Each process sending a request must also send a unique identi�cation� This
prevents other processes from accessing the memory during a transaction� The
process implementing the shared memory is de�ned as follows

process Shared Memory �RR� R� WR� W� RWR�

�sm� shared�memory� is�locked� BOOL� for whom� id�� noexit ��
�is�locked � false �
	
 � RR � who� id� R � who� id � j � index � R
 who
 get�sm� j��

Shared Memory �RR� R� WR� W� RWR� �sm� false� for nobody�
�� WR � who� id�

Shared Memory �RR� R� WR� W� RWR� �sm� true� who�
�� RWR � who� id�

Shared Memory �RR� R� WR� W� RWR� �sm� true� who� �

�� �is�locked � true �
	
 � W � who� id � j � index � nv� value �who�for whom� �

Shared Memory �RR� R� WR� W� RWR��store�sm�j�nv��false�for nobody�

�� R � who� id � j � index � R
 who
 get�sm� j��
W � who� id � nv� value �who�for whom��

Shared Memory �RR� R� WR� W� RWR��store�sm�j�nv��false�for nobody��
endproc

The process Shared Memory has the gates RR� R� WR� W� RWR and the parame�
ters sm representing the memory�is locked and for whom� It does not terminate�
as indicated by the keyword noexit� If the lock is not set� either a read request
can be served� or the lock can be set because of a write or read�write request�
If the lock is set� either a new value and an index are read via the gate W� or
the part of the repository stored under index j is output on gate R� followed by
reading a new value via gate W� These actions can only take place if the same
process that sent the request participates in them� as expressed by the guard
�who�for whom�� The new value of the shared memory becomes the new param�
eter of the process� and the lock is reset� � The constant for nobody indicates
that access to the shared memory is not reserved for a particular process�

The process Shared Memory is the same for all instantiations of the repos�
itory architecture� except for the type of information to be stored� This type

� To keep our presentation concise� we do not permit parallel write or read	write ac�
tions on di�erent parts of the shared memory� i�e� on di�erent indices� The de�nition
of such an optimization is straightforward�

shared memory has to be de�ned algebraically� We need an initial value init� a
function store changing the shared memory� and a function get reading it� The
types id� index and value of the values that can be stored under an index are
also de�ned algebraically�

Each repository architecture consists of a process Shared Memory as de�ned
above and an arbitrary number of independent components� Each of these is
either a read process� a write process or a read�write process�

A read process does not use the gates WR� W� RWR and contains an arbitrary
�positive� number of read behaviors but neither write nor read�write behaviors�
A read behavior is de�ned by the pattern

RR
 me �
R
 me
 index �

R � who� id � v � value �who � me�

where me is the identi�cation of the process and index is the index to be read�
A write process does not use the gates RR� R� RWR and contains an arbitrary

�positive� number of write behaviors but neither read nor read�write behaviors�
A write behavior is de�ned by the pattern

WR
 me �
W
 me
 index
 v

where v is the new value to be stored under index index �
A read�write process may use three behavioral patterns� It contains at least

one read�write behavior or read as well as write behaviors� A read�write behavior
is de�ned by the pattern

RWR
 me �
R
 me
 index �

R � who� id � v � value �who � me �

followed by writing access to the shared memory in all subsequent branches� of
the process according to the pattern

W
 me
 index
 nv

for the same index index and a new value nv �

Communication Pattern
The communication between the shared memory and the independent compo�
nents is expressed by the following pattern� where for better readability we use
�� � � � instead of an inductive de�nition

hide RR� R� WR� W� RWR in
Shared Memory �RR� R� WR� W� RWR��init of shared�memory�false�for nobody�

�� RR� R� WR� W� RWR ��

� Component���gate list ��
��� ���

��� Component�n �gate list n� �

� This condition can be decided by a predicate de�ned inductively over the syntax of
the behavior expression following the �rst part of the pattern�

pipe_13

env_3

pipe_34

pipe_23
pipe_35

env_1

pipe_12

env_4

pipe_54

Filter_3Filter_1

Filter_2

Filter_4

Filter_5

Fig� �� A pipe	�lter architecture

All components behave independently of each other �the operator ��� involves
no communication at all�� For every Component i � its gate list i must contain
the gates RR and R if it is a read process and WR and W if it is a write process�
A read�write process may contain RR� R as well as WR� W� or RWR� R and W� The
repository and the independent components must synchronize on these gates�
as expressed by the synchronization list ��RR�R� WR�W� RWR��� The hide clause
hides communications via the gates RR� R� WR� W�RWR from the environment�

Constraints
Constraints are expressed in terms of the two parts of an architectural descrip�
tion� behav expr and local def list � see Section �� For the repository style�
we have the constraints that the behav expr must conform to the communica�
tion pattern given above� and that each process occurring in behav expr � except
Shared Memory� must be a read� a write or a read�write process as de�ned above�

� Pipe�Filter Style

The characteristics of pipe��lter style are the following �GS���

�In a pipe and �lter style each component has a set of inputs and a set of
outputs� A component reads streams of data on its inputs and produces
streams of data on its outputs� �� � � � Components are termed ��lters��
The connectors of this style serve as conduits for the streams� trans�
mitting outputs of one �lter to inputs of another� Hence connectors are
termed �pipes�� �� � � � �lters must be independent entities
 in particular�
they should not share state with other �lters� �

Garlan et al� �GKMM�	� additionally state the topological constraint that pipes
are directional and that at most one pipe can be connected to a given �port� of
a �lter� Figure � shows an example of a pipe��lter architecture� A �lter �in this
case Filter 	� may have several incoming and several outgoing pipes� Cycles
are also allowed� see �GS���� In the LOTOS characterization of this style� a pipe
between two �lters is a synchronous communication via some gate�

Component Characteristics
A �lter is modeled by a process that takes its inputs from the incoming pipes�
transforms them according to its task� and delivers the results via the outgoing
pipes� Communication with the environment is also possible�

Hence� a component of this style is not characterized by some speci�c behav�
ior but by its gates� These are divided into the lists in pipe list � out pipe list

and env gate list � A �lter process does not write on gates of its in pipe list

and does not read from gates of its out pipe list �

Communication Pattern
Two �lters communicate via their common pipes� For example� the �lters Fil

ter � and Filter � in the smallest box of the architecture shown in Fig� �
exhibit the communication behavior

Filter ��env ��pipe ���pipe ��� ��pipe ���� Filter ��pipe ���pipe ���

When adding the third �lter Filter 	 synchronizing with the previous system
via the pipes pipe �	 and pipe �	� the following behavior is obtained

� Filter � �env �� pipe ��� pipe ���
��pipe ���� Filter � �pipe ��� pipe ��� �
��pipe ��� pipe ���� Filter � �env �� pipe ��� pipe ��� pipe ��� pipe ���

Hence� the general communication pattern of the pipe��lter has the form

hide pipe list �� pipe list � � ��� pipe list n�� in

������Filter ��gate list � � ��pipe list ��� Filter � �gate list � ��
��pipe list ��� Filter ��gate list ���

���
��pipe list n���� Filter n�gate list n��

Constraints
Again� we state the constraints in terms of the top�level behavior behav expr

and the local def list

� All synchronization lists pipe list � � � � � � pipe list n�� occurring in be�

hav expr are disjoint� i�e�� a pipe connects only two �lters�
� Each gate occurring in some synchronization list of behav expr occurs ex�
actly twice in the gates of the processes Filter � � � � � � Filter n de�ned in
local def list � i�e�� a pipe cannot be re�used as an external gate�

� Each of the processes Filter � � � � � � Filter n that occur in behav expr

must conform to the characterization given above� The gates of a process
representing pipes are exactly the ones that occur in some synchronization
list� The direction of the pipe can be determined from the process de�nition�

Note that� in our de�nition� pipes and �lters have no bu�ers like in �AAG���� be�
cause � according to the synchronous communication of LOTOS � no data can be
lost� The bu�ered version � which we consider to be closer to an implementation
� could also be expressed in LOTOS�

� Event�Action Style

According to Krishnamurthy and Rosenblum �KR����
�An event�action system is a software system in which events occurring
in the environment of the system trigger actions in response to the events�
The triggered actions may generate other events� which trigger actions�
and so on��

Garlan and Shaw �GS��� mention that � The main invariant in this style is that
announcers of events do not know which components will be a�ected by those
events��

Component Characteristics
An event�action architecture consists of components that react to events� When
an event has happened� actions are carried out and other events may be sent�
An event manager is responsible for distributing all events that have occurred
to all components that have to react to that event� Figure � shows an example
of an event architecture� The event manager has the following form�

EVENTS Event
Manager OUT2

RESULT2IN2
Component 2

RESULT1IN1

OUT1
Component 1

IN3

OUT3

RESULT3
Component 3

Fig� �� An event�action architecture

process Event Manager �EVENTS� IN �� OUT �� ��� IN n� OUT n� � func ��

EVENTS � e� event� exit�e�
�� OUT � � e� event� exit�e�

�� ���
�� OUT n � e� event� exit�e�

 accept e � event in

�p � �e�� 	
 IN����
 e � ��� IN���n�
 e �
Event�Manager �EVENTS� IN �� OUT � � ��� IN n� OUT n�

�� ���

�� �p k �e�� 	
 IN�k��
 e � ��� IN�k�nk
 e �
Event�Manager �EVENTS� IN �� OUT � � ��� IN n� OUT n�

endproc

This de�nition consists of two processes� separated by

� The accept clause
means that an event e is passed from the �rst process �via the exit clauses� to
the second one� In the �rst process� the event manager reads incoming events�
either from the environment via the gate EVENTS or from some other component
via some gate OUT i � It then decides how to distribute the events� according to
the predicates p j � The event manager may have functionality exit or noexit�
The data type event must be de�ned algebraically� It can be structured to allow
the handling of complex events�

Each event�action architecture consists of a process Event Manager as de�
scribed above and an arbitrary number of independent components� Each such
component Component i has a gate IN i and contains an action

IN i � e � event

If the component generates events� it has a gate OUT i � which is used to send
events to the event manager� In this case� the process behavior contains actions
of the form

OUT i � e

The process does not write on IN i and does not read from OUT i �

� In this de�nition� there is only one gate EVENTS � The pattern can easily be generalized
to allow for several external gates�

Communication Pattern
The communication between the event manager and the independent compo�
nents takes place according to the pattern

hide IN �� OUT � � ��� IN n� OUT n in

Event�Manager �EVENTS� IN � � OUT � � ��� IN n � OUT n �
��IN �� OUT � � ��� IN n� OUT n��

� Component���IN � � OUT � � env gate list ��

��� ���
��� Component�n �IN n� OUT n� env gate list n � �

Constraints
The behav expr and local def list making up the architectural description
of an event�action system must satisfy the following constraints

� behav expr must conform to the communication pattern given above�
� Each of the processes that occurs in behav expr � except Event Manager�
must conform to the description given in the component characterization�

� Example
We illustrate our approach by specifying a robot� This robot can make the move�
ments shown in Fig� �
 it can advance by moving its right or its left leg� it can
stand still� and it can smile or not� In the following� we develop three alternative
speci�cations� one for each style presented above� These three speci�cations use
the same robot de�nition�

advance advance chg_smile stand chg_smile init chg_smile

Fig� �� The movements of the robot

The robot can be modeled as an automaton with three states
 standing� left up
and right up as shown in Fig� �� To each state a boolean value is associated
indicating whether the robot is smiling or not� The initial state is standing and
smiling� The robot is de�ned by an abstract data type robot where the states
are de�ned as constants and the movements as transitions from one state to
another� except for smiling which is de�ned by a boolean value
 true for smiling�
For each state a predicate is de�ned deciding if the robot is in this state�

The movements are de�ned by the type mvt with three constants m stand�
m advance and m chg smile� The robot will be asked to execute several move�
ments collected in a list� This list is de�ned by an abstract data type m list
with a constant empty� a function add adding an element to the end of the list� a
function rm first removing the �rst element of a list� a function first selecting
the �rst element of a list� and a predicate is empty� A constant init list is
used to de�ne the list of movements initially given to the robot�

We have the same interface for all architectures� The initial state of the
robot and the movements to be performed are read via a gate START� A data

variable
 s: bool

right_up(s)

chg_smilechg_smile

standing(s)

left_up(s)

chg_smile
stand

stand stand

advance

advance

advance

Fig� �� The robot automaton

type value is de�ned as the Cartesian product of the types robot and m list�
Its constructor function is make� and its selector functions are the robot and
the list� Via a gate OUTPUT� the current state of the robot is made visible to
the environment� The top�level behavior

START
make�init of robot�init�list�� exit ��START�� �behav expr�

is the same for all three architectures� They are only distinguished by di�erent
de�nitions of behav expr and the associated local def list �

��� The robot speci�cation using the repository style

Our �rst robot design follows the repository style� The shared memory is to hold
the current state of the robot and the list of movements to be executed� i�e� items
of type value� We need only one index index�� The initial state and the initial
list are written into the shared memory by a write process Init sm�
process Init�sm �START� W� WR� � exit ��

START � vv� value�
WR
 id�Init�sm� W
 id�Init�sm
 index�
 vv� exit

endproc

Furthermore� we need three components Stand� Chg Smile and Advance to ex�
ecute the corresponding movements� as illustrated in Fig� 	�

START

 WR

 Init_sm

OUTPUT

 R W RWR

Chg_Smile Stand

 R W RWR

Advance

 R W RWR

 WR RR R W RWR

Shared_Memory

Fig� �� The repository architecture

These components try in parallel to access the shared memory to execute the
movement they are responsible for� They all are read�write processes� Each of
them �rst reads the list of movements� denoted ml� If the �rst movement is the
one it is responsible for� it is executed� the robot state changed �variable roro�
and the rest of the movement list is written back into the shared memory� If the
movement cannot be executed by the component that has been granted access�
it writes back the unchanged state to unlock the shared memory�

According to our characterization� the overall behavior of the repository robot
speci�cation is

hide RR� R� WR� W� RWR in

Shared Memory �RR� R� WR� W� RWR��init of shared�memory�false�for nobody�
�� RR� R� WR� W� RWR ��

� Init�sm �START� W� WR�

��� Stand �OUTPUT� R� W� RWR�
��� Chg�Smile �OUTPUT� R� W� RWR�
��� Advance �OUTPUT� R� W� RWR� �

Of the processes implementing the movements� we only present Advance� The
others are de�ned analogously�

process Advance �OUTPUT� R� W� RWR� � exit ��
RWR
 id�Advance� R
 id�Advance
 index� �

R � for whom� id � v� value �for whom�id�Advance��
�let ml� m�list � the�list�v�� roro� robot � the�robot�v� in

�is�empty�ml�� true � 	
 W
 id�Advance
 v � exit
�� �is�empty�ml�� false� 	

� �first�ml� equal m�advance � true �

	
 OUTPUT
 advance�roro� �
W
 id�advance
 make�advance�roro�� rm�first�ml�� �
Advance �OUTPUT� R� W� RWR�

�� �first�ml� equal m�advance � false�
	
 W
 id�Advance
 v �

Advance �OUTPUT� R� W� RWR� ��
endproc

This architecture has the disadvantage that the system implementationmust
guarantee that each component is given the chance to access the shared memory�
Otherwise� an in�nite number of unsuccessful accesses is possible�

��� The robot speci�cation using the pipe��lter style

In the pipe��lter modeling� we can make sure that each component is given
the possibility to execute its movement if required� We have a line of �lters�
see Fig�
� where each �lter inspects the movement list� If it can execute the
movement� it does so and hands the new robot state and the new movement list
to the next �lter� Otherwise� it passes on the unchanged data� Again� we need
an initializing component� called here Init pf�

START

 Init_pf
P0

P3

Chg_Smile

OUTPUT

 Stand Advance
P1 P2

Fig� �� The pipe	�lter architecture

process Init�pf �START� P�� � exit ��
START � vv� value� P�
 vv � exit

endproc

According to the style characterization� the overall behavior of the process is

hide P�� P�� P�� P� in

� Init�pf �START� P��
�� P� �� Stand �P�� P�� P�� OUTPUT�
�� P�� P� �� Advance �P�� P�� OUTPUT�

��P��� Chg�Smile �P�� P�� OUTPUT� �

The Advance �lter is de�ned as follows�
process Advance �P�� P�� OUTPUT� � exit ��

P� � v� value�
�let ml� m�list � the�list�v�� roro� robot � the�robot�v�

in �is�empty�ml�� true � 	
 �exit�
�� �is�empty�ml�� false� 	

� �first�ml� equal m�advance � true �

	
 OUTPUT
 advance�roro� �
P�
 make�advance�roro�� rm�first�ml�� �
Advance �P�� P�� OUTPUT�

�� �first�ml� equal m�advance � false�
	
 P�
 v �

Advance �P�� P�� OUTPUT� ��
endproc

This solution is better than the repository architecture because it always
terminates� It is not ideal� however� because each component must inspect the
data� even if it cannot process them�

��� The robot speci�cation using the event	action style

The event�action architecture� see Fig� �� does not have the disadvantages of
the previous architectures� The event manager inspects the movement list and
passes on the data only to the component that can process them� Events are
items of type value� The initial state of the robot and the movement list are
given to the event manager� An initialization component is not required� The
event manager is de�ned as follows�

START

 Event
Manager

Advance

Chg_Smile

 Stand

Advance

In_stand

In_chg_smile

Out_advance

Out_stand

Out_chg_smile

In_advance

OUTPUT

Fig� 	� The event�action architecture

process Event�Manager �START� In�stand� Out�stand� In�chg�smile�
Out�chg�smile� In�advance� Out�advance�� exit ��

START � v� value� exit�v�
�� Out�stand � v� value� exit�v�
�� Out�advance � v� value� exit�v�

�� Out�chg�smile � v� value� exit�v�

 accept v� value in

�let ml� m�list � the�list�v�� roro� robot � the�robot�v� in

�is�empty�ml�� true � 	
 �exit�
����is�empty�ml�� false� 	

� �first�ml� � m�stand�

	
 In�stand
 v �
Event�Manager �START� In�stand� Out�stand�

In�chg�smile� Out�chg�smile� In�advance� Out�advance�

�� �first�ml� � m�advance�
	
 In�advance
 v �

Event�Manager �START� In�stand� Out�stand� In�chg�smile�
Out�chg�smile� In�advance� Out�advance�

�� �first�ml� � m�chg�smile�

	
 In�chg�smile
 v �
Event�Manager �START� In�stand� Out�stand� In�chg�smile�

Out�chg�smile� In�advance� Out�advance����

endproc

In accordance with the event�action style� we have the following overall behavior

hide In�stand� Out�stand� In�chg�smile�

Out�chg�smile� In�advance� Out�advance in
Event�Manager �START� In�stand� Out�stand� In�chg�smile�

Out�chg�smile� In�advance� Out�advance�

��In�stand� Out�stand� In�chg�smile�
Out�chg�smile� In�advance� Out�advance��

� Stand �OUTPUT� In�stand� Out�stand�

��� Advance �OUTPUT� In�advance� Out�advance�
��� Chg�Smile �OUTPUT� In�chg�smile� Out�chg�smile� �

Note that the components executing the movements are much simpler now�
process Advance �OUTPUT� In�advance� Out�advance� � noexit ��

In�advance � v� value�

� let ml� m�list � the�list�v�� roro� robot � the�robot�v�
in OUTPUT
 advance�roro� �

Out�advance
 make�advance�roro�� rm�first�ml���

Advance �OUTPUT� In�advance� Out�advance� �
endproc

��
 Comparing the three speci�cations with Aldebaran

Under the assumption of fairness for the repository solution� all the above spec�
i�cations exhibit the same behavior to the environment� The tool CADP �Cae�
sar�Aldebaran Distribution Package� �FGM���� generates the same automaton
minimized with respect to safety equivalence �Fer��� �i�e� internal transitions are
not considered� for all the three architectures� where we use the movement list
shown in Fig� �� Stepwise execution of the three alternative architectures is also
possible� This shows that existing LOTOS tools can help to animate and compare
architectural descriptions� thus providing valuable support for their validation�

	 Discussion

Two of the style characterizations given in this paper� repository and event�
action� contain a distinguished component �Shared Memory and Event Manager�

respectively�� This results in a relatively detailed characterization of the other
components of the architecture because one can state requirements concerning
the communication of the other components with the distinguished one� Fur�
ther constraints are not necessary� In contrast� the pipe��lter style does not
have a distinguished component� This allows only a weak characterization of the
components� but leads to non�trivial constraints concerning the communication
between the di�erent components�

Formal descriptions of architectural styles and concrete architectural designs
are important because only architectural descriptions with a formal semantics
make it possible to precisely answer the questions stated by Clements �Cle�	�

What are the components� How do they behave�What do the connections mean�

Our work shows that LOTOS is a language suitable to express individual
architectures and that LOTOS patterns in combination with constraints are
suitable to characterize architectural styles� Our style characterizations do not
only provide a semantical foundation of architectural styles� Their schematic
nature also makes it possible to use them as templates for the development of
concrete architectures� The formal nature of the architectural descriptions and
the availability of tools makes it possible to formally analyze and to animate
them� In addition� our approach allows for hierarchical composition of architec�
tural descriptions and de�nition of substyles by adding further constraints or
adding further detail to the patterns�

We are not the �rst to formally characterize architectural styles or to use
a process algebra to specify the behavioral aspects of software architectures�
Abowd� Allen and Garlan �AAG��� use the speci�cation language Z to formally
de�ne architectural styles� Concrete designs� however� are described in a di�erent
language� Thus� there is no direct way from a style de�nition to an instance of
the style�

Allan and Garlan �AG��� use CSP to formalize architectural connection� In
their approach� connectors are de�ned as processes� In contrast to our work
where components are modeled as processes� this yields several de�centralized
behaviors in one architectural description instead of one central behavioral de�
scription characterizing the whole system� as proposed in this work� Moriconi
and Qian �MQ��� use CSP to show that an architectural description is a cor�
rect re�nement of another� Both of these approaches are not concerned with
architectural styles but with architectural descriptions in general�

The work presented here forms the basis for future work in several directions�
First� a notion of architecture re�nement will be de�ned� based on the notion of
behavioral equivalence in LOTOS� Second� concepts for the machine�supported
development of architectures as instances of styles will be developed� This can
be done in such a way that �i� the developed architectures can be guaranteed to
conform to the chosen style and �ii� dead�ends are avoided as far as possible�

Two development frameworks� designed by the authors� are good candidates
for accommodating architecture development� The �rst is a knowledge represen�
tation mechanism called strategies �HSZ���� They form a generic framework in
which development knowledge for various software development activities can
be expressed� This framework can be instantiated to support the development
of LOTOS speci�cations representing architectural designs� The resulting design

can be guaranteed to conform with the chosen style because strategies guarantee
semantic properties of the developed product�

The second framework to model developments �SL���L�ev��� aims at provid�
ing speci�ers with active tools to support them during the development process�
It is language�independent and therefore can be used with existing speci�cation
languages� The resulting speci�cations can be veri�ed and re�ned using existing
tools� In this framework� developments are formalized as a stepwise application
of development operators�

Experimenting with di�erent models for machine support will help to �nd
appropriate ways to support architectural design processes�

Acknowledgment� Thanks to Thomas Santen� Martin Simons and Jeanine Sou�
qui�eres for their comments on this work�

References

�AAG
�� G� Abowd� R� Allan� and D� Garlan� Using style to understand descriptions
of software architecture� Proc� ACM SIGSOFT���� Dec� �

��

�AG
�� R� Allan and D� Garlan� Formalizing architectural connection� In Proc�

��th Int� Conf� on Software Engineering� ACM Press� �

��
�BB�
� T� Bolognesi and E� Brinksma� Introduction to the ISO speci�cation lan�

guage LOTOS� Computer Networks and ISDN Systems� �������
� �
�
�
�Cle
�� P� Clements� A survey of architecture description languages� In Proc� of

the �th IWSSD� pages ������ March �

�� IEEE�
�Fer�
� J�C� Fernandez� Aldebaran� A tool for veri�cation of communicating pro�

cesses� Rapport SPECTRE C��� Laboratoire de G�enie Informatique �
Institut IMAG� Grenoble� September �
�
�

�FGM�
�� J�C� Fernandez� H� Garavel� L� Mounier� A� Rasse� C� Rodriguez� and
J� Sifakis� A Toolbox for the Veri�cation of LOTOS Programs� In Lori A�
Clarke� editor� Proc� of the ��th ICSE� May �

�� ACM�

�GKMM
�� D� Garlan� A� Kompanek� R� Melton� and R� Monroe� Architectural Style�
An Object�Oriented Approach� In Submitted for publication� February
�

��

�GS
�� D� Garlan and M� Shaw� An introduction to software architecture� Ad	

vances in Software Engineering and Knowledge Engineering
 World Scien	

ti�c Publishing Company� �� �

��
�HSZ
�� M� Heisel� T� Santen� and D� Zimmermann� Tool support for formal soft�

ware development� A generic architecture� In W� Sch�afer� P� Botella� eds�
Proc� �	th ESEC� LNCS
�
� pages �
���
�� �

��

�KR
�� B� Krishnamurthy and D� Rosenblum� Yeast� a general purpose event�
action system� IEEE Trans� Software Eng�� �������������
� Oct� �

��

�L�ev
�� N� L�evy� Improving PROPLANE� a speci�cations development framework�
In Proc� Second IFAC Int� Workshop on Safety and Reliability in Emerging

Control Technologies� pages ��
����� Nov� �

��
�LKA�
�� D� Luckham� J� Kenney� L� Augustin� J� Vera� D� Bryan� and W� Mann�

Speci�cation and analysis of system architecture using Rapide� IEEE

Trans� Software Eng�� �������������� April �

��
�MQ
�� M� Moriconi and X� Qian� Correctness and composition of software ar�

chitectures� In David Wile� editor� Proc� of the second ACM SIGSOFT

Symp�� pages �����
�� ACM Press� �

��
�SL
�� J� Souqui�eres and N� L�evy� Description of Speci�cation Developments� In

Proc� IEEE Int� Symp� on Requirements Engineering� Jan� �

��

