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Abstract

We describe a translation from Rebeca, an actor-
based language, to mCRL2, a process algebra enhanced
with data types. The main motivation is to exploit the
verification tools and theories developed for mCRL2 in
Rebeca. The mapping is applied to several case-studies
including the tree identify phase of the IEEE 1394 stan-
dard. The results of the experiment show that the min-
imization tools of mCRL2 can be very effective and the
outcome of the present translation outperforms that of
the translation to the input language of the Spin model-
checker.

1 Introduction

In this paper, we present a mapping from
Rebeca [12, 13] to mCRL2 [8] and introduce a tool,
Sarir1, which automatically carries out this translation.
Two sides of the mapping are languages with a formal
semantics. The source of the translation, is an object
based language having its roots in the actor model [1].
The target of the translation is a process algebraic lan-
guage: mCRL2, a successor to µCRL [6]. An important
goal in the design of µCRL is to provide a common lan-
guage for analysis of system behavior, hence the name
‘micro Common Representation Language’.

At first glance, Rebeca and mCRL2 languages seem
to be inherently different. Rebeca uses asynchronous
message passing whereas communication in mCRL2
is synchronous. The events that constitute the state
space in a Rebeca program is the passing of messages
between rebecs (reactive objects) and changing the in-
ternal state of the rebecs, but in mCRL2 the state space
is generated by issuing atomic actions. Throughout the
paper we briefly describe how these dissimilar phenom-
ena can be mapped together. The main interest of this

1Sarir is a binary star in the constellation Ursa Major.
The tool can be obtained via the Rebeca home page: http:

//khorshid.ece.ut.ac.ir/∼rebeca/.

mapping is to investigate the applicability of various
reduction and analysis tools available for mCRL2. We
are also working to translate the existing and highly
effective reduction techniques for mCRL2 [7] to the set-
ting of Rebeca.

There are a fair number of attempts that addressed
the connections between actor and process algebra,
most notably Aπ calculus [2] which is a typed asyn-
chronous variant of the π-calculus. Our aim here is
different from that of [2]; the main concern in [2] is se-
mantics while here our main concern is verification. For
our purpose, incorporated data types of mCRL2, such
as integer, boolean and list are very handy and simplify
our translation while in [2], all data types have to be
defined using basic constructs of the π-calculus.
To have a better insight into the translation and its
effectiveness we carried out several case studies includ-
ing the tree identify phase of the IEEE 1394 firewire.
The results are encouraging and show significant im-
provement (esp. in large case-studies) over an existing
translation into Promela [9], the input language of the
Spin model-checker.

2 Background

In this section, we briefly introduce the source and
the target of our translation.
Rebeca. A Rebeca (Reactive Object Language)
model contains a set of concurrent objects, rebecs in-
stantiated from reactive classes. Rebecs may communi-
cate only by sending and receiving asynchronous mes-
sages, and based on the received messages react to the
environment. Each rebec has an infinite mail queue in
which the incoming messages are enqueued. A typical
example of a Rebeca model is depicted in Figure 1.
Rebeca uses a Java-like syntax. There are two main
declaration parts in the reactive class definition: The
knownobjects and statevars. The knownobjects
part includes the reactive classes to which this reac-
tive class is allowed to send messages. The statevars
part declares variables that store the local state of the
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reactiveclass Example {
knownobjects {

Example ex;}
statevars {

int counter; }
msgsrv initial() {

ex.add(0);}
msgsrv add(int a) {

if ( counter < 100)
{counter = counter + 1;} } }

main {
Example ex1( ex2):();
Example ex2( ex1):(); }

Figure 1. A simple Rebeca model

rebec. In addition to the known objects and the valu-
ation of the variables, the local state of a rebec (in its
operational semantics) includes the content of the in-
box queue, i.e., its received messages. When a message
is dequeued, its corresponding method is atomically ex-
ecuted, i.e., statements of concurrent methods cannot
be interleaved. If a number of concurrent rebecs in the
model have a message in their queues, messages are
chosen for execution by a nondeterministic scheduler.
Every reactive class definition has a method named ini-
tial. In the initial state, each rebec has an initial mes-
sage in its queue. Available constructs for the syntax
of message servers are assignment, message sending,
conditional statements and sequential composition.
mCRL2. The specification formalism µCRL extends
the Algebra of Communicating Processes (ACP) [3]
with abstract data types. mCRL2 is a successor to
µCRL, and includes features such as true concurrency
(in terms of multi-actions), real time, higher-order
functions and concrete data types. We refer to [8]
for a more elaborate description of the new features.
p ::= a(d1, . . . , dn) | τ | δ | p+p | p·p | p ‖ p | τI(p) |

∂H(p) | ∇V (p) | ΓC(p) |
∑

d:D p | c → p � p

The summarized syntax of a process in mCRL2 is
given by the above grammar. A basic action a of a pro-
cess may have a number of arguments d1, . . . , dn. These
arguments correspond to the data elements. There are
two designated basic actions τ and δ which do not take
any parameter. Action τ denotes an internal action.
Internal actions, as their name suggests, cannot be ob-
served from the external world. Process δ denotes the
deadlock process in which no further transition is pos-
sible. Non-deterministic choice between two processes
is denoted by the “+” operator. Processes can be com-
posed sequentially and in parallel by means of “·” and
“‖”. It is often useful to abstract from some actions
in the system and declare them as internal actions.
This is performed by the abstraction operator τI(p).
The subscript I is the set of actions that are to be
hidden. To enforce synchronization, the encapsulation
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Figure 2. MSC of Rebeca model in mCRL2

operator ∂H(p) specifies the set of actions H which
are not allowed to occur. Reversely, the allow opera-
tor ∇V (p) indicates the actions that are only allowed
to occur. To show possible communications in a sys-
tem and the resulting actions, communication operator
ΓC(p) is used. The elements of set C are of the form
a1 | a2 | · · · | an → c (for n ≥ 0), which intuitively
means that action c is the result of the multi-party
synchronization of actions a1, a2, . . ., and an.

There are a number of built-in data types in
mCRL2, such as (unbounded) integers, (uncountable)
reals, lists, sets and functions. In particular, the list
data type is quite useful for us. Concatenation(++),
head extraction (head, rhead) and tail extraction (tail,
rtail) are some of the predefined operations on lists.

3 Translation: Mapping Sketch

There are two main factors responsible for construct-
ing the local state of a rebec: valuation of local vari-
ables and the contents of the inbox q that stores the
incoming messages [12]. The rebec’s message servers
are means for manipulating and changing the states of
rebecs. The execution of message servers take place
in an atomic step, i.e., the execution of a statement
from one message server cannot be interleaved with the
execution of another statement from another message
server. So, the set of rebecs can be viewed as a set
of coarse grained parallel components. This helps us
to replace the concurrent behavior of the rebecs with
nondeterministic sequential interleaving, and also re-
ducing the number of generated processes. Instead of
introducing a set of processes for rebecs and run them
in parallel, we take the advantage of atomic execution
of message servers to use a single enabled process for
each message server being executed. Figure 2 shows a
message sequence chart presenting an abstract view of
the translation. In this figure, each box represents an
mCRL2 process. Gray boxes (Queues and State vari-
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ables) are always present in the system but from the
white boxes (Scheduler and Rebecs) at all times only
one instance exists.

There are two processes that hold the state of the
program: one of them for the state variables and the
other for the internal queues. These two processes al-
ways exist in the system and the state of the model can
be retrieved and changed by exchanging messages with
them. Furthermore, there is a scheduler process in the
system.

The scheduler should determine which rebec has the
turn to run. For this purpose it non-deterministically
chooses a rebec and starts the process corresponding
to that rebec. The rebec process starts running by
dequeueing a message from the queue process. The
message requires the rebec process to perform a series
of actions, which include getting and setting variables
and sending messages to other rebec processes. Af-
ter completing the message server task, the rebec pro-
cess informs the scheduler process and it finishes. The
scheduler continues the overall execution by again initi-
ating a rebec. The sequence of creating and destroying
rebec processes will continue forever.

The mCRL2 translation of the Rebeca code in Fig-
ure 1 is presented in Figure 3. Due to lack of space, we
cannot give a complete explanation of the translation
rules in this paper.
Data Types. In the first part, new data types are
defined. Message is defined as a triple: sender, mes-
sage and receiver. Queue is a list of messages. The
rebec names that are used in the model are included in
Rebecs, with two default rebecs: sched and null (the
former is responsible for sending the initial messages
and the latter is used for the sender of the dummy null
message marking the end of a queue). The last data
type definition is MsgType, which contains the message
server names of the model. If a message server has
parameters, we import the parameters in the mCRL2
code by introducing a set of arguments for that message
server definition in MsgType. For example, the message
server add(int a) is translated to add msg(a : Int). The
message server null msg is used in null messages.
State Variables. Each state variable is represented
by a parameter of the state variable process. There
are two rebecs in our example: ex1 and ex2, each of
which has one state variable. So, the state process has
two parameters, x0 and x1. The state variable pro-
cess offers two actions for each of its parameter, one
for getting the value and one for setting a new value
to it: r get counter and r set counter. To set the vari-
able counter of the rebec ex1 to a new value counter′,
action s set counter (r2mInt(counter ′, ex1)) should be
issued. For getting the value, one should issue the ac-

%predefined types
sort R2MBool = struct r2mBool(value : Bool, rebec : Rebecs);
sort R2MInt = struct r2mInt(value : Int, rebec : Rebecs);
sort Message = struct msg(sender :Rebecs,

sentMessage:MsgType, receiver :Rebecs);
sort Queue = List(Message);
sort Rebecs = struct ex1 | ex2 | sched | null;
sort R2MQueue = structr2mQueue(value : Queue, rebec : Rebecs);
sort MsgType = struct initial msg | add msg(a:Int) |null msg;

%state variables
act set counter, r set counter, s set counter

get counter, r get counter, s get counter:R2MInt;
proc state(x0:R2MInt, x1:R2MInt) =∑

y:Int
r set counter(r2mInt(y, rebec(x0)))·

state(r2mInt(y, rebec(x0)), x1)+
r get counter(x0)·state(x0, x1)+∑

y:Int
r set counter(r2mInt(y, rebec(x1)))·

state(x0, r2mInt(y, rebec(x1)))+
r get counter(x1)·state(x0, x1);

%internal queues
act enqueue, r enqueue, s enqueue,

dequeue, r dequeue, s dequeue:Message;
proc queue(q0:R2MQueue, q1:R2MQueue) =∑

mt:MsgType,sr:Rebecs
r enqueue(msg(sr, mt, rebec(q0)))·

queue(r2mQueue([msg(null, null msg, rebec(q0)),
msg(sr , mt, rebec(q0))]++tail(value(q0)), rebec(q0)), q1)+

(r dequeue(rhead(value(q0)))·
((value(q0) == [msg(null, null msg, rebec(q0))])
→queue(q0, q1)
� queue(r2mQueue(rtail(value(q0)), rebec(q0)), q1)))+∑

mt:MsgType,sr:Rebecs
r enqueue(msg(sr , mt, rebec(q1)))·

queue(q0, r2mQueue([msg(null, null msg, rebec(q1)),
msg(sr , mt, rebec(q1))] ++tail(value(q1)), rebec(q1)))+

(r dequeue( rhead(value(q1)))·
((value(q1)==[msg(null, null msg, rebec(q1))])
→queue(q0, q1)
� queue(q0, r2mQueue(rtail(value(q1)), rebec(q1)))));

%rebecs definition
proc rebec(r:Rebecs, ko ex:Rebecs) =∑

mt:MsgType,sr:Rebecs
s dequeue(msg(sr , mt, r))·

(mt== initial msg)
→(s enqueue(msg(r,add msg(0), ko ex)))·Scheduler

�(
∑

a:Int
(mt== add msg(a))

→ (
∑

counter:Int
s get counter(r2mInt(counter , r))·

(counter < 100)

→ (
∑

counter:Int
s get counter(r2mInt(counter , r)).
s set counter(r2mInt((counter+1), r)))

�τ)
)·Scheduler;

proc Scheduler = rebec(ex1, ex2)+rebec(ex2, ex1);

init ∇set counter, get counter, enqueue, dequeue(

Γr set counter|s set counter→set counter,
r get counter|s get counter→get counter,
r enqueue|s enqueue→enqueue,

r dequeue|s dequeue→dequeue,

state(r2mInt(0, ex1), r2mInt(0, ex2)) ‖
queue(r2mQueue([msg(null, null msg, ex1),

msg(sched, initial msg, ex1)], ex1),
r2mQueue([msg(null, null msg, ex2),
msg(sched, initial msg, ex2)], ex2)) ‖

Scheduler));

Figure 3. mCRL2 translation of Figure 1.
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tion
∑

z:Int s get counter(r2mInt(z, ex1)).

Queues. A rebec has an internal queue, in which the
incoming messages are enqueued, and when it is given a
turn, it dequeues a message from this queue for execu-
tion. A message is a triple: < sendid , i,mtdid >, where
sendid is the identifier of the sender, i is the identifier
of the receiver, and mtdid denotes the message server
which is intended to be called [12]. Two rebecs exist
in our running example, so queue has the two param-
eters q0 and q1. For each queue variable two actions
of enqueuing and dequeuing are available. If a rebec
process wants to dequeue a message from ex1, it issues∑

mt:MsgType,sr :Rebecs s dequeue(msg(sr,mt, ex1)), and
for enqueuing the message add msg(0) to the ex1
queue, it issues s enqueue(msg(r i, add msg(0), ex1))
in which r i denotes the name of the sender rebec.

Messages are enqueued from the left, and are de-
queued from right. There is always a null message
(with null as its sender and null msg as its message
type) at the leftmost position of the queue, indicating
the queue end.
Rebecs. A rebec process dequeues a message from the
top of its queue and runs its corresponding message
server. The arguments of the process are the name of
the rebec and its known rebecs (r and ko ex in our
example). Message < sr,mt, r > is dequeued from the
top of the queue. Variable sr denotes the sender of the
message, and mt is the message type. Message type
mt, determines the behavior of the rebec when servic-
ing the message. (Sequential composition in Rebeca
“;” is simply translated into sequential composition in
mCRL2 “·”.) Assignment and message sending are the
statements that result in state transitions. One impor-
tant distinction between these two types of statements
is that an assignment can solely change the local state
of a rebec but by sending messages a rebec modifies the
state of another rebec. The mCRL2 conditional oper-
ator is similar to the common if-then-else structure. In
an expression c → p � q, if condition c is evaluated to
true then p, and otherwise q, is executed. The con-
ditional statement of Rebeca can thus be mapped di-
rectly to mCRL2 conditionals. In mCRL2 if the “else”
component is not stated (c → q) it is automatically
assumed to be deadlock, i.e., in an untimed setting
c → q is an abbreviation for c → p � δ (with time it
is c → p � δ↪0). If a conditional statement in Rebeca
does not contain “else” we ought to put a τ action for
the else branch to prevent deadlocks. For the Boolean
condition first the variables are loaded and then the
condition is translated. The translation of p and q is
defined inductively, based on the translations of the
individual statements.

Rebea construct Promela construct

reactiveclass proctype

rebec process

knownobjects parameters of the process

message queue channel

message server atomic block

state variables of a rebec global variables

Table 1. Rebeca to Promela mapping

After the translation of rebec processes, the Sched-
uler process is defined, which is straightforward: it non-
deterministically selects a rebec process. The last part
is the init process, where the processes are initialized.

4 Implementation and Case-Studies

Sarir is a tool created to automate the mapping
described in the previous sections. Sarir, which
is implemented using the C++ language and the
ANTLR parser generator, gets a Rebeca description
file as its input and generates an mCRL2 output file.
The input language is the same as the Rebeca specifi-
cation which is presented in [12]; it is further enhanced
by removing the requirement to specify the maximum
length of the internal queue (thanks to the dynamic
structure of the list data type in mCRL2). The output
file can be linearized [14] and further analyzed using
the mCRL2 tool-set.

To study the proposed translation in action, a series
of experiments was carried out with Sarir. The same
experiments were also performed by a previously avail-
able tool [13], which converts Rebeca specifications to
Promela. The details of the Promela translation can
be found in [13]. Here we summarize the main points.
The translation is a natural one to one mapping, pre-
sented in Table 1 and goes along the same lines as our
translation to mCRL2.

TheRebeca sources of most of the cases studied here
can be found in [11]. The new case study is the identify
phase of the communication standard IEEE 1394 [10],
which is intended for hot pluggable high performance
buses. Due to the lack of space, we only refer to the Re-
beca home page for a complete source and the mCRL2
translation.

After the translation, several internal actions are
hidden. First of all, the queues of rebecs are hidden
in Rebeca, so there is no need to let the enqueue and
dequeue messages to be visible. The situation is sim-
ilar for the get actions (i.e., valuation of variables),
because we only have to track the changes of the vari-
ables. We hide the setting actions of the variables not
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mCRL2 Spin
St. Trans.St. min.Trans. min. St. Trans.

Tree Identify 6464 10810 47 90 11818 41917
Bridge Controller 467 616 54 99 911 1975

CSMA-CD 28 40 6 7 62 163
ProducerConsumer 44 51 20 27 48 77

Table 2. Model Checking Statistics

relevant for the external behavior. As rebecs execute
deterministically, we use prioritization of these hidden
actions when generating the state space [7]. After gen-
erating the state space, we also check our desired prop-
erty using the evaluator tool in the CADP tool-set [5].
Some statistics of the generated state space are shown
in Table 2. The results after reducing the model with
branching bisimulation are also given. It can be ob-
served that even without reduction, the state space
generated by the outcome from Sarir is substantially
smaller than the state spaces of the earlier tool. After
an investigation of the state spaces, it turns out that
statements such as sending a message with parame-
ters results in a number of transitions in Spin while
the same statements are translated into a single (pa-
rameterized) basic action in mCRL2. Note that both
Spin and mCRL2 use partial order reduction. More-
over, branching bisimulation reduction substantially
decreases the size of the state spaces generated from
the mCRL2 code.

More reductions are still possible. As stated before,
we are hiding all actions but those assigning a new
value to an externally relevant variable. If the desired
property contains only a proper subset of variables, ac-
tions that change the value of the other variables can
also be hidden. Furthermore, we can reduce modulo
weak trace equivalence. In the tree identify protocol,
this reduces the state space to 12 states and 18 tran-
sitions. This last state space can easily be inspected
using the visualization tools in the mCRL2 tool-set.

5 Conclusion and Future Work

In this paper, we defined and implemented a transla-
tion from an actor-based language (Rebeca) to process
algebra (mCRL2) in order to benefit from the verifica-
tion tools for the target language. Experiments reveal
that the mCRL2 reduction tools result in substantially
smaller models when compared to the models gener-
ated by the translation to Promela. This is mainly
due to the possibility of abstraction from the internal
queue contents and the actions concerning reading in-
ternal variables. The existing reduction techniques for
mCRL2 are then very effective on the resulting mod-

els. We are currently working to exploit the reduction
algorithms for mCRL2 directly on Rebeca models.
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