
A Framework for Performance Evaluation and Functional
Verification in Stochastic Process Algebras

Hossein Hojjat
IPM and University of Tehran,

Tehran, Iran

MohammadReza
Mousavi

∗

TU/Eindhoven, Eindhoven,
The Netherlands, and
Reykjavı́k University,
Reykjavı́k, Iceland

Marjan Sirjani
IPM and University of Tehran,

Tehran, Iran

ABSTRACT
Despite its relatively short history, a wealth of formalisms
exist for algebraic specification of stochastic systems. The
goal of this paper is to give such formalisms a unifying frame-
work for performance evaluation and functional verification.
To this end, we propose an approach enabling a provably
sound transformation from some existing stochastic process
algebras, e.g., PEPA and MTIPP, to a generic form in the
mCRL2 language. This way, we resolve the semantic dif-
ferences among different stochastic process algebras them-
selves, on one hand, and between stochastic process algebras
and classic ones, such as mCRL2, on the other hand. From
the generic form, one can generate a state space and perform
various functional and performance-related analyses, as we
illustrate in this paper.

1. INTRODUCTION
Compositionality is a very much sought feature in the

analysis of systems which is inherent to process algebras
[2, 15, 16]. Stochastic process algebras (SPAs) [4, 6, 11, 14]
bring about this useful feature to the field of performance
evaluation. Several SPAs appeared as a result of different de-
sign decisions in merging stochastic aspects of processes with
their behavioral aspects: some decided to follow the tradi-
tion in many timed process algebras and keep the semantics
of stochastic rates orthogonal to the behavioral semantics
while others decided to merge the two into a single semantic
model, i.e., a single transition (multi-)relation. Communi-
cation and synchronization are central to the semantics of
process algebras and defining the semantics of synchroniza-
tion for SPAs is yet another point of dispute among them.
Furthermore, different SPAs interpret nondeterminism dif-
ferently.

∗The work of M.R. Mousavi has been partially supported by
the projects “Unifying Framework for Operational Seman-
tics” (nr. 070030041).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

To make our goals concrete, we would like to translate
a number of SPAs which have similar semantic frameworks
(e.g., PEPA [14], MTIPP [13], EMPA [4] and IMC [11])
to a common form in the mCRL2 process algebra (which
is a classic process algebra [2] enhanced with abstract data
types). Our next milestone is to generate state space using
the mCRL2 tool-set. Finally, we wish to be able to perform
various functional- as well as performance-related analyses
on the generated state space using available tools, as well as
tools that we develop for this purpose.

For the ease of presentation, we shall focus on one of these
process algebras, namely PEPA (due to its popularity), in
the remainder of this paper and only touch upon the aspects
in which our approach has to be adapted to fit the other pro-
cess algebras listed above. Our prototype implementation
currently supports specifications in PEPA and MTIPP and
we are currently extending it to support EMPA and IMC. 1

Related Work. A proposal for unifying performance
and functional analysis is put forward in [9] which is closest
to ours. There, the authors use the process algebra LOTOS
together with stochastic gates (basic actions); the LOTOS
specification is then translated, using CADP toolset, into
IMC and various existing as well as newly developed anal-
ysis techniques are introduced on the generated IMC spec-
ification. Our work can benefit from the latter techniques
after generating the LTS semantics of stochastic decision
processes. As for the former translation (from LOTOS to
IMC), our work can be considered complementary to that of
[9]. In [12], in order to combine functional and performance
analysis, a new operator, called elapse, is added to the LO-
TOS process algebra. We decided to use the syntax of exist-
ing stochastic process algebras rather than adding syntactic
sugar to mCRL2 for modeling stochastic processes.

Our approach relies essentially on using the equational
theory of SPAs in order to resolve their semantic differences
with mCRL2. Sound and complete equational theories are
already developed for MTIPP [13], EMPA [4] and IMC [11].
We are not aware of an existing complete axiomatization for
PEPA; in [14], however, a number of sound axioms of PEPA
are introduced. All existing axiomatizations of SPAs make
use of an axiom scheme called Expansion Theorem which
stands for an infinite number of axioms (one for each number
of summands as arguments of parallel composition). How-
ever, we exploit the well-known technique of using auxiliary
operators [3] to give PEPA a finite (sound and complete)

1The implementation is available from
http://www.win.tue.nl/∼mousavi/spa/.

339

axiomatization. In [4, Section 3], the authors define an in-
terleaving semantics for EMPA. The method used in [4] for
defining the interleaving semantics of EMPA resembles our
approach to resolving the semantics of synchronization and
choice in our implementation.

The rest of this paper is organized as follows. Sections
2 and 3 give, respectively, an overview of our source and
target domains, i.e., stochastic process algebras (with a fo-
cus on PEPA) and mCRL2. Section 4 presents our general
approach and gives a detailed account of its application to
PEPA by means of a few examples. Section 5 applies our
method to a case-study and provides a practical view to the
application of our approach. Section 6 concludes the paper
and presents directions for ongoing and future research.

2. STOCHASTIC PROCESS ALGEBRAS

2.1 PEPA

2.1.1 Syntax and Semantics
The syntax of PEPA processes is given below.

p ::= 0 | (α, r).p | p + p | p ��
L

p | p/L | A

In the above syntax, 0 stands for the deadlocking process.
2 (α, r).p stands for an action of type α ∈ A whose dura-
tion is determined by an exponentially distributed random
variable with rate r ∈ R>0 followed by process p. There
are weighted passive actions in PEPA which have rates in
{n> | n ∈ IN \ {0}} (1> is denoted by >). It is assumed
that r < n> for each r ∈ R>0 and n ∈ IN \ {0}. Passive ac-
tions are important in practical applications: they represent
actions whose rates are unknown or determined by their syn-
chronizing partner. Although we fully treat weighted pas-
sive actions in our tool implementation, we do not clutter
the presentation in this section by treating them formally.
They can be incorporated smoothly without any substantial
change in the theory. Nondeterministic choice is represented
by + and stands for its general process-algebraic intuition.
Parallel composition with mandatory (CSP-style) synchro-
nization among actions in L ⊆ A is denoted by p ��

L
p. Ex-

pression p/L hides actions in L ⊆ A, i.e., renames them
to the unobservable action τ ∈ A. A denotes a recursive
variable defined by an equation A := t.

The semantics of PEPA processes is given by the following

2In the original syntax of PEPA, 0 is not included but 0
can be expressed using the enforced synchronization, e.g,
(α, r).P ��

α,β
(β, r′).P ′, for each α 6= β, is a deadlocking pro-

cess. We included it as a syntactic construct to facilitate
axiomatization.

SOS-style deduction rules.

(pre)
(α, r).x

(α,r)→ x
(c0)

x0
(α,r)→ y0

x0 + x1
(α,r)→ y0

(c1)
x1

(α,r)→ y1

x0 + x1
(α,r)→ y1

(par0)
x0

(α,r)→ y0

x0 ��
L

x1
(α,r)→ y0 ��

L
x1

α /∈ L

(par1)
x1

(α,r)→ y1

x0 ��
L

x1
(α,r)→ x0 ��

L
y1

α /∈ L

(par2)
x0

(α,r0)→ y0 x1
(α,r1)→ y1

x0 ��
L

x1
(α,R)→ y0 ��

L
y1

α ∈ L

where R = r0
rα(x0)

r1
rα(x1)

min(rα(x0), rα(x1))

(hid0)
x

(α,r)→ y

x/L
(α,r)→ y

α /∈ L (hid1)
x

(α,r)→ y

x/L
(τ,r)→ y

α ∈ L

(rec)
t
(α,r)→ y

A
(α,r)→ y

A := t

Most deduction rules are standard, i.e., the same as their PA
counterparts. The most notable exception is deduction rule
(par2) which defines synchronization. In this rule, the rate
of the synchronizing action is r0

rα(x0)
r1

rα(x1)
min(rα(x0), rα(x1)),

where rα(xi), for each i ∈ {0, 1} is the sum of the rates of all
enabled α-transitions at the parallel component xi formally
defined below [14].

rα(0) = 0
rα((α, r).x) = r
rα((β, r).x) = 0
rα(x + y) = rα(x) + rα(y)
rα(x ��

L
y) = rα(x) + rα(y) if α /∈ L

rα(x ��
L

y) = min(rα(x), rα(y)) if α ∈ L
rα(x/L) = rα(x) if α /∈ L
rα(x/L) = 0 if α ∈ L

2.1.2 Axiomatization
Equational theories are powerful tools in process algebraic

formalisms which allow for sound transformations of pro-
cesses (w.r.t. a particular notion of equality) without re-
sorting to their semantics and generating their state space.
Given a notion of behavior equality, a set of equations is
called an axiomatization of a model, or is sound and com-
plete, when one can prove all sound (and only sound) equali-
ties from them. We present an axiomatization of the recursion-
free subset of PEPA w.r.t. Markovian bisimulation [14, 11]
in this section. To our knowledge, this is the first finite ax-
iomatization of PEPA (most of the ingredients were already
present in [14], though).3 Similar axiomatizations exist for
other SPAs; apart from semantic difference reflected by the
axioms, the main subtle difference between our axiomatiza-
tion and those given before is that previous axiomatizations
of SPAs [13, 4, 11] were infinite (i.e., used an expansion the-
orem) but our axiomatization has the advantage of being
finite, thanks to the use of auxiliary left-merge and commu-
nication merge operators. We later use this axiomatization

3Our axiomatization is also complete for the linear subset
of PEPA (with a proof similar to that of the original one for
CCS [17] and later adapted for SPAs [11]) but we used the
recursion-free subset to simplify our proofs.

340

to resolve the semantics of synchronization and choice and
transform PEPA processes to our common stochastic form.

First we give the finite axiomatization for sequential non-
deterministic PEPA processes, i.e., processes comprising pre-
fixing and choice.

x + y = y + x
(x + y) + z = x + (y + z)

(α, r).x + (α, r).x = (α, 2r).x
x + 0 = x

Next, we axiomatize the hiding operator and recursion, us-
ing the following four axioms.

(α, r).x/L = (τ, r).(x/L) (α ∈ L)
(α, r).x/L = (α, r).(x/L) (α /∈ L)
(x + y)/L = (x/L) + (y/L)

A = t (A := t)

Following the tradition in other process algebras, we feel
the need to add two auxiliary operators, �

L
and �

L
, called

left-merge and communication-merge, respectively, in order
to finitely axiomatize parallel composition in PEPA. The
semantics of these two operators are defined below.

x0
(α,r)→ y0

x0 �
L

x1
(α,r)→ y0 ��

L
x1

α /∈ L
x0

(α,r0)→ y0 x1
(α,r1)→ y1

x0 �
L

x1
(α,R)→ y0 ��

L
y1

α ∈ L,

where R is defined in the semantics of parallel composition.
Intuitively, the left-merge �

L
behaves the same as parallel

composition ��
l

but it forces the first transition to be of
type α /∈ L and to be taken from its left-hand-side argument
(or otherwise deadlocks). Communication merge �

L
forces

the first action to be of type α ∈ L and to be the result
of a synchronization in which both the left- and the right-
hand-side parameters take part. After performing such an
action, communication merge continues as a parallel com-
position. We believe, following the well-known results for
untimed [18] and timed [1] PAs, that PEPA (without the
above-mentioned auxiliary operators) is not finitely axiom-
atizable. The following equations complete the axiomatiza-
tion of PEPA by axiomatizing parallel composition.

x ��
L

y = x �
L

y + x �
L

y + y �
L

x
x ��

L
(y ��

L
z) = (x ��

L
y) ��

L
z

(α, r0).x �
L

(α, r1).y = (α, R).(x ��
L

y) (α ∈ L)
(α, r).x �

L
y = 0 (α /∈ L)

x �
L

y = y �
L

x
x �

L
(y �

L
z) = (x �

L
y) �

L
z

(α, r).x �
L

y = (α, r).(x ��
L

y) (α /∈ L)
(α, r).x �

L
y = 0 (α ∈ L)

(x + y) �
L

z = (x �
L

z) + (y �
L

z)
0 �

L
x = 0

x �
L

0 = x
0 �

L
x = 0

where, R is defined in the semantics of parallel composition
and rα(x) (in the definition of R) for the newly introduced
left-merge and communication merge is given by the follow-
ing equations.

rα(x �
L

y) = ra(x) if α /∈ L
rα(x �

L
y) = 0 if α ∈ L

rα(x �
L

y) = 0 if α /∈ L
rα(x �

L
y) = min(rα(x), rα(y)) if α ∈ L

The following lemma states that our definition of rate (as
well as the old definition in [14] given before) are in keeping
with our axiomatization of PEPA.

lemma 1 If E ` p = q, then rα(p) = rα(q) for each pro-
cesses p and q and each basic action α.

Moreover, we prove that our axiomatization is indeed sound
and complete.

theorem 2 Let E be the union of the three sets of equations
given above. E is a finite axiomatization for PEPA.

Proof Sketch. Soundness proof is straightforward yet labo-
rious and proceeds by giving, for each axiom, a bisimulation
relation, relating left- and right-hand-side of all instances of
equations.

For the completeness proof, we first focus on the nonde-
terministic sequential subset of PEPA. Then, for processes
containing hiding and parallel composition, we show that
using axioms as rewrite rules, one can eliminate these op-
erators. Thus, for each two PEPA processes p and q such
that p↔ q, there exists PEPA processes p′ and q′ such that
E ` p = p′, E ` q = q′ and p′ and q′ are nondeterministic
sequential processes, i.e., do not contain hiding and parallel
composition. Once we prove completeness for the nondeter-
ministic sequential subset, it follows (from soundness) that
p↔ p′ ↔ q′ ↔ q and (from the completeness of the subset)
that E ` p′ = q′. Further, from E ` p = p′ and E ` q′ = q,
we conclude that E ` p = q which was to be proven.

For the completeness proof of the nondeterministic se-
quential subset, we show that each process p in this sub-
set is provably equal (using E) to a process of the formP

i∈I(ai, ri).pi in which for all i, j ∈ I if i 6= j then ai 6= aj

or it does not hold that pi ↔ pj . This holds by a simple
induction on the structure of p.

Then, for each two processes p and q such that p ↔ q,
there exists two processes p′ ≡

P
i∈I(ai, ri).pi and q′ ≡P

j∈J(aj , rj).qj such that E ` p = p′ and E ` q = q′ and

thus, by soundness, p ↔ p′ ↔ q′ ↔ q. It follows from the
semantics of nondeterministic choice that for each process p′

of the form
P

i∈I(ai, ri).pi, if p
(a,r)→ p′, then a = aj , r = rj

and p′ ≡ pj for some j ∈ I. We have that p′ ↔ q′ and
furthermore for each i, i′ ∈ I (and j, j′ ∈ J), if ai = ai′ , then
it does not hold that pi ↔ pi′ (qj ↔ qj′); hence {(ai, ri).pi |
i ∈ I} = {(aj , rj).qj | j ∈ J} and thus, E ` p′ = q′. It
follows thus from E ` p = p′ and E ` q′ = q that E ` p = q.
�

As already mentioned in the proof sketch, using the equa-
tions in E as rewrite rules (from left to right), we can rewrite
PEPA processes into a head normal form of the form

P
i∈I

(ai, ri).Pi in which for all i, j ∈ I if i 6= j then ai 6= aj or
Pi ≡/ Pj where ≡/ denotes syntactic inequality. This will
form the basis of our common stochastic form presented in
Section 4.2.

2.2 MTIPP
Similar to PEPA, Markovian Processes for Timed Interac-

tion (MTIPP) basic actions are represented with (a, λ). The
main difference between MTIPP and PEPA is in the seman-
tics of synchronization; namely, in MTIPP the rate of the
result of synchronization (which is, as well, in the CSP-style)
is the product of the rates. Our approach is applicable, and

341

currently implemented, to MTIPP with a marginal change
concerning the semantics of synchronization.

2.3 IMC
IMC is a conservative extension of classical process alge-

bras which separates action transitions from rate transitions.
Consequently, IMC simplifies the semantics of synchroniza-
tion by allowing only for plain actions to synchronize (rate
transitions interleave). Another major semantic difference
between IMC and other SPAs is that in IMC actions are
nondeterministic just like in classical process algebras and
the internal action is considered instantaneous and thus is
given priority when composed nondeterministically with a
stochastic rate (i.e., the stochastic rate will never get the
chance to spend time since the internal action will be taken
immediately). Both these semantic differences can be taken
care of by using our common form for SPAs and rewriting
IMC into this form using its axioms as rewrite rules.

2.4 EMPA
Extended Markovian Process Algebra (EMPA) [4] differs

from PEPA in the following points.

1. EMPA has prioritized weighted immediate actions, de-
noted by (a,∞l,w) and passive actions, denoted by
(a, ∗).

2. The semantics of synchronization in EMPA is different.
EMPA only allows for synchronization when at most
one party is active and then the rate of a synchroniza-
tion is defined as the maximum of the normalized rates
of synchronizing actions.

3. EMPA has a class of relabeling operators, denoted by
P [φ], which is parameterized by a relabeling function
φ : A → A.

For our approach to be applicable to EMPA, we need to
resolve the different types of choice as defined by priorities.
Moreover, we have to adapt our semantics of synchroniza-
tion to fit that of EMPA. Based on the axiom systems and
the recipe given in [4, Section 3], we expect no theoretical
challenges in this regard. There, the authors define a proce-
dure which resolves the semantics of choice and parallelism
and defines a multiset of pairs of actions and process: the
action to be performed and the trailing process (which is ba-
sically the same as our common stochastic form for PEPA).
There is a well-known problem concerning the congruence
of Markovian bisimulation for EMPA which can be solved
by restricting its syntax or focusing on a semantic subset.

3. MCRL2
mCRL2 is a successor of µCRL, and extends it by includ-

ing features such as true concurrency (in terms of multi-
actions), real time, higher-order functions and concrete data
types. The specification formalism µCRL, in turn, extends
the Algebra of Communicating Processes (ACP) [2] with
abstract data types. We refer to [10] for a more elaborate
description of mCRL2 features. The choice of mCRL2 as
our target framework is motivated by the presence of ab-
stract data types as a first-class entity in mCRL2. As we
show in the next section, to our understanding, the only
general and plausible solution for the unifying framework is
to model stochastic processes as data types; the approach

which models stochastic processes as classic processes is ei-
ther bound for failure or has to resort to restrictions on /
manual manipulations of the stochastic process as we illus-
trate later.

The summarized syntax of mCRL2 processes is given be-
low.

p ::= a(d1, . . . , dn) | τ | δ | p+p | p·p | p ‖ p | τI(p) |
∂H(p) | ∇V (p) | ΓC(p) |

P
d:D p | c → p � p

A basic action a of a process may have a number of argu-
ments d1, . . . , dn. These arguments correspond to the data
elements. Action τ (which does not take any parameter)
denotes an internal action. Process δ denotes the deadlock
process in which no further transition is possible. Non-
deterministic choice between two processes is denoted by
the “+” operator. Processes can be composed sequentially
and in parallel by means of “·” and “‖”. The abstraction
operator τI(p) renames actions in I into τ and thus makes
them invisible. To enforce synchronization, the encapsula-
tion operator ∂H(p) specifies the set of actions H which are
not allowed to occur. Conversely, the allow operator ∇V (p)
indicates the actions that are only allowed to occur. To show
possible communications in a system and the resulting ac-
tions, communication operator ΓC(p) is used. The elements
of set C are of the form a1 | a2 | · · · | an → c (for n ≥ 0),
which intuitively means that action c is the result of the
multi-party synchronization of actions a1, a2, . . ., and an.

There are a number of built-in data types in mCRL2, such
as (unbounded) integers, (uncountable) reals, lists, sets and
functions which are quite useful for our implementation.

The mCRL2 tool-set contains tools for state space gener-
ation, reduction, analysis and visualization. Furthermore, it
can be smoothly integrated with the CADP tool-set [8]. For
our case-study, we used the state space generation and visu-
alization facilities of mCRL2. For performance analysis, we
integrated mCRL2 with Matlab and for functional analysis,
we used CADP. (CADP provides some tools for state space
reduction and steady-state and transient-state analysis of
stochastic systems, as well.)

4. UNIFYING FRAMEWORK

4.1 General Approach
Our goal is to transform stochastic processes into a com-

mon form which can in turn be used for state space genera-
tion and verification as well as performance evaluation. The
main obstacles in achieving this goal are listed below.

1. Classic PAs use transition relations, i.e., for each label
l and each two states s and s′, there is at most one
transition labeled l from s to s′. However, some SPAs
[4, 11] allow for multiple transitions from s to s′ labeled
with l.

Moreover, different SPAs use different semantic frame-
works. Some use labels combining actions and rates
[14, 4], others separate action-labeled transitions from
rate- (probability-)labeled transitions [11].

2. The semantics of synchronization in classic PAs is to-
tally different from their SPA counterparts. When tak-
ing the relevant notions of behavioral equality into ac-
count, even nondeterministic choice gets a different in-
terpretation in SPAs as opposed to PAs. For example,

342

SPAs

PEPA Process

mCRL2 ADT

MTIPP Process

PEPA
Function Defs.

MTIPP
Function Defs.

Common
Stochastic
Form

PEPA Axioms

TIPP Axioms

State Space Analysis Tools

CADP

MATLAB

Stoch. LTS Vis. Toolkit

LTS

Markov Chain

Figure 1: A Schematic View of Our Approach

in PAs for all relevant notions of behavioral equality
we have p+p = p, while in SPAs this equality is usually
unsound.

Furthermore, different SPAs use different semantics
for synchronization; some only allow for hand-shaking
synchronization among action-based transitions (thus,
rates play no role in synchronization), others define
synchronization only between active and passive pro-
cesses and thus the rate of the outcome is determined
by the rate of the active party, the third class allow
for synchronization among (several) active processes.
Even within the third category, there is no consensus
as for the rate of the synchronized action; some define
it as the product of the rates, others use more compli-
cated calculations essentially taking the minimum of
the rates [5].

To deal with these challenges, we define SPAs as Ab-
stract Data Types in mCRL2. Then, we use sound axioms
in each SPA to resolve parallel composition (and nondeter-
ministic choice to the extent needed). Thus, we implement
the axioms of concurrency in each SPA as rewrite theories
which turn parallel processes into nondeterministic sequen-
tial ones. Furthermore, we resolve nondeterminism among
identical processes by summing up the rates of correspond-
ing identical actions. Finally, for each SPA, we write a sim-
ple interpreter in mCRL2 that takes the SPA process and a
linear mCRL2 process (i.e., nondeterministic choice among
different sequential processes). This last step enables us to
generate a state space from the SPA process automatically.
Further, we can use several existing tools as well as the tools
presented in this paper, to analyze the generated state space.
A schematic view of our approach is given in Figure 1.

An alternative approach to ours would be to translate
PEPA processes into mCRL2 processes. This approach is
taken in [9] for the process algebra LOTOS (as the target of
the translation). Due to the semantic differences mentioned
above, a structural and semantic preserving transformation
from SPAs to PAs is very challenging, if not impossible. For
the very reason, in [9], the authors had to restrict the syntax
of their source stochastic specifications in order to prevent
multi-transitions. Furthermore in [9], the synchronization
of rates is not considered which is inherited from the IMC
setting. The same comment holds for implementing PEPA
processes as real-time mCRL2 processes.

Another possible approach, which we tried, is to define a
PA process (for each SPA) which can interact with stochas-
tic processes and interpret their behavior (according to the
semantics of SPA). Consider PEPA, for example; the goal of

this approach is to write an mCRL2 process context CPEPA[]
such that for each PEPA process p, when CPEPA[p] is fed
into the mCRL2 tool-set generates the state space as of p ac-
cording to the PEPA semantics is generated. This way, by
writing different process contexts CTIPP [], CIMC [], etc.,
one can perform functional and performance verification on
different SPA processes using the state space generated by
the mCRL2 tool-set.

However, this approach is also bound for failure since in
many process algebras, such as PEPA and TIPP, C[(α, r).0

��
{α}

(α, r).0] has a totally different state space from C[(α, r).0
��
{α}

((α, r).0+(α, r).0)], i.e., C can distinguish between two

strongly bisimilar processes. Thus, C is not implementable
in mCRL2 (and in general in classic PAs).

4.2 Common Stochastic Form (CSF)
In this section, we define the Common Stochastic Form

(CSF) which can accommodate semantics of different SPAs
despite their very different semantics. A term in the CSF
is of the form P =

P
i∈I(ai, ri).Pi where ai ∈ {α, τ, Nil |

α ∈ A} and ri ∈ R>0 ∪ B, where B = {n> | n ∈ IN}.
Furthermore, it should satisfy the following constraints.

1. For each i, j ∈ I with i 6= j, it should hold that ai 6= aj

or Pi ≡/ Pj .

2. If for some i ∈ I, ai = τ , then for no j ∈ J , aj = Nil.

3. If for some i ∈ I, ai = Nil, then for all j ∈ I such that
aj ∈ A ∪ {τ}, rj ∈ B.

Apart from α and τ which represent basic and internal ac-
tion types, respectively, Nil represents the empty action
type which is used to model rate transitions, such as those
in IMC. If the rate is set to >, then the action is pas-
sive/instantaneous. Weighted passive actions with rates n>
are used to give different probabilities to the choices among
different instantaneous actions.

The first constraint given above forces the rewriting step
to aggregate all rates among identical processes. In partic-
ular, it disallows terms of the form (a, r).P + (a, r).P which
is deemed equal to (a, r).P by mCRL2 (and all other classic
process algebras for that matter) while they are interpreted
as (a, 2r).P by stochastic process algebras. The second con-
straint disallows implicit race condition among internal ac-
tions and stochastic transitions and it forces this race to be
resolved in the rewriting step. Finally, the third constraint
prevents the strange mixture of pure action and rate tran-
sitions, on one hand, and pairs of action and rates, on the
other hand.

4.3 Application to PEPA
Using ANTLR compiler generator, we wrote a parsers for

PEPA which automatically generates an mCRL2 specifica-
tion in which PEPA processes (including their recursive def-
initions) are defined as Abstract Data Types. Furthermore,
axiomatization of PEPA is included in the generated code as
a set of rewrite rules (defined in terms of a function named
hnfrewrite). This function calculates the rates of synchroniz-
ing actions and eliminates multi-transitions with the same
labels to equivalent processes. Moreover, an mCRL2 pro-
cess is defined which given a finite PEPA process (with only
guarded recursion) in as its arguments, generates its state
space. Thus, using mCRL2 tool-set one can generate the
state space of the PEPA model.

343

4 1

2 6

0 3

5 7

up
da

te(
8)

task(2)

task(2)

up
da

te(
8)

up
da

te(
8)

up
da

te(
8)

task(2)

task(2)

ta
sk

(3
)

ta
sk

(3
) ta

sk
(3

)

ta
sk

(3
)

use(2)

use(2)

use(2)

use(2)

Figure 2: State space of a simple PEPA process

For example, consider the following simple PEPA process
(an extended version of the example in [14, Section 3.5.7]).

Process1 = (use, 2).(task, 2).P rocess1;
Process2 = (use, 2).(task, 3).P rocess2;
Resource = (use, 6).(update, 8).Resource;
Start = (Process1 �� Process2) ��

{use}
Resource;

Process Start (which is by default assumed to be the start-
ing recursive definition in our implementation) models two
processes, called Process1 and Process2 which compete with
each other to get hold of the only available resource by syn-
chronizing on action type use. The only difference among
the two processes is that Process1 is somewhat faster and
after obtaining the resource usually waits for a shorter pe-
riod before it requests the resource again. A summary of the
mCRL2 code generated for this process is given in Figure 3.
In this code, the PEPA processes are defined using the sort
PepaProcess. Using the map definition, each recursive
variable of the original program is mapped to a PEPA Pro-
cess. The aim of the map hnfrew is to rewrite each PEPA
process into its head normal form (hnf). The mCRL2 pro-
cess Exec, executes an hnf (i.e., a PEPA process rewritten
into its head normal form) by producing the actions of the
form mcrl act parameterized by the corresponding PEPA
action type and rate, which are visible in the output state
space. In the initial process, Exec is called by the hnf of the
p start process.

We implemented a simple program in Matlab which takes
the generated state space, produces its rate matrix (by tak-
ing the underlying Markov Chain) and calculates steady-
state probabilities of states based from the generated ma-
trix.

The mCRL2 tool-set generated the state space depicted
in Figure 2 for this code. Furthermore, we analyzed the
steady-state probabilities of this state space using our Mat-
lab program which resulted in the following probabilities.

State 0 1 2 3 4 5 6 7
Prob. 0.30 0.08 0.07 0.22 0.04 0.14 0.06 0.09
One can use our implementation to project on the func-

tional aspects of the processes (thus, generate an LTS with
action types and no rates) and use the CADP tool-set for
functional analysis. Furthermore, one could abstract from
different actions, reduce the state space and use the visual-
ization toolkit (e.g., FSM View, ltsview, ltsgraph and Dia-
Graphica tools) to scrutinize different functional aspects of
the system. We illustrate some of these possibilities on the
case study presented in the next section.

sort

Action = struct p_tau | p_update | p_task | p_use;

RecursiveVars = struct p_Resource |

p_Process1 | p_Process2 | p_start;

DelayAction = struct

delayaction(p_act : Action, p_rate : Rate);

Rate = struct num(r:Nat) |

infty(w:Nat) | infinity;

PepaProcess = struct p_nil?is_nil |

p_recvar(rv:RecursiveVars)?is_recvar |

p_prefix(d:DelayAction,

p:PepaProcess)?is_prefix |

...

map

definition : RecursiveVars -> PepaProcess;

eqn

definition(p_Process1) =

p_prefix(delayaction(p_use,num(2)),

p_prefix(delayaction(p_task,num(2)),

p_recvar(p_Process1)));

...

map

apparentrate : PepaProcess # Action -> Rate;

eqn

apparentrate(p_prefix(a, p), b) =

if(p_act(a) == b, p_rate(a), num(0));

...

sort

Summand = struct summand(p_delayaction : DelayAction,

p_process : PepaProcess);

map

hnfrew : PepaProcess -> Hnf;

eqn

hnfrew(p_nil) = [];

hnfrew(p_prefix(a, p)) = [summand(a, p)];

hnfrew(p_choice(p, p_nil)) = hnfrew(p);

hnfrew(p_choice(p1, p2)) =

p_union(hnfrew(p1), hnfrew(p2));

...

act

mcrl_act : Action # Rate;

proc

Exec(hnf : Hnf) = sum i : Nat. (i < #hnf) ->

mcrl_act(p_act(p_delayaction(hnf.i)),

p_rate(p_delayaction(hnf.i))).

Exec(hnfrew(p_process(hnf.i)));

init

Exec(hnfrew(p_recvar(p_start)));

Figure 3: mCRL2 spec. of a PEPA process

344

5. CASE STUDY

5.1 Informal Explanation
To illustrate our method, we specify an abstract PEPA

model of a multichannel random access scheme, in the spirit
of OFDMA, as described in [7]. We perform various func-
tional and performance-related analyses on this specifica-
tion. In OFDMA a given channel is divided into many par-
allel subchannels and hence, multiple symbols are sent in
parallel. When two users simultaneously send packets to
a subchannel their packets collide and get lost. After ex-
periencing a collision in a subchannel, the clients have to
back-off. Several collision resolution schemes exists for such
networks. In the approach proposed in [7, Section III.A], af-
ter experiencing a collision, the client chooses another sub-
channel and retries the transmission immediately. Next, we
give an abstract PEPA model of this protocol.

5.2 The PEPA Model
In our PEPA specification, we have two main subsystems:

subchannel and client. The former is the description of a
single subchannel in the system, and the latter specifies the
behavior of a user.

Client. The clients request permission for sending their packet
with rate rsnd. If no collision is detected they transmit their
data with the rate specified by the subchannel. Upon de-
tecting a collision, they nondeterministically choose a sub-
channel and retry the transmission. The PEPA model for
each client i is defined as follows.

Sendi =
P

j∈J(reqj , rsnd).Chani,j ;

Chani,j = (srvj ,>).Sendi + (colj , rinst).Backi,j ;
Backi,j =

P
j′∈J−{j}(reqj′ , rinst).Chani,j′ ;

Apart from nondeterministic back-off mechanism specified
above, we specified and analyzed a deterministic back-off
mechanism in which the next subchannel (using a modulo
counter) is chosen for retransmission.
Since PEPA does not support immediate actions, we use
the rate rinst which represents a huge number (2000 in our
implementation) to model the rate of immediate actions for
retrying another subchannel.

Subchannel.Subchannels (frequencies) receive transmis-
sion requests from clients and either transmit the pack-
ets successfully or upon receiving another, i.e., a colliding,
transmission request report a collision to clients.

Freqj = (reqj ,>).((srvj , rsrv).F reqj+
(reqj ,>).(colj , rinst).(colj , rinst).F reqj);

System.The system comprises the parallel composition of
n subchannels and m clients and is defined as follows.

start = (Freq0 ��
∅

. . . ��
∅

Freqn−1)

��
req0,...,reqn−1,srv0,...,srvn−1,col0,...,coln−1

(Send0 ��
∅

. . . ��
∅

Sendm−1)

5.3 Transformations and Analysis
We generated the state space of this case-study by varying

several parameters such as the number of clients and sub-
channels and the rates of sending packets (by clients) and

02468101214161820

0

5

10

15

20

0.5

0.6

0.7

0.8

0.9

1

sending rate

response rate

pr
ob

ab
ili

ty
 o

f n
ot

 c
ol

lid
in

g
(o

n
on

e
ch

an
ne

l)

(a)

0

5

10

15

20

02468101214161820

0.8

0.9

1

1.1

1.2

1.3

sending rate

response rate

pr
ob

. w
ith

 n
on

de
t.

ch
oi

ce
 /

pr
ob

. w
ith

 d
et

. c
ho

ic
e

(b)

Figure 4: (a) Collision probabilities and (b) Nonde-
terministic vs. deterministic back-off mechanisms.

service (by subchannels). The following table shows the size
of the generated state space for various number of clients
and subchannels (the size of state space is oblivious to the
stochastic rates).

Subch. / Clients 1 2 3 4 5 6
1 2 9 30 83 218 553
2 3 35 231 1191 5713 25971
3 4 67 712 5866 42784 295330

Figure 5.(a) depicts the state space for 5 clients and 2
subchannels as visualized by the FSM View tool. The red
transitions denote a collision.

Functional Analysis.The specification is checked auto-
matically to be deadlock free while generating the state
space by the mCRL2 tool-set. Furthermore, we use the
CADP toolkit to model check the underlying LTS for the fol-
lowing properties specified in the µ-calculus. The first prop-
erty asserts that after each request, client 1 either receives an
acknowledgement that the transmission is successful or is in-
formed about a collision. [>∗.req1,1] < (not req1,1)

∗.(srv1 or col1) >
> The result of model-checking shows that the aforemen-
tioned property indeed holds. However, the following prop-
erty does not hold in the system with 2 subchannels and 4
clients; it asserts that each path starting with a request will
lead to a service action. [>∗.req1,1]µX.(< srv1 > true and <
not srv1 > X) The reason for the above property to be in-
valid is that there is an infinite path in which all requests on
channel 1 collide and thus no successful transmission hap-
pens on this channel. Next, we analyze the probability of
collision by varying different parameters of the system.

345

(a)

0.35
0.4
0.45
0.5

ne
 C
ha

nn
el

0
0.05
0.1
0.15
0.2
0.25
0.3

lli
si
on

 P
ro
ba

bi
lt
y
on

 O
n

2 Freq

3 Freq

0

0 5 10 15 20 25

Co
l

Response Rate

(b)

Figure 5: (a) Visualized state space and (b) Collision
probabilities with 2 vs. 3 subchannels

Performance Evaluation.In the setting with 4 clients and
2 subchannels, we calculated the sum of steady state proba-
bilities of states in which no collision occurs in one subchan-
nel (i.e., a reward model in which all states with at least one
collision in a specific subchannel are assigned reward value
0 and all other states are assigned 1); the result is shown
in the diagram of Figure 4.(a). This diagram shows that
the probability of not colliding on a subchannel increases
exponentially with the increase in the response rates and
decrease in sending rates. Figure 4.(b) shows the ratio of
the probabilities of collision avoidance in a subchannel for
the nondeterministic back-off scheme vs. the deterministic
(choose next) one. It shows that in networks with a high-
load (with greater sending rates), the deterministic scheme
works better while the probability is higher with the non-
deterministic scheme when there is little traffic in the net-
work (with lesser sending rates). Figure 5 gives a compari-
son of collision probabilities between the cases in which the
service capability is divided into two or three subchannels.
In this experiment, the system comprises 4 clients, rsnd = 2
and rinst = 200.

6. CONCLUSIONS
In this paper, we introduced a general approach for trans-

lating a number of Stochastic Process Algebras (SPAs) into
the process algebra mCRL2. We implemented this approach
for two typical examples of such SPAs, namely PEPA and
MTIPP. We further implemented Matlab scripts to calculate
steady-state probabilities and reward models for the under-
lying Markov chains of generated state spaces.

We are currently extending the implementation to SPAs
such as EMPA and IMC. We plan to investigate the applica-
tion of visualization techniques that, by incorporating rates,
give us more insight about stochastic LTSs.
Acknowledgements. Useful comments of Holger Hermanns,

Michel Reniers and Jan Friso Groote are acknowledged.

7. REFERENCES
[1] L. Aceto, A. Ingolfsdottir, and M. Mousavi.

Impossibility results for the equational theory of timed
ccs. In Proceedings of CALCO’07, LNCS, Springer,
2007.

[2] J.C.M. Baeten and W. P. Weijland. Process Algebra.
Cambrdige, 1990.

[3] J. A. Bergstra and J.W. Klop. Process algebra for
synchronous communication. I & C, 60(1-3):109–137,
1984.

[4] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A
theory of concurrent processes with nondeterminism,
priorities, probabilities and time. TCS, 202(1-2):1–54,
1998. (and Corigendum, TCS, 254(1-2):691–694,
2001.)

[5] E. Brinksma, H. Hermanns. Process Algebra and
Markov Chains. vol. 2090 of LNCS, pages 183–231,
Springer, 2001.

[6] P. Buchholz. On a markovian process algebra.
Technical Report 500, Fachbereich Informatik,
Universität Dortmund, 1994.

[7] Y.-J. Choi, S. Park and S. Bahk Multichannel random
access in OFDMA wireless networks. IEEE J. on
Selected Areas in Communications, 24(3):603–613,
2006.

[8] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier,
R. Mateescu, and M. Sighireanu. CADP - a protocol
validation and verification toolbox. In Proceedings of
CAV’96, vol. 1102 of LNCS, pages 437–440. Springer,
1996.

[9] H. Garavel and H. Hermanns. On combining
functional verification and performance evaluation
using CADP. In Proceedings of FME’02, vol. 2391 of
LNCS, pages 410–429. Springer, 2002.

[10] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko,
and M. van Weerdenburg. The formal specification
language mCRL2. In Proceedings of the Dagstuhl
Seminar, 2007. Avilable from www.mcrl2.org.

[11] H. Hermanns. Interactive Markov Chains: The Quest
for Quantified Quality, vol. 2428 of LNCS. Springer,
2002.

[12] H. Hermanns and J.-P. Katoen. Automated
compositional Markov chain generation for a plain-old
telephone system, SCP. 36:97–127, 2000.

[13] H. Hermanns and M. Rettelbach. Syntax, semantics,
equivalence, and axioms for MTIPP. Technical Report
10/94, Friedrich-Alexender-Universität,
Erlangen-Nürnberg, 1994.

[14] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge, 1996.

[15] C.A.R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[16] R. Milner. A Calculus of Communicating Systems,
vol. 92 of LNCS. Springer, 1980.

[17] R. Milner. A complete inference system for a class of
regular behaviours. JCSS, 28:439–466, 1984.

[18] F. Moller The Importance of the Left Merge Operator
in Process Algebras. In Proceedings of ICALP’90, vol.
443 of LNCS, pages 752–764, Springer, 1990.

346

