
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
85

27
--

FR
+E

N
G

RESEARCH
REPORT
N° 8527
Avril 2014

Project-Team Convecs

GRL: A Specification
Language for Globally
Asynchronous Locally
Synchronous Systems
(Syntax and Formal
Semantics)
Fatma Jebali, Frédéric Lang, Radu Mateescu

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

GRL: A Specification Language for Globally
Asynchronous Locally Synchronous Systems

(Syntax and Formal Semantics)

Fatma Jebali, Frédéric Lang, Radu Mateescu

Project-Team Convecs

Research Report n° 8527 — Avril 2014 — 78 pages

Abstract: A GALS (Globally Asynchronous, Locally Synchronous) system consists of a set of
synchronous subsystems executing concurrently and interacting using an asynchronous communi-
cation scheme. Such systems involve a high degree of synchronous and asynchronous concurrency
which makes challenging the design and debugging of applications. The use of formal methods in
the design process helps designers to master that complexity and to build strong confidence in the
correctness of these, usually safety-critical, systems.
This report presents the syntax and formal semantics of GRL (GALS Representation Language),
a new formal language to specify GALS system for the purpose of formal verification, to provide
design process with efficiency and correctness. GRL has a user-friendly syntax close to classical pro-
gramming languages and an operational semantics combining the synchronous reactive paradigm
inspired by classical data-flow languages and the asynchronous paradigm inspired by value-passing
process algebras.

Key-words: concurrency, specification languages, compilation, modelling, formal verification,
GALS systems

Langage GRL pour la Spécification des Systèmes
Globalement Asynchrones Localement Synchrones

Résumé : Un système GALS (Globalement Asynchrone, Localement Synchrone) est composé
d’un ensemble de sous-systèmes synchrones qui s’exécutent de manière concurrente suivant un
schéma de communication asynchrone. De tels systèmes impliquent un haut degré de concurrence
synchrone et asynchrone, ce qui rend difficile la conception et le débogage des applications à
cause du non-déterminisme des communications. L’intégration des méthodes formelles dans la
procédure de conception aide les concepteurs à maîtriser cette complexité et à garantir la sûreté
de ces systèmes, souvent critiques.

Ce rapport présente la syntaxe et la sémantique formelle de GRL (GALS Representation
Language), un nouveau langage formel pour la spécification des systèmes GALS afin de les vérifier
formellement, pour rendre le processus de conception sûr et efficace. GRL possède une syntaxe
conviviale, proche des langages de programmation classiques, et une sémantique opérationnelle
qui combine le modèle synchrone inspiré de la programmation par flot de données et le modèle
asynchrone inspiré des algèbres de processus.

Mots-clés : concurrence, languages de spécification, compilation, modélisation, vérification
formelle , systèmes GALS

GRL: GALS Representation Language 3

Contents

1 Version 6

2 Introduction 6

3 Mathematical Notations 8
3.1 General Notations . 8
3.2 BNF Notations . 8

4 Lexical Elements 9
4.1 Boolean literals . 9
4.2 Natural number literals . 9
4.3 Integer number literals . 9
4.4 Character and string literals . 9
4.5 Operators . 9
4.6 Comments . 10
4.7 Identifiers . 10
4.8 Reserved words . 10

5 Abstract Syntax 11
5.1 Notational conventions . 11
5.2 Program definition . 11
5.3 Type definition . 12
5.4 Literal constants . 12
5.5 Expressions . 13
5.6 Predefined functions . 13

5.6.1 Type conversion . 13
5.6.2 Functions on arrays . 13
5.6.3 Functions on records . 13

5.7 Statements . 13
5.8 Constant definition . 14
5.9 Variable declaration . 14
5.10 Formal parameters . 15
5.11 Blocks . 15
5.12 Environments . 16
5.13 Mediums . 16
5.14 Actors invocation . 17
5.15 System definition . 17

6 Static Semantics 19
6.1 Conventions . 19
6.2 Identifiers . 19
6.3 Types . 19

6.3.1 Binding rules . 20
6.4 Expressions . 20

6.4.1 Binding rules . 20
6.4.2 Typing rules . 20

6.5 Statements . 23
6.5.1 Binding rules . 23

RR n° 8527

4 Jebali & Lang & Mateescu

6.5.2 Typing rules . 24
6.5.3 Initialization rules . 24

6.6 Actor allocation and invocation . 26
6.6.1 Binding rules . 27
6.6.2 Typing rules . 28
6.6.3 Initialization rules . 28

6.7 Constant . 30
6.7.1 Binding rules . 30
6.7.2 Typing rules . 30

6.8 Block . 30
6.8.1 Binding rules . 31
6.8.2 Typing rules . 32
6.8.3 Initialization rules . 32

6.9 Environment . 32
6.9.1 Binding rules . 32
6.9.2 Initialization rules . 33

6.10 Medium . 33
6.10.1 Binding rules . 33
6.10.2 Initialization rules . 34

6.11 System . 34
6.11.1 Binding rules . 34

6.12 Program . 35
6.12.1 Binding rules . 35

7 Dynamic Semantics 36
7.1 Notational conventions . 36

7.1.1 Stores, stacks, and memories . 36
7.1.2 Labelled transition system . 37

7.2 Dynamic semantics of expressions . 37
7.2.1 Constant . 37
7.2.2 Variable . 37
7.2.3 Predefined function call . 38

7.3 Dynamic semantics of statements . 38
7.3.1 Null . 38
7.3.2 Sequential composition . 38
7.3.3 Assignment . 39
7.3.4 Array element assignment . 39
7.3.5 While loop . 39
7.3.6 For loop . 39
7.3.7 Conditional . 39
7.3.8 Nondeterministic assignment . 40
7.3.9 Nondeterministic choice . 40
7.3.10 Case selection . 40
7.3.11 Signal . 40
7.3.12 Block invocation . 41

7.4 Dynamic semantics of systems . 44
7.4.1 Block invocation . 44
7.4.2 Environment invocation . 45
7.4.3 Medium invocation . 47

Inria

GRL: GALS Representation Language 5

7.4.4 Dynamic semantics of system . 48
7.5 Dynamic semantics of programs . 52

8 Basic Examples 53
8.1 Independent blocks with independent environments 53
8.2 Independent blocks with shared environments 53
8.3 Network of blocks communicating via a medium 54

9 Conclusion 56

A Lexical Structure 59

B Concrete Grammar 60

C Operational semantics through examples 66
C.1 Nested blocks . 66

C.1.1 Initial state . 66
C.1.2 Construction of the transitions . 66
C.1.3 Generated LTS . 69

C.2 Strict alternation of blocks . 69
C.2.1 Initial state . 70
C.2.2 Construction of the first transition . 70
C.2.3 Execution of the second transition. 75
C.2.4 Construction of the whole LTS. 77

RR n° 8527

6 Jebali & Lang & Mateescu

1 Version
This document is version 3.0 of the definition of the GRL language.

2 Introduction
A wide range of industrial applications represent instances of GALS (Globally Asynchronous,
Locally Synchronous) systems composed of several synchronous systems that execute concur-
rently and communicate asynchronously. Whatever their target platform (software, hardware,
or heterogeneous) and their architecture (parallel or distributed), these systems are complex and
are confronted to severe challenges in the design process, which makes the system integration
critical. A formal analysis is then required to prove the efficiency and the correctness of such
systems, usually safety-critical. Nevertheless, most available design tools in industry do not use
rigorous verification methods because of a lack of support for formal modeling. Industrial com-
panies have for long built their tools on classical synchronous frameworks, which prevent them
from fully switching to new production methods supporting the GALS model.

Modeling and verification of GALS systems have gained remarkable research interest over the
last decades in computer software. Most of the existing approaches are based on ad hoc model-
ing and fall into two main classes. The first class, aims to describe GALS systems by enhancing
synchronous languages and frameworks [20, 5, 21, 15] to fit asynchronous concurrency and non-
determinism that such systems involve. The second class consists in expressing synchronous
programs in fully asynchronous languages to encompass synchronous features [14, 10, 6]. A com-
mon limitation of these two trends is that either the asynchronous concept (in the case of the
first class) or the synchronous concept (in the case of the second class) is disadvantaged since
not recognized as a main paradigm, which narrows down verification results accuracy.

A more recent trend has emerged to preserve GALS systems features as much as possible by
designing a new generation of languages that couple both the synchronous and the asynchronous
paradigms. We cite the CRP model [3] that combines the Esterel [4] synchronous language
and the CSP [16] asynchronous language. CRP is suitable for formal verification since it has
been translated into classical process calculi. However, it is still very rarely used in industry
since it requires a solid expertise in both synchronous and asynchronous concepts. In the same
vein, SystemJ [19] extends the Java language with Esterel-like synchronous model and CSP-
like asynchronous model. To our knowledge, no formal verification based on SystemJ has been
investigated.

This report presents the syntax and formal semantics of a new modelling language, named
GRL (GALS Representation Language), whose aim is to bridge the gap between industrial design
tools and automatic verification tools in order to enhance the design process of GALS systems
and ensure the correctness of system construction. Such a language has to be general-purpose
enough to cover a large scope of industrial systems and user-friendly to allow a degree of comfort
for designers without the need of background in theoretical concurrency and formal verification.

The synchronous model of GRL is inspired from the data-flow model, a synchronous pro-
gramming paradigm widely used in industry to design GALS systems. The asynchronous model
of GRL is inspired from LNT [8], a formal specification language based on process algebra and
functional programming, instead of classical formal specification languages. LNT has been suc-
cessfully used for the analysis and verification of industrial applications, in particular those based
on the GALS scheme [9, 14, 13, 18].

The report is organized as follows. Section 2 defines some notational conventions used in the
remainder of this report. Section 3 describes the lexical structure of the language. Section 4
presents the grammatical structure of the language. Sections 5 and 6 cover the static semantics

Inria

GRL: GALS Representation Language 7

and the operational semantics rules, respectively. Section 7 introduces some examples of GRL
programs. Section 8 concludes the report. Finally, Appendices A and B give respectively the
description of GRL lexical implementation using the Syntax LECL tool and the description of
GRL concrete grammar using the Syntax TABC tool.

RR n° 8527

8 Jebali & Lang & Mateescu

3 Mathematical Notations
The following tables introduce some mathematical concepts and conventions used in this report.

3.1 General Notations
Logical Operators

Symbol Meaning
¬ negation
∧ conjunction
∨ disjunction
⇒ implication

Sets and Sequences
Symbol Meaning
a1, . . . , an possibly empty finite sequence of elements of length n
a0, . . . , an non-empty finite sequence of elements of length n+1
{a1, . . . , an} possibly empty set of elements a1, . . . , an of size n
{a0, . . . , an} non-empty set of elements a0, . . . , an of size n+1

a ∈ A a is an element of the set A
A ⊆ B A is a subset of B

{a ∈ A|P (a)} the set which contains only elements of A satisfying property P
A×B the set of all ordered pairs (a, b) where a ∈ A and b ∈ B (Cartesian product)

3.2 BNF Notations
GRL grammar is described using the metalanguage BNF (Backus-Naur Form). A BNF speci-
fication is given by a set of derivation rules of the form “A ::= B” called productions, where A
is a non-terminal symbol and B is a meta-expression built upon terminal symbols, non-terminal
symbols, and BNF operators defined below.

Terminal symbols are written literally in the grammar in bold face and non-terminal symbols
are written in italics. The following table lists BNF meta-expression operators used to describe
the grammar of GRL.

notation description
B1 |B2 alternative: B1 or B2

B1B2 sequence: B1 followed by B2

[B0] option: B0 or nothing
B0∗ possibly empty repetition: B0 , zero, one or several times
B0+ non-empty repetition: B0 , one or several times

Inria

GRL: GALS Representation Language 9

4 Lexical Elements

This section presents the lexical conventions of GRL. The lexical structure is defined using a
set of regular expressions in order to specify how characters are combined to form tokens and
comments.

4.1 Boolean literals

Boolean literals can be either true or false.

bool ::= true | false

4.2 Natural number literals

Natural number literals can be expressed in either decimal, hexadecimal, octal, or binary nota-
tion.

nat ::= digit+
| 0 (x|X) hexdigit+
| 0 (o|O) octaldigit+
| 0 (b|B) bitdigit+

where digit , hexdigit , octaldigit , and bitdigit are defined by the following regular expressions:

bitdigit ::= 0 | 1
octaldigit ::= bitdigit | 2 | 3 | 4 | 5 | 6 | 7

digit ::= octaldigit | 8 | 9
hexdigit ::= digit | a | b | c | d | e | f | A | B | C | D | E | F

4.3 Integer number literals

Integer number literals can be either zero, positive, or negative.

int ::= [-|+] nat

4.4 Character and string literals

Characters and strings follow the same convention as the language LNT. In particular, strings are
sequences of characters enclosed between double quotes (‘"’). For further details, see Subsection
3.1.5 of the Lnt2Lotos reference manual [8].

4.5 Operators

Operators can be classified as follows:

unary_operator ::= + | - | not | abs | nat | nat16 | nat32 | int | int16 | int32
binary_operator ::= and | or | xor | implies | equ | + | - | % | ˆ | * | /

| != | == | < | > | <= | >=

RR n° 8527

10 Jebali & Lang & Mateescu

4.6 Comments
Comments can be either single line “-- text” or multi-line “ (* text *)”. Therefore:

• All the text from the characters “--” to the end of the line is ignored.

• All the text enclosed between the characters “(*” and “*)” is ignored.

4.7 Identifiers
An identifier is defined by a letter followed by a possibly empty series of letters, digits and
underscores. GRL prohibits that an identifier starts or ends with an underscore.

letter ::= a | ... | z | A | ... | Z
identifier ::= letter

(
_ ∗ (digit | letter)

)
∗

GRL identifiers are case sensitive, so that all occurrences of the same identifier must use exactly
the same case, i.e., lower-case and upper-case characters have to be respected. For instance, if
a variable has identifier “XyZ”, then all its occurrences must have the same identifier “XyZ”, but
neither “xyz” nor “Xyz”. However, to avoid confusion, GRL forbids declaring in the same scope
identifiers of the same nature (e.g., variables, constructors, functions, etc.) differring only by
their case. Therefore, in the sequel, identifiers are not considered as “distinct” if they differ only
by their case, e.g., “XyZ” and “XYZ” are not distinct identifiers.

4.8 Reserved words
Reserved words can not be used as identifiers in GRL programs. The following table lists GRL
reserved words.

abs allocate and any as array block
bool by case char connectedby const constrainedby
constant else elsif end environment enum equ
false for if implies in int int8
int16 int32 is loop medium nat nat8
nat16 nat32 network not null of on
or out perm program record select send
string system temp then true type range
receive where while xor

Inria

GRL: GALS Representation Language 11

5 Abstract Syntax

This section covers the grammatical structure of GRL programs using BNF notation (See Section
3.2).

5.1 Notational conventions

The following table summarizes the generic terminal symbols and the most frequently used non-
terminal symbols used to specify the grammar of GRL.

Symbols
Identifiers (generic terminal symbols) Meaning

P program
S system
B block
Bi block instance
N environment
Ni environment instance
M medium
Mi medium instance
F function

X,Y variables
T user -defined type identifier

type type identifier
C type constructor
f record field

Non-terminal symbols Meaning
I statement
E expression
K literal constant

5.2 Program definition

A program is the highest level syntactic construct in a GRL specification. It contains the defini-
tion of lower level constructs. A GRL file contains exactly one program definition. This program
has the same name as the file containing it.

A program P can import other programs P0, ..., Pn. Therefore, the definitions of the imported
programs P0, ..., Pn are visible in the program P . Note that circular definitions are not allowed.
For instance, if P0 imports P1 , P1 cannot import P0 (directly or transitively).

program_definition ::= program P [(P0, . . . ,Pn)] is
(type_definition
| constant_definition
| block_definition
| environment_definition
| medium_definition
| system_definition)∗

end program

RR n° 8527

12 Jebali & Lang & Mateescu

5.3 Type definition

The following rule defines the types recognized in a GRL specification. Typing rules are discussed
in Section 6.3. T denotes a user-defined type identifier.

type ::= bool
| nat
| nat16
| nat32
| int
| int16
| int32
| char
| string
| T

type_definition ::= type T is
type_expression

end type

type_expression ::= array [m..n] of type
| range m .. n of type
| record f0:type0, . . . , fn:typen
| enum C0, . . . , Cn

User-defined types are the following:

– The array type, defined using the keyword array, denotes a fixed-size set of elements
indexed by natural numbers ranging from m to n, which must be literal naturals.

– The record type, defined using the keyword record, denotes a fixed-size tuple of elements
indexed by field names.

– The range type, defined using the keyword range, denotes a finite interval of numbers
ranging from m to n, which must be literal integers of type type, which itself must be one
of nat, nat16, nat32, int, int16, or int32.

– The enumerated type, defined using the keyword enum, denotes a finite and ordered set
of symbolic values (identifiers) C0, . . . , Cn.

5.4 Literal constants

Literal constants may be either integer numbers, boolean constants, string constants, or values
of enumerated types.

K ::= int
| bool
| string
| C

Inria

GRL: GALS Representation Language 13

5.5 Expressions

The syntax of expressions is given by the following grammar.

E ::= X variable
| (E0) record field access
| E0.f parenthesised expression
| E1[E0] record field access
| unary_operator E0 unary operation
| E1 binary_operator E2 binary operation
| K [of type] literal constant
| F (E0, . . . ,En) predefined function

5.6 Predefined functions

Predefined functions that can be used in a GRL program are unary operations, binary operations,
type conversion functions, functions on arrays, and functions on records. Unary and binary
operations are described in Section 4.5.

5.6.1 Type conversion

Type conversion functions, denoted “type(E)”, convert an expression E from one numerical data
type to another numerical data type “type”. Numerical data types are: nat, nat16, nat32, int,
int16, int32, and all the range types. An exception can be raised if the value does not belong
to a type of E .

5.6.2 Functions on arrays

Given an array type defined by “type T is array[m..n] of type”, two predefined functions
T:typen−m+1 → T and T:type → T are automatically generated (those two functions coincide
into one single function if m=n). The call T(Em, . . . ,En) builds an array X in which each
element X [i] (i ∈ m..n) is set to the value of expression Ei . The call T(E0) builds an array X
in which all elements X [i] (i ∈ m..n) are set to the value of expression E0 .

5.6.3 Functions on records

Given a record type defined by “type T is record f0:type0, . . . ,fn:typen ”, a predefined function
T:type0×. . .×typen → T is automatically generated. The call T(E0, . . . ,En) returns a record
in which each field fi (i ∈ 0..n) is set to the value of expression Ei .

5.7 Statements

Below is the list of statements that can be used in GRL programs.

RR n° 8527

14 Jebali & Lang & Mateescu

I ::= null no effect
| X := E0 assignment
| X [E0] := E1 array element assignment
| X .f := E0 record field assignment
| I1; I2 sequential composition
| if E0 then I0 conditional

[elsif E1 then I1
. . .
elsif En then In]
[else In+1]
end if

| while E0 loop while loop
I0

end loop
| for I0 while E0 by I1 loop for loop

I2
end loop

| case E0 is case selection
K0 -> I0
| . . .
| Kn -> In
[| any -> In+1]

end case
| select nondeterministic choice

I0 [] . . . [] In
end select

| X := any type [where E0] nondeterministic assignment
| on [?]X0, . . . ,[?]Xn -> I0 signal
| Bi(arg0, . . . ,argn) block invocation

5.8 Constant definition

The keyword constant is used to define a variable whose value, once initialized, can not be
changed whatsoever. A constant, formally described below, is visible and can be called by all
other entities defined in the program enclosing it and all programs that import the program
enclosing it.

constant_definition ::= constant X : type is E0 end constant

5.9 Variable declaration

Variables in GRL are declared as follows:

decl_list ::= var_decl0, . . . ,var_decln
var_decl ::= X0, . . . ,Xm : type [:= E0]

decl_list_non_init ::= var_decl_non_init0, . . . ,var_decl_non_initn
var_decl_non_init ::= X0, . . . ,Xm : type

Local variables are formally defined below. Permanent variables, defined after the keyword

Inria

GRL: GALS Representation Language 15

perm, have a lifetime extending across the entire execution of the program, whereas variables
defined after the keyword temp are temporary.

local_variables ::= perm decl_list
| temp decl_list

5.10 Formal parameters
Formal parameters are classified as follows:

– Constant parameters are user-fixed parameters defined as a set of variable declarations
preceded by the keyword const. Such parameters should not be assigned a value in the
body of the caller.

const_param ::= const decl_list

– Input/Output parameters are defined as a set of variable declarations preceded by the
keywords in or out.

inout_param ::= in decl_list
| out decl_list_non_init

inout_param_non_init ::= in decl_list_non_init
| out decl_list_non_init

– Communication parameters are defined as a set of variable declarations preceded by the
keywords receive or send.

com_param ::= receive decl_list_non_init
| send decl_list_non_init

5.11 Blocks
Blocks represent the synchronous part of GRL, which is inspired by synchronous dataflow lan-
guages based on the block-diagram model. Following the definition of synchronous programs, a
block is the synchronous composition of one or several subblocks, all governed by the clock of
the highest level block.

block_definition ::= block B [[const_param]]
[(inout_param0; . . . ; inout_paramm)]
[{com_param0; . . . ; com_paramn}] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0, . . . ,local_variablesl]
I0

end block

| block B [[const_param]]
[(inout_param0; . . . ; inout_paramm)] is

!c string | !lnt string
end block

RR n° 8527

16 Jebali & Lang & Mateescu

A block definition can be either user-defined or included from an external code written in
another language, in which case the block is called external. Such a block should not have
receive and send parameters and its body consists of a pragma denoting the language in which
the external function implementing the block is written, followed by the name of the function in
the external program. Up to now, the supported external languages are C and LNT.

Blocks are allocated using clauses of the form “allocate Bi[arg(i,1), . . . ,arg(i,pi)] as Bii ”,
each of which creates an instance Bii of block Bi that has as const parameters the list arg(i,1),
. . . , arg(i,pi).

5.12 Environments
Environments are GRL structures representing the behaviour of the environment surrounding
a network of blocks. They allow to constrain either inputs of separate blocks or the relative
order and frequency of block executions within a network of blocks. Such a representation is
flexible since it makes possible the description of the common environment in the case of parallel
systems distributed on a single platform as well as a set of separate environments in the case of
geographically distributed systems, namely.

environment_definition ::= environment N [[const_param]]
[(inout_param_non_init0 | . . . | inout_param_non_initm)] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0 ,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0 , . . . ,local_variablesl]
I0

end environment

Environment N interacts with blocks by connecting its input (resp., output) parameters to
output (resp., input) parameters of blocks. Its body should define (or not) the behaviour
of the environment when an interaction via a formal parameter list occurs. A signal of the
form “on X0, . . . ,Xn -> I ” defines the behaviour of N that corresponds to the parameter list
“in X0:T0, . . . ,Xn:Tn ” whereas a signal of the form “on ?Y0, . . . ,?Ym -> I ” defines the
behaviour of N that corresponds to the parameter list “out Y0:T0, . . . ,Ym:Tm ”.

5.13 Mediums
Mediums are GRL structures representing the behaviour of communication mediums and enables
a clean description of asynchronous interactions within a network of blocks. They enable the
explicit description of the communication protocol and the rigorous design of networks what-
ever their topologies (star, bus, ring, etc.) and their means of communication (point-to-point,
multipoint, etc.).

medium_definition ::= medium M [[const_param]]
[{com_param0 | . . . | com_paramm}] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0 ,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0 , . . . ,local_variablesl]
I0

end medium

Mediums interact with blocks by connecting their receive (resp., send) parameters to send (resp.,
receive) parameters of blocks and exhibit the same behaviour as environments. Blocks, environ-
ments, and mediums are referred to as actors in the sequel.

Inria

GRL: GALS Representation Language 17

5.14 Actors invocation

Actual parameters, formally defined below, denote parameters passed to an actor at invocation
time. In the remainder of the document, we consider the following definitions:

– The corresponding formal parameter of an actual parameter denotes the formal parameter
that has the same position (as the actual parameter) in the actor definition.

– An actual parameter is at constant position (respectively at input position, at output po-
sition, at receive position, and at send position) if its corresponding formal parameter is
defined after the keyword const (respectively in, out, receive, and send).

– A formal parameter list denotes either inout_param, inout_param_non_init , com_param,
or const_param.

– An actual channel denotes a set of actual parameters of the form “arg0, . . . ,argn ” used to
connect actors inside systems.

– The corresponding formal parameter list of an actual channel when calling an actor denotes
the formal parameter list that have the same position (as the formal parameter list) in the
actor definition.

An actual parameter can have different forms according to its position (for further details, see
rules ACB6 to ACB10 in Section 6.6.1). A question mark precedes both actual parameters at
output and send positions. An underscore is used for unconnected parameters (i.e. unusable
parameters). An actual parameter of the form “any type” assigns the corresponding formal
parameters an arbitrary value of type “type”.

arg ::= ?X | [?]_ | E | any type

Actor instances must be allocated before being invoked. Actual parameters at constant position
should be fixed at allocation time as follows:

allocation ::= B [[arg0, . . . ,argn]] as Bi
| N [[arg0, . . . ,argn]] as Ni
| M [[arg0, . . . ,argn]] as Mi

Once allocated, actor instances can be invoked as given in the following grammar:

block_instance ::= Bi (arg(0 ,0), . . . ,arg(0 ,m0), . . . ,arg(n,0), . . . ,arg(n,mn))
block_instance ::= Bi [(arg(0 ,0), . . . ,arg(0 ,m0); . . . ;arg(n,0), . . . ,arg(n,mn))]

[{arg ′(0 ,0), . . . ,arg ′(0 ,p0)
; . . . ;arg ′(q,0), . . . ,arg ′(q,pq)

}]
environment_instance ::= Ni (arg(0 ,0), . . . ,arg(0 ,m0)| . . . |arg(n,0), . . . ,arg(n,mn))

medium_instance ::= Mi {arg(0 ,0), . . . ,arg(0 ,m0)| . . . |arg(n,0), . . . ,arg(n,mn)}

5.15 System definition

Actors can be composed to form a higher level construct, called system. A system, formally
defined below, specifies a network of synchronous systems represented by a set of blocks. Those
blocks are constrained by a set of environments and interact asynchronously via a set of mediums.

RR n° 8527

18 Jebali & Lang & Mateescu

system_definition ::= system S [(decl_list_non_init0)] is
allocate allocation0, . . . , allocationn

[temp decl_list_non_init1]
network
block_instance0,
. . . ,
block_instancep

[constrainedby
environment_instance0,
. . . ,
environment_instanceq]

[connectedby
medium_instance0,
. . . ,
medium_instancer]

end system

The list decl_list_non_init0 defines the parameters that are visible from the external world
whereas the list decl_list_non_init1 defines the invisible parameters that are invisible from the
external worlds.

Inria

GRL: GALS Representation Language 19

6 Static Semantics
This section deals with the well-formedness of each of the syntactic construct of the language.
We define the static semantics of GRL programs by specifying additional constraints that can
not be captured by the grammar and are checked at compilation time. There are three classes
of static semantic rules: binding rules, typing rules, and initialization rules.

6.1 Conventions
The following conventions are used:

1. “Entity” denotes an instance of system, medium, environment, block, constant, or type.

2. “vars(E)” (where E is an expression) denotes the set of variables in the expression E .
Formally:

vars(X) = {X }
vars(E.f) = vars(E)
vars((E)) = vars(E)

vars(F(E0, . . . ,En)) = vars(E0) ∪ . . . ∪ vars(En)
vars(E0[E1]) = vars(E0) ∪ vars(E1)

vars(unary_operator E0) = vars(E0)
vars(E0 binary_operator E1) = vars(E0) ∪ vars(E1)

vars(K) = ∅

3. “Constant variable” is used to denote:

– A global constant variable defined as constant entity.
– A local constant parameter defined inside an entity after the keyword const.

4. “Constant expression” is used to denote an expression E such that vars(E) contains only
constant variables.

5. “The current scope” of an entity denotes the current program or an imported program.

6. “Scope” of a variable is used to denote the region of GRL code within which the variable
is visible and usable.

6.2 Identifiers
(ID1) GRL reserved words must not be used as identifiers (see Section 4.8).

6.3 Types
In the sequel, we call “existing type” a type that is either a predefined type or a type defined in
the current scope.

We define recursively the relation “T depends on T ′” where T and T ′ are existing types as
follows. T depends on T ′ if both of the following conditions are satisfied:

– T has one of the following forms: “range m .. n of T ′′”, “array [m .. n] of T ′′”,
“record . . . ,f :T ′′, . . .”

– T ′ = T ′′ or T ′′ depends on T ′

RR n° 8527

20 Jebali & Lang & Mateescu

6.3.1 Binding rules

(TB1) Cicular dependencies in type definitions are forbidden. If the definition of a type T
depends on type T ′, then:

– T ′ must be different from T

– the definition of T ′ must not depend on T , transitively

• Enumerated type “type T is enum C0, . . . ,Cn end type”

(TB2) Identifiers C0 , . . ., Cn must be pairwise distinct.

• Record type “type T is record f0:type0, . . . ,fn:typen end type”

(TB3) Fields f0 , . . ., fn must be pairwise distinct.

(TB4) Types type0 , . . . , typen must be existing types.

• Array type “type T is array [m..n] of type end type”

(TB5) type must be an existing type.

(TB6) The bounds m and n must be natural numbers such that m ≤ n.

• Range type “type T is range m .. n of type end type”

(TB7) type must be either nat, nat16, nat32, int, int16, or int32.

(TB8) The bounds m and n must be integer numbers such that m ≤ n.

6.4 Expressions
6.4.1 Binding rules

(EB1) Each variable must be declared in the scope where it is used.

6.4.2 Typing rules

• Literal constant “K of type”

(ET1) type must be an existing type.

(ET2) Each literal constant int of the form “nat” or “+nat” may have one of the types:
nat, nat16, nat32, int, int16, or int32 and each literal constant int of the form
“-nat” may have one of the types: int, int16, or int32.

(ET3) Each literal constant bool has the type bool.

(ET4) Each literal constant string has the type string.

(ET5) Each literal constant Ci (i ∈ 1..n) defined in “type T is enum C0, . . . , Cn end
type” has the type T .

• Variable “X ”

(ET6) The type of X is the type with which X has been declared in the current scope.

• Parenthesized expression “(E)”

Inria

GRL: GALS Representation Language 21

(ET7) The type of (E) is the type of E .

• Function call “F(E0, . . . ,En)”

(ET8) Each expression Ei (i ∈ 0..n) must have the same type as the corresponding
parameter in the definition of F .

(ET9) The type of F(E0, . . . ,En) is the same type as the return type in the definition
of F .

• Array element access “E0[E1]”

(ET10) Expression E0 must have a type T of the form array [m..n] of type.

(ET11) Expression E1 must have either the type nat, the type nat16, or the type
nat32.

(ET12) The type of E0[E1] is type.

• Record field access “E.f ”

(ET13) Expression E must have a type T of the form “record f0:type0, . . . ,fn:typen ”,
such that f = fi for some i ∈ 1..n.

(ET14) The type of E.f is typei .

• Unary operation

The following table lists the possible types of the expression “unary_operator E0 ” given
the type of E0 for each unary operator.

Operator Type of E0 Type of “unary_operator E0 ”
-, + int int

int16 int16
int32 int32

not bool bool
abs int nat

int16 nat16
int32 nat32

nat nat nat
nat16 nat
nat32 nat

int nat
int16 nat
int32 nat

nat16 nat nat16
nat16 nat16
nat32 nat16

int nat16
int16 nat16
int32 nat16

RR n° 8527

22 Jebali & Lang & Mateescu

nat32 nat nat32
nat16 nat32
nat32 nat32

int nat32
int16 nat32
int32 nat32

int nat int
nat16 int
nat32 int

int int
int16 int
int32 int

int16 nat int16
nat16 int16
nat32 int16

int int16
int16 int16
int32 int16

int32 nat int32
nat16 int32
nat32 int32

int int32
int16 int32
int32 int32

Note that in the case of overflow (e.g., “nat16 (2 ^17)”), an error will be issued at run-time.

• Binary operation

The following table shows the types of the operands E0 and E1 that can be used in an
expression of the form “E0 binary_operator E1 ”, as well as the corresponding return type.
Note that E0 and E1 must have the same type (otherwise, explicit type conversion using
the type conversion operations defined above must be used).

Operators on booleans

Binary operator Operands type Return type
and, or, xor, implies, equ, ==, != bool bool

Operators on natural numbers

Binary operator Operands type Return type
+, -, *, /, ˆ, % nat nat

nat16 nat16
nat32 nat32

==, !=, <, >, <=, >= nat bool
nat16 bool
nat32 bool

Operators on integers

Inria

GRL: GALS Representation Language 23

Binary operator Operands type Return type
+, -, *, /, ˆ int int

int16 int16
int32 int32

==, !=, <, >, <=, >= int bool
int16 bool
int32 bool

Operators on characters and strings

Binary operator Operands type Return type
==, !=, <, >, <=, >= char bool

==, != string bool

6.5 Statements
6.5.1 Binding rules

• Deterministic assignment “X :=E ”

(IB1) X must be declared in the scope where it is used.

(IB2) X must not be a constant variable.

• Sequential composition “I1; I2 ”

(IB3) At most one of I1 and I2 may contain a signal statement.

• Case selection “case E is K0 -> I0 | . . . | Kn -> In [| any -> In+1] end case”

(IB4) Constants K0 , . . ., Kn should cover all possible values of the type of E . Otherwise,
the clause any -> In+1 is mandatory.

• While loop “while E loop I end loop”

(IB5) The statement I must not contain signal statements.

• For loop “for I0 while E by I1 loop I2 end loop”

(IB6) The statements I1 and I2 must not contain signal statements.

• Signal “on [?]X0, . . . , [?]Xn -> I0 ”

(IB7) I0 must not contain a signal statement.

(IB8) A signal statement must have one of the following forms:

– “on X0, . . . ,Xn -> I0 ”. In this case:
(IB8.1) Inside an environment definition, X0 , . . . , Xn must have been defined

as input parameters.
(IB8.2) Inside a medium definition, X0 , . . . , Xn must have been defined as

receive parameters.
– “on ?X0, . . . ,?Xn -> I0 ”. In this case:

RR n° 8527

24 Jebali & Lang & Mateescu

(IB8.3) Inside an environment definition, X0 , . . . , Xn must have been defined
as output parameters.

(IB8.4) Inside a medium definition, X0 , . . . , Xn must have been defined as
send parameters.

Block invocation “Bi(arg0, . . . , argn)”
See Section 4.6.

6.5.2 Typing rules

• Deterministic assignment “X := E ”

(IT1) The type of X must be a valid type of E .

• Nondeterministic assignment “X := any type [where E]”

(IT2) type must be an existing type.

(ST3) X must have type type.

(ST4) E must have the type bool .

• Array element assignment X [E0] := E1

(IT5) Variable X must have an array type T defined as “array [m..n] of type”.

(IT6) Expression E0 must have either the type nat, the type nat32, or the type nat16.

(IT7) Expression E1 must have the type type.

• Record field assignment “X .f := E ”

(IT8) Variable X must have a type T defined as “record f0:type0, . . . ,fn:typen ”, such
that f = fi for some i ∈ 1..n.

(IT9) Type typei must be a type of E .

• Conditional “if E0 then I0 elsif E1 then I1 . . . elsif En then In else In+1 end if ”

(IT10) All expressions in conditional clauses E0 , . . . , En must have the type bool .

• While loop “while E loop I end loop”

(IT11) Expression E must have the type bool .

• For loop “for I0 while E by I1 loop I2 end loop”

(IT12) Expression E must have the type bool .

6.5.3 Initialization rules

We define triples of the form S . I . S ′, where S and S ′ are sets of variables. The meaning
of S . I . S ′ is that, assuming all variables in S are initialized before executing I , then all
variables in S ′ are necessarily initialized after executing I independently of the current valuation
of variables. Hence, S′ is a superset of S. In general, statement I is correctly initialized if under
the assumption that all variables in S are initialized, it is possible to build S′ such that S . I .S ′.

Inria

GRL: GALS Representation Language 25

• Deterministic assignment

(SI1)
vars(E) ⊆ S

S . X :=E . S ∪ {X }

• Array update

(SI2)
X ∈ S vars(E0) ⊆ S vars(E1) ⊆ S

S . X [E0]:=E1 . S

• Record field update

(SI3)
X ∈ S vars(E) ⊆ S

S . X .f :=E . S

• Sequential composition

(SI4)
S . I1 . S ′ S ′ . I2 . S ′′

S . I1;I2 . S ′′

• Conditional

(SI5)
∀i ∈ 0..n vars(Ei) ⊆ S (∀j ∈ 0..n+ 1) S . Ij . Sj

S . if E0 then I0 elsif E1 then I1 . . . elsif En then In else In+1 end if .
⋂
j∈0..(n+1) Sj

• While loop

(SI6)
vars(E) ⊆ S S . I0 . S ′

S . while E loop I0 end loop . S

• For loop

(SI7)
vars(E) ⊆ S S . I0 . S1 S1 . I2 . S2 S2 . I1 . S3

S . for I0 while E by I1 loop I2 end loop . S1

• Case selection

(SI8)
vars(E) ⊆ S (∀i ∈ 0..n+ 1) S . Ii . Si

S . case E is K0 -> I0 | . . . | Kn -> In [| any -> In+1] end case .
⋂
i∈0..(n+1) Si

• Nondeterministic choice

(SI9)
∀i ∈ (0..n) S . Ii . Si

S . select I0 [] . . . [] In end select .
⋂
i∈0..n Si

• Nondeterministic assignment

(SI10)
vars(E) ⊆ S ∪ {X }

S . X := any T where E . S ∪ {X }

RR n° 8527

26 Jebali & Lang & Mateescu

• Signal

(SI11)
S . I0 . S ′ {X0 , . . . ,Xn} ⊆ S ′

S . on ?X0, . . . ,?Xn -> I0 . S ′

(SI12)
S ∪ {X0 , . . . ,Xn} . I0 . S ′

S . on X0, . . . ,Xn -> I0 . S ′

• Block invocation
See Section 6.6.

6.6 Actor allocation and invocation

Actor allocations can have the following forms:

– B[arg0, . . . ,argn] as Bi

– N [arg0, . . . ,argn] as Ni

– M [arg0, . . . ,argn] as Mi

Actor invocations can have the following forms:

– Block invocations inside actors have the form

Bi(arg(0 ,0), . . . ,arg(0 ,n0), . . . ,arg(m,0), . . . ,arg(m,nm)),

i.e., argument lists are separated by commas.

– Block invocations inside systems have either form

Bi(arg(0 ,0), . . . ,arg(0 ,n0); . . . ;arg(m,0), . . . ,arg(m,nm)),

Bi{arg(0 ,0), . . . ,arg(0 ,n0); . . . ;arg(m,0), . . . ,arg(m,nm)},

or
Bi(arg(0 ,0), . . . ,arg(0 ,n0); . . . ;arg(m,0), . . . ,arg(m,nm))

{arg ′(0 ,0), . . . ,arg ′(0 ,p0)
; . . . ;arg ′(q,0), . . . ,arg ′(q,pq)

},

i.e., argument lists are separated by semicolons.

– Environment invocations (necessarily inside systems) have the form

Ni(arg(0 ,0), . . . ,arg(0 ,n0)| . . . |arg(m,0), . . . ,arg(m,nm)),

i.e., argument lists are separated by pipes.

– Medium invocations (necessarily inside systems) have the form

Mi{arg(0 ,0), . . . ,arg(0 ,n0)| . . . |arg(m,0), . . . ,arg(m,nm)},

i.e., argument lists are separated by pipes.

Inria

GRL: GALS Representation Language 27

6.6.1 Binding rules

(ACB1) Each actor must be defined in the current scope.

(ACB2) Each invoked actor must appear in the allocation list of the caller entity.

(ACB3) Inside an actor, the number of actual parameters passed to each block instance must
be equal to the number of formal parameters of the corresponding block definition.

(ACB4) Inside a system, the number of actual channels passed to each actor instance must
be equal to the number of formal parameter lists of the corresponding actor definition
(respectively, medium definition).

(ACB5) The number of actual parameters in each actual channel passed to an actor instance
must be equal to the number of parameters in the corresponding formal parameter list in
the actor definition.

(ACB6) Actual parameters at constant position can be either the wildcard “_” or a constant
expression “E ”.

(ACB7) Inside an actor, actual parameters passed to a block instance at input position can
be either the wildcard “_” or an expression “E ”.

(ACB8) Inside an actor, actual parameters passed to a block instance at output position can
be either the wildcard “?_” or a variable “?X ”.

(ACB9) Inside a system, input actual channels passed to a block instance can have one of
the following forms:

• “X0, . . . ,Xn ”

• “any T0, . . . ,any Tn ”

• “_, . . . ,_”

In the first form, the channel is said to be connected whereas in the two latter forms, the
channel is said to be unconnected.

(ACB10) Inside a system, receive actual channels passed to a block instance have the form
“X0, . . . ,Xn ”.

(ACB11) Inside a system, output and send actual channels passed to a block instance can
have one of the following forms:

• “?X0, . . . ,?Xn ”

• “?_, . . . ,?_”

In the first form, the channel is said to be connected whereas in the latter form, the channel
is said to be unconnected.

(ACB12) Inside a system, input (resp., receive) actual channels passed to an environment
(resp., medium) instance can have one of the following forms:

• “X0, . . . ,Xn ”

• “_, . . . ,_”

RR n° 8527

28 Jebali & Lang & Mateescu

(ACB13) Inside a system, output (resp., send) actual channels passed to an environment
(resp., medium) instance can have one of the following forms:

• “?X0, . . . ,?Xn ”

• “?_, . . . ,?_”

(ACB14) In each actor instance, actual parameters at output position (resp., at send posi-
tion) must be pairwise distinct, except the case of wildcard “?_” which may have several
occurrences.

6.6.2 Typing rules

(ACT1) Each actual parameter passed at constant position in an actor invocation must have
the same type as the corresponding const parameter in the actor definition.

(ACT2) Each actual parameter passed at input position in an actor invocation must have the
same type as the corresponding input parameter in the actor definition.

(ACT3) Each actual parameter passed at output position in an actor invocation must have
the same type as the corresponding output parameter in the actor definition.

(ACT4) Each actual parameter passed at receive position in an actor invocation must have
the same type as the corresponding receive parameter in the actor definition.

(ACT5) Each actual parameter passed at send position in an actor invocation must have the
same type as the corresponding send parameter in the actor definition.

6.6.3 Initialization rules

The following tables summarize possible forms of actual parameters, given the class of the cor-
responding formal parameter.

Inria

GRL: GALS Representation Language 29

(ACI1) Block invocation

class of formal parameter X
const in out receive send

ac
tu
al

p
ar
am

et
er

_ X must have a de-

fault value at defi-

nition time. Then,

X is assigned its de-

fault value.

X must have a de-

fault value at defi-

nition time. Then,

X is assigned its de-

fault value.

X must have a de-

fault value at defi-

nition time. Then,

X is assigned its de-

fault value.

E X is assigned the

value of E .

X is assigned the

value of E .

X is assigned the

value of E (in this

case, E is a vari-

able).

?_ X must be assigned

a value in the body

I0 of the callee.

X must be assigned

a value in the body

I0 of the callee.

?Y X must be assigned

a value in the body

I0 of the callee. Y

is assigned the value

of X .

X must be assigned

a value in the body

I0 of the callee. Y

is assigned the value

of X .

any T X is assigned an ar-

bitrary value of type

T .

(ACI2) Environment invocation

class of formal parameter X
const in out

ac
tu
al

p
ar
am

et
er

_ X must have a default value at

definition time. Then, X is as-

signed its default value.

Statements of the form

“on X0 , . . . ,Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn} are

never executed.

E X is assigned the value of E . X is assigned the value of E .

?_ Statements of the form

“on ?X0 , . . . ,?Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn} are

never executed.

?Y X must be assigned a value

in the body I0 of the callee

in every statement of the form

“on ?X0 , . . . ,?Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn}.

any T

(ACI3) Medium invocation

RR n° 8527

30 Jebali & Lang & Mateescu

class of formal parameter X
const receive send

ac
tu
al

p
ar
am

et
er

_ X must have a default value at

definition time. Then, X is as-

signed its default value.

Statements of the form

“on X0 , . . . ,Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn} are

never executed.

E X is assigned the value of E . X is assigned the value of E .

?_ Statements of the form

“on ?X0 , . . . ,?Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn} are

never executed.

?Y X must be assigned a value

in the body I0 of the callee

in every statement of the form

“on ?X0 , . . . ,?Xn-> I0 ” (if any)

such that X ∈ {X0 , . . . ,Xn}.

any T

6.7 Constant

A constant is defined as follows: “constant X :type is E end constant”. We define recursively
the relation “X depends on Y ” where Y is a constant as follows. X depends on Y if both of the
following conditions are satisfied:

– Y ∈ vars(E)

– Z ∈ vars(E) and Z depends on Y

6.7.1 Binding rules

(CB1) Circular dependencies in constant definitions are forbidden. If the definition of a constant
X depends on a constant Y , then:

– Y must be different from X

– the definition of Y must not depend on X, transitively.

(CB1) E must be a constant expression.

(CB2) type must be an existing type.

6.7.2 Typing rules

(CT1) type must be a valid type of E .

6.8 Block

A block is defined as follows:

Inria

GRL: GALS Representation Language 31

block_definition ::= block B [[const_param]]
[(inout_param0; . . . ; inout_paramm)]
[{com_param0; . . . ; com_paramn}] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0, . . . ,local_variablesl]
I0

end block

| block B [[const_param]]
[(inout_param0; . . . ;inout_paramm)] is

!c string | !lnt string
end block

6.8.1 Binding rules

(BB1) Block identifiers B0 , . . . , Bq must be defined in the current scope.

(BB2) Instance identifiers Bi0 , . . . , Biq must be pairwise distinct and different from B .

(BB3) Blocks B0 , . . . , Bq must be different from B and must not invoke B either directly or
transitively. This avoids circular dependencies between blocks.

(BB4) All variables declared in const_param, inout_parami (i ∈ 0..m), com_parami (i ∈
0..n) , and local_variablesi (i ∈ 0..l) must be pairwise distinct.

(BB5) The scope of formal parameters declared in const_param is inout_parami (i ∈ 0..m),
com_parami (i ∈ 0..n) and the text delimited by the keyword “is” and the keywords
“end block”.

(BB6) The scope of formal parameters declared in inout_parami (i ∈ 0..m), is com_parami (i ∈
0..n) and the text delimited by the keyword “is” and the keywords “end block”.

(BB7) The scope of formal parameters declared in com_parami (i ∈ 0..n) is the text delimited
by the keyword “is” and the keywords “end block”.

(BB8) The scope of variables declared in local_variablesi (i ∈ 0..l) is the body I0 .

(BB9) A variable declared in const_param must not be assigned a value in the body I0 .

(BB10) In the body I0 , the following statements are not allowed:

– nondeterministic assignment “X := any type [where E]”.

– nondeterministic choice “select I1 [] . . . [] In end select”.

– signal statements “on X0, . . . ,Xn -> I1 ” and “on ?X0, . . . ,?Xn -> I1 ”.

(BB11) When using !c pragma, string must be a valid C identifier.

(BB12) When using !lnt pragma, string must be a valid LNT identifier.

RR n° 8527

32 Jebali & Lang & Mateescu

6.8.2 Typing rules

(BT1) When using !c pragma, the type of each parameter declared in const_param, and
inout_parami i ∈ (0..m) must be a valid C type.

(BT2) When using !lnt pragma, the type of each parameter declared in const_param, and
inout_parami i ∈ (0..m) must be a valid LNT type.

6.8.3 Initialization rules

(BI1) See Section 6.6 for initialization rules concerning formal parameters.

(BI2) Permanent variables must be initialized at declaration time by constant expressions.

(BI3) A triple S . I0 . S ′ must hold, where S is the set of all global constant, constant
parameters of B, input parameters of B, and local variables of B that have been initialized
at declaration time. S ′ must contain all the output parameters of B and send parameters
of B.

6.9 Environment
An environment specification has the following form:

environment_definition ::= environment N [[const_param]]
[(inout_param_non_init0 | . . . | inout_param_non_initm)] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0 ,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0 , . . . ,local_variablesl]
I0

end environment

6.9.1 Binding rules

(NB1) Blocks B0 , . . . , Bq must be defined in the current scope.

(NB2) Instance identifiers Bi0 , . . . , Biq must be pairwise distinct.

(NB3) Variables declared in lists const_param, inout_param_non_initi (i ∈ 0..m), and
local_variablesi (i ∈ 0..l) must be pairwise distinct.

(NB4) The scope of formal parameters declared in lists const_param is inout_param_non
_initi (i ∈ 0..m) and the text delimited by the keyword “is” and the keywords “end environ-
ment”.

(NB5) The scope of formal parameters declared in inout_param_non _initi (i ∈ 0..m) is
the text delimited by the keyword “is” and the keywords “end environment”.

(NB6) The scope of variables declared in local_variablesi (i ∈ 0..l) is the body I0 .

(NB7) A variable declared in const_param must not be assigned a value in the body I0 .

(NB8) For each signal statement of the form “on X0, . . . ,Xn-> I1 ” inside the body I0 ,
a list of the form “in X0:T0, . . . ,Xn:Tn ” should have already been declared among
inout_param_non_initi (i ∈ 0..m).

Inria

GRL: GALS Representation Language 33

(NB9) For each signal statement of the form “on ?X0, . . . ,?Xn-> I1 ” inside the body I0 ,
a list of the form “out X0:T0, . . . ,Xn:Tn ” should have already been declared among
inout_param_non_initi (i ∈ 0..m).

6.9.2 Initialization rules

(NI1) See Section 6.6 for initialization rules concerning formal parameters.

(NI2) Permanent variables must be initialized at declaration time by constant expressions.

(NI3) A triple S . I0 . S ′ must hold, where S is the set of all global constants, constant
parameters of N , and local variables that have been initialized at declaration time. S ′

must contain all the output parameters of N .

6.10 Medium

A medium specification has the following grammar:

medium_definition ::= medium M [[const_param]]
[{com_param0 | . . . | com_paramm}] is

[allocate B0 [[arg(0 ,0), . . . ,arg(0 ,p0)]] as Bi0 ,
. . . ,
Bq [[arg(q,0), . . . ,arg(q,pq)]] as Biq]

[local_variables0 , . . . ,local_variablesl]
I0

end medium

6.10.1 Binding rules

(MB1) Blocks B0 , . . . , Bq must be defined in the current scope.

(MB2) Instance identifiers Bi0 , . . . , Biq must be pairwise distinct.

(MB3) Variables declared in const_param, com_parami (i ∈ 0..m), and local_variablesi
(i ∈ 0..l) must be pairwise distinct.

(MB4) The scope of formal parameters declared in const_param is com_parami (i ∈ 0..m)
and the text delimited by the keyword “is” and the keywords “end medium”.

(MB5) The scope of formal parameters declared com_parami (i ∈ 0..m) is the text delimited
by the keyword “is” and the keywords “end medium”.

(MB6) The scope of variables declared in local_variablesi (i ∈ 0..l) is I0 .

(MB7) A variable declared in const_param must not be assigned a value in the body I0 .

(MB8) For each signal statement of the form “on X0, . . . ,Xn-> I1 ” inside the body I0 , a
list of the form “receive X0:T0, . . . ,Xn:Tn ” should have already been declared among
com_parami (i ∈ 0..m).

(MB9) For each signal statement of the form “on ?X0, . . . ,?Xn-> I1 ” inside the body I0 ,
a list of the form “send X0:T0, . . . ,Xn:Tn ” should have already been declared among
com_parami (i ∈ 0..m).

RR n° 8527

34 Jebali & Lang & Mateescu

6.10.2 Initialization rules

(MI1) See Section 6.6 for initialization rules concerning formal parameters.

(MI2) Permanent variables must be initialized at declaration time by constant expressions.

(MI3) A triple S . I0 . S ′ must hold, where S is the set of all global constants, constant
parameters of M , and local variables that have been initialized at declaration time. S ′

must contain all the send parameters of M .

6.11 System

A system specification is given by the following grammar.

system_definition ::= system S [(decl_list_non_init0)] is
allocate allocation0, . . . ,allocationn

[temp decl_list_non_init1]
network

block_instance0,
. . . ,
block_instancep

[constrainedby
environment_instance0,
. . . ,
environment_instanceq]

[connectedby
medium_instance0,
. . . ,
medium_instancer]

end system

6.11.1 Binding rules

(SB1) The scope of formal parameters declared in “decl_list_non_init0 ” is the text delimited
by the keyword “is” and the keywords “end system”.

(SB2) Actors allocated in the list “allocation0, . . . ,allocationn ” must be defined in the current
scope.

(SB3) Identifiers of actor instances in the list “allocation0, . . . ,allocationn ” must be pairwise
distinct.

(SB4) The scope of variables declared in “decl_list_non_init1 ” is the text delimited by the
keyword “network” and the keywords “end system”.

(SB5) An actual parameter must be used in exactly one block invocation block_instancei
among the block invocation list. This prohibits direct (synchronous) communication be-
tween blocks.

(SB6) At most one input (resp., output) actual channel of a block can be connected to an
output (resp., input) actual channel of an environment.

Inria

GRL: GALS Representation Language 35

(SB7) At most one receive (resp., send) actual channel of a block can be connected to a send
(resp., receive) actual channel of a medium.

(SB8) An input (resp., receive) actual channel of the form “X0, . . . ,Xn ” passed to a block in-
stance can be connected to an output (resp., send) actual channel of the form “?X0, . . . ,?Xn ”
passed to an environment (resp., medium) instance.

(SB9) An output (resp., send) actual channel of the form “?X0, . . . ,?Xn ” passed to a block in-
stance can be connected to an input (resp., receive) actual channel of the form “X0, . . . ,Xn ”
passed to an environment (resp., medium) instance.

(SB10) If an actual channel of the form “X0, . . . ,Xn ” does not have a respective actual
channel of the form “?X0, . . . ,?Xn ” in all other actor invocations, then “X0, . . . ,Xn ” is
semantically equivalent to “any T0, . . . ,any Tn ” where T0 ,. . . ,Tn are respectively the
types of X0 ,. . . ,Xn .

(SB11) Actual parameters at output position (resp., at send position) must be pairwise dis-
tinct in an actor invocation, except the case of wildcard “?_” which may have several
occurrences.

See Section 6.6 for more static semantic rules concerning actors invocation.

6.12 Program
A program is defined as follows:

program_definition ::= program P [(P0, . . . , Pn)] is
(type_definition
| constant_definition
| block_definition
| environment_definition
| medium_definition
| system_definition)∗

end program

6.12.1 Binding rules

(PB1) A GRL file must contain exactly one program definition.

(PB2) A program must have the name of the file enclosing it (i.e., a program P must be
defined in a file “P.grl”). Letter case is not significant here.

(PB3) Imported program identifiers P0 , . . . , Pn must be pairwise distinct and must be
different from P .

(PB4) If a program P imports a program P ′, P ′ must not import P or any program importing
P , transitively. This allows circular dependencies between programs to be avoided.

(PB5) All system, environment, block, medium, type, and constant identifiers defined in P ,
P0 , . . . , Pn must be pairwise distinct.

(PB6) The scope of systems, environments, blocks, mediums, types, and constants is the pro-
gram enclosing them and all programs importing the program enclosing them transitively.

RR n° 8527

36 Jebali & Lang & Mateescu

7 Dynamic Semantics

Dynamic semantics concern the observable behaviour of programs at run time and are described
formally in this section using Structural Operational Semantic rules. A GRL program is formally
defined in terms of an LTS (Labelled Transition System).

7.1 Notational conventions

This section introduces a set of concepts and conventions that are used to define the formal
semantics of the GRL language.

7.1.1 Stores, stacks, and memories

Store

A store, denoted by ρ, is a partial function from variables to values. Square brackets are
used to represent a store configuration. For instance, given a set of variables X1, . . . , Xn

and a set of values e1, . . . , en, the store ρ that maps Xi to ei (∀i ∈ 1..n) is written as
[X1 ← e1, . . . , Xn ← en]. In particular, “[]” is the empty store.

Given a store ρ = [X1 ← e1, . . . , Xn ← en], we write dom(ρ) for its domain defined by
dom(ρ) = {X1, . . . , Xn}.

Store update

The sum of two stores ρ1 and ρ2, denoted “ρ1⊕ρ2”, represents the update of ρ1 with respect
to ρ2. Formally, it is a partial function defined as below:

(ρ1 ⊕ ρ2)(X) =

 ρ2(X) if X ∈ dom(ρ2)
ρ1(X) if X /∈ dom(ρ2) and X ∈ dom(ρ1)
undefined otherwise

The notation
⊕

i∈1..n
ρi stands for the sum ρ1 ⊕ . . .⊕ ρn.

Stack

The symbol σ is used to denote a sequence of actor instance identifiers. Formally, σ is
defined recursively by either the empty sequence ε or a non empty sequence of the form
“σ′.Ai” where σ′ is a sequence and Ai is an actor instance identifier. The symbol σ will
represent the stack of actor instances called up to the current actor instance. Note that
such a stack has a bounded size since recursion is not allowed in block, environment, and
medium invocations.

For instance, if an environment N invokes a block instance Bi and Ni is an instance of N ,
the stack σBi of Bi is σBi = Ni .Bi . If Bi invokes itself a block instance Bi ′, the stack of
Bi ′ is σBi′ = σBi.Bi ′ = Ni .Bi .Bi ′.

Memory

A memory is a function from stacks to stores. Given an actor Ai executed regarding
a stack σ, µ(σ) returns the store assigning a value to each permanent variable in Ai.
Given a memory µ = [σ1 ← ρ1, . . . , σn ← ρn], we write dom(µ) for its domain defined by
{σ1, . . . , σn}.

Inria

GRL: GALS Representation Language 37

Memory update

The sum of two memories µ1 and µ2, denoted “µ1 ⊕ µ2”, represents the update of µ1 with
respect to µ2. Formally, it is a partial function defined as below:

(µ1 ⊕ µ2)(σ) =

 µ2(σ) if σ ∈ dom(µ2)
µ1(σ) if σ /∈ dom(µ2) and σ ∈ dom(µ1)
undefined otherwise

The notation
⊕

i∈1..n
µi stands for the sum µ1 ⊕ . . .⊕ µn.

7.1.2 Labelled transition system

An LTS is a quadruple (S,L,→, s0) where:

– S is a set of states.

– L is a set of labels.

– → ⊆ S× L× S is the labelled transition relation.

– s0 ∈ S is the initial state.

A labelled transition system is finite if its sets of states and transitions are both finite. We
write s `−→ s′ as a shorthand for (s, a, s′) ∈ →.

7.2 Dynamic semantics of expressions

The evaluation of expressions is defined by triples of the form “{E} ρ →e e” where E is an
expression, ρ is a store, and e is a value. This relation means that the expression E returns the
value e in the store ρ.

7.2.1 Constant

The expression evaluation of a literal constant K returns the value denoted by K .

{K} ρ →e K

7.2.2 Variable

The result of the expression evaluation of a variable X is its value in the current store.

{X } ρ →e ρ(X)

RR n° 8527

38 Jebali & Lang & Mateescu

7.2.3 Predefined function call

The evaluation result of the expression “F(E0, . . . ,En)” is the returned value of calling the
predefined function with the values of E0 , . . . ,En . Predefined functions are standard, we do not
provide here their formal semantics.

(∀ i ∈ 0..n) {Ei} ρ →e ei
{F (E0, . . . ,En)} ρ →e F (e0, . . . ,en)

Record field access and array element access are considered as predefined functions.

7.3 Dynamic semantics of statements

The execution of statements is defined by septuples of the form “{I } σ, ρ, µ `−→i ρ′, µ′” where I
is a statement, σ is a stack, ρ and ρ′ are stores, µ and µ′ are memories, and ` is a label that has
one of the following forms:

• ε means that the execution of I has terminated normally.

• X0, . . . , Xn means that the execution of I has terminated and executed a signal emission
statement of the form “on X0, . . . ,Xn-> I0 ”.

• ?{X0, . . . , Xn}means that the execution of I has terminated and executed a signal emission
statement of the form “on ?X0, . . . ,?Xn-> I0 ”.

ρ represents the current store, σ represents the stack of the actor instance enclosing the statement,
µ represents the store assigning to permanent variables of the actor instance their values in the
last execution cycle of the actor (and their initialization values in first cycle). This relation means
that the execution of the statement I in the store ρ and the memory µ is terminated normally
producing the updated store ρ′ and the updated memory µ′.

We assume that after binding analysis, each variable has been assigned a distinct name, thus
preventing variable shadowing (i.e., a variable declared within a certain scope has the same name
as a variable declared in an outer scope) to occur.

7.3.1 Null

The null statement terminates normally without updating the store.

{null} σ, ρ, µ ε−→i ρ, µ

7.3.2 Sequential composition

The execution of the statement “I1;I2 ” starts by executing the statement I1 and updating the
store, then I2 is executed in the store updated by I1 .

{I1} σ, ρ, µ
`1−→i ρ

′, µ′

{I2} σ, ρ′, µ′
`2−→i ρ

′′, µ′′

{I1;I2} σ, ρ, µ
`1+`2−−−−→i ρ′′, µ′′

where ε+ ` = `+ ε = ` for every label `. Note that at least one of the labels `1 and `2 must
be equal to ε (See rule IB3 in Section 6.5.1).

Inria

GRL: GALS Representation Language 39

7.3.3 Assignment

The execution of an assignment statement “X :=E ” updates the store by mapping the value of
E to the assigned variable X .

{E} ρ→e e

{X := E} σ, ρ, µ ε−→i ρ⊕ [X ← e], µ

7.3.4 Array element assignment

The evaluation of the expression “X [E0]:=E1 ” where X has the type T such as “T:array[m..n]
of T ′” is given by the following rule:

{E0} ρ →e e0 e0 ∈ [m..n] {E1} ρ →e e1

{X [E0]:=E1} σ, ρ, µ
ε−→i ρ ⊕ [X ← update(ρ(X), e0, e1)], µ

where update(e0, e1, e2) denotes a mathematical function which assigns the value e2 to the
element of the array e0 placed at position e1.

7.3.5 While loop

The semantics of the statement “while E loop I end loop” are:

{E} ρ→e false

{while E loop I end loop} σ, ρ, µ ε−→i ρ, µ

{E} ρ→e true

{I ; while E loop I end loop} σ, ρ, µ ε−→i ρ
′, µ′

{while E loop I end loop} σ, ρ, µ ε−→i ρ′, µ′

7.3.6 For loop

The semantics of “for I0 while E by I1 loop I2 end loop” are equivalent to the semantics of
the following statement:

I0;
while E loop

I2;I1
end loop

7.3.7 Conditional

The semantics of the statement “if E0 then I0 . . . elsif En then In else In+1 end if ” are:

(∃i ∈ 0..n) ∀j ∈ 0..(i− 1) {Ej} ρ→e false
{Ei} ρ→e true

{Ii} σ, ρ, µ
`−→i ρ

′, µ′

{if E0 then I0 . . . elsif En then In else In+1 end if} σ, ρ, µ `−→i ρ′, µ′

RR n° 8527

40 Jebali & Lang & Mateescu

(∀k ∈ 0..n) {Ek} ρ→e false {In+1} σ, ρ, µ
`−→i ρ

′, µ′

{if E0 then I0 . . . elsif En then In else In+1 end if} σ, ρ, µ `−→i ρ′, µ′

Note that if the clause “else In+1 ” is absent, then the if statement is semantically equivalent to:
“if E0 then I0 . . . elsif En then In else null end if ”.

7.3.8 Nondeterministic assignment

The semantics of the statement “X := any T where E ” are:

e ∈ T
{E} ρ⊕ [X ← e]→e true

{X := any T where E} σ, ρ, µ ε−→i ρ⊕ [X ← e], µ

7.3.9 Nondeterministic choice

The semantics of the statement “select I0 [] . . . []In end select” are:

(∃k ∈ 0..n) {Ik} σ, ρ, µ
`−→i ρ

′, µ′

{select I0 [] . . . []In end select} σ, ρ, µ `−→i ρ′, µ′

7.3.10 Case selection

The semantics of the statement “case E is K0 -> I0 | . . . | Kn -> In | any -> In+1 end case”
are:

{E}ρ→e e (∃i ∈ 0..n) (∀j ∈ 0..(i− 1)) Kj 6= e, Ki = e {Ii} σ, ρ, µ
`−→i ρ

′, µ′

{ case E is K0 -> I0 | . . . | Kn -> In | any -> In+1 end case} σ, ρ, µ `−→i ρ′, µ′

{E}ρ→e e (∀i ∈ 0..n) Ki 6= e {In+1} σ, ρ, µ
`−→i ρ

′, µ′

{ case E is K0 -> I0 | . . . | Kn -> In | any -> In+1 end case} σ, ρ, µ `−→i ρ′, µ′

Note that if the clause “any -> In+1 ” is absent, static semantics ensure that K0 , . . . ,Kn cover
all possible values of the type of expression E (see rule IB4 in Section 6.5.1). In this case, the
“case” statement is semantically equivalent to:

case E is K0 -> I0 | . . . | Kn -> In | any -> null end case

7.3.11 Signal

A signal statement has one of the following forms:

on X0, . . . ,Xn-> I0
on ?X0, . . . ,?Xn-> I0

A signal statement terminates normally by executing the statement I0 in the current store and
producing a label. Note that static semantics ensure that nested signal statements are forbidden
(i.e., I0 must not contain a signal statement, see rule IB5 in Section 6.5.1).

Inria

GRL: GALS Representation Language 41

{X0, . . . , Xn} ⊆ dom(ρ) {I0} σ, ρ, µ
ε−→i ρ

′, µ′

{on X0, . . . ,Xn-> I0} σ, ρ, µ
X0,...,Xn−−−−−−→i ρ′, µ′

{I0} σ, ρ, µ
ε−→i ρ

′, µ′

{on ?X0, . . . ,?Xn-> I0} σ, ρ, µ
?X0,...,?Xn−−−−−−−→i ρ′, µ′

7.3.12 Block invocation

Conventions. In the remainder of this section, we adopt the following notational conventions:

– a stands for arg .

– vd stands for either var_decl or var_decl_non_init .

– dl stands for either decl_list or decl_list_non_init .

– al stands for either “a0 . . . an ”.

– block (respectively, environment , medium) stands for the non-terminal block_instance (re-
spectively, environment_instance, medium_instance).

– ρglobal stands for the store assigning values to global constants.

Definitions. We define the following auxiliary functions.

– Initial store: the function init maps each variable in a declaration list to its respective
initialization value, if any.

init(〈vd0 , . . . , vdn〉, ρ) = init(vd0 , ρ)⊕ . . .⊕ init(vdn , ρ)
init(X0, . . . ,Xm:type, ρ) = []

init(X0, . . . ,Xm:type := E , ρ) = [X0 ← e, ...,Xm ← e] where {E} ρ→e e

– Variable list: the function vars returns the ordered list of variable identifiers in either a
variable declaration list, a formal parameter declaration, or an actual parameter list. The
symbol ε denotes the empty list. Operator ++ denotes list concatenation.

vars(vd0 , . . . , vdn) = vars(vd0)++ . . . ++vars(vdn)
vars(X0, . . . ,Xm:type) = 〈X0 , . . . ,Xm〉

vars(X0, . . . ,Xm:type := E) = 〈X0 , . . . ,Xm〉
vars(X0, . . . ,Xm) = 〈X0 , . . . ,Xm〉

vars(?X0, . . . ,?Xm) = 〈X0 , . . . ,Xm〉
vars(_, . . . ,_) = ε

vars(?_, . . . ,?_) = ε

– Type list: the function types returns the ordered list of types in a variable declaration list.

types(vd0 , . . . , vdn) = types(vd0)++ . . . ++types(vdn)
types(X0, . . . ,Xm:type) = typem+1

types(X0, . . . ,Xm:type := E) = typem+1

RR n° 8527

42 Jebali & Lang & Mateescu

– Parameter assignment: the function assign maps input and receive formal parameters to
their respective actual values.

assign(〈a0 , . . . , an〉, 〈X0 , . . . ,Xn〉, ρ) = assign(a0 ,X0 , ρ)⊕ . . .⊕ assign(an ,Xn , ρ)
assign(_,X , ρ) = {[]}
assign(E ,X , ρ) = {[X ← e] | vars(E) ⊆ dom(ρ) ∧ {E} ρ →e e}

assign(any T ,X , ρ) = {[X ← e] | e ∈ T}

– Arbitrary assignment: the function any assigns arbitrary values to parameters.

any(〈X0 , . . . ,Xn〉, 〈T0 , . . . ,Tn〉, ρ) = {[X0 ← e0, ...,Xn ← en] | (∀i ∈ 0..n) ei ∈ Ti}

– Parameter update: the function update maps output and send actual parameters to the
values of their respective formal parameters.

update(〈a0 , . . . , an〉, 〈X1 , . . . ,Xn〉, ρ) = update(a0 ,X0 , ρ)⊕ . . .⊕ update(an ,Xn , ρ)
update(?_,X , ρ) = []

update(?Y,X, ρ) =

{
[Y ← ρ(X)] if X ∈ dom(ρ)
[] otherwise

– Store construction

store(dl, σ, ρ, µ) =

{
µ(σ) if σ ∈ dom(µ)
init (dl , ρ) otherwise

– Memory construction (not defined means equal to ε)

memory(σ, µ, µ′) =

 µ′ if µ′ 6= ε
µ(σ) if µ′ = ε and σ ∈ dom(µ)
[] otherwise

– Label printing: the function label defines the label that will be visible on the generated
LTS and that corresponds to the execution of one block together with its connected actors.
Parameters defined in the system profile will be visible on the label whereas other variables
will be hidden (i.e., replaced by underscores). Labels are written in teletypefont in the
sequel.

label(Bi(al0, . . . , alm){al′0, . . . , al′n}, ρ) = Bi (label(〈al0, . . . , alm〉, ρ))
{label(〈al′0, . . . , al′n〉, ρ)}

label(〈al0 , . . . , alm〉, ρ) = label(al0 , ρ); . . . ;label(alm , ρ)
label(〈a0 , . . . , am〉, ρ) = label(a0 , ρ), . . . ,label(am , ρ)

label(X , ρ) =

{
ρ(X) if X ∈ vars(dlsys)
_ otherwise

label(any T , ρ) = _
label(_, ρ) = _

label(?X , ρ) =

{
?ρ(X) if X ∈ vars(dlsys)
?_ otherwise

label(?_, ρ) = ?_

– Store restriction: the operator � allows to return subsets of stores.

ρ � 〈X0 , ...,Xn〉 = [X0 ← ρ(X0), ...,Xn ← ρ(Xn)] where {X0 , . . . ,Xn} ⊆ dom(ρ)

Inria

GRL: GALS Representation Language 43

Construction of the store ρglobal. After binding analysis, global constants are assumed to
be ordered as follows. If X1, . . . , Xn is the set of global constants defined respectively with
expressions E1, . . . , En, then for each i in 1..(n − 1) and for each j in (i + 1)..n we must have
vars(Ej) ⊆ {X1, . . . , Xi} (i.e., Xj must not belong to vars(Ei)).

The store ρglobal is constructed by assigning each global constant Xi the evaluation of its
expression Ei in the store ρi−1, ρ0 being the empty store.

ρ0 = []
ρi ∈ assign(Ei, Xi, ρi−1) ∀i ∈ 1..n

ρglobal =
⊕

i∈1..n
ρi

Block semantics. The behaviour of a block is the following. The block consumes its in-
put parameters, computes in zero time, then produces its output parameters. These steps are
assumed to be performed in zero-delay following the standard abstraction in synchronous pro-
gramming. From one execution cycle to another, the set of permanent variables preserve their
values constituting the memory of the block.

Inside a block, the scheduling of nested subblocks and interconnections between subblocks are
inherently specified by the order in which the subblocks are invoked. For instance, if the body
I0 of a block B contains the call sequence “Bi0; Bi1; Bi2 ” (where Bi0 , Bi1 , and Bi2 are block
instances), Bi0 , Bi1 , and Bi2 are executed in this specific order. More specifically, we assume
that blocks invoked inside an actor are defined as follows.

block B [const dlconst] (in dlin0
; . . . ;in dlinm

;out dlout0 ; . . . ;out dloutn) is
allocate . . .
perm dlperm,
temp dltemp

I0
end block

Block B is allocated as follows: B[alconst] as Bi (where alconst is the actual parameter list that
corresponds to the declaration list dlconst), and Bi can then be invoked as follows:

Bi(alin0
; . . . ;alinm

;alout0 ; . . . ;aloutn)

. The semantic rule of block invocation is the following:

ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)
ρinput ∈

⊕
i∈0..m

init (dlini
, ρglobal ⊕ ρconst)⊕

⊕
i∈0..m

assign (alini
, vars(dlini

), ρ)

ρperm = store(dlperm , σ.Bi, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst ⊕ ρinput)
ρvar = ρglobal ⊕ ρconst ⊕ ρinput ⊕ ρperm ⊕ ρtemp
{I0} σ.Bi , ρvar, µ

ε−→i ρbody, µbody
ρ′ = ρ⊕

⊕
i∈0..n

update (alouti , vars(dlouti), ρbody)

µ′ = µbody ⊕ [σ.Bi← ρbody � vars(dlperm)]

{Bi(alin0 ; . . . ;alinm;alout0 ; . . . ;aloutn} σ, ρ, µ
ε−→i ρ′, µ′

RR n° 8527

44 Jebali & Lang & Mateescu

where stores ρvar and ρ′ and memory µ′ are constructed as follows.
In a first step, the block invocation starts by constructing the store ρvar, in which Bi should

compute its body I0 . The store ρvar is built by composing intermediate stores ρconst, ρinput,
ρperm, and ρtemp as follows:

1. Store ρconst starts by assigning default values to initialized constant formal parameters
using function init. Constant parameters depend only on global constants, whose values
are available in the store ρglobal. Then, the store ρconst updates the formal parameters with
respective values of actual parameters, using function assign in the store ρ of the caller.

2. Store ρinput starts by assigning default values to initialized input formal parameters using
function init. Input parameters depend on global constants and constant parameters of
the current block. The values of those parameters are available in the store ρglobal⊕ρconst.
Then, the store ρinput updates the formal parameters with respective values of actual
parameters, using function assign in the store ρ of the caller.

3. Store ρperm assigns to permanent variables their respective values stored in the memory
µ, except in the first execution cycle of Bi where permanent variables are assigned their
default values using function init. Permanent variables depend on both global constants
and constant parameters of the current block. The values of those parameters are available
in the store ρglobal ⊕ ρconst.

4. Store ρtemp assigns default values to temporary variables. Temporary variables depend on
global constants, constant parameters, and input parameters of the current block. The
values of those parameters are available in the store ρglobal ⊕ ρconst ⊕ ρinput.

5. Store ρvar is obtained by the sum of stores ρglobal, ρconst, ρinput, ρperm, and ρtemp.

In a second step, the body I0 is evaluated in the store ρvar and the current memory µ, pro-
ducing an updated store ρbody and an updated memory ρbody. Note that the values of permanent
variables of subblocks invoked inside I0 has been updated in the memory µbody.

Finally, the execution terminates normally by updating the current store ρ with the values of
output actual parameters using function update in the store ρbody, and by updating the current
memory with the values of permanent variables of Ni available in the store ρbody, the values of
permanent variables of subblocks invoked inside I0 being updated in memory µbody.

7.4 Dynamic semantics of systems

The execution of an actor invocation is defined by a septuple of the form “{instance} σ, ρ, µ `−→c

ρ′, µ′” where instance denote an actor invocation, σ is the actor instance stack, ρ and ρ′ are
stores, µ and µ′ are memories, and ` is a label.

7.4.1 Block invocation

We assume that a block invoked inside a system is defined as follows.

Inria

GRL: GALS Representation Language 45

block B [const dlconst] (in dlin0
; . . . ;in dlinm

;out dlout0 ; . . . ;out dloutn)
{receive dlrec0 ; . . . ;receive dlrecp;send dlsend0 ; . . . ;send dlsendq} is

allocate . . .
perm dlperm,
temp dltemp

I0
end block

Block B is allocated as follows: B[alconst] as Bi (where alconst is the actual parameter list that
corresponds to the declaration list dlconst), and Bi can then be invoked as follows:

Bi(alin0 ; . . . ;alinm;alout0 ; . . . ;aloutn){alrec0 ; . . . ;alrecp;alsend0 ; . . . ;alsendq}

The semantics of blocks invoked inside a system are slightly different from those of blocks invoked
inside an actor because of the occurrence of send and receive parameters. Receive (resp. send)
parameters are computed similarly to input (resp. output) parameters, except that receive
parameters can not have default values. The semantic rule of block invocation is the following.

{I0} σ.Bi , ρvar, µ
ε−→i ρbody, µbody{

Bi(alin0
; . . . ;alinm

;alout0 ; . . . ;aloutn)
{alrec0 ; . . . ;alrecp;alsend0 ; . . . ;alsendq}

}
σ, ρ, µ

ε−→c ρ′, µ′

where stores ρvar and ρ′ and memory µ′ are constructed as follows.

ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)
ρinrec ∈

⊕
i∈0..m

init (dlini
, ρglobal ⊕ ρconst)⊕

⊕
i∈0..m

assign (alini
, vars(dlini

), ρ)

⊕
⊕
i∈0..p

assign (alreci , vars(dlreci), ρ)

ρperm = store(dlperm , σ.Bi, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst ⊕ ρinrec)
ρvar = ρglobal ⊕ ρconst ⊕ ρinrec ⊕ ρperm ⊕ ρtemp
ρ′ = ρ⊕

⊕
i∈0..n

update (alouti , vars(dlouti), ρbody)

⊕
⊕
i∈0..q

update (alsendi , vars(dlsendi), ρbody)

µ′ = µbody ⊕ [σ.Bi← ρbody � vars(dlperm)]

7.4.2 Environment invocation

We assume that an environment is defined as follows.

environment N [const dlconst] (in dlin0
| . . . |in dlinm

|out dlout0 | . . . |out dloutn) is
allocate . . .
perm dlperm,
temp dltemp

I0
end environment

RR n° 8527

46 Jebali & Lang & Mateescu

Environment N is allocated as follows: N [const alconst] as Ni , and Ni can then be invoked as
follows: Ni(alin0

| . . . |alinm
|alout0 | . . . |aloutn).

The execution of environment invocation is guided by signals. It starts by the selection
of one actual channel among those passed to the environment. The selection is forced by the
call context, i.e., reception or sending of messages from or to a block. If the actual channel is
connected (i.e., the set of its variables is not empty), then the execution continues by checking
whether the body of the environment defines a signal statement corresponding to the channel
under consideration, in which case the body I0 is executed in the current store and the current
memory and terminates normally by producing an updated store, and updating memory, and
passing a label to the context. In such a case, both the actual channel and the environment
are called activated. If the channel is not connected or the body I0 does not contain a signal
statement corresponding to the actual channel, then I0 is not executed.

For the sake of accuracy, we distinguish the semantic rules of environment invocation when
an input channel is activated and when an output channel is activated since computations on
stores are not the same.

Activation of input channels. The semantic rule of environment invocation over the activa-
tion of an input actual channel is the following.

i ∈ 0..m vars(alini
) 6= ε

{I0} σ.Ni , ρvar, µ
vars(dlini

)
−−−−−−−→i ρbody, µbody

{Ni (alin0
| . . . |alinm

|alout0 | . . . |aloutn)} σ, ρ, µ
vars(alini

)
−−−−−−−→c ρ, µ′

where store ρvar and memory µ′ are constructed as follows.

1. Store ρconst is constructed in the same way as in block invocation.

ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)

2. Input parameters of environments have no default values (See rule ACI2 in section 6.6.3).
Store ρinput assigns the values of actual parameters of the activated channels to their
respective formal parameters, using function assign in the store ρ of the caller.

ρinput ∈ assign (alini
, vars(dlini

), ρ)

3. Stores ρperm, ρtemp, and ρvar are constructed in the same way as in block invocation.

ρperm = store(dlperm , σ.Ni, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst ⊕ ρinput)
ρvar = ρglobal ⊕ ρconst ⊕ ρinput ⊕ ρperm ⊕ ρtemp

4. No output parameters are produced when an input channel is activated then the store ρ is
not updated. Memory µ′ updates the current memory with values of permanent variables
of all Ni subblocks available in the memory µbody and values of permanent variables of Ni
available in the store ρbody.

µ′ = µbody ⊕ [σ.Ni← ρbody � vars(dlperm)]

Inria

GRL: GALS Representation Language 47

The execution of the body I0 terminates by passing a label to its context (Ni invocation) con-
taining the list of variables of the executed signal. The execution of Ni invocation terminates
by passing a label to its context (the caller of Ni) containing the list of actual parameters of the
activated channel.

Activation of output channels. The semantic rule of environment invocation over the acti-
vation of an output actual channel is the following.

i ∈ 0..n vars(alouti) 6= ε

{I0} σ.Ni , ρvar, µ
?{vars(dlouti

)}
−−−−−−−−−−→i ρbody, µbody

{Ni (alin0
| . . . |alinm

|alout0 | . . . |aloutn)} σ, ρ, µ
?{vars(alouti

)}
−−−−−−−−−−→c ρ′, µ′

where stores ρvar and ρ′, and memory µ′ are constructed as follows.

1. Store ρconst is constructed as follows.

ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)

2. There is no input actual parameters available when an output channel is activated.

3. Stores ρperm, ρtemp, and ρvar are constructed as follows.

ρperm = store(dlperm , σ.Ni, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst)
ρvar = ρglobal ⊕ ρconst ⊕ ρperm ⊕ ρtemp

4. Store ρ′ updates the current store ρ with the values of parameters of the activated channel
available in the store ρbody. Memory µ′ updates the current memory with the values of
permanent variables of Ni available in the store ρbody, the values of permanent variables of
subblocks invoked inside I0 being updated in memory µbody.

ρ′ = ρ⊕ update (alouti , vars(dlouti), ρbody)
µ′ = µbody ⊕ [σ.Ni← ρbody � vars(dlperm)]

The execution of the body I0 terminates by passing a label to its context (Ni invocation) con-
taining the list of variables of the executed signal preceded by a question mark. The execution
of Ni invocation terminates by passing a label to its context (the caller of Ni) containing the list
of actual parameters of the activated channel preceded by a question mark.

7.4.3 Medium invocation

Medium invocation has exactly the same semantics as environment invocation, except that input
parameters (resp., output parameters) are replaced by receive parameters (resp., send parame-
ters). We assume that a medium is defined as follows.

medium M [const dlconst] {receive dlrec0 | . . . |receive dlrecp|send dlsend0 | . . . |send dlsendq} is
allocate . . .
perm dlperm,
temp dltemp

I0
end medium

RR n° 8527

48 Jebali & Lang & Mateescu

Medium M is allocated as follows: M [const alconst] as Mi , and Mi can then be invoked as
follows: Mi(alrec0 | . . . |alrecp|alsend0

| . . . |alsendq
).

Activation of receive channels. The semantic rule of medium invocation over the activation
of a receive actual channel is the following.

i ∈ 0..p vars(alreci) 6= ε

{I0} σ.Mi , ρvar, µ
vars(dlreci)−−−−−−−−→i ρbody, µbody

{Mi (alrec0 | . . . |alrecp|alsend0 | . . . |alsendq)} σ, ρ, µ
vars(alreci)−−−−−−−−→c ρ, µ′

where.

ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)
ρrec ∈ assign (alreci , vars(dlreci), ρ)

ρperm = store(dlperm , σ.Mi, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst ⊕ ρrec)
ρvar = ρglobal ⊕ ρconst ⊕ ρrec ⊕ ρperm ⊕ ρtemp
µ′ = µbody ⊕ [σ.Mi← ρbody � vars(dlperm)]

Activation of send channels. The semantic rule of medium invocation over the activation
of a send actual channel is the following.

i ∈ 0..q vars(alsendi) 6= ε

{I0} σ.Mi , ρvar, µ
?{vars(dlsendi

)}
−−−−−−−−−−−→i ρbody, µbody

{Mi (alrec0 | . . . |alrecp|alsend0
| . . . |alsendq

)} σ, ρ, µ
?{vars(alsendi

)}
−−−−−−−−−−−→c ρ′, µ′

where.
ρconst ∈ init (dlconst , ρglobal)⊕ assign (alconst , vars(dlconst), ρ)
ρperm = store(dlperm , σ.Mi, ρglobal ⊕ ρconst, µ)
ρtemp = init (dltemp , ρglobal ⊕ ρconst)
ρvar = ρglobal ⊕ ρconst ⊕ ρperm ⊕ ρtemp
ρ′ = ρ⊕ update (alsendi

, vars(dlsendi
), ρbody)

µ′ = µbody ⊕ [σ.Mi← ρbody � vars(dlperm)]

7.4.4 Dynamic semantics of system

The execution of a system is governed by the parallel execution of the block instances in-
voked by the system. It is defined by triples of the form “µ `−→s µ′” where µ and µ′ are
memories, and ` is a label of the system. The LTS of the system is constructed as follows.
States are represented by the memories of all actors invoked inside the system, the initial
state being the empty memory. Labels are represented by block invocations and have the
form “Bi(alin0

; . . . ;alinm
;alout0 ; . . . ;aloutn){alrec0 ; . . . ;alrecp;alsend0

; . . . ;alsendq
}”. Transition

“µ
Bi(alin0

;...;alinm ;alout0
;...;aloutn){alrec0 ;...;alrecp ;alsend0

;...;alsendq}−−→s µ′” means that the combined
execution of block Bi together with its connected environments and mediums in the memory µ

Inria

GRL: GALS Representation Language 49

produces the memory µ′ updating the memory of Bi and the memories of its connected actors.
More specifically, we assume that a system is defined as follows.

system S (dlsys) is
allocate . . .
temp dltemp

network
block0, . . . ,blockr

constrainedby
environment0, . . . ,environments

connectedby
medium0, . . . ,mediumt

end system

where:

block ::= Bi (alin0 ; . . . ;alinm;alout0 ; . . . ;aloutn){alrec0 ; . . . ;alrecp;alsend0 ; . . . ;alsendq}
environment ::= Ni (alin0 | . . . |alinm|alout0 | . . . |aloutn)

medium ::= Mi {alrec0 | . . . |alrecp|alsend0
| . . . |alsendq

}

System execution is focused around block executions. A block has an active behaviour: it
executes cyclically (indefinitely) and at each cycle activates its connected environments and
mediums, which have passive behaviour. Given a block invocation of the form

Bii (alin0
; . . . ;alinm

;alout0 ; . . . ;aloutn){alrec0 ; . . . ;alrecp;alsend0
; . . . ;alsendq

}

, we define the following symbols.

Connections identification.

– Ii (for input) (resp., Oi (for output)) denotes the set of indexes of environments that have
output (resp., input) actual channels connected to input (resp., output) actual channels of
block Bii . This set contains at most one element.

– Ri (for receive) (resp., Si (for send)) denotes the set of indexes of mediums that have send
(resp., receive) actual channels connected to receive (resp., send) actual channels of block
Bii . This set contains at most one element.

– Ai denotes the set of indexes of input and receive actual channels of block Bii of the form
“X0, . . . ,Xn ” that are not connected to any output actual channel of environments of S
and send actual channel of mediums of S , respectively.

Ai = {k ∈ {in0, . . . , inm} | vars(alk) 6= ε ∧ ∀j ∈ 0..s j /∈ Ii}
∪{k ∈ {rec0, . . . , recp} | vars(alk) 6= ε ∧ ∀j ∈ 0..t j /∈ Ri}

Labels construction.

– link(j, Ii) where j ∈ Ii (resp., link(j,Oi) where j ∈ Oi) denotes the set of variables used
to connect an input (resp., output) actual channel of block Bii to an output (resp., input)
actual channel of environment Nij .

RR n° 8527

50 Jebali & Lang & Mateescu

– link(j,Ri) where j ∈ Ri (resp., link(j,Si) where j ∈ Si) denotes the set of variables used
to connect a receive (resp., send) actual channel of block Bii to a send (resp., receive)
actual channel of medium Mij .

The semantic rule of the system is the following.

i ∈ 0..r

(∀j ∈ Ri) {mediumj} ε, [], µRj

?{link(j,Ri)}−−−−−−−−−→c ρRj , µ
′
Rj

(∀j ∈ Ii) {environmentj} ε, [], µIj
?{link(j,Ii)}−−−−−−−−→c ρIj , µ

′
Ij

{blocki} ε, ρi, µi
ε−→c ρ′i, µ

′
i

(∀j ∈ Oi) {environmentj} ε, ρOj , µOj

link(j,Oi)−−−−−−→c ρOj , µ
′
Oj

(∀j ∈ Si) {mediumj} ε, ρSj , µSj
link(j,Si)−−−−−−→c ρSj , µ

′
Sj

µ
label(blocki , ρ′i)−−−−−−−−−−→s µs

i ∈ 0..r

µRj
= memory(Mij , µ, ε)

(∀j ∈ R) {mediumj} ε, [], µRj

?{link(j,R)}−−−−−−−−→c ρRj
, µ′Rj

µIj = memory(Nij , µ, ε)

(∀j ∈ I) {environmentj} ε, [], µIj
?{link(j,I)}−−−−−−−−→c ρIj , µ

′
Ij

ρi =
⊕
j∈Ai

any (alj , types(dlj), [])⊕
⊕
j∈Ri

ρRj
⊕
⊕
j∈Ii

ρIj

µi = memory(Bii , µ, ε)

{blocki} ε, ρi, µi
ε−→c ρ′i, µ

′
i

ρOj
= ρ′i � link(j,Oi) µOj

= memory(Nii , µ, µ
′
Ij)

(∀j ∈ O) {environmentj} ε, ρOj
, µOj

link(j,O)−−−−−−→c ρOj
, µ′Oj

ρSj = ρ′i � link(j,Si) µSj = memory(Mii , µ, µ
′
Sj)

(∀j ∈ S) {mediumj} ε, ρSj , µSj
link(j,S)−−−−−−→c ρSj , µ

′
Sj

µs = µ⊕
⊕
j∈Ri

µ′Rj
⊕
⊕
j∈Ii

µ′Ij ⊕ µ
′
i ⊕

⊕
j∈Oi

µ′Oj
⊕
⊕
j∈Si

µ′Sj

µ
label(blocki , ρ′i)−−−−−−−−−−→s µs

Inria

GRL: GALS Representation Language 51

i ∈ 0..r

(∀j ∈ 0..s) link(i, j, R) 6= ε {mediumj} ε, [], memory(Mij , µ, ε)
?{link(i,j,R)}−−−−−−−−−→c ρRj

, µ′Rj

(∀j ∈ 0..t) link(i, j, I) 6= ε {environmentj} ε, [], memory(Nij , µ, ε)
?{link(i,j,I)}−−−−−−−−→c ρIj , µ

′
Ij

ρi =
⊕
j∈Ai

any (alj , types(dlj), [])⊕
⊕
j∈Ri

ρRj
⊕
⊕
j∈Ii

ρIj

{blocki} ε, ρi, memory(Bii , µ, ε)
ε−→c ρ′i, µ

′
i

(∀j ∈ 0..t) link(i, j, O) 6= ε {environmentj} ε, ρ′i � link(i, j, O), memory(Nii , µ, µ
′
Ij)

link(i,j,O)−−−−−−−→c ρOj , µ
′
Oj

(∀j ∈ 0..s) link(i, j, S) 6= ε {mediumj} ε, ρSj , memory(Mii , µ, µ
′
Rj

)
link(i,j,S)−−−−−−−→c ρSj , µ

′
Sj

µs = µ⊕
⊕
j∈Ri

µ′Rj
⊕
⊕
j∈Ii

µ′Ij ⊕ µ
′
i ⊕

⊕
j∈Oi

µ′Oj
⊕
⊕
j∈Si

µ′Sj

µ
label(blocki , ρ′i)−−−−−−−−−−→s µs

Intermediate stores and memories are constructed as follows.

1. Store ρany assigns arbitrary values to parameters of input and receive actual channels of
block Bii (i ∈ 0..r) whose indexes are in Ai.

ρany ∈
⊕
j∈Ai

any (alj , types(dlj), [])

2. Each medium, whose index is in Ri, is invoked in the empty store [] and the memory µRj

corresponding to the current memory of medium Mij if any and to the empty memory
otherwise. The execution terminates by producing an intermediate store ρRj

, an interme-
diate memory µ′Rj

, and passing a label containing the values of the activated channel to
the context.

µRj = memory(Mij , µ, ε)

Medium invocation over the activation of a send channel requires only the values of constant
actual parameters to execute. Those parameters are necessarily constant expressions then
depend only on global constants at system level (this is not the case at actor level, e.g., a
block having a constant parameter can depend on constant parameters of the caller actor).
Hence, the empty store is sufficient as input store in medium execution.

3. Each environment, whose index is in Ii, is invoked in the empty store [] and the memory
µIj corresponding to the current memory of environment Nij if any and to the empty
memory otherwise. The execution terminates by producing an intermediate store ρIj , an
intermediate memory µ′Ij , and passing a label containing the values of the activated channel
to the context.

µIj = memory(Nij , µ, ε)

RR n° 8527

52 Jebali & Lang & Mateescu

4. The block Bii is then invoked in the store ρi assigning values to input and receive actual
channels of Bii and in the memory µi corresponding to the current memory of Bii if any
and to the empty memory otherwise. The execution terminates by producing the store ρ′i
and the memory µ′i.

ρi = ρany ⊕
⊕
j∈Ri

ρRj
⊕
⊕
j∈Ii

ρIj

µi = memory(Bii , µ, ε)

5. Each environment, whose index is in Oi, is invoked in the store ρOj and the memory µOj

keeping unchanged the store ρOj
, producing an intermediate memory µ′Oj

, and passing a
label containing the values of the activated channel to the context.
Environment invocation over the activation of an input channel requires the values of
constant actual parameters and of the parameters of the activated channel. The latter
parameters are produced by the execution of the block Bii and are available in the store
ρ′i.
If the environment has already been invoked over the activation of an output channel
connected to block Bii (i.e., j ∈ Ii), then the updated values of permanent variables are
available in the memory µ′Ij produced by the first execution of the environment triggered
by the current execution cycle of Bii. If the environment has been invoked in a previous
execution of the block Bii or of another block, this means that the updated values of
permanent variables are available in the current memory µ. Otherwise, the environment is
invoked in the empty memory [].

ρOj
= ρ′i � link(j,Oi)

µOj
= memory(Nii , µ, µ

′
Ij)

6. Each medium, whose index is in Si, is invoked in the store ρSj and the memory µSj
keeping unchanged the store ρSj , producing an intermediate memory µ′Sj , and passing a
label containing the values of the activated channel to the context.

ρSj = ρ′i � link(j,Si)
µSj = memory(Mii , µ, µ

′
Rj

)

7. The execution of the system terminates by producing the store ρ′i (stores ρOj and ρSj
being included in ρ′i), updating the current memory µ with the separate (and independent)
memories of all invoked actors, and passing a label to the context.

µs = µ⊕
⊕
j∈Ri

µ′Rj
⊕
⊕
j∈Ii

µ′Ij ⊕ µ
′
i ⊕

⊕
j∈Oi

µ′Oj
⊕
⊕
j∈Si

µ′Sj

The semantics of the whole network are obtained by interleaving all possible executions of Bi0 ,
. . . , Bip .

7.5 Dynamic semantics of programs
A GRL program can import other programs. The semantics of a program are defined as the
semantics of a particular system in the program or in an imported program. Such a system is
called the main system of the program. By default, the main system of the program is a system
named “Main”. Alternatively, tools will provide the user with the possibility to specify another
system as the main system using command-line options.

Inria

GRL: GALS Representation Language 53

8 Basic Examples
This section presents some examples of systems modeled in GRL.

8.1 Independent blocks with independent environments
In this example, environment Ni1 (respectively Ni2) ensures that the input X1 of block Bi1
(respectively the input X2 of block Bi2) is always larger than the output Y1 (respectively Y2)
at the previous cycle.

system S (X1,X2:nat, Y1,Y2:nat) is
allocate B as Bi1, B as Bi2,

N as Ni1, N as Ni2
network

Bi1(X1;?Y1),
Bi2(X2;?Y2)

constrainedby
Ni1(Y1|?X1),
Ni2(Y2|?X2)

end system

block B (in X :nat; out Y :nat) is
Y := X

end block

environment N (in Y :nat | out X :nat) is
perm lastY : nat := 0

select
on Y -> lastY := Y

[]
on ?X -> X := any nat where X ≥ lastY

end select
end environment

8.2 Independent blocks with shared environments
In this example:

• Environment Ni1 ensures that Bi1 and Bi2 are executed alternately.

• Environment Ni2 ensures that the inputs X1 and X2 of blocks Bi1 and Bi2 (respectively)
can vary (increase or decrease) by at most one unit at each cycle.

RR n° 8527

54 Jebali & Lang & Mateescu

system S (X1,X2:nat, Y1,Y2:nat) is
allocate B as Bi1, B as Bi2,

N1 as Ni1, N2 as Ni2
network

Bi1(X1;?Y1),
Bi2(X2;?Y2)

constrainedby
Ni1(Y1|Y2),
Ni2(?X1|?X2)

end system

block B (in X :nat; out Y :nat) is
perm lastY :nat := 0

Y := X +1; lastY := Y
end block

environment N1 (in Y1:nat | in Y2:nat) is
perm last1 : bool := false

if not(last1) then
on Y1 -> last1 := true

else
on Y2 -> last1 := false

end if
end environment

environment N2 (out X1:nat | out X2:nat) is
perm last1,last2:nat := 0

select
on ?X2 -> X2 := any nat where X2+1 >= last2 and X2 <= last2+1;

last2 := X2

[]
on ?X1 -> X1 := any nat where X1+1 >= last1 and X1 <= last1+1;

last1 := X1

end select
end environment

8.3 Network of blocks communicating via a medium

In this example:

• In every execution cycle, block Bi1 receives from the medium Mi the value of its output
Y1 in the last execution cycle. Then, after computing, Bi1 sends the new value of Y1 to
Mi .

• In every execution cycle, block Bi2 receives from the medium Mi the sum of the output
Y1 in the previous execution cycles. Then, after computing, Bi2 sends a boolean signal to
allow or not Mi to initlize the sum.

Inria

GRL: GALS Representation Language 55

system S (X1,X2:nat, Y1,Y2:nat) is
allocate B1 as Bi1, B2[128] as Bi2,

M as Mi
network

Bi1(X1;?Y1){Z1;?W1},
Bi2(X2;?Y2){Z2;?W2}

connectedby
Mi{W1|W2|?Z1|?Z2}

end system

block B1 (in X1:nat; out Y1:nat) {receive Z1:nat; send W1:nat} is
Y1 := X1 + Z1;
W1 := Y1

end block

block B2 [const seuil:nat](in X2:nat; out Y2:nat)
{receive Z2:nat; send W2:bool} is

Y2 := X2;
if (Z2 >= seuil) then

W2 := true
else

W2 := false
end if

end block

medium M {receive W1:nat | receive W2:nat | send Z1:nat | send Z2:nat} is
perm buf1,buf2 :nat:= 0

select
on W1 -> buf1 := W1;

buf2 := buf2+W1

[]
on ?Z1 -> Z1 := buf1;

buf1 := 0
[]

on W2 -> if (W2 == true) then
buf2 := 0

end if
[]

on ?Z2 -> Z2 := buf2
end select

end medium

RR n° 8527

56 Jebali & Lang & Mateescu

9 Conclusion
In this report, we have defined the syntax and semantics of the GRL language designed to fulfill
the need of a general-purpose modelling approach to provide industrial design process with formal
verification to ensure the correctness of GALS systems construction. GRL programs draw an
abstraction of those systems behaviour by means of finite state machines or labelled transition
systems (LTSs, for short). The behaviour of each actor of the system (block, environment,
medium) is modeled separately and then all models are composed in parallel, either in a flat or
hierarchical manner.

A parser of the language has already been developed using Syntax [7] and LNT technology
[11] for compiler construction. LNT is also an input language of CADP [12], a widely spread
toolbox for concurrent systems construction, which offers a large range of functionalities, includ-
ing interactive simulation, formal verification, and testing. A translator from GRL to LNT has
been designed and implemented but is out of the scope of this report. This way, LNT models
can be generated and system properties can be verified using efficient verification methods such
as model-checking, equivalence-checking, and compositional verification.

Inria

GRL: GALS Representation Language 57

References

[1] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, New York, NY, USA,
2007.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[3] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive processes. In Mary
S. Van Deusen and Bernard Lang, editors, POPL, pages 85–98. ACM Press, 1993.

[4] Gérard Berry and Georges Gonthier. The esterel synchronous programming language: de-
sign, semantics, implementation. Sci. Comput. Program., 19(2):87–152, November 1992.

[5] Gérard Berry and Ellen Sentovich. Multiclock esterel. 2144:110–125, 2001.

[6] David S. Bormann. Asynchronous wrapper for heterogeneous systems. In Proceedings of
the 1997 International Conference on Computer Design (ICCD ’97), ICCD ’97, pages 307–,
Washington, DC, USA, 1997. IEEE Computer Society.

[7] Pierre Boullier, Philippe Deschamps, and Benoit Sagot. Le Sysème SYNTAX Analyse Déter-
ministe Manuel d’Utilisation et de Mise en Oeuvre Sous UNIX. Paris, France, 2008.

[8] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang, Christine
McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding. Reference Manual of
the LOTOS NT to LOTOS Translator. Grenoble, France, 2013.

[9] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, andWendelin Serwe. Towards Perfor-
mance Prediction of Compositional Models in Industrial GALS Designs. In Ahmed Bouajjani
and Oded Maler, editors, Computer Aided Verification, Lecture Notes in Computer Science,
Grenoble, France, 2009. Saddek Bensalem, Springer Verlag.

[10] Frédéric Doucet, Massimiliano Menarini, Ingolf H. Kŕ’uger, Rajesh K. Gupta, and Jean-
Pierre Talpin. A verification approach for gals integration of synchronous components.
Electr. Notes Theor. Comput. Sci., 146(2):105–131, 2006.

[11] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler construction using lotos nt.
In R. Nigel Horspool, editor, CC, volume 2304 of Lecture Notes in Computer Science, pages
9–13. Springer, 2002.

[12] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: A
Toolbox for the Construction and Analysis of Distributed Processes. International Journal
on Software Tools for Technology Transfer, 15(2):89–107, 2013.

[13] Hubert Garavel, Gwen Salaun, and Wendelin Serwe. On the Semantics of Communicating
Hardware Processes and their Translation into LOTOS for the Verification of Asynchronous
Circuits with CADP. Science of Computer Programming, 2009.

[14] Hubert Garavel and Damien Thivolle. Verification of gals systems by combining synchronous
languages and process calculi. In Corina S. Pasareanu, editor, SPIN, volume 5578 of Lecture
Notes in Computer Science, pages 241–260. Springer, 2009.

RR n° 8527

58 Jebali & Lang & Mateescu

[15] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asynchronous systems
by means of a synchronous model. In Proceedings of the Sixth International Conference
on Application of Concurrency to System Design, ACSD ’06, pages 3–14, Washington, DC,
USA, 2006. IEEE Computer Society.

[16] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
August 1978.

[17] Fatma Jebali, Frédéric Lang, and Radu Mateescu. GRL: A Specification Language for
Globally Asynchronous Locally Synchronous Systems. Rapport de recherche, April 2014.

[18] Etienne Lantreibecq and Wendelin Serwe. Model Checking and Co-simulation of a Dynamic
Task Dispatcher Circuit using CADP. In Formal Methods for Industrial Critical Systems,
Trento, Italie, 2011.

[19] Avinash Malik, Zoran Salcic, Partha S. Roop, and Alain Girault. Systemj: A gals language
for system level design. Comput. Lang. Syst. Struct., 36(4):317–344, December 2010.

[20] Mohammad Reza Mousavi, Paul Le Guernic, Jean-Pierre Talpin, Sandeep Kumar Shukla,
and Twan Basten. Modeling and validating globally asynchronous design in synchronous
frameworks. In Proceedings of the conference on Design, automation and test in Europe -
Volume 1, DATE ’04, pages 10384–, Washington, DC, USA, 2004. IEEE Computer Society.

[21] S. Ramesh. Communicating reactive state machines: Design, model and implementation.
1998.

Inria

GRL: GALS Representation Language 59

A Lexical Structure

Classes

ANY = #000..#377; -- accept 8-bit characters
WHITE_SPACE = BS + HT + LF + VT + FF + CR + NL + SP ;
STRING_CHAR = ANY - (QUOTE + "\\" + EOL) ;
ESCAPE_CHAR = "a" + "b" + "f" + "n" + "r" + "t" + "v" + "\\" + "’" + "\"" + "?" ;
OCTAL = "0".."7" ;
HEXA = "a".."f" + "A".."F" + DIGIT ;
ANY_BUT_EOL = ANY - EOL ;

Abbreviations

SEPARATOR = WHITE_SPACE ;
COMMENT = "(" "*"&True {ANY}* "*" ")" ;
LINE_COMMENT = "-" "-"&True {ANY_BUT_EOL}* EOL ;

Tokens

Comments = {SEPARATOR | COMMENT | LINE_COMMENT}+ ;
Unbounded Context All ;
Priority Shift > Reduce ;

%IDENTIFIER = LETTER { {"_"}* (LETTER | DIGIT) }* ;
Priority Shift > Reduce ;

%STRING = -QUOTE {
STRING_CHAR |
"\\" ESCAPE_CHAR |
"\\" OCTAL&True [OCTAL [OCTAL]]

}*
-QUOTE ;

%CHARACTER = "’" (^"’\n\\" | "\\"&True ANY_BUT_EOL | "\\"&True OCTAL&True [OCTAL [OCTAL]]) "’" ;

%INTEGER = "0" X {HEXA}+ | "0" {OCTAL}* |"123456789" {DIGIT}* ;
Priority Shift > Reduce ;

RR n° 8527

60 Jebali & Lang & Mateescu

B Concrete Grammar
*===
* Program
*===

<program> = "program" <identifier> <imported-programs> "is"
<definition-list>

"end" "program" ;

<imported-programs> = ;
<imported-programs> = "(" <identifier-list> ")" ;

<definition-list> = ;
<definition-list> = <definition> <definition-list> ;

<definition> = <system> ;
<definition> = <block> ;
<definition> = <environment> ;
<definition> = <medium> ;
<definition> = <constant> ;
<definition> = <type-definition> ;

*==
* System
*==

<system> = "system" <identifier> <system-inout-parameters> "is"
<system-contents>

"end" "system" ;

<system-inout-parameters> = ;
<system-inout-parameters> = "(" <system-inout-parameters-list> ")";

<system-inout-parameters-list> = <inout-parameters-non-init> ;
<system-inout-parameters-list> = <inout-parameters-non-init> ";" <system-inout-parameters-list> ;

<system-contents> = <instance-list> <system-temp-variables> <network-spec> <env-spec> <medium-spec>;

<system-temp-variables> = ;
<system-temp-variables> = "temp" <variable-declaration-list-non-init> ;

<network-spec> = "network" <com-block-instance-list> ;

<com-block-instance-list> = <com-block-instance> ;
<com-block-instance-list> = <com-block-instance> "," <com-block-instance-list>;

<com-block-instance> = <identifier> "(" <block-argument-list> ")";
<com-block-instance> = <identifier> "{" <block-argument-list> "}";
<com-block-instance> = <identifier> "(" <block-argument-list> ")" "{" <block-argument-list> "}";

<env-spec> = ;
<env-spec> = "constrainedby" <env-instance-list>;

<env-instance-list> = <env-instance> ;
<env-instance-list> = <env-instance> "," <env-instance-list> ;

<env-instance> = <identifier> "(" <env-medium-argument-list> ")" ;

<medium-spec> = ;
<medium-spec> = "connectedby" <medium-instance-list>;

<medium-instance-list> = <medium-instance> ;
<medium-instance-list> = <medium-instance> "," <medium-instance-list> ;

<medium-instance> = <identifier> "{" <env-medium-argument-list> "}" ;

*==
* Block
*==

<block> = "block" <identifier> <const-parameters> <block-inout-parameters> <block-com-parameters> "is"

Inria

GRL: GALS Representation Language 61

<block-body>
"end" "block" ;

<block-body> = <block-medium-env-contents>;
<block-body> = <external-pragma>;

<external-pragma> = "!c" <string> ;
<external-pragma> = "!lnt" <string> ;

<block-inout-parameters> = ;
<block-inout-parameters> = "(" <block-inout-parameters-list> ")";

<block-inout-parameters-list> = <inout-parameters>;
<block-inout-parameters-list> = <inout-parameters> ";" <block-inout-parameters-list> ;

<block-com-parameters> = ;
<block-com-parameters> = "{" <block-com-parameters-list> "}";

<block-com-parameters-list> = <com-parameters> ;
<block-com-parameters-list> = <com-parameters> ";" <block-com-parameters-list>;

<instance-list> = ;
<instance-list> = "allocate" <instance-declaration-list>;

<instance-declaration-list> = <instance-declaration> ;
<instance-declaration-list> = <instance-declaration> "," <instance-declaration-list> ;

<instance-declaration> = <identifier> <const-arguments> "as" <instance-identifier>;

<block-medium-env-contents> = <instance-list> <local-variables-list> <body> ;

<body> = <statement> ;

*==
* Environment
*==

<environment> = "environment" <identifier> <const-parameters> <env-inout-parameters> "is"
<block-medium-env-contents>

"end" "environment" ;

<env-inout-parameters> = ;
<env-inout-parameters> = "(" <env-inout-parameters-list> ")";

<env-inout-parameters-list> = <inout-parameters-non-init> ;
<env-inout-parameters-list> = <inout-parameters-non-init> "|" <env-inout-parameters-list>;

*==
* Medium
*==

<medium> = "medium" <identifier> <const-parameters> <medium-com-parameters> "is"
<block-medium-env-contents>

"end" "medium" ;

<medium-com-parameters> = ;
<medium-com-parameters> = "{" <medium-com-parameters-list> "}";

<medium-com-parameters-list> = <com-parameters> ;
<medium-com-parameters-list> = <com-parameters> "|" <medium-com-parameters-list>;

*==
* Formal parameters
*==

<const-parameters> = ;
<const-parameters> = "[" "const" <variable-declaration-list> "]";

<inout-parameters> = "in" <variable-declaration-list>;
<inout-parameters> = "out" <variable-declaration-list-non-init> ;

<inout-parameters-non-init> = "in" <variable-declaration-list-non-init> ;
<inout-parameters-non-init> = "out" <variable-declaration-list-non-init> ;

RR n° 8527

62 Jebali & Lang & Mateescu

<com-parameters> = <receive-parameters>;
<com-parameters> = <send-parameters> ;

<receive-parameters> = "receive" <variable-declaration-list-non-init> ;

<send-parameters> = "send" <variable-declaration-list-non-init> ;

*==
* Variable Declaration
*==

<local-variables-list> = ;
<local-variables-list> = <non-empty-local-variables-list> ;

<non-empty-local-variables-list> = <perm-temp-local-variables-list> ;
<non-empty-local-variables-list> = <perm-temp-local-variables-list> <non-empty-local-variables-list> ;

<perm-temp-local-variables-list> = "perm" <variable-declaration-list> ;
<perm-temp-local-variables-list> = "temp" <variable-declaration-list> ;

<variable-declaration-list> = <variable-declaration> ;
<variable-declaration-list> = <variable-declaration> "," <variable-declaration-list> ;

<variable-declaration> = <variable-list> ":" <type> <opt-initialization> ;

<opt-initialization> = ;
<opt-initialization> = ":=" <expression> ;

<variable-declaration-list-non-init> = <variable-declaration-non-init> ;
<variable-declaration-list-non-init> = <variable-declaration-non-init> "," <variable-declaration-list-non-init> ;

<variable-declaration-non-init> = <variable-list> ":" <type>;

<variable-list> = <variable> ;
<variable-list> = <variable> "," <variable-list> ;

<variable> = <identifier> ;

*==
* Arguments
*==

<const-arguments> = ;
<const-arguments> = "[" <argument-list> "]";

<block-argument-list> = <argument-list> ;
<block-argument-list> = <argument-list> ";" <block-argument-list> ;

<env-medium-argument-list> = <argument-list> ;
<env-medium-argument-list> = <argument-list> "|" <env-medium-argument-list> ;

<argument-list> = <argument> ;
<argument-list> = <argument> "," <argument-list> ;

<argument> = <expression> ;
<argument> = "?" <variable> ;
<argument> = "_" ;
<argument> = "?" "_" ;
<argument> = "any" <type> ;

*==
* Global Constant
*==

<constant> = "constant" <identifier> ":" <type> "is"
<expression>

"end" "constant" ;

*==
* Statements
*==

Inria

GRL: GALS Representation Language 63

<statement> = <basic-statement> ;
<statement> = <basic-statement> ";" <statement> ;
<statement> = "on" <com-variable-list> "->" <statement>;

<basic-statement> = "null" ;
<basic-statement> = <variable> ":=" <expression> ;
<basic-statement> = "if" <expression> "then" <statement> <elsif-statement-list> <else-statement> "end" "if" ;
<basic-statement> = "while" <expression> "loop" <statement> "end" "loop" ;
<basic-statement> = "for" <statement> "while" <expression> "by" <statement> "loop" <statement> "end" "loop" ;
<basic-statement> = <variable> "." <variable> ":=" <expression>;
<basic-statement> = <variable> "[" <expression> "]" ":=" <expression>;
<basic-statement> = "case" <expression> "is" <case-item-list> "end" "case";
<basic-statement> = <nondeterministic-assign> <opt-clause>;
<basic-statement> = <instance-identifier> "(" <block-argument-list> ")" ;

<elsif-statement-list> = ;
<elsif-statement-list> = "elsif" <expression> "then" <statement> <elsif-statement-list> ;

<else-statement> = ;
<else-statement> = "else" <statement> ;

<case-item-list> = <case-item>;
<case-item-list> = <case-item> "|" <case-item-list> ;

<case-item> = <unary-expression> "->" <statement> ;
<case-item> = "any" "->" <statement>;

<basic-statement> = "select" <select-item-list> "end" "select";

<select-item-list> = <statement>;
<select-item-list> = <statement> "[]" <select-item-list>;

<nondeterministic-assign> = <variable> ":=" "any" <type> ;

<opt-clause> = ;
<opt-clause> = "where" <expression>;

<instance-identifier> = <identifier> ;

<com-variable-list> = <com-variable> ;
<com-variable-list> = <com-variable> "," <com-variable-list> ;
<com-variable> = <variable>;
<com-variable> = "?" <variable>;

*==
* Expressions
*==

<expression> = <binary-expression> ;

<binary-expression> = <unary-expression> ;
<binary-expression> = <binary-expression> <binary-operator> <unary-expression> ;

<unary-expression> = <basic-expression> ;
<unary-expression> = <unary-operator> <unary-expression> ;

<basic-expression> = <identifier> "[" <expression> "]" ;
<basic-expression> = <identifier> "." <variable> ;
<basic-expression> = <identifier> ;
<basic-expression> = <identifier> "(" ")" ;
<basic-expression> = <identifier> "(" <expression-list> ")";
<basic-expression> = <literal-const> ;
<basic-expression> = <literal-const> "of" <type> ;
<basic-expression> = <enum-identifier> "of" <type> ;
<basic-expression> = "(" <expression> ")" ;

<expression-list> = <expression> ;
<expression-list> = <expression> "," <expression-list> ;

*==
* Types
*==

RR n° 8527

64 Jebali & Lang & Mateescu

<type> = "bool" ;
<type> = "nat" ;
<type> = "nat16" ;
<type> = "nat32" ;
<type> = "int" ;
<type> = "int16" ;
<type> = "int32" ;
<type> = "char" ;
<type> = "string" ;
<type> = <identifier> ;

<type-definition> = "type" <identifier> "is" <type-expression> "end" "type";

<type-expression> = "array" "[" <unary-expression> ".." <unary-expression> "]" "of" <type> ;
<type-expression> = "range" <unary-expression> ".." <unary-expression> ;
<type-expression> = "enum" <enum-list> ;
<type-expression> = "record" <record-list> ;

<enum-list> = <enum-identifier> ;
<enum-list> = <enum-identifier> "," <enum-list> ;

<enum-identifier> = <identifier> ;

<record-list> = <record-variable> ;
<record-list> = <record-variable> "," <record-list> ;

<record-variable> = <variable> ":" <type> ;

*==
* Operators
*==

<binary-operator> = "+" ;
<binary-operator> = "-" ;
<binary-operator> = "*" ;
<binary-operator> = "/" ;
<binary-operator> = "%" ;
<binary-operator> = "^" ;
<binary-operator> = "<" ;
<binary-operator> = ">" ;
<binary-operator> = "<=" ;
<binary-operator> = ">=" ;
<binary-operator> = "==" ;
<binary-operator> = "!=" ;
<binary-operator> = "or" ;
<binary-operator> = "and" ;
<binary-operator> = "implies" ;
<binary-operator> = "equ" ;
<binary-operator> = "xor" ;

<unary-operator> = "+" ;
<unary-operator> = "-" ;
<unary-operator> = "not" ;
<unary-operator> = "abs" ;

*==
* Identifiers
*==

<identifier> = %IDENTIFIER ;

<identifier-list> = <identifier> ;
<identifier-list> = <identifier> "," <identifier-list> ;

*==
* Literal Constants
*==

<literal-const> = %INTEGER ;
<literal-const> = %CHARACTER ;
<literal-const> = %STRING ;
<literal-const> = "true" ;

Inria

GRL: GALS Representation Language 65

<literal-const> = "false" ;

<string> = %STRING ;

RR n° 8527

66 Jebali & Lang & Mateescu

C Operational semantics through examples

In this section, we show how LTSs are constructed from GRL programs by applying the SOS
rules defined in chapter 7 on two simple examples.

C.1 Nested blocks

The first GRL program we consider is given by the following listing:

system S (a,b,c:nat) is
allocate B as B
temp d : nat
network

B(a,b;?c;?d)
end system

constant C:nat is 2 end constant

block B (in x:nat := 0, y:nat := 0; out z:nat; out w:nat) is
allocate Sum [0] as Sum
perm p : nat := 0
Sum (x, y; ?z);
p := p+1;
w := p

end block

block Sum [const thres:nat := C](in i1,i2:nat; out o:nat) is
perm p : nat := thres

o := i1+i2;
p := p+1

end block

Note that in this example, the values of variable p (in block B and block Sum) and of variable
o (in block Sum) are incremented infinitely. To keep the example as simple as possible, we do
not treat the case when an overflow occurs.

C.1.1 Initial state

The initial memory of S is empty: µ0 = []. The execution of S and the construction of the
respective LTS are guided by the execution of block B.

C.1.2 Construction of the transitions

Block B is not connected to any actor inside the system S. Then, R0 = ε, S0 = ε, I0 = ε, O0 = ε
(0 being the index of B within the list of blocks of S).

Input actual channels “a, b”, whose index is 0 in the list of actual channels of block B, are
not connected to any environment then A0 = {0} and parameters “a” and “b” are assigned
arbitrary values of type nat. The store ρany is then:

ρany ∈ any(〈a, b〉, nat× nat, [])
ρany ∈ any(a, nat, [])⊕ any(b, nat, [])
ρany = [a← ea, b← eb] where ea ∈ nat and eb ∈ nat

Inria

GRL: GALS Representation Language 67

The construction of the LTS is governed by the following rule:

{B(a,b;?c;?d)}ε, ρany, µ0
ε−→c ρ1, µ1

µ0
B(ea, eb; ?ea+eb; ?_)−−−−−−−−−−−−−−→s µ1

(R1)

Block B is executed in the store ρany and the memory µ0 and terminates by producing the store
ρ1 and the memory µ1 (See rule R2 below for ρ1 and µ1 computation).

ρ1 = [a← ea, b← eb, c← ea+ eb, d← 1]

µ1 =

[
B.Sum← [p← 1]
B ← [p← 1]

]

Execution of block B. Intermediate stores that B needs to compute its body are the following.

ρglobal ∈ assign(2, c, [])
= [c← 2]

ρconst = []
ρinrec ∈ init(x:nat := 0, y:nat := 0 , ρglobal ⊕ ρconst)⊕ assign(〈a, b〉, 〈x, y〉, ρany)

∈ init(x, 0, ρglobal ⊕ ρconst)⊕ init(y, 0, ρglobal ⊕ ρconst)
⊕assign(a, x, ρany)⊕ assign(b, y, ρany)

= [x← 0]⊕ [y ← 0]⊕ [x← ρany(a)]⊕ [y ← ρany(b)]
= [x← ea, y ← eb]

ρperm = init(p:nat := 0 , ρglobal ⊕ ρconst) since B /∈ dom(µ0) (dom(µ0) = ε)
= [p← 0]

ρtemp = []
ρvar = ρglobal ⊕ ρconst ⊕ ρinrec ⊕ ρperm ⊕ ρtemp

= [c← 2]⊕ []⊕ [x← ea, y ← eb]⊕ [p← 0]⊕ []
= [c← 2, x← ea, y ← eb, p← 0]

The body of B is then executed in the store ρvar and the memory µ0 and terminates by producing
the store ρbody and the memory µbody.

{Sum(x;y;?z)}B, ρvar, µ0
ε−→i ρ11, µ11

{p := p+1}B, ρ11, µ11
ε−→i ρ12, µ12

{w := p}B, ρ12, µ12
ε−→i ρbody, µbody

{B(a,b;?c;?d)}ε, ρany, µ0
ε−→c ρ1, µ1

(R2)

Store ρ11 and memory µ11 are obtained by the execution of block Sum invocation in the store
ρvar and the memory µ0 (See rule R3 for ρ11 and µ11 computation).

ρ11 = [c← 2, x← ea, y ← eb, p← 0, z ← ea+ eb]
µ11 =

[
B.Sum← [p← 1]

]
Stores ρ12, ρbody, and ρ1 together with memories µ12, µbody, and µ1 are defined as follows.

RR n° 8527

68 Jebali & Lang & Mateescu

ρ12 = ρ11 ⊕ [p← ρ11(p) + 1]
= [c← 2, x← ea, y ← eb, p← 0, z ← ea+ eb]⊕ [p← 1]
= [c← 2, x← ea, y ← eb, p← 1, z ← ea+ eb]

ρbody = ρ12 ⊕ [w ← ρ12(p)]
= [c← 2, x← ea, y ← eb, p← 1, z ← ea+ eb]⊕ [w ← 1]

[c← 2, x← ea, y ← eb, p← 1, z ← ea+ eb, w ← 1]
ρ1 = ρany ⊕ update(?c, z, ρbody)⊕ update(?d,w, ρbody)

= [a← ea, b← eb]⊕ [c← ρbody(z)]⊕ [d← ρbody(w)]
= [a← ea, b← eb, c← ea+ eb, d← 1]

µ12 =
[
B.Sum← [p← 1]

]
µbody =

[
B.Sum← [p← 1]

]
µ1 = µbody ⊕ [B ← ρbody � vars(p:nat := 0)]

=

[
B.Sum← [p← 1]
B ← [p← 1]

]

Execution of block Sum. Intermediate stores that block Sum needs to compute its body
are the following.

ρconst1 ∈ init(thres:nat := C , ρglobal)⊕ assign(0, thres, ρvar)
= [thres← ρglobal(C)]⊕ [thres← 0]
= [thres← 2]⊕ [thres← 0]
= [thres← 0]

ρinput1 = assign(x, i1, ρvar)⊕ assign(y, i2, ρvar)
= [i1← ρvar(x)]⊕ [i2← ρvar(y)]
= [i1← ea, i2← eb]

ρperm1 = init(p:nat := thres, ρglobal ⊕ ρconst1) since B.Sum /∈ dom(µ0)
= [p← (ρglobal ⊕ ρconst1)(thres)]
= [p← 0]

ρtemp1 = []
ρvar1 = ρglobal ⊕ ρconst1 ⊕ ρinput1 ⊕ ρperm1 ⊕ ρtemp1

= [c← 2]⊕ [thres← 0]⊕ [i1← ea, i2← eb]⊕ [p← 0]⊕ []
= [c← 2, thres← 0, i1← ea, i2← eb, p← 0]

The body of block Sum is then executed in the store ρvar1 and the memory µ0 and terminates
by producing the store ρ11 and the memory µ11.

{o := i1+i2}B.Sum, ρvar1, µ0
ε−→i ρ111, µ111

{p := p+1}B.Sum, ρ111, µ111
ε−→i ρbody1, µbody1

{Sum(x;y;?z)}B, ρvar, µ0
ε−→i ρ11, µ11

(R3)

Stores ρ111, ρbody1, and ρ11 together with memories µ111, µbody1, and µ11 are defined as follows.

Inria

GRL: GALS Representation Language 69

ρ111 = ρvar1 ⊕ [o← ρvar1(i1) + ρvar1(i2)]
= [c← 2, thres← 0, i1← ea, i2← eb, p← 0]⊕ [o← ea+ eb]
= [c← 2, thres← 0, i1← ea, i2← eb, p← 0, o← ea+ eb]

ρbody1 = ρ111 ⊕ [p← ρ111(p) + 1]
= [c← 2, thres← 0, i1← ea, i2← eb, p← 0, o← ea+ eb]⊕ [p← 1]
= [c← 2, thres← 0, i1← ea, i2← eb, p← 1, o← ea+ eb]

ρ11 = ρvar ⊕ update(?z, o, ρbody1)
= [c← 2, x← ea, y ← eb, p← 0]⊕ [z ← ρbody1(o)]
= [c← 2, x← ea, y ← eb, p← 0, z ← ea+ eb]

µ111 = µ0

= []
µbody1 = µ111

= []
µ11 = µbody1 ⊕ [B.Sum← ρbody1 � vars(p:nat := thres)]

= [B.Sum← [p← 1]]

C.1.3 Generated LTS

The label corresponding to the execution of block B inside system S is obtained using function
label as follows.

label(B (a, b; ?c; ?d), ρ1) = B (label(〈〈a, b〉, ?c, ?d〉, ρ1))
= B (label(a, ρ1), label(b, ρ1);

label(?c, ρ1); label(?d, ρ1))
= B (ρ1(a), ρ1(b); ?ρ1(c); ?_)
= B (ea; eb; ?ea+eb; ?_)

The value of variable d is hidden in the produced label since d has been declared as temporary
variable of the system.

The generated LTS consists of an infinite sequence of states, because of the occurrence of
permanent variables in blocks B and Sum whose values increment indefinitely. Each state cor-
responds to the memory of block B, the initial state being empty. All transitions have the form
“B (ea; eb; ?ea + eb; ?_)”.

C.2 Strict alternation of blocks

The second GRL program we consider is given by the following listing.

RR n° 8527

70 Jebali & Lang & Mateescu

system S (a1,a2:nat, b1,b2:nat, c1,c2:nat) is
allocate B as B1, B as B2,

N as N1, N as N2
temp d1,d2:nat
network

B1(a1,b1;?c1;?_),
B2(a2,b2;?c2;?_)

constrainedby
N1(d1|d2),
N2(c1|c2)

end system

block B (in x,y:nat := 0; out z:nat; out w:nat) is
perm p:nat := 0
z := x+y;
p := p+1;
w := p

end block

environment N (in z1:nat | in z2:nat) is
perm last1:bool := false

if not(last1) then
on z1 -> last1 := true

else
on z2 -> last1 := false

end if
end environment

C.2.1 Initial state

The initial memory of S is empty: ρ0 = []. The execution of S and the construction of the LTS
are guided by the parallel execution of blocks B1 and B2.

C.2.2 Construction of the first transition

Blocks B1 and B2 evolve in asynchronous parallelism, then two transitions can be performed
from the initial state, each transition corresponding to the invocation of one block together with
its connected actors.

Execution of block B1 and its connected actors. Connections of B1 (whose index is 0
within the list of blocks inside S) with other actors are defined as follows.

– No medium is connected to B1, then R0 = ε and S0 = ε.

– No environment is connected to the inputs of B1, then I0 = ε.

– B1 has the output actual channel “?c1 ” connected to the input actual channel “c1 ” of
environment N2 (whose index is 1 within the list of environments inside S), then O0 = {1}
and link(1,O0) = {c1}.

Inria

GRL: GALS Representation Language 71

– The input actual channel “a1,b1 ” (whose index is 0 in the list of actual channels of block
B1) is not connected to any environment. Then, A0 = {0} and parameters “a1” and “b1”
are assigned arbitrary values of type nat.

The store ρ0 in which B1 should execute is then:

ρ0 ∈ any(〈a1, b1〉, nat× nat, [])
ρ0 = [a1← ea1, b1← eb1] where ea1 ∈ nat and eb1 ∈ nat

The execution of block B1 inside system S is governed by the following rule:

{B1(a1,b1;?c1;?_)}ε, ρ0, µ01
ε−→c ρ01, µ02

{N2(c1|c2)}ε, ρ02, µ03
c1−→c ρ02, µ04

µ0
B1(ea1, eb1; ?ea1+eb1; ?_)−−−−−−−−−−−−−−−−−→s µ1

(R4)

Block B1 is executed in the initial store ρ0 and the memory µ01 and terminates by producing
the store ρ01 and the memory µ02 (See rule R5 below for ρ01 and µ02 computation).

µ01 = [] since B1 /∈ dom (µ0)

ρ01 = [a1← ea1, b1← eb1, c1← ea1 + eb1]
µ02 = [B1← [p← 1]]

Environment N2 is executed in the store ρ02 and the memory µ02 defined below and terminates
by keeping unchanged the store ρ02, producing the memory µ04 (See rule R6 below for ρ02 and
µ04 computation), and passing the label c1 to its context.

ρ02 = ρ01 � link(1,O0)
= [c1← ea1 + eb1]

µ03 = [] since 1 /∈ I0 and N2 /∈ dom(µ0)

µ04 = [N2← [last1← true]]

Execution of block B1. Intermediate stores that B1 needs to compute its body are the
following.

ρglobal = []
ρconst = []
ρinrec ∈ init(x,y:nat := 0 , ρglobal ⊕ ρconst)⊕ assign(〈a1, b1〉, 〈x, y〉, ρ0)

= [x← 0, y ← 0]⊕ [x← ρ0(a1)]⊕ [y ← ρ0(b1)]
= [x← ea, y ← eb]

ρperm = init(p:nat := 0 , ρglobal ⊕ ρconst) since dom(µ0) = ε
= [p← 0]

ρtemp = []
ρvar = ρglobal ⊕ ρconst ⊕ ρinrec ⊕ ρperm ⊕ ρtemp

= []⊕ []⊕ [x← ea1, y ← eb1]⊕ [p← 0]⊕ []
= [x← ea1, y ← eb1, p← 0]

RR n° 8527

72 Jebali & Lang & Mateescu

The body of B1 is then executed in the store ρvar and the memory µ01 and terminates by
producing the store ρbody and the memory µbody.

{z := x+y}B1, ρvar1, µ01
ε−→i ρ011, µ011

{p := p+1}B1, ρ011, µ011
ε−→i ρ012, µ012

{w := p}B1, ρ012, µ012
ε−→i ρbody, µbody

{B1(a1,b1;?c1;?_)}ε, ρ0, µ0
ε−→i ρ01, µ02

(R5)

Stores ρ011, ρ012, and ρbody together with memories µ011, µ012, and µbody are constructed as
follows.

ρ011 = [x← ea1, y ← eb1, p← 0, z ← ea1 + eb1]
ρ012 = [x← ea1, y ← eb1, p← 1, z ← ea1 + eb1]
ρbody = [x← ea1, y ← eb1, p← 1, z ← ea1 + eb1, w ← 1]
ρ01 = ρ0 ⊕ update(?c, z, ρbody)⊕ update(?_, w, ρbody)

= [a1← ea1, b1← eb1, c1← ea1 + eb1]

µ011 = []
µ012 = []
µbody = []
µ02 = µ0 ⊕ [B1← ρbody � vars(p:nat := 0)]

= [B1← [p← 1]]

Execution of environment N2. The invocation of N2 is triggered by the reception of
the value “ea1 + eb1” from block B1 over the actual channel “c1”. Intermediate stores that N2
needs to compute are the following.

ρglobal = []
ρconst = []
ρinput ∈ assign(c1, z1, ρ02)

= [z1← ea1 + eb1]
ρperm = init(last1:bool := false, ρglobal ⊕ ρconst) since N2 /∈ dom(µ03)

= [last1← false]
ρtemp = []
ρvar = ρglobal ⊕ ρconst ⊕ ρinput ⊕ ρperm ⊕ ρtemp

= []⊕ []⊕ [z1← ea1 + eb1]⊕ [last1← false]⊕ []
= [z1← ea1 + eb1, last1← false]

Then, the body of N2 is executed in the store ρvar and the memory µ03 ignoring all signal
statements that do not correspond to “z1” (the respective formal parameter of actual parameter
“c1”) and terminates by keeping unchanged the store ρvar, producing the memory µ04, and
passing the label c1 to the context.

Inria

GRL: GALS Representation Language 73

{last1 := true}N2, ρvar, µ03
ε−→i ρbody, µbody

{not(last1)}ρvar →e true

{on z1 -> last1 := true}N2, ρvar, µ03
z1−→i ρbody, µbody

z1 ∈ dom(ρvar)

(R62)

if not(last1) then

on z1 -> last1 := true
else

on z2 -> last1 := false
end if

 N2, ρvar, µ03
z1−→i ρbody, µbody

(R61)

{N2(c1|c2)}ε, ρ02, µ03
c1−→i ρ02, µ04

(R6)

Store ρbody together with memories µbody and ρ03 are defined as follows.

ρbody = ρvar ⊕ [last1← true]
= [z1← ea1 + eb1, last1← false]⊕ [last1← true]
= [z1← ea1 + eb1, last1← true]

µbody = µ03

= []
µ04 = µbody ⊕ [N2← ρbody � vars(last1:bool := false)]

= [N2← [last1← true]]

Final store and memory. The execution of block B1 and its connected environment N2
terminates by producing the store ρ1 and the memory µ1.

ρ1 = ρ01
= [a1← ea1, b1← eb1, c1← ea1 + eb1]

µ1 = µ0 ⊕ µ02 ⊕ µ04

=

[
B1← [p← 1]
N2← [last1← true]

]

Execution of block B2 and its connected actors. Connections of B2 (whose index is 0
within the list of blocks inside S) with other actors are defined as follows.

– R1 = ε and S1 = ε.

– I1 = ε.

– O1 = {1} and link(1,O1) = {c2}.

– A1 = {0}.

The store ρ0 in which B2 should execute is then:

ρ0 ∈ any(〈a2, b2〉, nat× nat, [])
ρ0 = [a2← ea2, b2← eb2] where ea2 ∈ nat and eb2 ∈ nat

The execution of block B2 inside system S is governed by the following rule:

RR n° 8527

74 Jebali & Lang & Mateescu

{B2(a2,b2;?c2;?_)}ε, ρ0, µ01
ε−→c ρ11, µ11

{N2(c1|c2)}ε, ρ12, µ12
c2−→c ρ12, µ13

µ0
B2(ea2, eb2; ?ea2+eb2; ?_)−−−−−−−−−−−−−−−−−→s µ1

(R7)

Block B2 is executed in the initial store ρ0 and the memory µ01 and terminates by producing
the store ρ11 and the memory µ11.

µ01 = [] since B2 /∈ dom (µ0)

ρ11 = [a2← ea2, b2← eb2, c2← ea2 + eb2]
µ11 = [B2← [p← 1]]

Environment N2 is executed in the store ρ12 and the memory µ12 defined below and is expected
to terminate by keeping unchanged the store ρ12 and producing the memory µ13 (See rule R8
below for ρ12 and µ13 computation).

ρ12 = ρ11 � link(1,O1)
= [c2← ea2 + eb2]

µ12 = [] since 1 /∈ I1 and N2 /∈ dom(µ0)

Execution of block B2. Blocks B1 and B2 are instances of the same block B, then the
execution of B2 is similar to the execution of B1 (See rule R5 above).

Execution of environment N2. The invocation of N2 is triggered by the reception of the
value “ea2 + eb2” from block B2 over the actual channel “c2”. Then the body of N2 is executed
ignoring all signal statements that do not correspond to “z2”, the respective formal parameter of
actual parameter “c2”. Intermediate stores that N2 needs to compute are the following.

ρglobal = []
ρconst = []
ρinput ∈ assign(c2, z2, ρ12)

= [z2← ea2 + eb2]
ρperm = init(last1:bool := false, ρglobal ⊕ ρconst) since N2 /∈ dom(µ12)

= [last1← false]
ρtemp = []
ρvar = ρglobal ⊕ ρconst ⊕ ρinput ⊕ ρperm ⊕ ρtemp

= []⊕ []⊕ [z2← ea2 + eb2]⊕ [last1← false]⊕ []
= [z2← ea2 + eb2, last1← false]

The body of N2 can then be executed in the store ρvar and the memory µ12 according to the
following rule:

Inria

GRL: GALS Representation Language 75

{last1 := false}N2, ρvar, µ12
ε−→i ρbody, µbody

{not(last1)}ρvar →e false

{on z2 -> last1 := false}N2, ρvar, µ12
z2−→i ρbody, µbody

z2 ∈ dom(ρvar)

(R82)

if not(last1) then

on z1 -> last1 := true
else

on z2 -> last1 := false
end if

 N2, ρvar, µ12
z2−→i ρbody, µbody

(R81)

{N2(c1|c2)}ε, ρ12, µ12
c2−→i ρ12, µ13

(R8)

Variable “last1” is evaluated to “false” in the store ρvar, then the conditional statement allows
only the execution of the signal “on z1 -> last1 := true” guarded by the condition “not(last1)”
(rule R81). However, variable z1 can not be evaluated in the store ρvar (z1 /∈ rhovar). Rule R81
can not be crossed blocking the execution of environment N2, and no store neither memory can
be produced. Consequently, the execution of block B2 is cancelled and the global memory of the
system S is not updated since it requires the execution of the block and all its connected actors
to be performed normally and atomically.

Construction of the transition. We have shown previously that only block B1 can be
executed from the initial state µ0 of the system. The label corresponding to the first transition
of the system is obtained using function label as follows.

label(B1 (a1, b1; ?c1; ?_), ρ1) = B1 (label(〈〈a1, b1〉, ?c1, ?_〉, ρ1))
= B1 (label(a1, ρ1), label(b1, ρ1);

label(?c1, ρ1); label(?_, ρ1))
= B1 (ρ1(a1), ρ1(b1); ?ρ1(c1); ?_)
= B1 (ea1; eb1; ?ea1+eb1; ?_)

The LTS of the system after the execution of B1 is the following.

C.2.3 Execution of the second transition.

Block B1 behaves similarly to block B2 in the first round (transition), and conversely.

Execution of block B2 and its connected actors. Connections of B2 with other actors
are as defined in the previous section: R1 = ε, S1 = ε, I1 = ε, O1 = {1} and link(1,O1) = {c2},
A1 = {0}. The initial store is ρ0 = [a2← ea2, b2← eb2] where ea2 ∈ nat and eb2 ∈ nat.
The execution of system S is governed by the following rule:

{B2(a2,b2;?c2;?_)}ε, ρ0, µ11
ε−→c ρ11, µ12

{N2(c1|c2)}ε, ρ12, µ13
c2−→c ρ12, µ14

µ1
B2(ea2, eb2; ?ea2+eb2; ?_)−−−−−−−−−−−−−−−−−→s µ2

(R7)

RR n° 8527

76 Jebali & Lang & Mateescu

Block B2 is executed in the initial store ρ0 and the memory µ11, and terminates by producing
the store ρ11 and the memory µ12 exactly in the same way as block B1 execution in the previous
section since its the first execution of B2 together with its connected actors (see rule R5 above
for intermediate computations).

µ11 = [] since B2 /∈ dom (µ1)

ρ11 = [a2← ea2, b2← eb2, c2← ea2 + eb2]
µ12 = [B2← [p← 1]]

Environment N2 is executed in the store ρ12 and the memory µ13 defined below and terminates
by keeping unchanged the store ρ12, producing the memory µ14 (See rule R10 below for ρ12 and
µ14 computation), and passing the label c2 to its context.

ρ12 = ρ11 � link(1,O1)
= [c2← ea2 + eb2]

µ13 = µ1(N2) since 1 /∈ I1 and N2 ∈ dom (µ1)
= [N2← [last1← true]]

µ14 = [N2← [last1← false]]

Execution of environment N2. The invocation of N2 is triggered by the reception of
the value “ea2 + eb2” from block B2 over the actual channel “c2”. Intermediate stores that N2
needs to compute are as the following.

ρglobal = []
ρconst = []
ρinput = [z2← ea2 + eb2]
ρperm = µ13(N2) since N2 ∈ dom(µ13)

= [last1← true]
ρtemp = []
ρvar = ρglobal ⊕ ρconst ⊕ ρinput ⊕ ρperm ⊕ ρtemp

= []⊕ []⊕ [z2← ea2 + eb2]⊕ [last1← true]⊕ []
= [z2← ea2 + eb2, last1← true]

The body of N2 can then be executed in the store ρvar and the memory µ13 and terminates by
producing the store ρbody and the memory µbody according to the following rule:

{last1 := false}N2, ρvar, µ13
ε−→i ρbody, µbody

{not(last1)}ρvar →e false

{on z2 -> last1 := false}N2, ρvar, µ13
z2−→i ρbody, µbody

z2 ∈ dom(ρvar)

(R102)

if not(last1) then

on z1 -> last1 := true
else

on z2 -> last1 := false
end if

 N2, ρvar, µ13
z2−→i ρbody, µbody

(R101)

{N2(c1|c2)}ε, ρ12, µ13
c2−→i ρ12, µ14

(R10)

Inria

GRL: GALS Representation Language 77

Store ρbody together with memories µbody and ρ13 are defined as follows.

ρbody = ρvar ⊕ [last1← false]
= [z2← ea2 + eb2, last1← true]⊕ [last1← false]
= [z2← ea2 + eb2, last1← false]

µbody = µ13

= [N2← [last1← true]]
µ14 = µbody ⊕ [N2← ρbody � vars(last1:bool := false)]

= [N2← [last1← false]]

Final store and memory. The execution of block B2 and its connected environment N2
terminates by producing the store ρ2 and the memory µ2.

ρ2 = ρ11
= [a2← ea2, b2← eb2, c2← ea2 + eb2]

µ2 = µ1 ⊕ µ12 ⊕ µ14

=

[
B1← [p← 1]
N2← [last1← true]

]
⊕
[
B2← [p← 1]

]
⊕
[
N2← [last1← false]

]

=

 B1← [p← 1]
B2← [p← 1]
N2← [last1← false]

Execution of block B1 and its connected actors. The execution of block B1 is blocked
in memory µ1 in the same way as the execution of block B2 in memory µ0 (See rule R8 above
for details).

Construction of the transition. Only block B2 can be executed from the state µ1 of the
system. The label corresponding to the second transition of the system is obtained as follows.

label(B2 (a2, b2; ?c2; ?_), ρ1) = B2 (ea2; eb2; ?ea2+eb2; ?_)

The LTS of the system after the execution of B2 is the following.

C.2.4 Construction of the whole LTS.

The remainder of the LTS is constructed as detailed above. Each state corresponds to the
actual memories of blocks B1 and B2 and environment N2. Transitions correspond to either
the invocation of B1 or the invocation of B2, the alternation being ensured by environment
N2. Note that environment N1 is never invoked since not connected to neither B1 nor B2 and
variables d1 and d2 are not considered in computations.

RR n° 8527

78 Jebali & Lang & Mateescu

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Version
	Introduction
	Mathematical Notations
	General Notations
	BNF Notations

	Lexical Elements
	Boolean literals
	Natural number literals
	Integer number literals
	Character and string literals
	Operators
	Comments
	Identifiers
	Reserved words

	Abstract Syntax
	Notational conventions
	Program definition
	Type definition
	Literal constants
	Expressions
	Predefined functions
	Type conversion
	Functions on arrays
	Functions on records

	Statements
	Constant definition
	Variable declaration
	Formal parameters
	Blocks
	Environments
	Mediums
	Actors invocation
	System definition

	Static Semantics
	Conventions
	Identifiers
	Types
	Binding rules

	Expressions
	Binding rules
	Typing rules

	Statements
	Binding rules
	Typing rules
	Initialization rules

	Actor allocation and invocation
	Binding rules
	Typing rules
	Initialization rules

	Constant
	Binding rules
	Typing rules

	Block
	Binding rules
	Typing rules
	Initialization rules

	Environment
	Binding rules
	Initialization rules

	Medium
	Binding rules
	Initialization rules

	System
	Binding rules

	Program
	Binding rules

	Dynamic Semantics
	Notational conventions
	Stores, stacks, and memories
	Labelled transition system

	Dynamic semantics of expressions
	Constant
	Variable
	Predefined function call

	Dynamic semantics of statements
	Null
	Sequential composition
	Assignment
	Array element assignment
	While loop
	For loop
	Conditional
	Nondeterministic assignment
	Nondeterministic choice
	Case selection
	Signal
	Block invocation

	Dynamic semantics of systems
	Block invocation
	Environment invocation
	Medium invocation
	Dynamic semantics of system

	Dynamic semantics of programs

	Basic Examples
	Independent blocks with independent environments
	Independent blocks with shared environments
	Network of blocks communicating via a medium

	Conclusion
	Lexical Structure
	Concrete Grammar
	Operational semantics through examples
	Nested blocks
	Initial state
	Construction of the transitions
	Generated LTS

	Strict alternation of blocks
	Initial state
	Construction of the first transition
	Execution of the second transition.
	Construction of the whole LTS.

