GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems (Syntax and Formal Semantics)

Fatma Jebali, Frédéric Lang, Radu Mateescu

RESEARCH

GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems (Syntax and Formal Semantics)

Fatma Jebali, Frédéric Lang, Radu Mateescu
Project-Team Convecs
Research Report n ${ }^{\circ} 8527$ - Avril 2014 - 78 pages

Abstract

A GALS (Globally Asynchronous, Locally Synchronous) system consists of a set of synchronous subsystems executing concurrently and interacting using an asynchronous communication scheme. Such systems involve a high degree of synchronous and asynchronous concurrency which makes challenging the design and debugging of applications. The use of formal methods in the design process helps designers to master that complexity and to build strong confidence in the correctness of these, usually safety-critical, systems. This report presents the syntax and formal semantics of GRL (GALS Representation Language), a new formal language to specify GALS system for the purpose of formal verification, to provide design process with efficiency and correctness. GRL has a user-friendly syntax close to classical programming languages and an operational semantics combining the synchronous reactive paradigm inspired by classical data-flow languages and the asynchronous paradigm inspired by value-passing process algebras.

Key-words: concurrency, specification languages, compilation, modelling, formal verification, GALS systems

```
RESEARCH CENTRE
GRENOBLE - RHÔNE-ALPES
Inovallée
6 5 5 \text { avenue de l'Europe Montbonnot}
3 8 3 3 4 \text { Saint Ismier Cedex}
```


Langage GRL pour la Spécification des Systèmes Globalement Asynchrones Localement Synchrones

Résumé : Un système GALS (Globalement Asynchrone, Localement Synchrone) est composé d'un ensemble de sous-systèmes synchrones qui s'exécutent de manière concurrente suivant un schéma de communication asynchrone. De tels systèmes impliquent un haut degré de concurrence synchrone et asynchrone, ce qui rend difficile la conception et le débogage des applications à cause du non-déterminisme des communications. L'intégration des méthodes formelles dans la procédure de conception aide les concepteurs à maîtriser cette complexité et à garantir la sûreté de ces systèmes, souvent critiques.

Ce rapport présente la syntaxe et la sémantique formelle de GRL (GALS Representation Language), un nouveau langage formel pour la spécification des systèmes GALS afin de les vérifier formellement, pour rendre le processus de conception sûr et efficace. GRL possède une syntaxe conviviale, proche des langages de programmation classiques, et une sémantique opérationnelle qui combine le modèle synchrone inspiré de la programmation par flot de données et le modèle asynchrone inspiré des algèbres de processus.
Mots-clés : concurrence, languages de spécification, compilation, modélisation, vérification formelle, systèmes GALS

Contents

1 Version 6
2 Introduction 6
3 Mathematical Notations 8
3.1 General Notations 8
3.2 BNF Notations 8
4 Lexical Elements 9
4.1 Boolean literals 9
4.2 Natural number literals 9
4.3 Integer number literals 9
4.4 Character and string literals 9
4.5 Operators 9
4.6 Comments 10
4.7 Identifiers 10
4.8 Reserved words 10
5 Abstract Syntax 11
5.1 Notational conventions 11
5.2 Program definition 11
5.3 Type definition 12
5.4 Literal constants 12
5.5 Expressions 13
5.6 Predefined functions 13
5.6.1 Type conversion 13
5.6.2 Functions on arrays 13
5.6.3 Functions on records 13
5.7 Statements 13
5.8 Constant definition 14
5.9 Variable declaration 14
5.10 Formal parameters 15
5.11 Blocks 15
5.12 Environments 16
5.13 Mediums. 16
5.14 Actors invocation 17
5.15 System definition 17
6 Static Semantics 19
6.1 Conventions 19
6.2 Identifiers 19
6.3 Types 19
6.3.1 Binding rules 20
6.4 Expressions 20
6.4.1 Binding rules 20
6.4.2 Typing rules 20
6.5 Statements 23
6.5.1 Binding rules 23
6.5.2 Typing rules 24
6.5.3 Initialization rules 24
6.6 Actor allocation and invocation 26
6.6.1 Binding rules 27
6.6.2 Typing rules 28
6.6.3 Initialization rules 28
6.7 Constant. 30
6.7.1 Binding rules 30
6.7 .2 Typing rules 30
6.8 Block 30
6.8.1 Binding rules 31
6.8.2 Typing rules 32
6.8.3 Initialization rules 32
6.9 Environment 32
6.9.1 Binding rules 32
6.9.2 Initialization rules 33
6.10 Medium 33
6.10.1 Binding rules 33
6.10.2 Initialization rules 34
6.11 System 34
6.11.1 Binding rules 34
6.12 Program 35
6.12.1 Binding rules 35
7 Dynamic Semantics 36
7.1 Notational conventions 36
7.1.1 Stores, stacks, and memories 36
7.1.2 Labelled transition system 37
$7.2 \quad$ Dynamic semantics of expressions 37
7.2.1 Constant 37
7.2.2 Variable 37
7.2.3 Predefined function call 38
7.3 Dynamic semantics of statements 38
7.3.1 Null 38
7.3.2 Sequential composition 38
7.3.3 Assignment 39
7.3.4 Array element assignment 39
7.3.5 While loop 39
7.3.6 For loop 39
7.3.7 Conditional 39
7.3.8 Nondeterministic assignment 40
7.3.9 Nondeterministic choice 40
7.3.10 Case selection 40
7.3.11 Signal 40
7.3.12 Block invocation 41
7.4 Dynamic semantics of systems 44
7.4.1 Block invocation 44
7.4.2 Environment invocation 45
7.4.3 Medium invocation 47
7.4.4 Dynamic semantics of system 48
7.5 Dynamic semantics of programs 52
8 Basic Examples 53
8.1 Independent blocks with independent environments 53
8.2 Independent blocks with shared environments 53
8.3 Network of blocks communicating via a medium 54
9 Conclusion 56
A Lexical Structure 59
B Concrete Grammar 60
C Operational semantics through examples 66
C. 1 Nested blocks 66
C.1.1 Initial state 66
C.1.2 Construction of the transitions 66
C.1.3 Generated LTS 69
C. 2 Strict alternation of blocks 69
C.2.1 Initial state 70
C.2.2 Construction of the first transition 70
C.2.3 Execution of the second transition. 75
C.2.4 Construction of the whole LTS. 77

1 Version

This document is version 3.0 of the definition of the GRL language.

2 Introduction

A wide range of industrial applications represent instances of GALS (Globally Asynchronous, Locally Synchronous) systems composed of several synchronous systems that execute concurrently and communicate asynchronously. Whatever their target platform (software, hardware, or heterogeneous) and their architecture (parallel or distributed), these systems are complex and are confronted to severe challenges in the design process, which makes the system integration critical. A formal analysis is then required to prove the efficiency and the correctness of such systems, usually safety-critical. Nevertheless, most available design tools in industry do not use rigorous verification methods because of a lack of support for formal modeling. Industrial companies have for long built their tools on classical synchronous frameworks, which prevent them from fully switching to new production methods supporting the GALS model.

Modeling and verification of GALS systems have gained remarkable research interest over the last decades in computer software. Most of the existing approaches are based on ad hoc modeling and fall into two main classes. The first class, aims to describe GALS systems by enhancing synchronous languages and frameworks [20, 5, 21, 15] to fit asynchronous concurrency and nondeterminism that such systems involve. The second class consists in expressing synchronous programs in fully asynchronous languages to encompass synchronous features [14, 10, 6. A common limitation of these two trends is that either the asynchronous concept (in the case of the first class) or the synchronous concept (in the case of the second class) is disadvantaged since not recognized as a main paradigm, which narrows down verification results accuracy.

A more recent trend has emerged to preserve GALS systems features as much as possible by designing a new generation of languages that couple both the synchronous and the asynchronous paradigms. We cite the CRP model [3] that combines the Esterel [4] synchronous language and the CSP [16] asynchronous language. CRP is suitable for formal verification since it has been translated into classical process calculi. However, it is still very rarely used in industry since it requires a solid expertise in both synchronous and asynchronous concepts. In the same vein, SystemJ [19] extends the Java language with Esterel-like synchronous model and CSPlike asynchronous model. To our knowledge, no formal verification based on SystemJ has been investigated.

This report presents the syntax and formal semantics of a new modelling language, named $G R L$ (GALS Representation Language), whose aim is to bridge the gap between industrial design tools and automatic verification tools in order to enhance the design process of GALS systems and ensure the correctness of system construction. Such a language has to be general-purpose enough to cover a large scope of industrial systems and user-friendly to allow a degree of comfort for designers without the need of background in theoretical concurrency and formal verification.

The synchronous model of GRL is inspired from the data-flow model, a synchronous programming paradigm widely used in industry to design GALS systems. The asynchronous model of GRL is inspired from LNT [8, a formal specification language based on process algebra and functional programming, instead of classical formal specification languages. LNT has been successfully used for the analysis and verification of industrial applications, in particular those based on the GALS scheme [9, 14, 13, 18 .

The report is organized as follows. Section 2 defines some notational conventions used in the remainder of this report. Section 3 describes the lexical structure of the language. Section 4 presents the grammatical structure of the language. Sections 5 and 6 cover the static semantics
and the operational semantics rules, respectively. Section 7 introduces some examples of GRL programs. Section 8 concludes the report. Finally, Appendices A and B give respectively the description of GRL lexical implementation using the Syntax LECL tool and the description of GRL concrete grammar using the Syntax TABC tool.

3 Mathematical Notations

The following tables introduce some mathematical concepts and conventions used in this report.

3.1 General Notations

Logical Operators	
Symbol	Meaning
\neg	negation
\wedge	conjunction
\vee	disjunction
\Rightarrow	implication

Sets and Sequences	
Symbol	Meaning
a_{1}, \ldots, a_{n}	possibly empty finite sequence of elements of length n
a_{0}, \ldots, a_{n}	non-empty finite sequence of elements of length $\mathrm{n}+1$
$\left\{a_{1}, \ldots, a_{n}\right\}$	possibly empty set of elements a_{1}, \ldots, a_{n} of size n
$\left\{a_{0}, \ldots, a_{n}\right\}$	non-empty set of elements a_{0}, \ldots, a_{n} of size $\mathrm{n}+1$
$a \in A$	a is an element of the set A
$A \subseteq B$	A is a subset of B
$\{a \in A \mid P(a)\}$	the set which contains only elements of A satisfying property P
$A \times B$	the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ (Cartesian product)

3.2 BNF Notations

GRL grammar is described using the metalanguage BNF (Backus-Naur Form). A BNF specification is given by a set of derivation rules of the form " $A::=B$ " called productions, where A is a non-terminal symbol and B is a meta-expression built upon terminal symbols, non-terminal symbols, and BNF operators defined below.

Terminal symbols are written literally in the grammar in bold face and non-terminal symbols are written in italics. The following table lists BNF meta-expression operators used to describe the grammar of GRL.

notation	description
$B_{1} \mid B_{2}$	alternative: B_{1} or B_{2}
$B_{1} B_{2}$	sequence: B_{1} followed by B_{2}
$\left[B_{0}\right]$	option: B_{0} or nothing
$B_{0} *$	possibly empty repetition: B_{0}, zero, one or several times
$B_{0}+$	non-empty repetition: B_{0}, one or several times

4 Lexical Elements

This section presents the lexical conventions of GRL. The lexical structure is defined using a set of regular expressions in order to specify how characters are combined to form tokens and comments.

4.1 Boolean literals

Boolean literals can be either true or false.

$$
\text { bool }::=\text { true } \mid \text { false }
$$

4.2 Natural number literals

Natural number literals can be expressed in either decimal, hexadecimal, octal, or binary notation.

$$
\begin{aligned}
& \text { nat }::= \text { digit }+ \\
& \mathbf{0}(\mathbf{x} \mid \mathbf{X}) \text { hexdigit }+ \\
& \left\lvert\, \begin{array}{l}
\mathbf{0}(\mathbf{o} \mid \mathbf{O}) \text { octaldigit }+ \\
\\
\\
\mathbf{0}(\mathbf{b} \mid \mathbf{B}) \text { bitdigit }+
\end{array}\right.
\end{aligned}
$$

where digit, hexdigit, octaldigit, and bitdigit are defined by the following regular expressions:

$$
\begin{aligned}
& \text { bitdigit }::=\mathbf{0} \mid \mathbf{1} \\
& \text { octaldigit }::= \\
& \text { bitdigit }|\mathbf{2}| \mathbf{3}|\mathbf{4}| \mathbf{5}|\mathbf{6}| \mathbf{7} \\
& \text { digit }::= \\
& \text { octaldigit }|\mathbf{8}| \mathbf{9} \\
& \text { hexdigit }::= \\
& \text { digit }|\mathbf{a}| \mathbf{b}|\mathbf{c}| \mathbf{d}|\mathbf{e}| \mathbf{f}|\mathbf{A}| \mathbf{B}|\mathbf{C}| \mathbf{D}|\mathbf{E}| \mathbf{F}
\end{aligned}
$$

4.3 Integer number literals

Integer number literals can be either zero, positive, or negative.

$$
\text { int }::=[-\mid+] n a t
$$

4.4 Character and string literals

Characters and strings follow the same convention as the language LNT. In particular, strings are sequences of characters enclosed between double quotes ('n'). For further details, see Subsection 3.1.5 of the Lnt2Lotos reference manual [8].

4.5 Operators

Operators can be classified as follows:

```
unary_operator \(::=+|-|\) not \(\mid\) abs \(\mid\) nat \(\mid\) nat16 \(\mid\) nat32 \(\mid\) int \(\mid\) int16 \(\mid\) int32
binary_operator \(::=\) and \(\mid\) or \(\mid\) xor \(\mid\) implies \(\mid\) equ \(|+|-|\%|\) ~ \(| *| /\)
    \(|!=|==|\langle\mid\rangle|<=|\rangle=\)
```


4.6 Comments

Comments can be either single line "-- text" or multi-line " (* text *)". Therefore:

- All the text from the characters "--" to the end of the line is ignored.
- All the text enclosed between the characters "(*" and "*)" is ignored.

4.7 Identifiers

An identifier is defined by a letter followed by a possibly empty series of letters, digits and underscores. GRL prohibits that an identifier starts or ends with an underscore.

$$
\begin{aligned}
\text { letter } & ::=\mathbf{a}|\ldots| \mathbf{z}|\mathbf{A}| \ldots \mid \mathbf{Z} \\
\text { identifier } & ::=\operatorname{letter}\left(_^{*}(\text { digit } \mid \text { letter })\right) *
\end{aligned}
$$

GRL identifiers are case sensitive, so that all occurrences of the same identifier must use exactly the same case, i.e., lower-case and upper-case characters have to be respected. For instance, if a variable has identifier "XyZ", then all its occurrences must have the same identifier "XyZ", but neither "xyz" nor "Xyz". However, to avoid confusion, GRL forbids declaring in the same scope identifiers of the same nature (e.g., variables, constructors, functions, etc.) differring only by their case. Therefore, in the sequel, identifiers are not considered as "distinct" if they differ only by their case, e.g., "XyZ" and "XYZ" are not distinct identifiers.

4.8 Reserved words

Reserved words can not be used as identifiers in GRL programs. The following table lists GRL reserved words.

abs	allocate	and	any	as	array	block
bool	by	case	char	connectedby	const	constrainedby
constant	else	elsif	end	environment	enum	equ
false	for	if	implies	in	int	int8
int16	int32	is	loop	medium	nat	nat8
nat16	nat32	network	not	null	of	on
or	out	perm	program	record	select	send
string	system	temp	then	true	type	range
receive	where	while	xor			

5 Abstract Syntax

This section covers the grammatical structure of GRL programs using BNF notation (See Section 3.2 .

5.1 Notational conventions

The following table summarizes the generic terminal symbols and the most frequently used nonterminal symbols used to specify the grammar of GRL.

Symbols	
Identifiers (generic terminal symbols)	Meaning
P	program
S	system
B	block
$B i$	block instance
N	environment
$N i$	environment instance
M	medium
$M i$	medium instance
F	function
X, Y	variables
T	user-defined type identifier
type	type identifier
C	type constructor
f	record field
Non-terminal symbols	Meaning
I	statement
E	expression
K	literal constant

5.2 Program definition

A program is the highest level syntactic construct in a GRL specification. It contains the definition of lower level constructs. A GRL file contains exactly one program definition. This program has the same name as the file containing it.

A program P can import other programs P_{0}, \ldots, P_{n}. Therefore, the definitions of the imported programs P_{0}, \ldots, P_{n} are visible in the program P. Note that circular definitions are not allowed. For instance, if P_{0} imports P_{1}, P_{1} cannot import P_{0} (directly or transitively).

$$
\begin{aligned}
& \text { program_definition }::=\text { program } P\left[\left(P_{0}, \ldots, P_{n}\right)\right] \text { is } \\
& \text { (type_definition } \\
& \text { | constant_definition } \\
& \text { | block_definition } \\
& \text { | environment_definition } \\
& \text { | medium_definition } \\
& \text { | system_definition)* } \\
& \text { end program }
\end{aligned}
$$

5.3 Type definition

The following rule defines the types recognized in a GRL specification. Typing rules are discussed in Section 6.3. T denotes a user-defined type identifier.

User-defined types are the following:

- The array type, defined using the keyword array, denotes a fixed-size set of elements indexed by natural numbers ranging from m to n, which must be literal naturals.
- The record type, defined using the keyword record, denotes a fixed-size tuple of elements indexed by field names.
- The range type, defined using the keyword range, denotes a finite interval of numbers ranging from m to n, which must be literal integers of type type, which itself must be one of nat, nat16, nat32, int, int16, or int32.
- The enumerated type, defined using the keyword enum, denotes a finite and ordered set of symbolic values (identifiers) C_{0}, \ldots, C_{n}.

5.4 Literal constants

Literal constants may be either integer numbers, boolean constants, string constants, or values of enumerated types.

5.5 Expressions

The syntax of expressions is given by the following grammar.

$E \quad::=$	X	variable
	(E_{0})	record field access
	$E_{0} . f$	parenthesised expression
	$E_{1}\left[E_{0}\right]$	record field access
	unary_operator E_{0}	unary operation
	E_{1} binary_operator E_{2}	binary operation
	K [of type]	literal constant
	$F\left(E_{0}, \ldots, E_{n}\right)$	predefined function

5.6 Predefined functions

Predefined functions that can be used in a GRL program are unary operations, binary operations, type conversion functions, functions on arrays, and functions on records. Unary and binary operations are described in Section 4.5 .

5.6.1 Type conversion

Type conversion functions, denoted "type (E)", convert an expression E from one numerical data type to another numerical data type "type". Numerical data types are: nat, nat16, nat32, int, int16, int32, and all the range types. An exception can be raised if the value does not belong to a type of E.

5.6.2 Functions on arrays

Given an array type defined by "type T is array $[m . . n]$ of type", two predefined functions T :type ${ }^{n-m+1} \rightarrow T$ and T : type $\rightarrow T$ are automatically generated (those two functions coincide into one single function if $m=n$). The call $T\left(E_{m}, \ldots, E_{n}\right)$ builds an array X in which each element $X[i](i \in m . . n)$ is set to the value of expression E_{i}. The call $T\left(E_{0}\right)$ builds an array X in which all elements $X[i](i \in m . . n)$ are set to the value of expression E_{0}.

5.6.3 Functions on records

Given a record type defined by "type T is record $f_{0}:$ type $_{0}, \ldots, f_{n}:$ type $_{n}$ ", a predefined function $T:$ type $_{0} \times \ldots \times$ type $_{n} \rightarrow T$ is automatically generated. The call $T\left(E_{0}, \ldots, E_{n}\right)$ returns a record in which each field $f_{i}(i \in 0 . . n)$ is set to the value of expression E_{i}.

5.7 Statements

Below is the list of statements that can be used in GRL programs.

5.8 Constant definition

The keyword constant is used to define a variable whose value, once initialized, can not be changed whatsoever. A constant, formally described below, is visible and can be called by all other entities defined in the program enclosing it and all programs that import the program enclosing it.
constant_definition $::=$ constant $X:$ type is E_{0} end constant

5.9 Variable declaration

Variables in GRL are declared as follows:

$$
\begin{aligned}
& \text { decl_list ::= var_declo, }, \text {,var_decl } n_{n} \\
& \text { var_decl }::=X_{0}, \ldots, X_{m}: \text { type }\left[:=E_{0}\right] \\
& \text { decl_list_non_init }::=\text { var_decl_non_init } t_{0}, \ldots, v a r_{-} d e c l _n o n _i n i t_{n} \\
& v a r^{\prime} \text { decl_non_init }::=X_{0}, \ldots, \bar{X}_{m}: \text { type }
\end{aligned}
$$

Local variables are formally defined below. Permanent variables, defined after the keyword
perm, have a lifetime extending across the entire execution of the program, whereas variables defined after the keyword temp are temporary.

$$
\begin{aligned}
\text { local_variables } & ::= \\
& \text { perm decl_list } \\
& \text { temp decl_list }
\end{aligned}
$$

5.10 Formal parameters

Formal parameters are classified as follows:

- Constant parameters are user-fixed parameters defined as a set of variable declarations preceded by the keyword const. Such parameters should not be assigned a value in the body of the caller.

$$
\text { const_param }::=\text { const decl_list }
$$

- Input/Output parameters are defined as a set of variable declarations preceded by the keywords in or out.

$$
\begin{aligned}
& \text { inout_param }::= \\
& \text { indecl_list } \\
& \text { inout_param_non_init }::=\begin{array}{l}
\text { out decl_list_non_init } \\
\end{array} \\
& \left\lvert\, \begin{array}{ll}
\text { out decl_list_non_init_non_init }
\end{array}\right.
\end{aligned}
$$

- Communication parameters are defined as a set of variable declarations preceded by the keywords receive or send.

$$
\begin{array}{rc}
\text { com_param }::= & \text { receive decl_list_non_init } \\
& \mid \\
\text { send } d e c l _l i s t _n o n _i n i t ~
\end{array}
$$

5.11 Blocks

Blocks represent the synchronous part of GRL, which is inspired by synchronous dataflow languages based on the block-diagram model. Following the definition of synchronous programs, a block is the synchronous composition of one or several subblocks, all governed by the clock of the highest level block.

$$
\begin{aligned}
& \text { block_definition }::=\text { block } B \text { [[const_param]] } \\
& {\left[\left(\text { inout_param }_{0} ; \ldots ; \text { inout_param }_{m}\right)\right]} \\
& {\left[\left\{\text { com_param }_{0} ; \ldots ; \text { com_param }_{n}\right\}\right. \text {] is }} \\
& \text { [allocate } B_{0}\left[\left[\arg _{(0,0)}, \ldots, \arg _{\left(0, p_{0}\right)}\right]\right] \text { as } B i_{0} \text {, } \\
& \left.B_{q}\left[\left[\arg _{(q, 0)}, \ldots, \arg _{\left(q, p_{q}\right)}\right]\right] \text { as } B i_{q}\right] \\
& \text { [local_variableso , ..., local_variables }{ }_{l} \text {] } \\
& I_{0} \\
& \text { end block }
\end{aligned}
$$

A block definition can be either user-defined or included from an external code written in another language, in which case the block is called external. Such a block should not have receive and send parameters and its body consists of a pragma denoting the language in which the external function implementing the block is written, followed by the name of the function in the external program. Up to now, the supported external languages are C and LNT.

Blocks are allocated using clauses of the form "allocate $B_{i}\left[\arg _{(i, 1)}, \ldots, \arg _{\left(i, p_{i}\right)}\right]$ as $B i_{i}$ ", each of which creates an instance $B i_{i}$ of block B_{i} that has as const parameters the list $\arg _{(i, 1)}$, $\ldots, \arg _{\left(i, p_{i}\right)}$.

5.12 Environments

Environments are GRL structures representing the behaviour of the environment surrounding a network of blocks. They allow to constrain either inputs of separate blocks or the relative order and frequency of block executions within a network of blocks. Such a representation is flexible since it makes possible the description of the common environment in the case of parallel systems distributed on a single platform as well as a set of separate environments in the case of geographically distributed systems, namely.

```
environment_definition \(::=\) environment \(N\) [ [const_param] ]
    [(inout_param_non_init \(|\ldots|\) inout_param_non_init \(\left.\left.{ }_{m}\right)\right]\) is
    [ allocate \(B_{0}\left[\left[\arg _{(0,0)}, \ldots, \arg _{\left(0, p_{0}\right)}\right]\right]\) as \(B i_{0}\),
        \(B_{q}\left[\left[\arg _{(q, 0)}, \ldots, \arg _{\left(q, p_{q}\right)}\right]\right]\) as \(\left.B i_{q}\right]\)
    [ local_variables \({ }_{0}, \ldots\), local_variables \(_{l}\) ]
        \(\bar{I}_{0}\)
    end environment
```

Environment N interacts with blocks by connecting its input (resp., output) parameters to output (resp., input) parameters of blocks. Its body should define (or not) the behaviour of the environment when an interaction via a formal parameter list occurs. A signal of the form "on $X_{0}, \ldots, X_{n} \rightarrow I$ " defines the behaviour of N that corresponds to the parameter list "in $X_{0}: T_{0}, \ldots, X_{n}: T_{n}$ " whereas a signal of the form "on ? Y_{0}, \ldots, ? $Y_{m} \rightarrow I$ " defines the behaviour of N that corresponds to the parameter list "out $Y_{0}: T_{0}, \ldots, Y_{m}: T_{m}$ ".

5.13 Mediums

Mediums are GRL structures representing the behaviour of communication mediums and enables a clean description of asynchronous interactions within a network of blocks. They enable the explicit description of the communication protocol and the rigorous design of networks whatever their topologies (star, bus, ring, etc.) and their means of communication (point-to-point, multipoint, etc.).

$$
\begin{aligned}
& \text { medium_definition }::=\text { medium } M \text { [[const_param]] } \\
& \text { [}\left\{\text { com_param }_{0}|\ldots| \text { com_param }{ }_{m}\right\} \text {] is } \\
& \text { [allocate } B_{0}\left[\arg _{(0,0)}, \ldots, \arg _{\left(0, p_{0}\right)} \overline{]}\right] \text { as } B i_{0} \text {, } \\
& \left.B_{q}\left[\left[\arg _{(q, 0)}, \ldots, \arg _{\left(q, p_{q}\right)}\right]\right] \text { as } B i_{q}\right] \\
& \text { [local_variables }{ }_{0}, \ldots, \text { local_variables }_{l} \text {] } \\
& \bar{I}_{0} \\
& \text { end medium }
\end{aligned}
$$

Mediums interact with blocks by connecting their receive (resp., send) parameters to send (resp., receive) parameters of blocks and exhibit the same behaviour as environments. Blocks, environments, and mediums are referred to as actors in the sequel.

5.14 Actors invocation

Actual parameters, formally defined below, denote parameters passed to an actor at invocation time. In the remainder of the document, we consider the following definitions:

- The corresponding formal parameter of an actual parameter denotes the formal parameter that has the same position (as the actual parameter) in the actor definition.
- An actual parameter is at constant position (respectively at input position, at output position, at receive position, and at send position) if its corresponding formal parameter is defined after the keyword const (respectively in, out, receive, and send).
- A formal parameter list denotes either inout_param, inout_param_non_init, com_param, or const_param.
- An actual channel denotes a set of actual parameters of the form " $\arg _{0}, \ldots, \arg _{n}$ " used to connect actors inside systems.
- The corresponding formal parameter list of an actual channel when calling an actor denotes the formal parameter list that have the same position (as the formal parameter list) in the actor definition.

An actual parameter can have different forms according to its position (for further details, see rules ACB6 to ACB10 in Section 6.6.1. A question mark precedes both actual parameters at output and send positions. An underscore is used for unconnected parameters (i.e. unusable parameters). An actual parameter of the form "any type" assigns the corresponding formal parameters an arbitrary value of type "type".

$$
\arg ::=? X\left|[?]_{-}\right| E \mid \text { any type }
$$

Actor instances must be allocated before being invoked. Actual parameters at constant position should be fixed at allocation time as follows:

$$
\begin{array}{rll}
\text { allocation }::= & B\left[\left[\arg _{0}, \ldots, \arg _{n}\right]\right] \text { as } B i \\
& N\left[\left[\arg _{0}, \ldots, \arg _{n}\right]\right] \text { as } N i \\
& M\left[\left[\arg _{0}, \ldots, \arg _{n}\right]\right] \text { as } M i
\end{array}
$$

Once allocated, actor instances can be invoked as given in the following grammar:

$$
\begin{aligned}
& \text { block_instance }::=B i\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, m_{0}\right)}, \ldots, \arg _{(n, 0)}, \ldots, \arg _{\left(n, m_{n}\right)}\right) \\
& \text { block_instance }::=B i\left[\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, m_{0}\right)} ; \ldots ; \arg _{(n, 0)}, \ldots, \arg _{\left(n, m_{n}\right)}\right)\right] \\
& {\left[\left\{\arg _{(0,0)}^{\prime}, \ldots, \arg _{\left(0, p_{0}\right)}^{\prime} ; \ldots ; \arg _{(q, 0)}^{\prime}, \ldots, \arg _{\left(q, p_{q}\right)}^{\prime}\right\}\right]} \\
& \text { environment_instance }::=N i\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, m_{0}\right)}|\ldots| \arg _{(n, 0)}, \ldots, \arg _{\left(n, m_{n}\right)}\right) \\
& \text { medium_instance }::=M i\left\{\arg _{(0,0)}, \ldots, \arg _{\left(0, m_{0}\right)}|\ldots| \arg _{(n, 0)}, \ldots, \arg _{\left(n, m_{n}\right)}\right\}
\end{aligned}
$$

5.15 System definition

Actors can be composed to form a higher level construct, called system. A system, formally defined below, specifies a network of synchronous systems represented by a set of blocks. Those blocks are constrained by a set of environments and interact asynchronously via a set of mediums.

```
system_definition ::= system S [(decl_list_non_inito)] is
    allocate allocation , ..., allocationn
    [ temp decl_list_non_init}\mp@subsup{}{1}{}
        network
            block_instance }\mp@subsup{0}{0}{
            ...,
            block_instancep
    [ constrainedby
                environment_instance }\mp@subsup{0}{0}{}\mathrm{ ,
                environment_instance}\mp@subsup{q}{~}{]
    [ connectedby
            medium_instance}\mp@subsup{0}{0}{
            ...,
        medium_instancer ]
    end system
```

The list decl_list_non_inito defines the parameters that are visible from the external world whereas the list decl_list_non_init ${ }_{1}$ defines the invisible parameters that are invisible from the external worlds.

$6 \quad$ Static Semantics

This section deals with the well-formedness of each of the syntactic construct of the language. We define the static semantics of GRL programs by specifying additional constraints that can not be captured by the grammar and are checked at compilation time. There are three classes of static semantic rules: binding rules, typing rules, and initialization rules.

6.1 Conventions

The following conventions are used:

1. "Entity" denotes an instance of system, medium, environment, block, constant, or type.
2. "vars (E) " (where E is an expression) denotes the set of variables in the expression E. Formally:

$$
\begin{aligned}
\operatorname{vars}(X) & =\{X\} \\
\operatorname{vars}(E . f) & =\operatorname{vars}(E) \\
\operatorname{vars}((E)) & =\operatorname{vars}(E) \\
\operatorname{vars}\left(F\left(E_{0}, \ldots, E_{n}\right)\right) & =\operatorname{vars}\left(E_{0}\right) \cup \ldots \cup \operatorname{vars}\left(E_{n}\right) \\
\operatorname{vars}\left(E_{0}\left[E_{1}\right]\right) & =\operatorname{vars}\left(E_{0}\right) \cup \operatorname{vars}\left(E_{1}\right) \\
\operatorname{vars}\left(\text { unary_operator } E_{0}\right) & =\operatorname{vars}\left(E_{0}\right) \\
\operatorname{vars}\left(E_{0} \text { binary_operator } E_{1}\right) & =\operatorname{vars}\left(E_{0}\right) \cup \operatorname{vars}\left(E_{1}\right) \\
\operatorname{vars}(K) & =\emptyset
\end{aligned}
$$

3. "Constant variable" is used to denote:

- A global constant variable defined as constant entity.
- A local constant parameter defined inside an entity after the keyword const.

4. "Constant expression" is used to denote an expression E such that vars (E) contains only constant variables.
5. "The current scope" of an entity denotes the current program or an imported program.
6. "Scope" of a variable is used to denote the region of GRL code within which the variable is visible and usable.

6.2 Identifiers

(ID1) GRL reserved words must not be used as identifiers (see Section 4.8).

6.3 Types

In the sequel, we call "existing type" a type that is either a predefined type or a type defined in the current scope.

We define recursively the relation " T depends on $T^{\prime \prime}$ " where T and T^{\prime} are existing types as follows. T depends on T^{\prime} if both of the following conditions are satisfied:

- T has one of the following forms: "range m.. n of $T^{\prime \prime \prime}$,", array $[m \ldots n]$ of $T^{\prime \prime \prime}$, "record ..., $f: T$ ", ..."
- $T^{\prime}=T^{\prime \prime}$ or $T^{\prime \prime}$ depends on T^{\prime}

6.3.1 Binding rules

(TB1) Cicular dependencies in type definitions are forbidden. If the definition of a type T depends on type T^{\prime}, then:

- T^{\prime} must be different from T
- the definition of T^{\prime} must not depend on T, transitively
- Enumerated type "type T is enum C_{0}, \ldots, C_{n} end type"
(TB2) Identifiers C_{0}, \ldots, C_{n} must be pairwise distinct.
- Record type "type T is record $f_{0}:$ type $_{0}, \ldots, f_{n}:$ type $_{n}$ end type"
(TB3) Fields f_{0}, \ldots, f_{n} must be pairwise distinct.
(TB4) Types type $_{0}, \ldots$, type $_{n}$ must be existing types.
- Array type "type T is array [m..n] of type end type"
(TB5) type must be an existing type.
(TB6) The bounds m and n must be natural numbers such that $m \leq n$.
- Range type "type T is range m.. n of type end type"
(TB7) type must be either nat, nat16, nat32, int, int16, or int32.
(TB8) The bounds m and n must be integer numbers such that $m \leq n$.

6.4 Expressions

6.4.1 Binding rules

(EB1) Each variable must be declared in the scope where it is used.

6.4.2 Typing rules

- Literal constant " K of type"
(ET1) type must be an existing type.
(ET2) Each literal constant int of the form "nat" or "+nat" may have one of the types: nat, nat16, nat32, int, int16, or int32 and each literal constant int of the form "-nat" may have one of the types: int, int16, or int32.
(ET3) Each literal constant bool has the type bool.
(ET4) Each literal constant string has the type string.
(ET5) Each literal constant $C_{i}(i \in 1 . . n)$ defined in "type T is enum C_{0}, \ldots, C_{n} end type" has the type T.
- Variable " X "
(ET6) The type of X is the type with which X has been declared in the current scope.
- Parenthesized expression " (E) "
(ET7) The type of (E) is the type of E.
- Function call " $F\left(E_{0}, \ldots, E_{n}\right)$ "
(ET8) Each expression $E_{i}(i \in 0 . . n)$ must have the same type as the corresponding parameter in the definition of F.
(ET9) The type of $F\left(E_{0}, \ldots, E_{n}\right)$ is the same type as the return type in the definition of F.
- Array element access " $E_{0}\left[E_{1}\right]$ "
(ET10) Expression E_{0} must have a type T of the form array [$m . . n$] of type.
(ET11) Expression E_{1} must have either the type nat, the type nat16, or the type nat32.
(ET12) The type of $E_{0}\left[E_{1}\right]$ is type.
- Record field access " $E . f$ "
(ET13) Expression E must have a type T of the form "record $f_{0}:$ type $e_{0}, \ldots, f_{n}:$ type $_{n}$ ", such that $f=f_{i}$ for some $i \in 1$..n.
(ET14) The type of $E . f$ is $t_{\text {type }}^{i}$.
- Unary operation

The following table lists the possible types of the expression "unary_operator E_{0} " given the type of E_{0} for each unary operator.

Operator	Type of E_{0}	Type of "unary_operator E_{0} "
,-+	int	int
	int16	int16
	int32	int32
not	bool	bool
abs	int	nat
	int16	nat16
	int32	nat32
nat	nat	nat
	nat16	nat
	nat32	nat
	int	nat
	int16	nat
nat16	int32	nat16
	nat16	nat16
	nat32	nat16
	int	nat16
	int16	nat16
	int32	nat16

nat32	nat	nat32
	nat16	nat32
	nat32	nat32
	int	nat32
	int16	nat32
int	nat	nat32
	nat16	int
	nat32	int
	int	int
	int16	int
	int32	int
int16	nat	int16
	nat16	int16
	nat32	int16
	int	int16
	int16	int16
int32	nat	int32
	nat16	int32
	nat32	int32
	int	int32
	int16	int32
	int32	int32

Note that in the case of overflow (e.g., "nat16 (2 $\left.{ }^{\wedge} 17\right)$ "), an error will be issued at run-time.

- Binary operation

The following table shows the types of the operands E_{0} and E_{1} that can be used in an expression of the form " E_{0} binary_operator E_{1} ", as well as the corresponding return type. Note that E_{0} and E_{1} must have the same type (otherwise, explicit type conversion using the type conversion operations defined above must be used).

Operators on booleans			
Binary operator	Operands type	Return type	
and, or, xor, implies, equ, $==,!=$	bool	bool	
Operators on natural numbers			
Binary operator	Operands type	Return type	
$+,-, *, /, \uparrow, \%$	nat	nat	
	nat16	nat16	
	nat32	nat32	
$==,!=,<,>,<=,>=$	nat	bool	
	nat16	bool	
	nat32	bool	
Operators on integers			

Binary operator	Operands type	Return type
$+,-, *, /,^{\sim}$	int	int
	int16	int16
	int32	int32
$==,!=,\langle,>,\langle=,>=$	int	bool
	int16	bool
	int32	bool
Operators on characters and strings		
Binary operator	Operands type	Return type
$==,!=,<,>,<=,>=$	char	bool
$==,!=$	string	bool

6.5 Statements

6.5.1 Binding rules

- Deterministic assignment " $X:=E$ "
(IB1) X must be declared in the scope where it is used.
(IB2) $\quad X$ must not be a constant variable.
- Sequential composition " $I_{1} ; I_{2}$ "
(IB3) At most one of I_{1} and I_{2} may contain a signal statement.
- Case selection "case E is $K_{0} \rightarrow I_{0}|\ldots| K_{n} \rightarrow I_{n}\left[\mid\right.$ any -> $\left.I_{n+1}\right]$ end case"
(IB4) Constants K_{0}, \ldots, K_{n} should cover all possible values of the type of E. Otherwise, the clause any $->I_{n+1}$ is mandatory.
- While loop "while E loop I end loop"
(IB5) The statement I must not contain signal statements.
- For loop "for I_{0} while E by I_{1} loop I_{2} end loop"
(IB6) The statements I_{1} and I_{2} must not contain signal statements.
- Signal "on [?] $X_{0}, \ldots,[?] X_{n}->I_{0}$ "
(IB7) $\quad I_{0}$ must not contain a signal statement.
(IB8) A signal statement must have one of the following forms:
- "on $X_{0}, \ldots, X_{n}->I_{0}$ ". In this case:
(IB8.1) Inside an environment definition, X_{0}, \ldots, X_{n} must have been defined as input parameters.
(IB8.2) Inside a medium definition, X_{0}, \ldots, X_{n} must have been defined as receive parameters.
- "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ ". In this case:
(IB8.3) Inside an environment definition, X_{0}, \ldots, X_{n} must have been defined as output parameters.
(IB8.4) Inside a medium definition, X_{0}, \ldots, X_{n} must have been defined as send parameters.

Block invocation " $B i\left(\arg _{0}, \ldots, \arg _{n}\right)$ "
See Section 4.6.

6.5.2 Typing rules

- Deterministic assignment " $X:=E$ "
(IT1) The type of X must be a valid type of E.
- Nondeterministic assignment " X := any type [where E]"
(IT2) type must be an existing type.
(ST3) $\quad X$ must have type type.
(ST4) E must have the type bool.
- Array element assignment $X\left[E_{0}\right]:=E_{1}$
(IT5) Variable X must have an array type T defined as "array [m..n] of type".
(IT6) Expression E_{0} must have either the type nat, the type nat32, or the type nat16.
(IT7) Expression E_{1} must have the type type.
- Record field assignment " $X . f:=E$ "
(IT8) Variable X must have a type T defined as "record $f_{0}:$ type $_{0}, \ldots, f_{n}:$ type $_{n}$ ", such that $f=f_{i}$ for some $i \in 1$..n.
(IT9) Type type i_{i} must be a type of E.
- Conditional "if E_{0} then I_{0} elsif E_{1} then $I_{1} \ldots$ elsif E_{n} then I_{n} else I_{n+1} end if"
(IT10) All expressions in conditional clauses E_{0}, \ldots, E_{n} must have the type bool.
- While loop "while E loop I end loop"
(IT11) Expression E must have the type bool.
- For loop "for I_{0} while E by I_{1} loop I_{2} end loop"
(IT12) Expression E must have the type bool.

6.5.3 Initialization rules

We define triples of the form $S \triangleright I \triangleright S^{\prime}$, where S and S^{\prime} are sets of variables. The meaning of $S \triangleright I \triangleright S^{\prime}$ is that, assuming all variables in S are initialized before executing I, then all variables in S^{\prime} are necessarily initialized after executing I independently of the current valuation of variables. Hence, S^{\prime} is a superset of S. In general, statement I is correctly initialized if under the assumption that all variables in S are initialized, it is possible to build S^{\prime} such that $S \triangleright I \triangleright S^{\prime}$.

- Deterministic assignment

$$
(S I 1) \frac{\operatorname{vars}(E) \subseteq S}{S \triangleright X:=E \triangleright S \cup\{X\}}
$$

- Array update

$$
(S I 2) \quad \frac{X \in S \quad \operatorname{vars}\left(E_{0}\right) \subseteq S}{S \triangleright X\left[E_{0}\right]:=E_{1} \triangleright S}
$$

- Record field update

$$
\text { (SI3) } \frac{X \in S \quad \operatorname{vars}(E) \subseteq S}{S \triangleright X . f:=E \triangleright S}
$$

- Sequential composition

$$
(S I 4) \quad \frac{S \triangleright I_{1} \triangleright S^{\prime} \quad S^{\prime} \triangleright I_{2} \triangleright S^{\prime \prime}}{S \triangleright I_{1} ; I_{2} \triangleright S^{\prime \prime}}
$$

- Conditional
(SI5)

- While loop

$$
(S I 6) \quad \frac{\operatorname{vars}(E) \subseteq S \quad S \triangleright I_{0} \triangleright S^{\prime}}{S \triangleright \text { while } E \text { loop } I_{0} \text { end loop } \triangleright S}
$$

- For loop

$$
(S I 7) \quad \frac{\operatorname{vars}(E) \subseteq S \quad S \triangleright I_{0} \triangleright S_{1} \quad S_{1} \triangleright I_{2} \triangleright S_{2} \quad S_{2} \triangleright I_{1} \triangleright S_{3}}{S \triangleright \text { for } I_{0} \text { while } E \text { by } I_{1} \text { loop } I_{2} \text { end loop } \triangleright S_{1}}
$$

- Case selection
(SI8) $\frac{\operatorname{vars}(E) \subseteq S \quad(\forall i \in 0 . . n+1) S \triangleright I_{i} \triangleright S_{i}}{S \triangleright \text { case } E \text { is } K_{0}->I_{0}|\ldots| K_{n}->I_{n}\left[\mid \text { any }->I_{n+1}\right] \text { end case } \triangleright \bigcap_{i \in 0 . .(n+1)} S_{i}}$
- Nondeterministic choice
(SI9) $\frac{\forall i \in(0 . . n) S \triangleright I_{i} \triangleright S_{i}}{S \triangleright \text { select } I_{0}[] \ldots[] I_{n} \text { end select } \triangleright \bigcap_{i \in 0 . . n} S_{i}}$
- Nondeterministic assignment

$$
(S I 10) \frac{\operatorname{vars}(E) \subseteq S \cup\{X\}}{S \triangleright X:=\operatorname{any} T \text { where } E \triangleright S \cup\{X\}}
$$

- Signal

$$
\begin{array}{cc}
(S I 11) & \frac{S \triangleright I_{0} \triangleright S^{\prime} \quad\left\{X_{0}, \ldots, X_{n}\right\} \subseteq S^{\prime}}{S \triangleright \text { on } ? X_{0}, \ldots, ? X_{n}->I_{0} \triangleright S^{\prime}} \\
(S I 12) & \frac{S \cup\left\{X_{0}, \ldots, X_{n}\right\} \triangleright I_{0} \triangleright S^{\prime}}{S \triangleright \text { on } X_{0}, \ldots, X_{n} \rightarrow I_{0} \triangleright S^{\prime}}
\end{array}
$$

- Block invocation

See Section 6.6.

6.6 Actor allocation and invocation

Actor allocations can have the following forms:

- $B\left[\arg _{0}, \ldots, \arg _{n}\right]$ as $B i$
- $N\left[\arg _{0}, \ldots, \arg _{n}\right]$ as $N i$
- $M\left[\arg _{0}, \ldots, \arg _{n}\right]$ as $M i$

Actor invocations can have the following forms:

- Block invocations inside actors have the form

$$
\operatorname{Bi}\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)}, \ldots, \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right),
$$

i.e., argument lists are separated by commas.

- Block invocations inside systems have either form

$$
\begin{aligned}
& \operatorname{Bi}^{\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)} ; \ldots ; \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right),} \\
& {\left.\operatorname{Bi} \arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)} ; \ldots ; \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right\},}^{\text {, }},
\end{aligned}
$$

or

$$
\begin{aligned}
& \operatorname{Bi}\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)} ; \ldots ; \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right) \\
& \quad\left\{\arg _{(0,0)}^{\prime}, \ldots, \arg _{\left(0, p_{0}\right)}^{\prime} ; \ldots ; \arg _{(q, 0)}^{\prime}, \ldots, \arg _{\left(q, p_{q}\right)}^{\prime}\right\}
\end{aligned}
$$

i.e., argument lists are separated by semicolons.

- Environment invocations (necessarily inside systems) have the form

$$
\operatorname{Ni}\left(\arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)}|\ldots| \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right) \text {, }
$$

i.e., argument lists are separated by pipes.

- Medium invocations (necessarily inside systems) have the form

$$
\operatorname{Mi}\left\{\arg _{(0,0)}, \ldots, \arg _{\left(0, n_{0}\right)}|\ldots| \arg _{(m, 0)}, \ldots, \arg _{\left(m, n_{m}\right)}\right\},
$$

i.e., argument lists are separated by pipes.

6.6.1 Binding rules

(ACB1) Each actor must be defined in the current scope.
(ACB2) Each invoked actor must appear in the allocation list of the caller entity.
(ACB3) Inside an actor, the number of actual parameters passed to each block instance must be equal to the number of formal parameters of the corresponding block definition.
(ACB4) Inside a system, the number of actual channels passed to each actor instance must be equal to the number of formal parameter lists of the corresponding actor definition (respectively, medium definition).
(ACB5) The number of actual parameters in each actual channel passed to an actor instance must be equal to the number of parameters in the corresponding formal parameter list in the actor definition.
(ACB6) Actual parameters at constant position can be either the wildcard "_" or a constant expression " E ".
(ACB7) Inside an actor, actual parameters passed to a block instance at input position can be either the wildcard "_" or an expression " E ".
(ACB8) Inside an actor, actual parameters passed to a block instance at output position can be either the wildcard "?_" or a variable "? X ".
(ACB9) Inside a system, input actual channels passed to a block instance can have one of the following forms:

- " X_{0}, \ldots, X_{n} "
- "any T_{0}, \ldots, any $T_{n} "$
-"_, ..., _"
In the first form, the channel is said to be connected whereas in the two latter forms, the channel is said to be unconnected.
(ACB10) Inside a system, receive actual channels passed to a block instance have the form " X_{0}, \ldots, X_{n} ".
(ACB11) Inside a system, output and send actual channels passed to a block instance can have one of the following forms:
- "? $X_{0}, \ldots, ? X_{n} "$
- "?_, .., ? ?"

In the first form, the channel is said to be connected whereas in the latter form, the channel is said to be unconnected.
(ACB12) Inside a system, input (resp., receive) actual channels passed to an environment (resp., medium) instance can have one of the following forms:

- " X_{0}, \ldots, X_{n} "
-"_, ..., _"
(ACB13) Inside a system, output (resp., send) actual channels passed to an environment (resp., medium) instance can have one of the following forms:
- "? $X_{0}, \ldots, ? X_{n}$ "
- "? $, \ldots, ?$?
(ACB14) In each actor instance, actual parameters at output position (resp., at send position) must be pairwise distinct, except the case of wildcard "?_" which may have several occurrences.

6.6.2 Typing rules

(ACT1) Each actual parameter passed at constant position in an actor invocation must have the same type as the corresponding const parameter in the actor definition.
(ACT2) Each actual parameter passed at input position in an actor invocation must have the same type as the corresponding input parameter in the actor definition.
(ACT3) Each actual parameter passed at output position in an actor invocation must have the same type as the corresponding output parameter in the actor definition.
(ACT4) Each actual parameter passed at receive position in an actor invocation must have the same type as the corresponding receive parameter in the actor definition.
(ACT5) Each actual parameter passed at send position in an actor invocation must have the same type as the corresponding send parameter in the actor definition.

6.6.3 Initialization rules

The following tables summarize possible forms of actual parameters, given the class of the corresponding formal parameter.

(ACI1) Block invocation

		class of formal parameter X				
		const	in	out	receive	send
	-	X must have a default value at definition time. Then, X is assigned its default value.	X must have a default value at definition time. Then, X is assigned its default value.		X must have a default value at definition time. Then, X is assigned its default value.	
	E	X is assigned the value of E.	X is assigned the value of E.		X is assigned the value of E (in this case, E is a variable).	
	$?_{-}$			X must be assigned a value in the body I_{0} of the callee.		X must be assigned a value in the body I_{0} of the callee.
	? Y			X must be assigned a value in the body I_{0} of the callee. Y is assigned the value of X.		X must be assigned a value in the body I_{0} of the callee. Y is assigned the value of X.
	any T		X is assigned an arbitrary value of type T.			

(ACI2) Environment invocation

		class of formal parameter X		
		const	in	out
	-	X must have a default value at definition time. Then, X is assigned its default value.	Statements of the form "on $X_{0}, \ldots, X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$ are never executed.	
	E	X is assigned the value of E.	X is assigned the value of E.	
	?			Statements of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$ are never executed.
	? Y			X must be assigned a value in the body I_{0} of the callee in every statement of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$.
	any T			

(ACI3) Medium invocation

		class of formal parameter X		
		const	receive	send
	-	X must have a default value at definition time. Then, X is assigned its default value.	Statements of the form "on $X_{0}, \ldots, X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$ are never executed.	
	E	X is assigned the value of E.	X is assigned the value of E.	
	?			Statements of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$ are never executed.
	$? Y$			X must be assigned a value in the body I_{0} of the callee in every statement of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ " (if any) such that $X \in\left\{X_{0}, \ldots, X_{n}\right\}$.
	any T			

6.7 Constant

A constant is defined as follows: "constant X : type is E end constant". We define recursively the relation " X depends on Y " where Y is a constant as follows. X depends on Y if both of the following conditions are satisfied:

- $Y \in \operatorname{vars}(E)$
- $Z \in \operatorname{vars}(E)$ and Z depends on Y

6.7.1 Binding rules

(CB1) Circular dependencies in constant definitions are forbidden. If the definition of a constant X depends on a constant Y, then:

- Y must be different from X
- the definition of Y must not depend on X, transitively.
(CB1) E must be a constant expression.
(CB2) type must be an existing type.

6.7.2 Typing rules

(CT1) type must be a valid type of E.

6.8 Block

A block is defined as follows:

```
block_definition ::= block B [[const_param] ]
                        [(inout_param % ;..; inout_paramm)]
                        [{com_param };\ldots;\mp@subsup{com_param n}{n}{}}]\mathrm{ is
                        [ allocate B B [[arg}(0,0),\ldots,\mp@subsup{\operatorname{arg}}{(0,\mp@subsup{p}{0}{})}{}]]\mathrm{ as Bi ,
                        \mp@subsup{B}{q}{}}[[\mp@subsup{\operatorname{arg}}{(q,0)}{},\ldots,\mp@subsup{\operatorname{arg}}{(q,\mp@subsup{p}{q}{})}{}]]\mathrm{ as }B\mp@subsup{i}{q}{}
        [ local_variables}0,\ldots,\mp@subsup{local_variablesl}{l}{}
            I
        end block
        block B [ [const_param] ]
        [(\mp@subsup{\mathrm{ inout_param }}{0}{};\ldots;\mp@subsup{\mathrm{ inout_param }}{m}{})]\mathrm{ is}
    !c string | !lnt string
        end block
```


6.8.1 Binding rules

(BB1) Block identifiers B_{0}, \ldots, B_{q} must be defined in the current scope.
(BB2) Instance identifiers $B i_{0}, \ldots, B i_{q}$ must be pairwise distinct and different from B.
(BB3) Blocks B_{0}, \ldots, B_{q} must be different from B and must not invoke B either directly or transitively. This avoids circular dependencies between blocks.
(BB4) All variables declared in const_param, inout_param $i_{i}(i \in 0 . . m)$, com_param ${ }_{i}(i \in$ $0 . . n)$, and local_variables ${ }_{i}(i \in 0 . . l)$ must be pairwise distinct.
(BB5) The scope of formal parameters declared in const_param is inout_param $_{i}(i \in 0 . . m)$, com_param $_{i}(i \in 0 . . n)$ and the text delimited by the keyword "is" and the keywords "end block".
(BB6) The scope of formal parameters declared in inout_param $_{i}(i \in 0 . . m)$, is com_param ${ }_{i}(i \in$ $0 . . n)$ and the text delimited by the keyword "is" and the keywords "end block".
(BB7) The scope of formal parameters declared in com_ $\operatorname{param}_{i}(i \in 0 . . n)$ is the text delimited by the keyword "is" and the keywords "end block".
(BB8) The scope of variables declared in local_variables ${ }_{i}(i \in 0 . . l)$ is the body I_{0}.
(BB9) A variable declared in const_param must not be assigned a value in the body I_{0}.
(BB10) In the body I_{0}, the following statements are not allowed:

- nondeterministic assignment " X := any type [where E]".
- nondeterministic choice "select I_{1} [] . . [] I_{n} end select".
- signal statements "on $X_{0}, \ldots, X_{n} \rightarrow I_{1}$ " and "on ? $X_{0}, \ldots, ? X_{n}->I_{1}$ ".
(BB11) When using !c pragma, string must be a valid C identifier.
(BB12) When using ! Int pragma, string must be a valid LNT identifier.

6.8.2 Typing rules

(BT1) When using !c pragma, the type of each parameter declared in const_param, and inout_param $_{i} i \in(0 . . m)$ must be a valid C type.
(BT2) When using ! Int pragma, the type of each parameter declared in const_param, and inout_param $i \in(0 . . m)$ must be a valid LNT type.

6.8.3 Initialization rules

(BI1) See Section 6.6 for initialization rules concerning formal parameters.
(BI2) Permanent variables must be initialized at declaration time by constant expressions.
(BI3) A triple $S \triangleright I_{0} \triangleright S^{\prime}$ must hold, where S is the set of all global constant, constant parameters of B, input parameters of B, and local variables of B that have been initialized at declaration time. S^{\prime} must contain all the output parameters of B and send parameters of B.

6.9 Environment

An environment specification has the following form:

```
environment_definition \(::=\) environment \(N\) [ [const_param] ]
                                    \(\left[\right.\) (inout_param_non_init \(|\ldots|\) inout_param_non_init \({ }_{m}\) )] is
    [ allocate \(\left.B_{0}\left[\arg _{(0,0)}, \ldots, \arg _{\left(0, p_{0}\right)}\right]\right]\) as \(B i_{0}\),
                        \({\underset{B}{q}}\left[\left[\arg _{(q, 0)}, \ldots, \arg _{\left(q, p_{q}\right)}\right]\right]\) as \(\left.B i_{q}\right]\)
    [ local_variables \({ }_{0}, \ldots\), local_variables \({ }_{l}\) ]
            \(\bar{I}_{0}\)
    end environment
```


6.9.1 Binding rules

(NB1) Blocks B_{0}, \ldots, B_{q} must be defined in the current scope.
(NB2) Instance identifiers $B i_{0}, \ldots, B i_{q}$ must be pairwise distinct.
(NB3) Variables declared in lists const_param, inout_param_non_init ${ }_{i}(i \in 0 . . m)$, and local_variables $_{i}(i \in 0 . . l)$ must be pairwise distinct.
(NB4) The scope of formal parameters declared in lists const_param is inout_param_non init $_{i}(i \in 0 . . m)$ and the text delimited by the keyword "is" and the keywords "end environment".
(NB5) The scope of formal parameters declared in inout_param_non_init ${ }_{i}(i \in 0 . . m)$ is the text delimited by the keyword "is" and the keywords "end environment".
(NB6) The scope of variables declared in local_variables ${ }_{i}(i \in 0 . . l)$ is the body I_{0}.
(NB7) A variable declared in const_param must not be assigned a value in the body I_{0}.
(NB8) For each signal statement of the form "on $X_{0}, \ldots, X_{n}->I_{1}$ " inside the body I_{0}, a list of the form "in $X_{0}: T_{0}, \ldots, X_{n}: T_{n}$ " should have already been declared among inout_param_non_init ${ }_{i}(i \in 0 . . m)$.
(NB9) For each signal statement of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{1}$ " inside the body I_{0}, a list of the form "out $X_{0}: T_{0}, \ldots, X_{n}: T_{n}$ " should have already been declared among inout_param_non_init ${ }_{i}(i \in 0 . . m)$.

6.9.2 Initialization rules

(NI1) See Section 6.6 for initialization rules concerning formal parameters.
(NI2) Permanent variables must be initialized at declaration time by constant expressions.
(NI3) A triple $S \triangleright I_{0} \triangleright S^{\prime}$ must hold, where S is the set of all global constants, constant parameters of N, and local variables that have been initialized at declaration time. S^{\prime} must contain all the output parameters of N.

6.10 Medium

A medium specification has the following grammar:

$$
\begin{aligned}
& \text { medium_definition }::=\text { medium } M \text { [[const_param]] } \\
& \text { [\{com_-param} \left.{ }_{0}|\ldots| \text { com_param }\right\} \text {] is } \\
& \text { [allocate } \left.B_{0}\left[\arg _{(0,0)}, \ldots, \arg _{\left(0, p_{0}\right)}\right]\right] \text { as } B i_{0} \text {, } \\
& \left.B_{q}\left[\left[\arg _{(q, 0)}, \ldots, \arg _{\left(q, p_{q}\right)}\right]\right] \text { as } B i_{q}\right] \\
& \text { [local_} \bar{I}_{0} \text { variables }_{0}, \ldots \text {, local_variables }{ }_{l} \text {] } \\
& \text { end medium }
\end{aligned}
$$

6.10.1 Binding rules

(MB1) Blocks B_{0}, \ldots, B_{q} must be defined in the current scope.
(MB2) Instance identifiers $B i_{0}, \ldots, B i_{q}$ must be pairwise distinct.
(MB3) Variables declared in const_param, com_param $i_{i}(i \in 0 . . m)$, and local_variables ${ }_{i}$ ($i \in 0 . . l$) must be pairwise distinct.
(MB4) The scope of formal parameters declared in const_param is com_param ${ }_{i}(i \in 0 . . m)$ and the text delimited by the keyword "is" and the keywords "end medium".
(MB5) The scope of formal parameters declared com_param ${ }_{i}(i \in 0 . . m)$ is the text delimited by the keyword "is" and the keywords "end medium".
(MB6) The scope of variables declared in local_variables ${ }_{i}(i \in 0 . . l)$ is I_{0}.
(MB7) A variable declared in const_param must not be assigned a value in the body I_{0}.
(MB8) For each signal statement of the form "on $X_{0}, \ldots, X_{n}->I_{1}$ " inside the body I_{0}, a list of the form "receive $X_{0}: T_{0}, \ldots, X_{n}: T_{n}$ " should have already been declared among com_param $_{i}(i \in 0 . . m)$.
(MB9) For each signal statement of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{1}$ " inside the body I_{0}, a list of the form "send $X_{0}: T_{0}, \ldots, X_{n}: T_{n}$ " should have already been declared among com_param ${ }_{i}(i \in 0 . . m)$.

6.10.2 Initialization rules

(MI1) See Section 6.6 for initialization rules concerning formal parameters.
(MI2) Permanent variables must be initialized at declaration time by constant expressions.
(MI3) A triple $S \triangleright I_{0} \triangleright S^{\prime}$ must hold, where S is the set of all global constants, constant parameters of M, and local variables that have been initialized at declaration time. S^{\prime} must contain all the send parameters of M.

6.11 System

A system specification is given by the following grammar.

$$
\begin{aligned}
& \text { system_definition }::=\operatorname{system} S\left[\left(d e c l _l i s t _n o n _i n i t_{0}\right)\right] \text { is } \\
& \text { allocate } \text { allocation }_{0}, \ldots \text {, allocation } n \\
& \text { [temp decl_list_non_init }{ }_{1} \text {] }
\end{aligned}
$$

6.11.1 Binding rules

(SB1) The scope of formal parameters declared in "decl_list_non_inito" is the text delimited by the keyword "is" and the keywords "end system".
(SB2) Actors allocated in the list " allocation $_{0}, \ldots$, allocation ${ }_{n}$ " must be defined in the current scope.
(SB3) Identifiers of actor instances in the list "allocation ${ }_{0}, \ldots$, allocation n_{n} " must be pairwise distinct.
(SB4) The scope of variables declared in "decl_list_non_init ${ }_{1}$ " is the text delimited by the keyword "network" and the keywords "end system".
(SB5) An actual parameter must be used in exactly one block invocation block_instance i_{i} among the block invocation list. This prohibits direct (synchronous) communication between blocks.
(SB6) At most one input (resp., output) actual channel of a block can be connected to an output (resp., input) actual channel of an environment.
(SB7) At most one receive (resp., send) actual channel of a block can be connected to a send (resp., receive) actual channel of a medium.
(SB8) An input (resp., receive) actual channel of the form " X_{0}, \ldots, X_{n} " passed to a block instance can be connected to an output (resp., send) actual channel of the form "? $X_{0}, \ldots, ? X_{n}$ " passed to an environment (resp., medium) instance.
(SB9) An output (resp., send) actual channel of the form "? $X_{0}, \ldots, ? X_{n}$ " passed to a block instance can be connected to an input (resp., receive) actual channel of the form " X_{0}, \ldots, X_{n} " passed to an environment (resp., medium) instance.
(SB10) If an actual channel of the form " X_{0}, \ldots, X_{n} " does not have a respective actual channel of the form "? $X_{0}, \ldots, ? X_{n}$ " in all other actor invocations, then " X_{0}, \ldots, X_{n} " is semantically equivalent to "any T_{0}, \ldots, any T_{n} " where T_{0}, \ldots, T_{n} are respectively the types of X_{0}, \ldots, X_{n}.
(SB11) Actual parameters at output position (resp., at send position) must be pairwise distinct in an actor invocation, except the case of wildcard "?_" which may have several occurrences.

See Section 6.6 for more static semantic rules concerning actors invocation.

6.12 Program

A program is defined as follows:

$$
\begin{aligned}
\text { program_definition : }:= & \underset{\text { program_P } P\left[\left(P_{0}, \ldots, P_{n}\right)\right] \text { is }}{ } \\
& \text { (type_definition } \\
& \mid \text { constant_definition } \\
& \mid \text { block_definition } \\
& \mid \text { environment_definition } \\
& \mid \text { medium_definition } \\
& \mid \text { system_definition }) * \\
& \text { end program }
\end{aligned}
$$

6.12.1 Binding rules

(PB1) A GRL file must contain exactly one program definition.
(PB2) A program must have the name of the file enclosing it (i.e., a program P must be defined in a file " $P . g r l ")$. Letter case is not significant here.
(PB3) Imported program identifiers P_{0}, \ldots, P_{n} must be pairwise distinct and must be different from P.
(PB4) If a program P imports a program P^{\prime}, P^{\prime} must not import P or any program importing P, transitively. This allows circular dependencies between programs to be avoided.
(PB5) All system, environment, block, medium, type, and constant identifiers defined in P, P_{0}, \ldots, P_{n} must be pairwise distinct.
(PB6) The scope of systems, environments, blocks, mediums, types, and constants is the program enclosing them and all programs importing the program enclosing them transitively.

7 Dynamic Semantics

Dynamic semantics concern the observable behaviour of programs at run time and are described formally in this section using Structural Operational Semantic rules. A GRL program is formally defined in terms of an LTS (Labelled Transition System).

7.1 Notational conventions

This section introduces a set of concepts and conventions that are used to define the formal semantics of the GRL language.

7.1.1 Stores, stacks, and memories

Store

A store, denoted by ρ, is a partial function from variables to values. Square brackets are used to represent a store configuration. For instance, given a set of variables X_{1}, \ldots, X_{n} and a set of values e_{1}, \ldots, e_{n}, the store ρ that maps X_{i} to $e_{i}(\forall i \in 1 . . n)$ is written as [$X_{1} \leftarrow e_{1}, \ldots, X_{n} \leftarrow e_{n}$]. In particular, "[]" is the empty store.
Given a store $\rho=\left[X_{1} \leftarrow e_{1}, \ldots, X_{n} \leftarrow e_{n}\right]$, we write $\operatorname{dom}(\rho)$ for its domain defined by $\operatorname{dom}(\rho)=\left\{X_{1}, \ldots, X_{n}\right\}$.

Store update

The sum of two stores ρ_{1} and ρ_{2}, denoted " $\rho_{1} \oplus \rho_{2}$ ", represents the update of ρ_{1} with respect to ρ_{2}. Formally, it is a partial function defined as below:

$$
\left(\rho_{1} \oplus \rho_{2}\right)(X)= \begin{cases}\rho_{2}(X) & \text { if } X \in \operatorname{dom}\left(\rho_{2}\right) \\ \rho_{1}(X) & \text { if } X \notin \operatorname{dom}\left(\rho_{2}\right) \text { and } X \in \operatorname{dom}\left(\rho_{1}\right) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

The notation $\underset{i \in 1 . . n}{\bigoplus} \rho_{i}$ stands for the sum $\rho_{1} \oplus \ldots \oplus \rho_{n}$.

Stack

The symbol σ is used to denote a sequence of actor instance identifiers. Formally, σ is defined recursively by either the empty sequence ϵ or a non empty sequence of the form " $\sigma^{\prime} . A i$ " where σ^{\prime} is a sequence and $A i$ is an actor instance identifier. The symbol σ will represent the stack of actor instances called up to the current actor instance. Note that such a stack has a bounded size since recursion is not allowed in block, environment, and medium invocations.

For instance, if an environment N invokes a block instance $B i$ and $N i$ is an instance of N, the stack $\sigma_{B i}$ of $B i$ is $\sigma_{B i}=N i$.Bi. If $B i$ invokes itself a block instance $B i^{\prime}$, the stack of $B i^{\prime}$ is $\sigma_{B i^{\prime}}=\sigma_{B i} . B i^{\prime}=N i . B i . B i^{\prime}$.

Memory

A memory is a function from stacks to stores. Given an actor $A i$ executed regarding a stack $\sigma, \mu(\sigma)$ returns the store assigning a value to each permanent variable in $A i$. Given a memory $\mu=\left[\sigma_{1} \leftarrow \rho_{1}, \ldots, \sigma_{n} \leftarrow \rho_{n}\right]$, we write $\operatorname{dom}(\mu)$ for its domain defined by $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$.

Memory update

The sum of two memories μ_{1} and μ_{2}, denoted " $\mu_{1} \oplus \mu_{2}$ ", represents the update of μ_{1} with respect to μ_{2}. Formally, it is a partial function defined as below:

$$
\left(\mu_{1} \oplus \mu_{2}\right)(\sigma)= \begin{cases}\mu_{2}(\sigma) & \text { if } \sigma \in \operatorname{dom}\left(\mu_{2}\right) \\ \mu_{1}(\sigma) & \text { if } \sigma \notin \operatorname{dom}\left(\mu_{2}\right) \text { and } \sigma \in \operatorname{dom}\left(\mu_{1}\right) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

The notation $\underset{i \in 1 \ldots . . n}{\bigoplus} \mu_{i}$ stands for the sum $\mu_{1} \oplus \ldots \oplus \mu_{n}$.

7.1.2 Labelled transition system

An LTS is a quadruple $\left(\mathbf{S}, \mathbf{L}, \rightarrow, s_{0}\right)$ where:

- \mathbf{S} is a set of states.
$-\mathbf{L}$ is a set of labels.
$-\rightarrow \subseteq \mathbf{S} \times \mathbf{L} \times \mathbf{S}$ is the labelled transition relation.
- $s_{0} \in S$ is the initial state.

A labelled transition system is finite if its sets of states and transitions are both finite. We write $s \xrightarrow{\ell} s^{\prime}$ as a shorthand for $\left(s, a, s^{\prime}\right) \in \rightarrow$.

7.2 Dynamic semantics of expressions

The evaluation of expressions is defined by triples of the form " $\{E\} \rho \rightarrow_{\mathrm{e}} e$ " where E is an expression, ρ is a store, and e is a value. This relation means that the expression E returns the value e in the store ρ.

7.2.1 Constant

The expression evaluation of a literal constant K returns the value denoted by K.

$$
\overline{\{K\} \rho \rightarrow_{\mathrm{e}} K}
$$

7.2.2 Variable

The result of the expression evaluation of a variable X is its value in the current store.

$$
\overline{\{X\} \rho \rightarrow_{\mathrm{e}} \rho(X)}
$$

7.2.3 Predefined function call

The evaluation result of the expression " $F\left(E_{0}, \ldots, E_{n}\right)$ " is the returned value of calling the predefined function with the values of E_{0}, \ldots, E_{n}. Predefined functions are standard, we do not provide here their formal semantics.

$$
\frac{(\forall i \in 0 . . n)\left\{E_{i}\right\} \rho \rightarrow_{\mathrm{e}} e_{i}}{\left\{F\left(E_{0}, \ldots, E_{n}\right)\right\} \rho \rightarrow_{\mathrm{e}} F\left(e_{0}, \ldots, e_{n}\right)}
$$

Record field access and array element access are considered as predefined functions.

7.3 Dynamic semantics of statements

The execution of statements is defined by septuples of the form " $\{I\} \sigma, \rho, \mu \xrightarrow{\ell}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime \prime}$ " where I is a statement, σ is a stack, ρ and ρ^{\prime} are stores, μ and μ^{\prime} are memories, and ℓ is a label that has one of the following forms:

- ϵ means that the execution of I has terminated normally.
- X_{0}, \ldots, X_{n} means that the execution of I has terminated and executed a signal emission statement of the form "on $X_{0}, \ldots, X_{n}->I_{0}$ ".
- ? $\left\{X_{0}, \ldots, X_{n}\right\}$ means that the execution of I has terminated and executed a signal emission statement of the form "on ? $X_{0}, \ldots, ? X_{n}->I_{0}$ ".
ρ represents the current store, σ represents the stack of the actor instance enclosing the statement, μ represents the store assigning to permanent variables of the actor instance their values in the last execution cycle of the actor (and their initialization values in first cycle). This relation means that the execution of the statement I in the store ρ and the memory μ is terminated normally producing the updated store ρ^{\prime} and the updated memory μ^{\prime}.

We assume that after binding analysis, each variable has been assigned a distinct name, thus preventing variable shadowing (i.e., a variable declared within a certain scope has the same name as a variable declared in an outer scope) to occur.

7.3.1 Null

The null statement terminates normally without updating the store.

$$
\overline{\{\text { null }\} \sigma, \rho, \mu} \stackrel{\epsilon}{\rightarrow}_{\mathrm{i}_{\mathrm{i}} \rho, \mu}
$$

7.3.2 Sequential composition

The execution of the statement " $I_{1} ; I_{2}$ " starts by executing the statement I_{1} and updating the store, then I_{2} is executed in the store updated by I_{1}.

$$
\begin{gathered}
\left\{I_{1}\right\} \sigma, \rho, \mu{\xrightarrow{\ell_{1}}}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime} \\
\left\{I_{2}\right\} \sigma, \rho^{\prime}, \mu^{\prime}{\xrightarrow{\ell_{2}}}_{\mathrm{i}} \rho^{\prime \prime}, \mu^{\prime \prime} \\
\left\{I_{1} ; I_{2}\right\} \sigma, \rho, \mu \xrightarrow{\ell_{1}+\ell_{2}}{ }_{\mathrm{i}} \rho^{\prime \prime}, \mu^{\prime \prime}
\end{gathered}
$$

where $\epsilon+\ell=\ell+\epsilon=\ell$ for every label ℓ. Note that at least one of the labels ℓ_{1} and ℓ_{2} must be equal to ϵ (See rule IB3 in Section 6.5.1).

7.3.3 Assignment

The execution of an assignment statement " $X:=E$ " updates the store by mapping the value of E to the assigned variable X.

$$
\frac{\{E\} \rho \rightarrow_{\mathrm{e}} e}{\{X:=E\} \sigma, \rho, \mu \xrightarrow{\epsilon} \rightarrow_{\mathrm{i}} \rho \oplus[X \leftarrow e], \mu}
$$

7.3.4 Array element assignment

The evaluation of the expression " $X\left[E_{0}\right]:=E_{1}$ " where X has the type T such as " T : array $[m . . n]$ of $T^{\prime \prime \prime}$ is given by the following rule:

$$
\frac{\left\{E_{0}\right\} \rho \rightarrow_{\mathrm{e}} e_{0} \quad e_{0} \in[m . . n] \quad\left\{E_{1}\right\} \rho \rightarrow_{\mathrm{e}} e_{1}}{\left\{X\left[E_{0}\right]:=E_{1}\right\} \sigma, \rho, \mu \xrightarrow{\epsilon} \rightarrow_{\mathrm{i}} \rho \oplus\left[X \leftarrow \operatorname{update}\left(\rho(X), e_{0}, e_{1}\right)\right], \mu}
$$

where update $\left(e_{0}, e_{1}, e_{2}\right)$ denotes a mathematical function which assigns the value e_{2} to the element of the array e_{0} placed at position e_{1}.

7.3.5 While loop

The semantics of the statement "while E loop I end loop" are:

$$
\begin{gathered}
\frac{\{E\} \rho \rightarrow_{\mathrm{e}} \text { false }}{\left\{\text { while } E \text { loop } I \text { end loop } \sigma, \rho, \mu \stackrel{\rightarrow_{\mathrm{i}}}{\mathrm{i}}, \mu\right.} \\
\frac{\{E\} \rho \rightarrow_{\mathrm{e}} \text { true }}{\{I ; \text { while } E \text { loop } I \text { end loop }\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}} \\
\{\text { while } E \text { loop } I \text { end loop }\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}}^{\rho^{\prime}, \mu^{\prime}}
\end{gathered}
$$

7.3.6 For loop

The semantics of "for I_{0} while E by I_{1} loop I_{2} end loop" are equivalent to the semantics of the following statement:

$$
\begin{aligned}
& I_{0} ; \\
& \text { while } E \text { loop } \\
& I_{2} ; I_{1} \\
& \text { end loop }
\end{aligned}
$$

7.3.7 Conditional

The semantics of the statement "if E_{0} then $I_{0} \ldots$ elsif E_{n} then I_{n} else I_{n+1} end if" are:

$$
\begin{aligned}
&(\exists i \in 0 . . n) \forall j \in 0 . .(i-1) \quad\left\{E_{j}\right\} \rho \rightarrow_{\mathrm{e}} \text { false } \\
&\left\{E_{i}\right\} \rho \rightarrow_{\mathrm{e}} \text { true } \\
&\left\{I_{i}\right\} \sigma, \rho, \mu \xrightarrow{\ell}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime} \\
&\left\{\text { if } E_{0} \text { then } I_{0} \ldots \text { elsif } E_{n} \text { then } I_{n} \text { else } I_{n+1} \text { end if }\right\} \sigma, \rho, \mu \xrightarrow{\ell}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}
\end{aligned}
$$

$$
\frac{(\forall k \in 0 . . n)\left\{E_{k}\right\} \rho \rightarrow_{\mathrm{e}} \text { false } \quad\left\{I_{n+1}\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}}^{\rho^{\prime}}, \mu^{\prime}}{\left\{\text { if } E_{0} \text { then } I_{0} \ldots \text { elsif } E_{n} \text { then } I_{n} \text { else } I_{n+1} \text { end if }\right\} \sigma, \rho, \mu \xrightarrow{\ell}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}
$$

Note that if the clause "else I_{n+1} " is absent, then the if statement is semantically equivalent to: "if E_{0} then $I_{0} \ldots$ elsif E_{n} then I_{n} else null end if".

7.3.8 Nondeterministic assignment

The semantics of the statement " $X:=$ any T where E " are:

$$
\begin{gathered}
e \in T \\
\{E\} \rho \oplus[X \leftarrow e] \rightarrow_{\mathrm{e}} \text { true } \\
\{X:=\text { any } T \text { where } E\} \sigma, \rho, \mu \xrightarrow{\epsilon} \rightarrow_{\mathrm{i}} \rho \oplus[X \leftarrow e], \mu
\end{gathered}
$$

7.3.9 Nondeterministic choice

The semantics of the statement "select $I_{0} \quad[] \ldots[] I_{n}$ end select" are:

$$
\frac{(\exists k \in 0 . . n) \quad\left\{I_{k}\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}{\left\{\text { select } I_{0}[] \ldots[] I_{n} \text { end select }\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}
$$

7.3.10 Case selection

The semantics of the statement "case E is $K_{0} \rightarrow I_{0}|\ldots| K_{n} \rightarrow I_{n} \mid$ any $->I_{n+1}$ end case" are:

$$
\begin{aligned}
& \frac{\{E\} \rho \rightarrow_{\mathrm{e}} e \quad(\exists i \in 0 . . n)(\forall j \in 0 . .(i-1)) K_{j} \neq e, K_{i}=e \quad\left\{I_{i}\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}{\left\{\text { case } E \text { is } K_{0} \rightarrow I_{0}|\ldots| K_{n} \rightarrow I_{n} \mid \text { any } \rightarrow I_{n+1} \text { end case }\right\} \sigma, \rho, \mu \xrightarrow{\ell}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}} \\
& \frac{\{E\} \rho \rightarrow_{\mathrm{e}} e \quad(\forall i \in 0 . . n) K_{i} \neq e \quad\left\{I_{n+1}\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}{\left\{\text { case } E \text { is } K_{0} \rightarrow I_{0}|\ldots| K_{n} \rightarrow I_{n} \mid \text { any } \rightarrow I_{n+1} \text { end case }\right\} \sigma, \rho, \mu \xrightarrow[\rightarrow]{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}
\end{aligned}
$$

Note that if the clause "any $->I_{n+1}$ " is absent, static semantics ensure that K_{0}, \ldots, K_{n} cover all possible values of the type of expression E (see rule IB4 in Section 6.5.1). In this case, the "case" statement is semantically equivalent to:

$$
\text { case } E \text { is } K_{0} \rightarrow I_{0}|\ldots| K_{n} \rightarrow I_{n} \mid \text { any }->\text { null end case }
$$

7.3.11 Signal

A signal statement has one of the following forms:

$$
\begin{aligned}
& \text { on } X_{0}, \ldots, X_{n}->I_{0} \\
& \text { on } ? X_{0}, \ldots, ? X_{n}->I_{0}
\end{aligned}
$$

A signal statement terminates normally by executing the statement I_{0} in the current store and producing a label. Note that static semantics ensure that nested signal statements are forbidden (i.e., I_{0} must not contain a signal statement, see rule IB5 in Section 6.5.1).

$$
\begin{gathered}
\frac{\left\{X_{0}, \ldots, X_{n}\right\} \subseteq \operatorname{dom}(\rho) \quad\left\{I_{0}\right\} \sigma, \rho, \mu \stackrel{\epsilon}{\mathrm{i}}_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}}{\left\{\text { on } X_{0}, \ldots, X_{n}->I_{0}\right\} \sigma, \rho, \mu \xrightarrow{X_{0}, \ldots, X_{n}}{ }_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}} \\
\left\{I_{0}\right\} \sigma, \rho, \mu \rightarrow_{\mathrm{i}} \rho^{\prime}, \mu^{\prime} \\
\left\{\text { on } ? X_{0}, \ldots, ? X_{n}->I_{0}\right\} \sigma, \rho, \mu \xrightarrow{? X_{0}, \ldots, ? X_{n}}{ }_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}
\end{gathered}
$$

7.3.12 Block invocation

Conventions. In the remainder of this section, we adopt the following notational conventions:

- a stands for arg.
- vd stands for either var_decl or var_decl_non_init.
- dl stands for either decl_list or decl_list_non_init.
- al stands for either " $a_{0} \ldots a_{n}$ ".
- block (respectively, environment, medium) stands for the non-terminal block_instance (respectively, environment_instance, medium_instance).
- $\rho_{\text {global }}$ stands for the store assigning values to global constants.

Definitions. We define the following auxiliary functions.

- Initial store: the function init maps each variable in a declaration list to its respective initialization value, if any.

$$
\begin{aligned}
\operatorname{init}\left(\left\langle v d_{0}, \ldots, v d_{n}\right\rangle, \rho\right) & =\operatorname{init}\left(v d_{0}, \rho\right) \oplus \ldots \oplus \operatorname{init}\left(v d_{n}, \rho\right) \\
\operatorname{init}\left(X_{0}, \ldots, X_{m}: \text { type, } \rho\right) & =[] \\
\operatorname{init}\left(X_{0}, \ldots, X_{m}: \text { type }:=E, \rho\right) & =\left[X_{0} \leftarrow e, \ldots, X_{m} \leftarrow e\right] \text { where }\{E\} \rho \rightarrow_{\mathrm{e}} e
\end{aligned}
$$

- Variable list: the function vars returns the ordered list of variable identifiers in either a variable declaration list, a formal parameter declaration, or an actual parameter list. The symbol ϵ denotes the empty list. Operator ++ denotes list concatenation.

$$
\begin{aligned}
\operatorname{vars}\left(v d_{0}, \ldots, v d_{n}\right) & =\operatorname{vars}\left(v d_{0}\right)++\ldots++\operatorname{vars}\left(v d_{n}\right) \\
\operatorname{vars}\left(X_{0}, \ldots, X_{m}: \text { type }\right) & =\left\langle X_{0}, \ldots, X_{m}\right\rangle \\
\operatorname{vars}\left(X_{0}, \ldots, X_{m}: \text { type }:=E\right) & =\left\langle X_{0}, \ldots, X_{m}\right\rangle \\
\operatorname{vars}\left(X_{0}, \ldots, X_{m}\right) & =\left\langle X_{0}, \ldots, X_{m}\right\rangle \\
\operatorname{vars}\left(? X_{0}, \ldots, ? X_{m}\right) & =\left\langle X_{0}, \ldots, X_{m}\right\rangle \\
\operatorname{vars}\left(__{-}, \ldots,-\right) & =\epsilon \\
\operatorname{vars}\left(?_{-}, \ldots, ?_{-}\right) & =\epsilon
\end{aligned}
$$

- Type list: the function types returns the ordered list of types in a variable declaration list.

$$
\begin{aligned}
\operatorname{types}\left(v d_{0}, \ldots, v d_{n}\right) & =\text { types }\left(v d_{0}\right)++\ldots+\text { types }\left(v d_{n}\right) \\
\operatorname{types}\left(X_{0}, \ldots, X_{m}: \text { type }\right) & =\text { type } e^{m+1} \\
\operatorname{types}\left(X_{0}, \ldots, X_{m}: \text { type }:=E\right) & =\text { type }^{m+1}
\end{aligned}
$$

- Parameter assignment: the function assign maps input and receive formal parameters to their respective actual values.

$$
\begin{aligned}
\operatorname{assign}\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle,\left\langle X_{0}, \ldots, X_{n}\right\rangle, \rho\right) & =\operatorname{assign}\left(a_{0}, X_{0}, \rho\right) \oplus \ldots \oplus \operatorname{assign}\left(a_{n}, X_{n}, \rho\right) \\
\operatorname{assign}(-X, \rho) & =\{[]\} \\
\operatorname{assign}(E, X, \rho) & =\left\{[X \leftarrow e] \mid \operatorname{vars}(E) \subseteq \operatorname{dom}(\rho) \wedge\{E\} \rho \rightarrow_{\mathrm{e}} e\right\} \\
\operatorname{assign}(\operatorname{any} T, X, \rho) & =\{[X \leftarrow e] \mid e \in T\}
\end{aligned}
$$

- Arbitrary assignment: the function any assigns arbitrary values to parameters.

$$
\operatorname{any}\left(\left\langle X_{0}, \ldots, X_{n}\right\rangle,\left\langle T_{0}, \ldots, T_{n}\right\rangle, \rho\right)=\left\{\left[X_{0} \leftarrow e_{0}, \ldots, X_{n} \leftarrow e_{n}\right] \mid(\forall i \in 0 . . n) e_{i} \in T_{i}\right\}
$$

- Parameter update: the function update maps output and send actual parameters to the values of their respective formal parameters.

$$
\begin{aligned}
\text { update }\left(\left\langle a_{0}, \ldots, a_{n}\right\rangle,\left\langle X_{1}, \ldots, X_{n}\right\rangle, \rho\right) & =\operatorname{update}\left(a_{0}, X_{0}, \rho\right) \oplus \ldots \oplus \operatorname{update}\left(a_{n}, X_{n}, \rho\right) \\
\text { update }\left(?_{-}, X, \rho\right) & =[] \\
\text { update(?Y,X, }) & = \begin{cases}{[Y \leftarrow \rho(X)]} & \text { if } X \in \operatorname{dom}(\rho) \\
{[]} & \text { otherwise }\end{cases}
\end{aligned}
$$

- Store construction

$$
\operatorname{store}(d l, \sigma, \rho, \mu)= \begin{cases}\mu(\sigma) & \text { if } \sigma \in \operatorname{dom}(\mu) \\ \operatorname{init}(d l, \rho) & \text { otherwise }\end{cases}
$$

- Memory construction (not defined means equal to ϵ)

$$
\operatorname{memory}\left(\sigma, \mu, \mu^{\prime}\right)= \begin{cases}\mu^{\prime} & \text { if } \mu^{\prime} \neq \epsilon \\ \mu(\sigma) & \text { if } \mu^{\prime}=\epsilon \text { and } \sigma \in \operatorname{dom}(\mu) \\ {[]} & \text { otherwise }\end{cases}
$$

- Label printing: the function label defines the label that will be visible on the generated LTS and that corresponds to the execution of one block together with its connected actors. Parameters defined in the system profile will be visible on the label whereas other variables will be hidden (i.e., replaced by underscores). Labels are written in teletypefont in the sequel.

$$
\begin{aligned}
& \operatorname{label}\left(B i\left(a l_{0}, \ldots, a l_{m}\right)\left\{a l_{0}^{\prime}, \ldots, a l_{n}^{\prime}\right\}, \rho\right)=\operatorname{Bi}\left(\operatorname{label}\left(\left\langle a l_{0}, \ldots, a l_{m}\right\rangle, \rho\right)\right) \\
&\left\{\operatorname{label}\left(\left\langle a l_{0}^{\prime}, \ldots, a l_{n}^{\prime}\right\rangle, \rho\right)\right\} \\
& \operatorname{label}\left(\left\langle a l_{0}, \ldots, a l_{m}\right\rangle, \rho\right)=\operatorname{label}\left(a l_{0}, \rho\right) ; \ldots ; \operatorname{label}\left(a l_{m}, \rho\right) \\
& \operatorname{label}\left(\left\langle a_{0}, \ldots, a_{m}\right\rangle, \rho\right)=\operatorname{label}\left(a_{0}, \rho\right), \ldots, \operatorname{label}\left(a_{m}, \rho\right) \\
& \operatorname{label}(X, \rho)= \begin{cases}\rho(X) & \text { if } X \in \operatorname{vars}\left(d l_{s y s}\right) \\
- & \text { otherwise }\end{cases} \\
& \operatorname{label}(\operatorname{any} T, \rho)=- \\
& \operatorname{label}(-, \rho)=- \\
& \operatorname{label}(? X, \rho)= \begin{cases}? \rho(X) & \text { if } X \in \operatorname{vars}\left(d l_{\text {sys }}\right) \\
?_{-} & \text {otherwise }\end{cases} \\
& \operatorname{label}\left(?_{-}, \rho\right)=?_{-}
\end{aligned}
$$

- Store restriction: the operator . allows to return subsets of stores.

$$
\rho \cdot\left\langle X_{0}, \ldots, X_{n}\right\rangle=\left[X_{0} \leftarrow \rho\left(X_{0}\right), \ldots, X_{n} \leftarrow \rho\left(X_{n}\right)\right] \text { where }\left\{X_{0}, \ldots, X_{n}\right\} \subseteq \operatorname{dom}(\rho)
$$

Construction of the store $\rho_{\text {global }}$. After binding analysis, global constants are assumed to be ordered as follows. If X_{1}, \ldots, X_{n} is the set of global constants defined respectively with expressions E_{1}, \ldots, E_{n}, then for each i in $1 . .(n-1)$ and for each j in $(i+1) . . n$ we must have $\operatorname{vars}\left(E_{j}\right) \subseteq\left\{X_{1}, \ldots, X_{i}\right\}$ (i.e., X_{j} must not belong to $\operatorname{vars}\left(E_{i}\right)$).

The store $\rho_{\text {global }}$ is constructed by assigning each global constant X_{i} the evaluation of its expression E_{i} in the store ρ_{i-1}, ρ_{0} being the empty store.

$$
\begin{aligned}
\rho_{0} & =[] \\
\rho_{i} & \in \operatorname{assign}\left(E_{i}, X_{i}, \rho_{i-1}\right) \quad \forall i \in 1 . . n \\
\rho_{\text {global }} & =\bigoplus_{i \in 1 \ldots n} \rho_{i}
\end{aligned}
$$

Block semantics. The behaviour of a block is the following. The block consumes its input parameters, computes in zero time, then produces its output parameters. These steps are assumed to be performed in zero-delay following the standard abstraction in synchronous programming. From one execution cycle to another, the set of permanent variables preserve their values constituting the memory of the block.

Inside a block, the scheduling of nested subblocks and interconnections between subblocks are inherently specified by the order in which the subblocks are invoked. For instance, if the body I_{0} of a block B contains the call sequence " $B i_{0} ; B i_{1} ; B i_{2}$ " (where $B i_{0}, B i_{1}$, and $B i_{2}$ are block instances), $B i_{0}, B i_{1}$, and $B i_{2}$ are executed in this specific order. More specifically, we assume that blocks invoked inside an actor are defined as follows.

```
block \(B\) [const \(d l_{\text {const }}\) ] (in \(d l_{i n_{0}} ; \ldots\);in \(d l_{i n_{m}}\); out \(d l_{\text {out }_{0}} ; \ldots\);out \(d l_{\text {out }_{n}}\) ) is
    allocate ...
    perm \(d l_{\text {perm }}\),
    temp \(d l_{\text {temp }}\)
        \(I_{0}\)
end block
```

Block B is allocated as follows: $B\left[a l_{\text {const }}\right]$ as $B i$ (where $a l_{\text {const }}$ is the actual parameter list that corresponds to the declaration list $d l_{\text {const }}$), and $B i$ can then be invoked as follows:

$$
\left.\operatorname{Bi}^{\left(a l_{i n_{0}}\right.} ; \ldots ; a l_{{i n_{m}}} ; a l_{\text {out }_{0}} ; \ldots ; a l_{\text {out }_{n}}\right)
$$

. The semantic rule of block invocation is the following:

$$
\begin{aligned}
& \rho_{\text {const }} \in \operatorname{init}\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right) \\
& \rho_{\text {input }} \in \underset{i \in 0 . . m}{\bigoplus} \text { init }\left(d l_{i_{i}}, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \oplus \underset{i \in 0 . . m}{\bigoplus} \operatorname{assign}\left(a l_{i_{i}}, \operatorname{vars}\left(d l_{i_{n}}\right), \rho\right) \\
& \rho_{\text {perm }}=\operatorname{store}\left(d l_{\text {perm }}, \sigma . B i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right) \\
& \rho_{\text {temp }}=\operatorname{init}\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }}\right) \\
& \rho_{\text {var }}=\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& \left\{I_{0}\right\} \sigma . B i, \rho_{v a r}, \mu \xrightarrow{\epsilon}_{i} \rho_{\text {body }}, \mu_{\text {body }} \\
& \rho^{\prime}=\rho \oplus \bigoplus \text { update }\left(a l_{o u t_{i}}, \operatorname{vars}\left(d l_{o u t_{i}}\right), \rho_{\text {body }}\right) \\
& \mu^{\prime}=\mu_{\text {body }} \oplus\left[\sigma . B i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right. \\
& \left\{B i\left(a l_{i_{0}} ; \ldots ; a l_{i_{m}} ; a l_{o u t_{0}} ; \ldots ; a l_{o u t_{n}}\right\} \sigma, \rho, \mu \xrightarrow{\epsilon}{ }_{\mathrm{i}} \rho^{\prime}, \mu^{\prime}\right.
\end{aligned}
$$

where stores $\rho_{\text {var }}$ and ρ^{\prime} and memory μ^{\prime} are constructed as follows.
In a first step, the block invocation starts by constructing the store $\rho_{\text {var }}$, in which Bi should compute its body I_{0}. The store $\rho_{\text {var }}$ is built by composing intermediate stores $\rho_{\text {const }}, \rho_{\text {input }}$, $\rho_{\text {perm }}$, and $\rho_{\text {temp }}$ as follows:

1. Store $\rho_{\text {const }}$ starts by assigning default values to initialized constant formal parameters using function init. Constant parameters depend only on global constants, whose values are available in the store $\rho_{\text {global }}$. Then, the store $\rho_{\text {const }}$ updates the formal parameters with respective values of actual parameters, using function assign in the store ρ of the caller.
2. Store $\rho_{\text {input }}$ starts by assigning default values to initialized input formal parameters using function init. Input parameters depend on global constants and constant parameters of the current block. The values of those parameters are available in the store $\rho_{\text {global }} \oplus \rho_{\text {const }}$. Then, the store $\rho_{\text {input }}$ updates the formal parameters with respective values of actual parameters, using function assign in the store ρ of the caller.
3. Store $\rho_{\text {perm }}$ assigns to permanent variables their respective values stored in the memory μ, except in the first execution cycle of $B i$ where permanent variables are assigned their default values using function init. Permanent variables depend on both global constants and constant parameters of the current block. The values of those parameters are available in the store $\rho_{\text {global }} \oplus \rho_{\text {const }}$.
4. Store $\rho_{\text {temp }}$ assigns default values to temporary variables. Temporary variables depend on global constants, constant parameters, and input parameters of the current block. The values of those parameters are available in the store $\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }}$.
5. Store $\rho_{v a r}$ is obtained by the sum of stores $\rho_{\text {global }}, \rho_{\text {const }}, \rho_{\text {input }}, \rho_{\text {perm }}$, and $\rho_{\text {temp }}$.

In a second step, the body I_{0} is evaluated in the store $\rho_{\text {var }}$ and the current memory μ, producing an updated store $\rho_{b o d y}$ and an updated memory $\rho_{b o d y}$. Note that the values of permanent variables of subblocks invoked inside I_{0} has been updated in the memory $\mu_{\text {body }}$.

Finally, the execution terminates normally by updating the current store ρ with the values of output actual parameters using function update in the store $\rho_{\text {body }}$, and by updating the current memory with the values of permanent variables of $N i$ available in the store $\rho_{b o d y}$, the values of permanent variables of subblocks invoked inside I_{0} being updated in memory $\mu_{b o d y}$.

7.4 Dynamic semantics of systems

The execution of an actor invocation is defined by a septuple of the form " $\{$ instance $\} \sigma, \rho, \mu \xrightarrow{\ell}$ c $\rho^{\prime}, \mu^{\prime \prime \prime}$ where instance denote an actor invocation, σ is the actor instance stack, ρ and ρ^{\prime} are stores, μ and μ^{\prime} are memories, and ℓ is a label.

7.4.1 Block invocation

We assume that a block invoked inside a system is defined as follows.

block B [const $d l_{\text {const }}$] (in $d l_{i_{n}} ; \ldots$ in $d l_{i_{n}} ;$ out $d l_{o u t_{0}} ; \ldots ;$ out $d l_{\text {out }}$)

$\left\{\right.$ receive $d l_{\text {rec }}^{o} ; \ldots ;$ receive $d l_{\text {rec }_{p}} ;$ send $d l_{\text {send }_{o}} ; \ldots$;send $\left.d l_{\text {send }_{q}}\right\}$ is

```
    allocate ...
    perm dlperm,
    temp dl temp
        I
end block
```

Block B is allocated as follows: $B\left[a l_{\text {const }}\right]$ as $B i$ (where $a l_{\text {const }}$ is the actual parameter list that corresponds to the declaration list $d l_{\text {const }}$), and $B i$ can then be invoked as follows:

$$
\text { Bi }\left(a l_{\text {in }_{0}} ; \ldots ; a l_{i_{m}} ; a l_{\text {out }_{0}} ; \ldots ; a l_{\text {out }_{n}}\right)\left\{a l_{\text {rec }_{0}} ; \ldots ; a l_{\text {rec }_{p}} ; a l_{\text {send }_{0}} ; \ldots ; a l_{\text {send }_{q}}\right\}
$$

The semantics of blocks invoked inside a system are slightly different from those of blocks invoked inside an actor because of the occurrence of send and receive parameters. Receive (resp. send) parameters are computed similarly to input (resp. output) parameters, except that receive parameters can not have default values. The semantic rule of block invocation is the following.
where stores $\rho_{v a r}$ and ρ^{\prime} and memory μ^{\prime} are constructed as follows.

```
\(\rho_{\text {const }} \in \quad\) init \(\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right)\)
\(\rho_{\text {inrec }} \in \bigoplus_{i \in 0 . . m}\) init \(\left(d l_{i n_{i}}, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \oplus \bigoplus_{i \in 0 . . m} \operatorname{assign}\left(a l_{i n_{i}}, \operatorname{vars}\left(d l_{i n_{i}}\right), \rho\right)\)
    \(\oplus \bigoplus_{i \in 0 \ldots p}^{\bigoplus} \operatorname{assign}\left(a l_{r e c_{i}}, \operatorname{vars}\left(d l_{r e c_{i}}\right), \rho\right)\)
\(\rho_{\text {perm }}=\operatorname{store}\left(d l_{\text {perm }}, \sigma . B i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right)\)
\(\rho_{\text {temp }}=\operatorname{init}\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {inrec }}\right)\)
    \(\rho_{\text {var }}=\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {inrec }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }}\)
    \(\rho^{\prime}=\rho \oplus \bigoplus_{i \in 0 . . n}\) update \(\left(a l_{o u t_{i}}, \operatorname{vars}\left(d l_{o u t_{i}}\right), \rho_{\text {body }}\right)\)
    \(\oplus \bigoplus_{i \in 0 \ldots}\) update \(\left(a l_{\text {send }_{i}}, \operatorname{vars}\left(d l_{\text {send }_{i}}\right), \rho_{\text {body }}\right)\)
    \(\mu^{\prime}=\mu_{\text {body }} \oplus\left[\sigma . B i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right]\)
```


7.4.2 Environment invocation

We assume that an environment is defined as follows.

```
environment \(N\) [const \(d l_{\text {const }}\) ] (in \(d l_{i n_{0}}|\ldots|\) in \(d l_{i_{n_{m}}} \mid\) out \(d l_{o u t_{o}}|\ldots|\) out \(d l_{o u t_{n}}\) ) is
    allocate ...
    perm \(d l_{\text {perm }}\),
    temp \(d l_{\text {temp }}\)
        \(I_{0}\)
end environment
```

Environment N is allocated as follows: N [const $\left.a l_{\text {const }}\right]$ as $N i$, and $N i$ can then be invoked as follows: $N i\left(a l_{i n_{0}}|\ldots| a l_{i n_{m}}\left|a l_{o u t_{0}}\right| \ldots \mid a l_{o u t_{n}}\right)$.

The execution of environment invocation is guided by signals. It starts by the selection of one actual channel among those passed to the environment. The selection is forced by the call context, i.e., reception or sending of messages from or to a block. If the actual channel is connected (i.e., the set of its variables is not empty), then the execution continues by checking whether the body of the environment defines a signal statement corresponding to the channel under consideration, in which case the body I_{0} is executed in the current store and the current memory and terminates normally by producing an updated store, and updating memory, and passing a label to the context. In such a case, both the actual channel and the environment are called activated. If the channel is not connected or the body I_{0} does not contain a signal statement corresponding to the actual channel, then I_{0} is not executed.

For the sake of accuracy, we distinguish the semantic rules of environment invocation when an input channel is activated and when an output channel is activated since computations on stores are not the same.

Activation of input channels. The semantic rule of environment invocation over the activation of an input actual channel is the following.

$$
\begin{gathered}
i \in 0 . . m \quad \operatorname{vars}\left(a l_{i n_{i}}\right) \neq \epsilon \\
\left\{I_{0}\right\} \sigma . N i, \rho_{\text {var }}, \mu \xrightarrow{{\operatorname{vars}\left(d l_{i n_{i}}\right)}^{\mathrm{i}}} \rho_{\text {body }, \mu_{\text {body }}}^{{\operatorname{vars}\left(a l_{i i_{i}}\right)}} \mathrm{c} \rho, \mu^{\prime}
\end{gathered}
$$

where store $\rho_{v a r}$ and memory μ^{\prime} are constructed as follows.

1. Store $\rho_{\text {const }}$ is constructed in the same way as in block invocation.

$$
\rho_{\text {const }} \in \quad \operatorname{init}\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right)
$$

2. Input parameters of environments have no default values (See rule ACI2 in section 6.6.3). Store $\rho_{\text {input }}$ assigns the values of actual parameters of the activated channels to their respective formal parameters, using function assign in the store ρ of the caller.

$$
\rho_{\text {input }} \in \operatorname{assign}\left(a l_{i n_{i}}, \operatorname{vars}\left(d l_{i n_{i}}\right), \rho\right)
$$

3. Stores $\rho_{\text {perm }}, \rho_{\text {temp }}$, and $\rho_{v a r}$ are constructed in the same way as in block invocation.

$$
\begin{aligned}
\rho_{\text {perm }} & =\text { store }\left(d l_{\text {perm }}, \sigma . N i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right) \\
\rho_{\text {temp }} & =\text { init }\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }}\right) \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }}
\end{aligned}
$$

4. No output parameters are produced when an input channel is activated then the store ρ is not updated. Memory μ^{\prime} updates the current memory with values of permanent variables of all $N i$ subblocks available in the memory $\mu_{b o d y}$ and values of permanent variables of $N i$ available in the store $\rho_{b o d y}$.

$$
\mu^{\prime}=\mu_{\text {body }} \oplus\left[\sigma . N i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right]
$$

The execution of the body I_{0} terminates by passing a label to its context ($N i$ invocation) containing the list of variables of the executed signal. The execution of $N i$ invocation terminates by passing a label to its context (the caller of $N i$) containing the list of actual parameters of the activated channel.

Activation of output channels. The semantic rule of environment invocation over the activation of an output actual channel is the following.
where stores $\rho_{v a r}$ and ρ^{\prime}, and memory μ^{\prime} are constructed as follows.

1. Store $\rho_{\text {const }}$ is constructed as follows.

$$
\rho_{\text {const }} \in \operatorname{init}\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right)
$$

2. There is no input actual parameters available when an output channel is activated.
3. Stores $\rho_{\text {perm }}, \rho_{\text {temp }}$, and $\rho_{\text {var }}$ are constructed as follows.

$$
\begin{aligned}
\rho_{\text {perm }} & =\text { store }\left(d l_{\text {perm }}, \sigma . N i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right) \\
\rho_{\text {temp }} & =\text { init }\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }}
\end{aligned}
$$

4. Store ρ^{\prime} updates the current store ρ with the values of parameters of the activated channel available in the store $\rho_{\text {body }}$. Memory μ^{\prime} updates the current memory with the values of permanent variables of $N i$ available in the store $\rho_{b o d y}$, the values of permanent variables of subblocks invoked inside I_{0} being updated in memory $\mu_{\text {body }}$.

$$
\left.\left.\begin{array}{rl}
\rho^{\prime} & =\rho \oplus \text { update }\left(a l_{\text {out }_{i}}, \operatorname{vars}\left(d l_{\text {out }}^{i}\right.\right.
\end{array}\right), \rho_{\text {body }}\right), ~\left(\mu_{\text {body }} \oplus\left[\sigma . N i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right] .\right.
$$

The execution of the body I_{0} terminates by passing a label to its context ($N i$ invocation) containing the list of variables of the executed signal preceded by a question mark. The execution of $N i$ invocation terminates by passing a label to its context (the caller of $N i$) containing the list of actual parameters of the activated channel preceded by a question mark.

7.4.3 Medium invocation

Medium invocation has exactly the same semantics as environment invocation, except that input parameters (resp., output parameters) are replaced by receive parameters (resp., send parameters). We assume that a medium is defined as follows.

```
medium \(M\) [const \(\left.d l_{\text {const }}\right]\left\{\right.\) receive \(d l_{\text {reco }}|\ldots|\) receive \(d l_{r_{\text {ec }}^{p}} \mid\) send \(d l_{\text {send }_{0}}|\ldots|\) send \(\left.d l_{\text {send }_{q}}\right\}\) is
    allocate ...
    perm \(d l_{\text {perm }}\),
    temp \(d l_{\text {temp }}\)
        \(I_{0}\)
end medium
```

Medium M is allocated as follows: M [const $a l_{\text {const }}$] as $M i$, and $M i$ can then be invoked as follows: $\operatorname{Mi}\left(a l_{\text {rec }_{0}}|\ldots| a l_{\text {rec }_{p}}\left|a l_{\text {send }_{0}}\right| \ldots \mid a l_{\text {send }_{q}}\right)$.

Activation of receive channels. The semantic rule of medium invocation over the activation of a receive actual channel is the following.
where.

$$
\begin{aligned}
& \rho_{\text {const }} \in \operatorname{init}\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right) \\
& \rho_{\text {rec }} \in \operatorname{assign}\left(a l_{\text {rec }_{i}}, \operatorname{vars}\left(d l_{\text {rec }_{i}}\right), \rho\right) \\
& \rho_{\text {perm }}=\text { store }\left(d l_{\text {perm }}, \sigma . M i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right) \\
& \rho_{\text {temp }}=\operatorname{init}\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {rec }}\right) \\
& \rho_{\text {var }}=\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {rec }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& \mu^{\prime}=\mu_{\text {body }} \oplus\left[\sigma . M i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right]
\end{aligned}
$$

Activation of send channels. The semantic rule of medium invocation over the activation of a send actual channel is the following.

$$
\left.\left.\left.\begin{array}{c}
i \in 0 . . q \quad \operatorname{vars}\left(a l_{\text {send }_{i}}\right) \neq \epsilon \\
\left\{I_{0}\right\} \sigma . M i, \rho_{\text {var }}, \mu \xrightarrow{?\left\{\text { vars } \left(d l_{\text {send }}^{i}\right.\right.}
\end{array}\right)\right\},{ }_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}\right]
$$

where.

$$
\begin{aligned}
\rho_{\text {const }} & \in \text { init }\left(d l_{\text {const }}, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(a l_{\text {const }}, \operatorname{vars}\left(d l_{\text {const }}\right), \rho\right) \\
\rho_{\text {perm }} & =\text { store }\left(d l_{\text {perm }}, \sigma . M i, \rho_{\text {global }} \oplus \rho_{\text {const }}, \mu\right) \\
\rho_{\text {temp }} & =\text { init }\left(d l_{\text {temp }}, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
\rho^{\prime} & =\rho \oplus \operatorname{update}\left(\text { al } l_{\text {send }}, \operatorname{vars}\left(d l_{\text {send }}\right), \rho_{\text {body }}\right) \\
\mu^{\prime} & =\mu_{\text {body }} \oplus\left[\sigma . M i \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}\left(d l_{\text {perm }}\right)\right]
\end{aligned}
$$

7.4.4 Dynamic semantics of system

The execution of a system is governed by the parallel execution of the block instances invoked by the system. It is defined by triples of the form " $\mu \stackrel{\ell}{\rightarrow}{ }_{s} \mu^{\prime \prime}$ " where μ and μ^{\prime} are memories, and ℓ is a label of the system. The LTS of the system is constructed as follows. States are represented by the memories of all actors invoked inside the system, the initial state being the empty memory. Labels are represented by block invocations and have the form "Bi $\left(a l_{i n_{0}} ; \ldots ; a l_{\text {in }_{m}} ; a l_{\text {out }_{0}} ; \ldots ; a l_{o u t_{n}}\right)\left\{a l_{\text {rec }}^{0} \boldsymbol{} ; \ldots ; a l_{\text {rec }_{p}} ; a l_{\text {send }_{0}} ; \ldots ; a l_{\text {send }_{q}}\right\}$ ". Transition
 execution of block $B i$ together with its connected environments and mediums in the memory μ
produces the memory μ^{\prime} updating the memory of $B i$ and the memories of its connected actors. More specifically, we assume that a system is defined as follows.

```
system S (d\mp@subsup{l}{\mathrm{ sys }}{})\mathrm{ is}
    allocate ...
    temp dl temp
    network
        block}\mp@subsup{0}{0}{\prime},\ldots,\mp@subsup{\mathrm{ block}}{r}{
    constrainedby
        environment }0,\ldots,\mp@subsup{environments}{s}{
    connectedby
        medium
end system
```

where:

$$
\begin{aligned}
& \text { block }::=B i\left(a l_{i n_{0}} ; \ldots ; a l_{\text {in }_{m}} ; a l_{\text {out }_{0}} ; \ldots ; a l_{\text {out }_{n}}\right)\left\{a l_{\text {rec }}^{0} \boldsymbol{} ; \ldots ; a l_{\text {rec }}^{p} \boldsymbol{} ; a l_{\text {send }_{0}} ; \ldots ; a l_{\text {send }_{q}}\right\} \\
& \text { environment }::=N i\left(a l_{i n_{0}}|\ldots| a l_{i_{m}}\left|a l_{\text {out }_{0}}\right| \ldots \mid a l_{\text {out }_{n}}\right) \\
& \text { medium }::=M i\left\{a l_{\text {rec }_{0}}|\ldots| a l_{\text {rec }_{p}}\left|a l_{\text {send }_{0}}\right| \ldots \mid a l_{\text {send }_{q}}\right\}
\end{aligned}
$$

System execution is focused around block executions. A block has an active behaviour: it executes cyclically (indefinitely) and at each cycle activates its connected environments and mediums, which have passive behaviour. Given a block invocation of the form

$$
B i_{i}\left(a l_{i_{0}} ; \ldots ; a l_{\text {in }_{m}} ; a l_{\text {out }_{0}} ; \ldots ; a l_{\text {out }_{n}}\right)\left\{a l_{\text {rec }_{0}} ; \ldots ; a l_{\text {rec }_{p}} ; a l_{\text {send }_{0}} ; \ldots ; a l_{\text {send }_{q}}\right\}
$$

, we define the following symbols.

Connections identification.

- \mathcal{I}_{i} (for input) (resp., \mathcal{O}_{i} (for output)) denotes the set of indexes of environments that have output (resp., input) actual channels connected to input (resp., output) actual channels of block $B i_{i}$. This set contains at most one element.
- \mathcal{R}_{i} (for receive) (resp., \mathcal{S}_{i} (for send)) denotes the set of indexes of mediums that have send (resp., receive) actual channels connected to receive (resp., send) actual channels of block $B i_{i}$. This set contains at most one element.
- \mathcal{A}_{i} denotes the set of indexes of input and receive actual channels of block $B i_{i}$ of the form " X_{0}, \ldots, X_{n} " that are not connected to any output actual channel of environments of S and send actual channel of mediums of S, respectively.

$$
\begin{aligned}
\mathcal{A}_{i}= & \left\{k \in\left\{i n_{0}, \ldots, i n_{m}\right\} \mid \operatorname{vars}\left(a l_{k}\right) \neq \epsilon \wedge \forall j \in 0 . . s \quad j \notin \mathcal{I}_{i}\right\} \\
& \cup\left\{k \in\left\{r e c_{0}, \ldots, r e c_{p}\right\} \mid \operatorname{vars}\left(a l_{k}\right) \neq \epsilon \wedge \forall j \in 0 . . t \quad j \notin \mathcal{R}_{i}\right\}
\end{aligned}
$$

Labels construction.

- $\operatorname{link}\left(j, \mathcal{I}_{i}\right)$ where $j \in \mathcal{I}_{i}$ (resp., $\operatorname{link}\left(j, \mathcal{O}_{i}\right)$ where $\left.j \in \mathcal{O}_{i}\right)$ denotes the set of variables used to connect an input (resp., output) actual channel of block $B i_{i}$ to an output (resp., input) actual channel of environment $N i_{j}$.
- $\operatorname{link}\left(j, \mathcal{R}_{i}\right)$ where $j \in \mathcal{R}_{i}$ (resp., $\operatorname{link}\left(j, \mathcal{S}_{i}\right)$ where $\left.j \in \mathcal{S}_{i}\right)$ denotes the set of variables used to connect a receive (resp., send) actual channel of block $B i_{i}$ to a send (resp., receive) actual channel of medium $M i_{j}$.

The semantic rule of the system is the following.
$i \in 0 . . r$
$\left(\forall j \in \mathcal{R}_{i}\right) \quad\left\{\right.$ medium $\left._{j}\right\} \epsilon,[], \mu_{\mathcal{R}_{j}} \xrightarrow{?\left\{\operatorname{link}\left(j, \mathcal{R}_{i}\right)\right\}} c \rho_{\mathcal{R}_{j}}, \mu_{\mathcal{R}_{j}}^{\prime}$
$\left(\forall j \in \mathcal{I}_{i}\right) \quad\left\{\right.$ environment $\left.j_{j}\right\} \epsilon,[], \mu_{\mathcal{I}_{j}} \xrightarrow{?\left\{\operatorname{link}\left(j, \mathcal{I}_{i}\right)\right\}} c \rho_{\mathcal{I}_{j}}, \mu_{\mathcal{I}_{j}}^{\prime}$
$\left\{\right.$ block $\left._{i}\right\} \epsilon, \rho_{i}, \mu_{i} \xrightarrow{\epsilon} c \rho_{i}^{\prime}, \mu_{i}^{\prime}$
$\left(\forall j \in \mathcal{O}_{i}\right) \quad\left\{\right.$ environment $\left.{ }_{j}\right\} \epsilon, \rho_{\mathcal{O}_{j}}, \mu_{\mathcal{O}_{j}} \xrightarrow{\operatorname{link}\left(j, \mathcal{O}_{i}\right)}{ }_{c} \rho_{\mathcal{O}_{j}}, \mu_{\mathcal{O}_{j}}^{\prime}$
$\xrightarrow{\left(\forall j \in \mathcal{S}_{i}\right) \quad\left\{\text { medium }_{j}\right\} \epsilon, \rho_{\mathcal{S}_{j}}, \mu_{\mathcal{S}_{j}} \xrightarrow{\text { label }\left(\text { block }_{i}, \rho_{i}^{\prime}\right)}{ }_{\mathrm{s}} \mu_{\mathrm{s}}}$
$i \in 0 . . r$
$\mu_{\mathcal{R}_{j}}=\operatorname{memory}\left(M i_{j}, \mu, \epsilon\right)$
$(\forall j \in \mathcal{R}) \quad\left\{\right.$ medium $\left._{j}\right\} \epsilon,[], \mu_{\mathcal{R}_{j}} \xrightarrow{?\{\operatorname{link}(j, \mathcal{R})\}} c \rho_{\mathcal{R}_{j}}, \mu_{\mathcal{R}_{j}}^{\prime}$
$\mu_{\mathcal{I}_{j}}=\operatorname{memory}\left(N i_{j}, \mu, \epsilon\right)$
$(\forall j \in \mathcal{I}) \quad\left\{\right.$ environment $\left._{j}\right\} \epsilon,[], \mu_{\mathcal{I}_{j}} \xrightarrow{?\{\operatorname{link}(j, \mathcal{I})\}} c \rho_{\mathcal{I}_{j}}, \mu_{\mathcal{I}_{j}}^{\prime}$
$\rho_{i}=\bigoplus_{j \in \mathcal{A}_{i}}$ any $\left(a l_{j}, \operatorname{types}\left(d l_{j}\right),[]\right) \oplus \underset{j \in \mathcal{R}_{i}}{\bigoplus} \rho_{\mathcal{R}_{j}} \oplus \bigoplus_{j \in \mathcal{I}_{i}} \rho_{\mathcal{I}_{j}}$
$\mu_{i}=\operatorname{memory}\left(B i_{i}, \mu, \epsilon\right)$
$\left\{\right.$ block $\left._{i}\right\} \epsilon, \rho_{i}, \mu_{i} \xrightarrow[\rightarrow]{\epsilon}_{c} \rho_{i}^{\prime}, \mu_{i}^{\prime}$
$\rho_{\mathcal{O}_{j}}=\rho_{i}^{\prime} \cdot \operatorname{link}\left(j, \mathcal{O}_{i}\right) \quad \mu_{\mathcal{O}_{j}}=\operatorname{memory}\left(N i_{i}, \mu, \mu_{\mathcal{I}_{j}}^{\prime}\right)$
$(\forall j \in \mathcal{O}) \quad\left\{\right.$ environment $\left._{j}\right\} \epsilon, \rho_{\mathcal{O}_{j}}, \mu_{\mathcal{O}_{j}} \xrightarrow{\operatorname{link}(j, \mathcal{O})} c \rho_{\mathcal{O}_{j}}, \mu_{\mathcal{O}_{j}}^{\prime}$
$\rho_{\mathcal{S}_{j}}=\rho_{i}^{\prime} \cdot \operatorname{link}\left(j, \mathcal{S}_{i}\right) \quad \mu_{\mathcal{S}_{j}}=\operatorname{memory}\left(M i, \mu, \mu_{\mathcal{S}_{j}}^{\prime}\right)$
$(\forall j \in \mathcal{S}) \quad\left\{\right.$ medium $\left._{j}\right\} \epsilon, \rho_{\mathcal{S}_{j}}, \mu_{\mathcal{S}_{j}} \xrightarrow{\operatorname{link(j,\mathcal {S})}} c \rho_{\mathcal{S}_{j}}, \mu_{\mathcal{S}_{j}}^{\prime}$
$\mu_{s}=\mu \oplus \bigoplus_{j \in \mathcal{R}_{i}} \mu_{\mathcal{R}_{j}}^{\prime} \oplus \bigoplus_{j \in \mathcal{I}_{i}} \mu_{\mathcal{I}_{j}}^{\prime} \oplus \mu_{i}^{\prime} \oplus \bigoplus_{j \in \mathcal{O}_{i}} \mu_{\mathcal{O}_{j}}^{\prime} \oplus \bigoplus_{j \in \mathcal{S}_{i}} \mu_{\mathcal{S}_{j}}^{\prime}$

$i \in 0 . . r$
$(\forall j \in 0 . . s) \quad \operatorname{link}(i, j, R) \neq \epsilon \quad\left\{\operatorname{medium}_{j}\right\} \epsilon, \quad[], \operatorname{memory}\left(M i_{j}, \mu, \epsilon\right) \xrightarrow{?\{\operatorname{link}(i, j, R)\}} c \rho_{R_{j}}, \mu_{R_{j}}^{\prime}$
$(\forall j \in 0 . . t) \quad \operatorname{link}(i, j, I) \neq \epsilon \quad\left\{\right.$ environment $\left._{j}\right\} \epsilon,[], \operatorname{memory}\left(N i_{j}, \mu, \epsilon\right) \xrightarrow{?\{\operatorname{link}(i, j, I)\}}{ }_{c} \rho_{I_{j}}, \mu_{I_{j}}^{\prime}$ $\rho_{i}=\bigoplus_{j \in \mathcal{A}_{i}}$ any $\left(a l_{j}, \operatorname{types}\left(d l_{j}\right),[]\right) \oplus \underset{j \in \mathcal{R}_{i}}{ } \rho_{\mathcal{R}_{j}} \oplus \bigoplus_{j \in \mathcal{I}_{i}} \rho_{\mathcal{I}_{j}}$
$\left\{\right.$ block $\left._{i}\right\} \epsilon, \rho_{i}, \operatorname{memory}\left(B i_{i}, \mu, \epsilon\right) \xrightarrow{\epsilon_{c}} \rho_{i}^{\prime}, \mu_{i}^{\prime}$
$(\forall j \in 0 . . t) \quad \operatorname{link}(i, j, O) \neq \epsilon \quad\left\{\right.$ environment $\left._{j}\right\} \epsilon, \rho_{i}^{\prime} \cdot \operatorname{link}(i, j, O), \operatorname{memory}\left(N i_{i}, \mu, \mu_{\mathcal{I}_{j}}^{\prime}\right) \xrightarrow{\operatorname{link}(i, j, O)}{ }_{c} \rho_{\mathcal{O}_{j}}, \mu_{\mathcal{O}_{j}}^{\prime}$
$(\forall j \in 0 . . s) \quad \operatorname{link}(i, j, S) \neq \epsilon \quad\left\{\right.$ medium $\left._{j}\right\} \epsilon, \rho_{\mathcal{S}_{j}}, \operatorname{memory}\left(M i_{i}, \mu, \mu_{\mathcal{R}_{j}}^{\prime}\right) \xrightarrow{\operatorname{link}(i, j, S)}{ }_{c} \rho_{\mathcal{S}_{j}}, \mu_{\mathcal{S}_{j}}^{\prime}$
$\mu_{s}=\mu \oplus \bigoplus_{j \in \mathcal{R}_{i}} \mu_{\mathcal{R}_{j}}^{\prime} \oplus \bigoplus_{j \in \mathcal{I}_{i}} \mu_{\mathcal{I}_{j}}^{\prime} \oplus \mu_{i}^{\prime} \oplus \bigoplus_{j \in \mathcal{O}_{i}} \mu_{\mathcal{O}_{j}}^{\prime} \oplus \bigoplus_{j \in \mathcal{S}_{i}} \mu_{\mathcal{S}_{j}}^{\prime}$
$\bigoplus_{j \in \mathcal{R}_{i}} \mu_{j \in \mathcal{I}_{i}} \quad{ }_{j \in \mathcal{O}_{i}} \mu_{j} \quad \bigoplus_{j \in \mathcal{S}_{i}} \mu_{\mathcal{S}_{j}}$
$\mu \xrightarrow{\text { label }\left(\text { block }_{i}, \rho_{i}^{\prime}\right)}{ }_{\mathrm{s}} \mu_{s}$
Intermediate stores and memories are constructed as follows.

1. Store $\rho_{a n y}$ assigns arbitrary values to parameters of input and receive actual channels of block $B i_{i}(i \in 0 . . r)$ whose indexes are in \mathcal{A}_{i}.

$$
\rho_{\text {any }} \in \bigoplus_{j \in \mathcal{A}_{i}} \text { any }\left(a l_{j}, \operatorname{types}\left(d l_{j}\right),[]\right)
$$

2. Each medium, whose index is in \mathcal{R}_{i}, is invoked in the empty store [] and the memory $\mu_{\mathcal{R}_{j}}$ corresponding to the current memory of medium $M i_{j}$ if any and to the empty memory otherwise. The execution terminates by producing an intermediate store $\rho_{\mathcal{R}_{j}}$, an intermediate memory $\mu_{\mathcal{R}_{j}}^{\prime}$, and passing a label containing the values of the activated channel to the context.

$$
\mu_{\mathcal{R}_{j}}=\operatorname{memory}\left(M i_{j}, \mu, \epsilon\right)
$$

Medium invocation over the activation of a send channel requires only the values of constant actual parameters to execute. Those parameters are necessarily constant expressions then depend only on global constants at system level (this is not the case at actor level, e.g., a block having a constant parameter can depend on constant parameters of the caller actor). Hence, the empty store is sufficient as input store in medium execution.
3. Each environment, whose index is in \mathcal{I}_{i}, is invoked in the empty store [] and the memory $\mu_{\mathcal{I}_{j}}$ corresponding to the current memory of environment $N i_{j}$ if any and to the empty memory otherwise. The execution terminates by producing an intermediate store $\rho_{\mathcal{I}_{j}}$, an intermediate memory $\mu_{\mathcal{I}_{j}}^{\prime}$, and passing a label containing the values of the activated channel to the context.

$$
\mu_{\mathcal{I}_{j}}=\operatorname{memory}\left(N i_{j}, \mu, \epsilon\right)
$$

4. The block $B i_{i}$ is then invoked in the store ρ_{i} assigning values to input and receive actual channels of $B i_{i}$ and in the memory μ_{i} corresponding to the current memory of $B i_{i}$ if any and to the empty memory otherwise. The execution terminates by producing the store ρ_{i}^{\prime} and the memory μ_{i}^{\prime}.

$$
\begin{aligned}
\rho_{i} & =\rho_{a n y} \oplus \underset{j \in \mathcal{R}_{i}}{ } \rho_{\mathcal{R}_{j}} \oplus \bigoplus_{j \in \mathcal{I}_{i}} \rho_{\mathcal{I}_{j}} \\
\mu_{i} & =\operatorname{memory}\left(B i_{i}, \mu, \epsilon\right)
\end{aligned}
$$

5. Each environment, whose index is in \mathcal{O}_{i}, is invoked in the store $\rho_{\mathcal{O}_{j}}$ and the memory $\mu_{\mathcal{O}_{j}}$ keeping unchanged the store $\rho_{\mathcal{O}_{j}}$, producing an intermediate memory $\mu_{\mathcal{O}_{j}}^{\prime}$, and passing a label containing the values of the activated channel to the context.
Environment invocation over the activation of an input channel requires the values of constant actual parameters and of the parameters of the activated channel. The latter parameters are produced by the execution of the block $B i_{i}$ and are available in the store ρ_{i}^{\prime}.
If the environment has already been invoked over the activation of an output channel connected to block $B i_{i}$ (i.e., $j \in \mathcal{I}_{i}$), then the updated values of permanent variables are available in the memory $\mu_{\mathcal{I}_{j}}^{\prime}$ produced by the first execution of the environment triggered by the current execution cycle of $B i_{i}$. If the environment has been invoked in a previous execution of the block $B i_{i}$ or of another block, this means that the updated values of permanent variables are available in the current memory μ. Otherwise, the environment is invoked in the empty memory [].

$$
\begin{aligned}
\rho_{\mathcal{O}_{j}} & =\rho_{i}^{\prime} \cdot \operatorname{link}\left(j, \mathcal{O}_{i}\right) \\
\mu_{\mathcal{O}_{j}} & =\operatorname{memory}\left(N i_{i}, \mu, \mu_{\mathcal{I}_{j}}^{\prime}\right)
\end{aligned}
$$

6. Each medium, whose index is in \mathcal{S}_{i}, is invoked in the store $\rho_{\mathcal{S}_{j}}$ and the memory $\mu_{\mathcal{S}_{j}}$ keeping unchanged the store $\rho_{\mathcal{S}_{j}}$, producing an intermediate memory $\mu_{\mathcal{S}_{j}}^{\prime}$, and passing a label containing the values of the activated channel to the context.

$$
\begin{aligned}
\rho_{\mathcal{S}_{j}} & =\rho_{i}^{\prime} \cdot \operatorname{link}\left(j, \mathcal{S}_{i}\right) \\
\mu_{\mathcal{S}_{j}} & =\operatorname{memory}\left(M i_{i}, \mu, \mu_{\mathcal{R}_{j}}^{\prime}\right)
\end{aligned}
$$

7. The execution of the system terminates by producing the store ρ_{i}^{\prime} (stores $\rho_{\mathcal{O}_{j}}$ and $\rho_{\mathcal{S}_{j}}$ being included in ρ_{i}^{\prime}), updating the current memory μ with the separate (and independent) memories of all invoked actors, and passing a label to the context.

$$
\mu_{s}=\mu \oplus \underset{j \in \mathcal{R}_{i}}{\bigoplus_{\mathcal{R}_{j}}} \mu_{j \in \mathcal{I}_{i}}^{\prime} \mu_{\mathcal{I}_{j}}^{\prime} \oplus \mu_{i}^{\prime} \oplus \underset{j \in \mathcal{O}_{i}}{\bigoplus} \mu_{\mathcal{O}_{j}}^{\prime} \oplus \bigoplus_{j \in \mathcal{S}_{i}} \mu_{\mathcal{S}_{j}}^{\prime}
$$

The semantics of the whole network are obtained by interleaving all possible executions of $B i_{0}$, $\ldots, B i_{p}$.

7.5 Dynamic semantics of programs

A GRL program can import other programs. The semantics of a program are defined as the semantics of a particular system in the program or in an imported program. Such a system is called the main system of the program. By default, the main system of the program is a system named "Main". Alternatively, tools will provide the user with the possibility to specify another system as the main system using command-line options.

8 Basic Examples

This section presents some examples of systems modeled in GRL.

8.1 Independent blocks with independent environments

In this example, environment $N i_{1}$ (respectively $N i_{2}$) ensures that the input X_{1} of block $B i_{1}$ (respectively the input X_{2} of block $B i_{2}$) is always larger than the output Y_{1} (respectively Y_{2}) at the previous cycle.

8.2 Independent blocks with shared environments

In this example:

- Environment $N i_{1}$ ensures that $B i_{1}$ and $B i_{2}$ are executed alternately.
- Environment $N i_{2}$ ensures that the inputs X_{1} and X_{2} of blocks $B i_{1}$ and $B i_{2}$ (respectively) can vary (increase or decrease) by at most one unit at each cycle.


```
system \(S\left(X_{1}, X_{2}:\right.\) nat, \(Y_{1}, Y_{2}:\) nat \()\) is
    allocate \(B\) as \(B i_{1}, B\) as \(B i_{2}\),
                \(N_{1}\) as \(N i_{1}, N_{2}\) as \(N i_{2}\)
    network
        \(B i_{1}\left(X_{1} ; ? Y_{1}\right)\),
        \(B i_{2}\left(X_{2} ; ? Y_{2}\right)\)
    constrainedby
        \(N i_{1}\left(Y_{1} \mid Y_{2}\right)\),
        \(N i_{2}\left(? X_{1} \mid ? X_{2}\right)\)
end system
block \(B\) (in \(X\) : nat; out \(Y\) :nat) is
    perm last \(Y\) :nat := 0
        \(Y:=X+1 ;\) last \(Y:=Y\)
end block
environment \(N_{1}\) (in \(Y_{1}:\) nat \(\mid\) in \(Y_{2}:\) nat) is
    perm last \(_{1}\) : bool := false
        if \(\operatorname{not}\left(\right.\) last \(\left._{1}\right)\) then
            on \(Y_{1}\)-> last \(_{1}\) := true
        else
            on \(Y_{2}->\) last \(_{1}\) := false
        end if
end environment
environment \(N_{2}\) (out \(X_{1}\) : nat \(\mid\) out \(X_{2}\) : nat) is
    perm last \(_{1}\), last \(_{2}:\) nat \(:=0\)
        select
            on ? \(X_{2}->X_{2}:=\) any nat where \(X_{2}+1>=\) last \(_{2}\) and \(X_{2}<=\) last \(_{2}+1\);
                last \(_{2}:=X_{2}\)
            on ? \(X_{1}\)-> \(X_{1}\) := any nat where \(X_{1}+1>=\) last \(_{1}\) and \(X_{1}<=\) last \(_{1}+1\);
                    last \(_{1}:=X_{1}\)
        end select
end environment
```


8.3 Network of blocks communicating via a medium

In this example:

- In every execution cycle, block $B i_{1}$ receives from the medium $M i$ the value of its output Y_{1} in the last execution cycle. Then, after computing, $B i_{1}$ sends the new value of Y_{1} to Mi.
- In every execution cycle, block $B i_{2}$ receives from the medium $M i$ the sum of the output Y_{1} in the previous execution cycles. Then, after computing, $B i_{2}$ sends a boolean signal to allow or not $M i$ to initlize the sum.


```
system S ( }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{}:\mathrm{ nat, Y , , Y2:nat) is
    allocate B1 as Bi, , B2 [128] as Bi2,
        M as Mi
    network
        Bi
```



```
    connectedby
        Mi{\mp@subsup{W}{1}{}|\mp@subsup{W}{2}{}|?\mp@subsup{Z}{1}{}|?\mp@subsup{Z}{2}{\prime}}
end system
```

block B_{1} (in X_{1} : nat; out Y_{1} : nat) \{receive Z_{1} : nat; send W_{1} : nat is
$Y_{1}:=X_{1}+Z_{1}$;
$W_{1}:=Y_{1}$
end block
block B_{2} [const seuil:nat] (in X_{2} : nat; out Y_{2} :nat)
\{receive Z_{2} : nat; send W_{2} :bool\} is
$Y_{2}:=X_{2} ;$
if ($Z_{2}>=$ seuil) then
W_{2} := true
else
W_{2} := false
end if
end block
medium M \{receive W_{1} : nat | receive W_{2} : nat | send Z_{1} : nat | send Z_{2} :nat\} is
perm buf $_{1}, b u f_{2}: n a t:=0$
select
on W_{1}-> buf f_{1} := W_{1};
$b u f_{2}:=b u f_{2}+W_{1}$
[]
on ? Z_{1}-> $Z_{1}:=$ buf $_{1}$;
buf $_{1}:=0$
[]
on W_{2}-> if $\left(W_{2}==\right.$ true $)$ then
buf $2:=0$
end if
[]
on ? Z_{2}-> $Z_{2}:=b u f_{2}$
end select
end medium

9 Conclusion

In this report, we have defined the syntax and semantics of the GRL language designed to fulfill the need of a general-purpose modelling approach to provide industrial design process with formal verification to ensure the correctness of GALS systems construction. GRL programs draw an abstraction of those systems behaviour by means of finite state machines or labelled transition systems (LTSs, for short). The behaviour of each actor of the system (block, environment, medium) is modeled separately and then all models are composed in parallel, either in a flat or hierarchical manner.

A parser of the language has already been developed using Syntax [7] and LNT technology [11] for compiler construction. LNT is also an input language of CADP [12], a widely spread toolbox for concurrent systems construction, which offers a large range of functionalities, including interactive simulation, formal verification, and testing. A translator from GRL to LNT has been designed and implemented but is out of the scope of this report. This way, LNT models can be generated and system properties can be verified using efficient verification methods such as model-checking, equivalence-checking, and compositional verification.

References

[1] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive Systems: Modelling, Specification and Verification. Cambridge University Press, New York, NY, USA, 2007.
[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
[3] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive processes. In Mary S. Van Deusen and Bernard Lang, editors, POPL, pages 85-98. ACM Press, 1993.
[4] Gérard Berry and Georges Gonthier. The esterel synchronous programming language: design, semantics, implementation. Sci. Comput. Program., 19(2):87-152, November 1992.
[5] Gérard Berry and Ellen Sentovich. Multiclock esterel. 2144:110-125, 2001.
[6] David S. Bormann. Asynchronous wrapper for heterogeneous systems. In Proceedings of the 1997 International Conference on Computer Design (ICCD '97), ICCD '97, pages 307-, Washington, DC, USA, 1997. IEEE Computer Society.
[7] Pierre Boullier, Philippe Deschamps, and Benoit Sagot. Le Sysème SYNTAX Analyse Déterministe Manuel d'Utilisation et de Mise en Oeuvre Sous UNIX. Paris, France, 2008.
[8] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang, Christine McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding. Reference Manual of the LOTOS NT to LOTOS Translator. Grenoble, France, 2013.
[9] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe. Towards Performance Prediction of Compositional Models in Industrial GALS Designs. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, Lecture Notes in Computer Science, Grenoble, France, 2009. Saddek Bensalem, Springer Verlag.
[10] Frédéric Doucet, Massimiliano Menarini, Ingolf H. Kr'uger, Rajesh K. Gupta, and JeanPierre Talpin. A verification approach for gals integration of synchronous components. Electr. Notes Theor. Comput. Sci., 146(2):105-131, 2006.
[11] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler construction using lotos nt. In R. Nigel Horspool, editor, CC, volume 2304 of Lecture Notes in Computer Science, pages 9-13. Springer, 2002.
[12] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes. International Journal on Software Tools for Technology Transfer, 15(2):89-107, 2013.
[13] Hubert Garavel, Gwen Salaun, and Wendelin Serwe. On the Semantics of Communicating Hardware Processes and their Translation into LOTOS for the Verification of Asynchronous Circuits with CADP. Science of Computer Programming, 2009.
[14] Hubert Garavel and Damien Thivolle. Verification of gals systems by combining synchronous languages and process calculi. In Corina S. Pasareanu, editor, SPIN, volume 5578 of Lecture Notes in Computer Science, pages 241-260. Springer, 2009.
[15] Nicolas Halbwachs and Louis Mandel. Simulation and verification of asynchronous systems by means of a synchronous model. In Proceedings of the Sixth International Conference on Application of Concurrency to System Design, ACSD '06, pages 3-14, Washington, DC, USA, 2006. IEEE Computer Society.
[16] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-677, August 1978.
[17] Fatma Jebali, Frédéric Lang, and Radu Mateescu. GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems. Rapport de recherche, April 2014.
[18] Etienne Lantreibecq and Wendelin Serwe. Model Checking and Co-simulation of a Dynamic Task Dispatcher Circuit using CADP. In Formal Methods for Industrial Critical Systems, Trento, Italie, 2011.
[19] Avinash Malik, Zoran Salcic, Partha S. Roop, and Alain Girault. Systemj: A gals language for system level design. Comput. Lang. Syst. Struct., 36(4):317-344, December 2010.
[20] Mohammad Reza Mousavi, Paul Le Guernic, Jean-Pierre Talpin, Sandeep Kumar Shukla, and Twan Basten. Modeling and validating globally asynchronous design in synchronous frameworks. In Proceedings of the conference on Design, automation and test in Europe Volume 1, DATE '04, pages 10384-, Washington, DC, USA, 2004. IEEE Computer Society.
[21] S. Ramesh. Communicating reactive state machines: Design, model and implementation. 1998.

A Lexical Structure

Classes

ANY	= \#000..\#377; -- accept 8-bit characters
WHITE_SPACE	$=\mathrm{BS}+\mathrm{HT}+\mathrm{LF}+\mathrm{VT}+\mathrm{FF}+\mathrm{CR}+\mathrm{NL}+\mathrm{SP}$;
STRING_CHAR	= ANY - (QUOTE + "
" + EOL) ;	
ESCAPE_CHAR	= "a" + "b" + "f" + "n" + "r" + "t" + "v"
OCTAL	= "0".."7" ;
HEXA	= "a".."f" + "A".."F" + DIGIT ;
ANY_BUT_EOL	= ANY - EOL ;

Abbreviations

SEPARATOR	$=$ WHITE_SPACE ;
COMMENT	$=$ " (" "*"\&True \{ANY\}* "*" ")" ;
LINE_COMMENT	$="-"$ "-"\&True \{ANY_BUT_EOL\}* EOL $;$

Tokens
Comments $=\{$ SEPARATOR | COMMENT | LINE_COMMENT $\}+$; Unbounded Context All ; Priority Shift > Reduce ;
\%IDENTIFIER $=\operatorname{LETTER~\{ ~\{ "~}-$ " $\} *$ (LETTER | DIGIT) \}*; Priority Shift > Reduce ;
\%STRING = -QUOTE \{
STRING_CHAR |
" $\ \backslash$ " ESCAPE_CHAR |
"
" OCTAL\&True [OCTAL [OCTAL]]
\}*
\%CHARACTER = "," (~"'\n
" | "
"\&True ANY_BUT_EOL | "
"\&True OCTAL\&True [OCTAL [OCTAL]]) "," ;
\%INTEGER = "0" X \{HEXA\}+ | "0" \{OCTAL\}* |"123456789" \{DIGIT\}* ;
Priority Shift > Reduce ;

B Concrete Grammar

*==2

* Program
<program> = "program" <identifier> <imported-programs> "is"
<definition-list>
"end" "program" ;
<imported-programs> = ;
<imported-programs> = "(" <identifier-list> ")" ;
<definition-list> = ;
<definition-list> = <definition> <definition-list> ;
<definition> = <system> ;
<definition> = <block> ;
<definition> = <environment> ;
<definition> = <medium> ;
<definition> = <constant> ;
<definition> = <type-definition> ;

<system> = "system" <identifier> <system-inout-parameters> "is" <system-contents>
"end" "system" ;
<system-inout-parameters> = ;
<system-inout-parameters> = "(" <system-inout-parameters-list> ")";
<system-inout-parameters-list> = <inout-parameters-non-init> ;
<system-inout-parameters-list> = <inout-parameters-non-init> ";" <system-inout-parameters-list> ;
<system-contents> = <instance-list> <system-temp-variables> <network-spec> <env-spec> <medium-spec>;
<system-temp-variables> = ;
<system-temp-variables> = "temp" <variable-declaration-list-non-init> ;
<network-spec> = "network" <com-block-instance-list> ;
<com-block-instance-list> = <com-block-instance> ;
<com-block-instance-list> $=$ <com-block-instance> "," <com-block-instance-list>;
<com-block-instance> = <identifier> "(" <block-argument-list> ")";
<com-block-instance> = <identifier> "\{" <block-argument-list> "\}";
<com-block-instance> = <identifier> "(" <block-argument-list> ")" "\{" <block-argument-list> "\}";
<env-spec> = ;
<env-spec> = "constrainedby" <env-instance-list>;
<env-instance-list> = <env-instance> ;
<env-instance-list> = <env-instance> "," <env-instance-list> ;
<env-instance> = <identifier> " (" <env-medium-argument-list> ")" ;
<medium-spec> = ;
<medium-spec> = "connectedby" <medium-instance-list>;
<medium-instance-list> = <medium-instance> ;
<medium-instance-list> = <medium-instance> "," <medium-instance-list> ;
<medium-instance> = <identifier> "\{" <env-medium-argument-list> "\}" ;

<block> = "block" <identifier> <const-parameters> <block-inout-parameters> <block-com-parameters> "is"

```
        <block-body>
    "end" "block" ;
<block-body> = <block-medium-env-contents>;
<block-body> = <external-pragma>;
<external-pragma> = "!c" <string> ;
<external-pragma> = "!lnt" <string> ;
<block-inout-parameters> = ;
<block-inout-parameters> = "(" <block-inout-parameters-list> ")";
<block-inout-parameters-list> = <inout-parameters>;
<block-inout-parameters-list> = <inout-parameters> ";" <block-inout-parameters-list> ;
<block-com-parameters> = ;
<block-com-parameters> = "{" <block-com-parameters-list> "}";
<block-com-parameters-list> = <com-parameters> ;
<block-com-parameters-list> = <com-parameters> ";" <block-com-parameters-list>;
<instance-list> = ;
<instance-list> = "allocate" <instance-declaration-list>;
<instance-declaration-list> = <instance-declaration> ;
<instance-declaration-list> = <instance-declaration> "," <instance-declaration-list> ;
<instance-declaration> = <identifier> <const-arguments> "as" <instance-identifier>;
<block-medium-env-contents> = <instance-list> <local-variables-list> <body> ;
<body> = <statement> ;
*==================================================================
* Environment
<environment> = "environment" <identifier> <const-parameters> <env-inout-parameters> "is"
                                    <block-medium-env-contents>
    "end" "environment" ;
<env-inout-parameters> = ;
<env-inout-parameters> = "(" <env-inout-parameters-list> ")";
<env-inout-parameters-list> = <inout-parameters-non-init> ;
<env-inout-parameters-list> = <inout-parameters-non-init> "|" <env-inout-parameters-list>;
*==================================================================
* Medium
<medium> = "medium" <identifier> <const-parameters> <medium-com-parameters> "is"
    <block-medium-env-contents>
    "end" "medium" ;
<medium-com-parameters> = ;
<medium-com-parameters> = "{" <medium-com-parameters-list> "}";
<medium-com-parameters-list> = <com-parameters> ;
<medium-com-parameters-list> = <com-parameters> "|" <medium-com-parameters-list>;
*===================================================================
* Formal parameters
<const-parameters> = ;
<const-parameters> = "[" "const" <variable-declaration-list> "]";
<inout-parameters> = "in" <variable-declaration-list>;
<inout-parameters> = "out" <variable-declaration-list-non-init> ;
<inout-parameters-non-init> = "in" <variable-declaration-list-non-init> ;
<inout-parameters-non-init> = "out" <variable-declaration-list-non-init> ;
```

```
<com-parameters> = <receive-parameters>;
<com-parameters> = <send-parameters> ;
<receive-parameters> = "receive" <variable-declaration-list-non-init> ;
<send-parameters> = "send" <variable-declaration-list-non-init> ;
* Variable Declaration 
*======================================================================
<local-variables-list> = ;
<local-variables-list> = <non-empty-local-variables-list> ;
<non-empty-local-variables-list> = <perm-temp-local-variables-list> ;
<non-empty-local-variables-list> = <perm-temp-local-variables-list> <non-empty-local-variables-list> ;
<perm-temp-local-variables-list> = "perm" <variable-declaration-list> ;
<perm-temp-local-variables-list> = "temp" <variable-declaration-list> ;
<variable-declaration-list> = <variable-declaration> ;
<variable-declaration-list> = <variable-declaration> "," <variable-declaration-list> ;
<variable-declaration> = <variable-list> ":" <type> <opt-initialization> ;
<opt-initialization> = ;
<opt-initialization> = ":=" <expression> ;
<variable-declaration-list-non-init> = <variable-declaration-non-init> ;
<variable-declaration-list-non-init> = <variable-declaration-non-init> "," <variable-declaration-list-non-init> ;
<variable-declaration-non-init> = <variable-list> ":" <type>;
<variable-list> = <variable> ;
<variable-list> = <variable> "," <variable-list> ;
<variable> = <identifier> ;
*======================================================================
* *==================================== Arguments
*)
<const-arguments> = ;
<const-arguments> = "[" <argument-list> "]";
<block-argument-list> = <argument-list> ;
<block-argument-list> = <argument-list> ";" <block-argument-list> ;
<env-medium-argument-list> = <argument-list> ;
<env-medium-argument-list> = <argument-list> "|" <env-medium-argument-list> ;
<argument-list> = <argument> ;
<argument-list> = <argument> "," <argument-list> ;
<argument> = <expression> ;
<argument> = "?" <variable> ;
<argument> = "_" ;
<argument> = "?" "-" ;
<argument> = "any" <type> ;
*=====================================================================
* Global Constant
<constant> = "constant" <identifier> ":" <type> "is"
            <expression>
    "end" "constant" ;
*=====================================================================
*======================================================================
```

```
<statement> = <basic-statement> ;
<statement> = <basic-statement> ";" <statement> ;
<statement> = "on" <com-variable-list> "->" <statement>;
<basic-statement> = "null" ;
<basic-statement> = <variable> ":=" <expression> ;
<basic-statement> = "if" <expression> "then" <statement> <elsif-statement-list> <else-statement> "end" "if" ;
<basic-statement> = "while" <expression> "loop" <statement> "end" "loop" ;
<basic-statement> = "for" <statement> "while" <expression> "by" <statement> "loop" <statement> "end" "loop" ;
<basic-statement> = <variable> "." <variable> ":=" <expression>;
<basic-statement> = <variable> "[" <expression> "]" ":=" <expression>;
<basic-statement> = "case" <expression> "is" <case-item-list> "end" "case";
<basic-statement> = <nondeterministic-assign> <opt-clause>;
<basic-statement> = <instance-identifier> "(" <block-argument-list> ")" ;
<elsif-statement-list> = ;
<elsif-statement-list> = "elsif" <expression> "then" <statement> <elsif-statement-list> ;
<else-statement> = ;
<else-statement> = "else" <statement> ;
<case-item-list> = <case-item>;
<case-item-list> = <case-item> "|" <case-item-list> ;
<case-item> = <unary-expression> "->" <statement> ;
<case-item> = "any" "->" <statement>;
<basic-statement> = "select" <select-item-list> "end" "select";
<select-item-list> = <statement>;
<select-item-list> = <statement> "[]" <select-item-list>;
<nondeterministic-assign> = <variable> ":=" "any" <type> ;
<opt-clause> = ;
<opt-clause> = "where" <expression>;
<instance-identifier> = <identifier> ;
<com-variable-list> = <com-variable> ;
<com-variable-list> = <com-variable> "," <com-variable-list> ;
<com-variable> = <variable>;
<com-variable> = "?" <variable>;
*====================================================================
* Expressions
<expression> = <binary-expression> ;
<binary-expression> = <unary-expression> ;
<binary-expression> = <binary-expression> <binary-operator> <unary-expression> ;
<unary-expression> = <basic-expression> ;
<unary-expression> = <unary-operator> <unary-expression> ;
<basic-expression> = <identifier> "[" <expression> "]" ;
<basic-expression> = <identifier> "." <variable> ;
<basic-expression> = <identifier> ;
<basic-expression> = <identifier> "(" ")" ;
<basic-expression> = <identifier> "(" <expression-list> ")";
<basic-expression> = <literal-const> ;
<basic-expression> = <literal-const> "of" <type> ;
<basic-expression> = <enum-identifier> "of" <type> ;
<basic-expression> = "(" <expression> ")" ;
<expression-list> = <expression> ;
<expression-list> = <expression> "," <expression-list> ;
*===================================================================
* Types
```

```
<type> = "bool" ;
<type> = "nat" ;
<type> = "nat16" ;
<type> = "nat32"
<type> = "int" ;
<type> = "int16" ;
<type> = "int32" ;
<type> = "char" ;
<type> = "string"
<type> = <identifier> ;
<type-definition> = "type" <identifier> "is" <type-expression> "end" "type";
<type-expression> = "array" "[" <unary-expression> ".." <unary-expression> "]" "of" <type> ;
<type-expression> = "range" <unary-expression> ".." <unary-expression> ;
<type-expression> = "enum" <enum-list> ;
<type-expression> = "record" <record-list> ;
<enum-list> = <enum-identifier> ;
<enum-list> = <enum-identifier> "," <enum-list> ;
<enum-identifier> = <identifier> ;
<record-list> = <record-variable> ;
<record-list> = <record-variable> "," <record-list> ;
<record-variable> = <variable> ":" <type> ;
*=====================================================================
* Operators
<binary-operator> = "+" ;
<binary-operator> = "-" ;
<binary-operator> = "*" ;
<binary-operator> = "/" ;
<binary-operator> = "%" ;
<binary-operator> = "^" ;
<binary-operator> = "<" ;
<binary-operator> = ">" ;
<binary-operator> = "<=" ;
<binary-operator> = ">=" ;
<binary-operator> = "=="
<binary-operator> = "!=" ;
<binary-operator> = "or" ;
<binary-operator> = "and" ;
<binary-operator> = "implies" ;
<binary-operator> = "equ" ;
<binary-operator> = "xor" ;
<unary-operator> = "+" ;
<unary-operator> = "-" ;
<unary-operator> = "not" ;
<unary-operator> = "abs" ;
*======================================================================
* Identifiers
*===================================================================
<identifier> = %IDENTIFIER ;
<identifier-list> = <identifier> ;
<identifier-list> = <identifier> "," <identifier-list> ;
*==============================-=-=-=-===================================
* Literal Constants
<literal-const> = %INTEGER ;
<literal-const> = %CHARACTER ;
<literal-const> = %STRING ;
<literal-const> = "true" ;
```

<literal-const> = "false" ;
<string> = \%STRING ;

C Operational semantics through examples

In this section, we show how LTSs are constructed from GRL programs by applying the SOS rules defined in chapter 7 on two simple examples.

C. 1 Nested blocks

The first GRL program we consider is given by the following listing:

```
system \(S\) ( \(a, b, c\) : nat) is
    allocate \(B\) as \(B\)
    temp \(d\) : nat
    network
        \(B(a, b ; ? c ; ? d)\)
end system
constant \(C\) :nat is 2 end constant
block \(B\) (in \(x:\) nat \(:=0, y:\) nat \(:=0\); out \(z\) : nat; out \(w:\) nat) is
    allocate Sum [0] as Sum
    perm \(p\) : nat \(:=0\)
    \(\operatorname{Sum}(x, y ; ? z)\);
    \(p:=p+1\);
    \(w:=p\)
end block
block Sum [const thres:nat :=C] (in \(i 1, i 2:\) nat; out \(o\) : nat) is
    perm \(p\) : nat := thres
        \(o:=i 1+i 2\);
        \(p:=p+1\)
end block
```

Note that in this example, the values of variable p (in block B and block $S u m$) and of variable o (in block Sum) are incremented infinitely. To keep the example as simple as possible, we do not treat the case when an overflow occurs.

C.1.1 Initial state

The initial memory of S is empty: $\mu_{0}=[]$. The execution of S and the construction of the respective LTS are guided by the execution of block B.

C.1.2 Construction of the transitions

Block B is not connected to any actor inside the system S. Then, $\mathcal{R}_{0}=\epsilon, \mathcal{S}_{0}=\epsilon, \mathcal{I}_{0}=\epsilon, \mathcal{O}_{0}=\epsilon$ (0 being the index of B within the list of blocks of S).

Input actual channels " a, b ", whose index is 0 in the list of actual channels of block B, are not connected to any environment then $\mathcal{A}_{0}=\{0\}$ and parameters " a " and " b " are assigned arbitrary values of type nat. The store $\rho_{a n y}$ is then:

$$
\begin{aligned}
& \rho_{\text {any }} \in \operatorname{any}(\langle a, b\rangle, \text { nat } \times \text { nat, }[]) \\
& \rho_{\text {any }} \in \operatorname{any}(a, \text { nat, }[]) \oplus \operatorname{any}(b, \text { nat, }[]) \\
& \rho_{\text {any }}=[a \leftarrow e a, b \leftarrow e b] \text { where } e a \in \text { nat and } e b \in \text { nat }
\end{aligned}
$$

The construction of the LTS is governed by the following rule:

$$
\begin{equation*}
\frac{\{B(a, b ; ? c ; ? d)\} \epsilon, \rho_{\text {any }}, \mu_{0} \xrightarrow[\rightarrow]{\epsilon}_{c} \rho_{1}, \mu_{1}}{\mu_{0} \xrightarrow{\text { B(ea, eb; ?ea+eb; ? })}{ }_{\mathrm{s}} \mu_{1}} \tag{R1}
\end{equation*}
$$

Block B is executed in the store $\rho_{a n y}$ and the memory μ_{0} and terminates by producing the store ρ_{1} and the memory μ_{1} (See rule R2 below for ρ_{1} and μ_{1} computation).

$$
\begin{aligned}
& \rho_{1}=[a \leftarrow e a, b \leftarrow e b, c \leftarrow e a+e b, d \leftarrow 1] \\
& \mu_{1}=\left[\begin{array}{l}
B \cdot \operatorname{Sum} \leftarrow[p \leftarrow 1] \\
B \leftarrow[p \leftarrow 1]
\end{array}\right]
\end{aligned}
$$

Execution of block B. Intermediate stores that B needs to compute its body are the following.

```
\(\rho_{\text {global }} \in \operatorname{assign}(2, c,[])\)
    \(=\quad[c \leftarrow 2]\)
\(\rho_{\text {const }}=\) [
\(\rho_{\text {inrec }} \in \operatorname{init}\left(x:\right.\) nat \(:=0, y:\) nat \(\left.:=0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \oplus \operatorname{assign}\left(\langle a, b\rangle,\langle x, y\rangle, \rho_{\text {any }}\right)\)
    \(\in \quad \operatorname{init}\left(x, 0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \oplus \operatorname{init}\left(y, 0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right)\)
        \(\oplus \operatorname{assign}\left(a, x, \rho_{\text {any }}\right) \oplus \operatorname{assign}\left(b, y, \rho_{\text {any }}\right)\)
        \(=\quad[x \leftarrow 0] \oplus[y \leftarrow 0] \oplus\left[x \leftarrow \rho_{a n y}(a)\right] \oplus\left[y \leftarrow \rho_{a n y}(b)\right]\)
    \(=[x \leftarrow e a, y \leftarrow e b]\)
\(\rho_{\text {perm }}=\operatorname{init}\left(p:\right.\) nat \(\left.:=0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \quad\) since \(B \notin \operatorname{dom}\left(\mu_{0}\right)\left(\operatorname{dom}\left(\mu_{0}\right)=\epsilon\right)\)
    \(=[p \leftarrow 0]\)
\(\rho_{\text {temp }}=[]\)
\(\rho_{\text {var }}=\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {inrec }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }}\)
    \(=[c \leftarrow 2] \oplus[] \oplus[x \leftarrow e a, y \leftarrow e b] \oplus[p \leftarrow 0] \oplus[]\)
    \(=[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 0]\)
```

The body of B is then executed in the store $\rho_{v a r}$ and the memory μ_{0} and terminates by producing the store $\rho_{b o d y}$ and the memory $\mu_{b o d y}$.

$$
\begin{align*}
& \{\operatorname{Sum}(x ; y ; ? z)\} B, \rho_{v a r}, \mu_{0} \xrightarrow{\epsilon}_{\mathrm{i}} \rho_{11}, \mu_{11} \\
& \{p:=p+1\} B, \rho_{11}, \mu_{11}{ }_{\rightarrow}^{\epsilon} \rho_{12}, \mu_{12} \\
& \frac{\{w:=p\} B, \rho_{12}, \mu_{12} \xrightarrow{\epsilon}_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}}{\{B(a, b ; ? c ; ? d)\} \epsilon, \rho_{\text {any }}, \mu_{0} \xrightarrow{\epsilon}_{c} \rho_{1}, \mu_{1}} \tag{R2}
\end{align*}
$$

Store ρ_{11} and memory μ_{11} are obtained by the execution of block Sum invocation in the store $\rho_{v a r}$ and the memory μ_{0} (See rule R3 for ρ_{11} and μ_{11} computation).

$$
\begin{aligned}
& \rho_{11}=[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 0, z \leftarrow e a+e b] \\
& \mu_{11}=[\text { B.Sum } \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

Stores $\rho_{12}, \rho_{\text {body }}$, and ρ_{1} together with memories $\mu_{12}, \mu_{b o d y}$, and μ_{1} are defined as follows.

$$
\begin{aligned}
\rho_{12} & =\rho_{11} \oplus\left[p \leftarrow \rho_{11}(p)+1\right] \\
& =[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 0, z \leftarrow e a+e b] \oplus[p \leftarrow 1] \\
& =[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 1, z \leftarrow e a+e b] \\
\rho_{\text {body }} & =\rho_{12} \oplus\left[w \leftarrow \rho_{12}(p)\right] \\
& =[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 1, z \leftarrow e a+e b] \oplus[w \leftarrow 1] \\
& {[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 1, z \leftarrow e a+e b, w \leftarrow 1] } \\
\rho_{1} & =\rho_{\text {any }} \oplus \text { update }\left(? c, z, \rho_{\text {body }}\right) \oplus \text { update }\left(? d, w, \rho_{\text {body }}\right) \\
& =[a \leftarrow e a, b \leftarrow e b] \oplus\left[c \leftarrow \rho_{\text {body }}(z)\right] \oplus\left[d \leftarrow \rho_{\text {body }}(w)\right] \\
& =[a \leftarrow e a, b \leftarrow e b, c \leftarrow e a+e b, d \leftarrow 1] \\
\mu_{12} & =[\text { B.Sum } \leftarrow[p \leftarrow 1] \\
\mu_{\text {body }} & =[B \cdot \operatorname{Sum} \leftarrow[p \leftarrow 1]] \\
\mu_{1} & =\mu_{\text {body }} \oplus\left[B \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}(p: \text { nat }:=0)\right] \\
& =\left[\begin{array}{l}
B \cdot \operatorname{Sum} \leftarrow[p \leftarrow 1] \\
B \leftarrow[p \leftarrow 1]
\end{array}\right]
\end{aligned}
$$

Execution of block Sum. Intermediate stores that block Sum needs to compute its body are the following.

```
\(\rho_{\text {const } 1} \in \operatorname{init}\left(\right.\) thres \(:\) nat \(\left.:=C, \rho_{\text {global }}\right) \oplus \operatorname{assign}\left(0\right.\), thres, \(\left.\rho_{\text {var }}\right)\)
    \(=\left[\right.\) thres \(\left.\leftarrow \rho_{\text {global }}(C)\right] \oplus[\) thres \(\leftarrow 0]\)
    \(=[\) thres \(\leftarrow 2] \oplus[\) thres \(\leftarrow 0]\)
    \(=[\) thres \(\leftarrow 0]\)
\(\rho_{\text {input } 1}=\operatorname{assign}\left(x, i 1, \rho_{\text {var }}\right) \oplus \operatorname{assign}\left(y, i 2, \rho_{\text {var }}\right)\)
    \(=\left[i 1 \leftarrow \rho_{v a r}(x)\right] \oplus\left[i 2 \leftarrow \rho_{v a r}(y)\right]\)
    \(=[i 1 \leftarrow e a, i 2 \leftarrow e b]\)
\(\rho_{\text {perm } 1}=\operatorname{init}\left(p:\right.\) nat \(:=\) thres, \(\left.\rho_{\text {global }} \oplus \rho_{\text {const } 1}\right) \quad\) since B.Sum \(\notin \operatorname{dom}\left(\mu_{0}\right)\)
    \(=\left[p \leftarrow\left(\rho_{\text {global }} \oplus \rho_{\text {const } 1}\right)(\right.\) thres \(\left.)\right]\)
    \(=[p \leftarrow 0]\)
\(\rho_{t e m p 1}=[]\)
\(\rho_{\text {var } 1}=\rho_{\text {global }} \oplus \rho_{\text {const } 1} \oplus \rho_{\text {input } 1} \oplus \rho_{\text {perm } 1} \oplus \rho_{\text {temp } 1}\)
    \(=[c \leftarrow 2] \oplus[\) thres \(\leftarrow 0] \oplus[i 1 \leftarrow e a, i 2 \leftarrow e b] \oplus[p \leftarrow 0] \oplus[]\)
    \(=[c \leftarrow 2\), thres \(\leftarrow 0, i 1 \leftarrow e a, i 2 \leftarrow e b, p \leftarrow 0]\)
```

The body of block $S u m$ is then executed in the store $\rho_{v a r 1}$ and the memory μ_{0} and terminates by producing the store ρ_{11} and the memory μ_{11}.

$$
\begin{align*}
& \{o:=i 1+i 2\} \text { B.Sum, } \rho_{v a r 1}, \mu_{0} \xrightarrow[\rightarrow]{\epsilon}_{\mathrm{i}} \rho_{111}, \mu_{111} \\
& \{p:=p+1\} \text { B.Sum, } \rho_{111}, \mu_{111} \xrightarrow[\rightarrow]{\mathrm{i}}_{\mathrm{i}} \rho_{\text {body } 1}, \mu_{\text {body } 1} \tag{R3}\\
& \{\operatorname{Sum}(x ; y ; ? z)\} B, \rho_{\text {var }}, \mu_{0} \xrightarrow[\rightarrow]{\boldsymbol{\epsilon}}_{\mathrm{i}} \rho_{11}, \mu_{11}
\end{align*}
$$

Stores $\rho_{111}, \rho_{b o d y 1}$, and ρ_{11} together with memories $\mu_{111}, \mu_{b o d y 1}$, and μ_{11} are defined as follows.

$$
\begin{aligned}
& \rho_{111}=\rho_{\text {var } 1} \oplus\left[o \leftarrow \rho_{\text {var } 1}(i 1)+\rho_{\text {var } 1}(i 2)\right] \\
& =[c \leftarrow 2 \text {, thres } \leftarrow 0, i 1 \leftarrow e a, i 2 \leftarrow e b, p \leftarrow 0] \oplus[o \leftarrow e a+e b] \\
& =[c \leftarrow 2, \text { thres } \leftarrow 0, i 1 \leftarrow e a, i 2 \leftarrow e b, p \leftarrow 0, o \leftarrow e a+e b] \\
& \rho_{\text {body } 1}=\rho_{111} \oplus\left[p \leftarrow \rho_{111}(p)+1\right] \\
& =[c \leftarrow 2, \text { thres } \leftarrow 0, i 1 \leftarrow e a, i 2 \leftarrow e b, p \leftarrow 0, o \leftarrow e a+e b] \oplus[p \leftarrow 1] \\
& =[c \leftarrow 2 \text {, thres } \leftarrow 0, i 1 \leftarrow e a, i 2 \leftarrow e b, p \leftarrow 1, o \leftarrow e a+e b] \\
& \rho_{11} \quad=\rho_{v a r} \oplus \text { update }\left(? z, o, \rho_{b o d y 1}\right) \\
& =[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 0] \oplus\left[z \leftarrow \rho_{b o d y 1}(o)\right] \\
& =[c \leftarrow 2, x \leftarrow e a, y \leftarrow e b, p \leftarrow 0, z \leftarrow e a+e b] \\
& \mu_{111}=\mu_{0} \\
& =[] \\
& \mu_{\text {body } 1}=\mu_{111} \\
& =[] \\
& \mu_{11}=\mu_{\text {body } 1} \oplus\left[B . \text { Sum } \leftarrow \rho_{\text {body } 1} \cdot \operatorname{vars}(p: \text { nat }:=\text { thres })\right] \\
& =\quad[\text { B.Sum } \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

C.1.3 Generated LTS

The label corresponding to the execution of block B inside system S is obtained using function label as follows.

$$
\begin{aligned}
\operatorname{label}\left(B(a, b ; ? c ; ? d), \rho_{1}\right) & =\mathrm{B}\left(\operatorname{label}\left(\langle\langle a, b\rangle, ? c, ? d\rangle, \rho_{1}\right)\right) \\
& =\mathrm{B}\left(\operatorname{label}\left(a, \rho_{1}\right), \operatorname{label}\left(b, \rho_{1}\right) ;\right. \\
& \left.\quad \operatorname{label}\left(? c, \rho_{1}\right) ; \operatorname{label}\left(? d, \rho_{1}\right)\right) \\
& =\mathrm{B}\left(\rho_{1}(a), \rho_{1}(b) ; ? \rho_{1}(c) ; ?{ }^{2}\right) \\
& =\mathrm{B}(\text { ea; eb; ?eateb; ? })
\end{aligned}
$$

The value of variable d is hidden in the produced label since d has been declared as temporary variable of the system.

The generated LTS consists of an infinite sequence of states, because of the occurrence of permanent variables in blocks B and Sum whose values increment indefinitely. Each state corresponds to the memory of block B, the initial state being empty. All transitions have the form "B (ea; eb; ?ea + eb; ?_)".

C. 2 Strict alternation of blocks

The second GRL program we consider is given by the following listing.

```
system \(S\) ( \(a 1, a 2:\) nat, \(b 1, b 2:\) nat, \(c 1, c 2:\) nat) is
    allocate \(B\) as \(B 1, B\) as \(B 2\),
            \(N\) as \(N 1, N\) as \(N 2\)
    temp \(d 1\), \(d 2\) : nat
    network
        B1 ( \(a 1, b 1 ; ? c 1 ; ? \_\)),
        B2(a2,b2;?c2;?_)
    constrainedby
        N1 (d1|d2),
        N2 ( \(c 1 \mid c 2\) )
end system
block \(B\) (in \(x, y:\) nat \(:=0\); out \(z:\) nat; out \(w:\) nat) is
    perm \(p\) : nat := 0
    \(z:=x+y\);
    \(p:=p+1\);
    \(w:=p\)
end block
environment \(N\) (in \(z 1\) : nat | in \(z 2:\) nat) is
    perm last1:bool := false
        if not (last1) then
            on \(z 1\)-> last1 := true
        else
            on z2 -> last1 := false
        end if
end environment
```


C.2.1 Initial state

The initial memory of S is empty: $\rho_{0}=[]$. The execution of S and the construction of the LTS are guided by the parallel execution of blocks $B 1$ and $B 2$.

C.2.2 Construction of the first transition

Blocks $B 1$ and $B 2$ evolve in asynchronous parallelism, then two transitions can be performed from the initial state, each transition corresponding to the invocation of one block together with its connected actors.

Execution of block $B 1$ and its connected actors. Connections of $B 1$ (whose index is 0 within the list of blocks inside S) with other actors are defined as follows.

- No medium is connected to $B 1$, then $\mathcal{R}_{0}=\epsilon$ and $\mathcal{S}_{0}=\epsilon$.
- No environment is connected to the inputs of $B 1$, then $\mathcal{I}_{0}=\epsilon$.
- B1 has the output actual channel "?c1" connected to the input actual channel "c1" of environment $N 2$ (whose index is 1 within the list of environments inside S), then $\mathcal{O}_{0}=\{1\}$ and $\operatorname{link}\left(1, \mathcal{O}_{0}\right)=\{c 1\}$.
- The input actual channel " $a 1, b 1$ " (whose index is 0 in the list of actual channels of block $B 1)$ is not connected to any environment. Then, $\mathcal{A}_{0}=\{0\}$ and parameters " $a 1$ " and " $b 1$ " are assigned arbitrary values of type nat.

The store ρ_{0} in which $B 1$ should execute is then:

$$
\begin{aligned}
& \rho_{0} \in \operatorname{any}(\langle a 1, b 1\rangle, \text { nat } \times \text { nat, }[]) \\
& \rho_{0}=[a 1 \leftarrow e a 1, b 1 \leftarrow e b 1] \text { where } e a 1 \in \text { nat } \text { and } e b 1 \in \text { nat }
\end{aligned}
$$

The execution of block $B 1$ inside system S is governed by the following rule:

$$
\begin{gather*}
\left\{B 1\left(a 1, b 1 ; ? c 1 ; ?{ }_{-}\right)\right\} \epsilon, \rho_{0}, \mu_{01} \xrightarrow{\epsilon}_{\mathrm{c}} \rho_{01}, \mu_{02} \\
\{N 2(c 1 \mid c \mathcal{L})\} \epsilon, \rho_{02}, \mu_{03} \xrightarrow{c 1}_{\mathrm{c}} \rho_{02}, \mu_{04} \tag{R4}\\
\mu_{0} \xrightarrow{\text { B1(ea1, eb1; ?ea1+eb1; ?} \left.)_{-}\right)} \\
\text {s } \mu_{1}
\end{gather*}
$$

Block $B 1$ is executed in the initial store ρ_{0} and the memory μ_{01} and terminates by producing the store ρ_{01} and the memory μ_{02} (See rule R5 below for ρ_{01} and μ_{02} computation).

$$
\begin{aligned}
& \mu_{01}=[] \quad \text { since } B 1 \notin \operatorname{dom}\left(\mu_{0}\right) \\
& \rho_{01}=[a 1 \leftarrow e a 1, b 1 \leftarrow e b 1, c 1 \leftarrow e a 1+e b 1] \\
& \mu_{02}=[B 1 \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

Environment $N 2$ is executed in the store ρ_{02} and the memory μ_{02} defined below and terminates by keeping unchanged the store ρ_{02}, producing the memory μ_{04} (See rule R6 below for ρ_{02} and μ_{04} computation), and passing the label $c 1$ to its context.

$$
\begin{aligned}
\rho_{02} & =\rho_{01} \cdot \operatorname{link}\left(1, \mathcal{O}_{0}\right) \\
& =[c 1 \leftarrow e a 1+e b 1] \\
\mu_{03} & =[] \quad \text { since } 1 \notin \mathcal{I}_{0} \text { and } N 2 \notin \operatorname{dom}\left(\mu_{0}\right) \\
\mu_{04} & =[N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]]
\end{aligned}
$$

Execution of block B1. Intermediate stores that B1 needs to compute its body are the following.

$$
\begin{aligned}
\rho_{\text {global }} & =[] \\
\rho_{\text {const }} & =[] \\
\rho_{\text {inrec }} & \in \operatorname{init}\left(x, y: \text { nat }:=0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \oplus \operatorname{assign}\left(\langle a 1, b 1\rangle,\langle x, y\rangle, \rho_{0}\right) \\
& =[x \leftarrow 0, y \leftarrow 0] \oplus\left[x \leftarrow \rho_{0}(a 1)\right] \oplus\left[y \leftarrow \rho_{0}(b 1)\right] \\
& =[x \leftarrow e a, y \leftarrow e b] \\
\rho_{\text {perm }} & =\operatorname{init}\left(p: \text { nat }:=0, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \quad \text { since } \operatorname{dom}\left(\mu_{0}\right)=\epsilon \\
& =[p \leftarrow 0] \\
\rho_{\text {temp }} & =[] \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {inrec }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& =[] \oplus[] \oplus[x \leftarrow e a 1, y \leftarrow e b 1] \oplus[p \leftarrow 0] \oplus[] \\
& =[x \leftarrow e a 1, y \leftarrow e b 1, p \leftarrow 0]
\end{aligned}
$$

The body of $B 1$ is then executed in the store $\rho_{v a r}$ and the memory μ_{01} and terminates by producing the store $\rho_{b o d y}$ and the memory $\mu_{\text {body }}$.

$$
\begin{gather*}
\{z:=x+y\} B 1, \rho_{\text {var } 1}, \mu_{01} \xrightarrow[\rightarrow]{\epsilon}_{\mathrm{i}} \rho_{011}, \mu_{011} \\
\{p:=p+1\} B 1, \rho_{011}, \mu_{011}^{\rightarrow}{ }_{\mathrm{i}} \rho_{012}, \mu_{012} \\
\{w:=p\} B 1, \rho_{012}, \mu_{012} \xrightarrow[\rightarrow]{\mathrm{i}}^{\rho_{b o d y}}, \mu_{\text {body }} \tag{R5}\\
\hline\left\{B 1\left(a 1, b 1 ; ? c 1 ; ? ?_{-}\right)\right\} \epsilon, \rho_{0}, \mu_{0} \xrightarrow[\rightarrow]{\epsilon}_{\mathrm{i}} \rho_{01}, \mu_{02}
\end{gather*}
$$

Stores ρ_{011}, ρ_{012}, and $\rho_{b o d y}$ together with memories μ_{011}, μ_{012}, and $\mu_{b o d y}$ are constructed as follows.

$$
\begin{aligned}
\rho_{011} & =[x \leftarrow e a 1, y \leftarrow e b 1, p \leftarrow 0, z \leftarrow e a 1+e b 1] \\
\rho_{012} & =[x \leftarrow e a 1, y \leftarrow e b 1, p \leftarrow 1, z \leftarrow e a 1+e b 1] \\
\rho_{\text {body }} & =[x \leftarrow e a 1, y \leftarrow e b 1, p \leftarrow 1, z \leftarrow e a 1+e b 1, w \leftarrow 1] \\
\rho_{01} & =\rho_{0} \oplus \text { update }\left(? c, z, \rho_{\text {body }}\right) \oplus \text { update }\left(?,, w, \rho_{\text {body }}\right) \\
& =[a 1 \leftarrow e a 1, b 1 \leftarrow e b 1, c 1 \leftarrow e a 1+e b 1] \\
\mu_{011} & =[] \\
\mu_{012} & =[] \\
\mu_{\text {body }} & =[] \\
\mu_{02} & =\mu_{0} \oplus\left[B 1 \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}(p: \text { nat }:=0)\right] \\
& =[B 1 \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

Execution of environment $N 2$. The invocation of $N 2$ is triggered by the reception of the value "ea1+eb1" from block $B 1$ over the actual channel " $c 1$ ". Intermediate stores that $N 2$ needs to compute are the following.

$$
\begin{aligned}
\rho_{\text {global }} & =[] \\
\rho_{\text {const }} & =[] \\
\rho_{\text {input }} & \in \operatorname{assign}\left(c 1, z 1, \rho_{02}\right) \\
& =[z 1 \leftarrow \text { ea } 1+\text { eb } 1] \\
\rho_{\text {perm }} & =\text { init }\left(\text { last1 }: \text { bool }:=\text { false }, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \quad \text { since } N 2 \notin \operatorname{dom}\left(\mu_{03}\right) \\
& =[\text { last } 1 \leftarrow \text { false }] \\
\rho_{\text {temp }} & =[] \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& =[] \oplus[] \oplus[z 1 \leftarrow \text { ea } 1+\text { eb1 }] \oplus[\text { last } 1 \leftarrow \text { false }] \oplus[] \\
& =[z 1 \leftarrow \text { ea } 1+\text { eb } 1, \text { last } 1 \leftarrow \text { false }]
\end{aligned}
$$

Then, the body of $N 2$ is executed in the store $\rho_{v a r}$ and the memory μ_{03} ignoring all signal statements that do not correspond to " $z 1$ " (the respective formal parameter of actual parameter " $c 1$ ") and terminates by keeping unchanged the store $\rho_{v a r}$, producing the memory μ_{04}, and passing the label $c 1$ to the context.

```
    \(\frac{\{\text { last1 }:=\text { true }\} N 2, \rho_{\text {var }}, \mu_{03} \stackrel{\epsilon}{\rightarrow}_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}}{\{\operatorname{not}(\text { last1 })\} \rho_{\text {var }} \rightarrow_{\mathrm{e}} \text { true }} \quad\) (R62)
    \(\{\) on \(z 1->\) last \(1:=\) true \(\} N 2, \rho_{\text {var }}, \mu_{03} \xrightarrow{z 1}{ }_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}\)
    \(z 1 \in \operatorname{dom}\left(\rho_{\text {var }}\right)\)
```


Store $\rho_{b o d y}$ together with memories $\mu_{b o d y}$ and ρ_{03} are defined as follows.

$$
\begin{aligned}
\rho_{\text {body }} & =\rho_{\text {var }} \oplus[\text { last } 1 \leftarrow \text { true }] \\
& =[z 1 \leftarrow \text { ea } 1+\text { eb1, last } 1 \leftarrow \text { false }] \oplus[\text { last } 1 \leftarrow \text { true }] \\
& =[z 1 \leftarrow \text { ea } 1+\text { eb1, last } 1 \leftarrow \text { true }] \\
\mu_{\text {body }} & =\mu_{03} \\
& =[] \\
\mu_{04} & =\mu_{\text {body }} \oplus\left[\text { N2 } \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}(\text { last } 1: \text { bool }:=\text { false })\right] \\
& =[N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]]
\end{aligned}
$$

Final store and memory. The execution of block $B 1$ and its connected environment $N 2$ terminates by producing the store ρ_{1} and the memory μ_{1}.

$$
\begin{aligned}
\rho_{1} & =\rho_{01} \\
& =[a 1 \leftarrow e a 1, b 1 \leftarrow e b 1, c 1 \leftarrow e a 1+e b 1] \\
\mu_{1} & =\mu_{0} \oplus \mu_{02} \oplus \mu_{04} \\
& =\left[\begin{array}{l}
B 1 \leftarrow[p \leftarrow 1] \\
N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]
\end{array}\right]
\end{aligned}
$$

Execution of block $B 2$ and its connected actors. Connections of $B 2$ (whose index is 0 within the list of blocks inside S) with other actors are defined as follows.

- $\mathcal{R}_{1}=\epsilon$ and $\mathcal{S}_{1}=\epsilon$.
- $\mathcal{I}_{1}=\epsilon$.
- $\mathcal{O}_{1}=\{1\}$ and $\operatorname{link}\left(1, \mathcal{O}_{1}\right)=\{c 2\}$.
$-\mathcal{A}_{1}=\{0\}$.
The store ρ_{0} in which $B 2$ should execute is then:

$$
\begin{aligned}
& \rho_{0} \in \operatorname{any}(\langle a 2, b 2\rangle, \text { nat } \times \text { nat, }[]) \\
& \rho_{0}=[a 2 \leftarrow e a 2, b 2 \leftarrow e b 2] \text { where } e a 2 \in \text { nat } \text { and } e b 2 \in \text { nat }
\end{aligned}
$$

The execution of block $B 2$ inside system S is governed by the following rule:

$$
\begin{align*}
& \left\{B 2\left(a 2, b 2 ; ? c 2 ; ?{ }^{2}\right)\right\} \epsilon, \rho_{0}, \mu_{01} \xrightarrow[\rightarrow]{\rightarrow}_{c} \rho_{11}, \mu_{11} \\
& \{N 2(c 1 \mid c 2)\} \epsilon, \rho_{12}, \mu_{12} \xrightarrow[c]{c 2}_{c} \rho_{12}, \mu_{13} \tag{R7}\\
& \mu_{0} \xrightarrow{\text { B2(ea2, eb2; ?ea2+eb2; ? })_{-}}{ }_{\mathrm{s}} \mu_{1}
\end{align*}
$$

Block $B 2$ is executed in the initial store ρ_{0} and the memory μ_{01} and terminates by producing the store ρ_{11} and the memory μ_{11}.

$$
\begin{aligned}
\mu_{01} & =[] \quad \text { since } B 2 \notin \operatorname{dom}\left(\mu_{0}\right) \\
\rho_{11} & =[a 2 \leftarrow e a 2, b 2 \leftarrow e b 2, c 2 \leftarrow e a 2+e b 2] \\
\mu_{11} & =[B 2 \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

Environment $N 2$ is executed in the store ρ_{12} and the memory μ_{12} defined below and is expected to terminate by keeping unchanged the store ρ_{12} and producing the memory μ_{13} (See rule R8 below for ρ_{12} and μ_{13} computation).

$$
\begin{aligned}
\rho_{12} & =\rho_{11} \cdot \operatorname{link}\left(1, \mathcal{O}_{1}\right) \\
& =[c 2 \leftarrow e a 2+e b 2] \\
\mu_{12} & =[] \quad \text { since } 1 \notin \mathcal{I}_{1} \text { and } N 2 \notin \operatorname{dom}\left(\mu_{0}\right)
\end{aligned}
$$

Execution of block $B 2$. Blocks $B 1$ and $B 2$ are instances of the same block B, then the execution of $B 2$ is similar to the execution of $B 1$ (See rule R5 above).

Execution of environment $N 2$. The invocation of $N 2$ is triggered by the reception of the value " $e a 2+e b 2$ " from block $B 2$ over the actual channel " $c 2$ ". Then the body of $N 2$ is executed ignoring all signal statements that do not correspond to " $z 2$ ", the respective formal parameter of actual parameter " $c 2$ ". Intermediate stores that $N 2$ needs to compute are the following.

$$
\begin{aligned}
\rho_{\text {global }} & =[] \\
\rho_{\text {const }} & =[] \\
\rho_{\text {input }} & \in \operatorname{assign}\left(c 2, z 2, \rho_{12}\right) \\
& =[z 2 \leftarrow e a 2+e b 2] \\
\rho_{\text {perm }} & =\text { init }\left(\text { last1 }: \text { bool }:=\text { false }, \rho_{\text {global }} \oplus \rho_{\text {const }}\right) \quad \text { since } N 2 \notin \operatorname{dom}\left(\mu_{12}\right) \\
& =[\text { last } 1 \leftarrow \text { false }] \\
\rho_{\text {temp }} & =[] \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& =[] \oplus[] \oplus[z 2 \leftarrow \text { ea } 2+\text { eb } 2] \oplus[\text { last } 1 \leftarrow \text { false }] \oplus[] \\
& =[z 2 \leftarrow e a 2+\text { eb } 2, \text { last } 1 \leftarrow \text { false }]
\end{aligned}
$$

The body of $N 2$ can then be executed in the store $\rho_{v a r}$ and the memory μ_{12} according to the following rule:

$$
\begin{align*}
& \begin{array}{l}
\frac{\{\text { last1 }:=\text { false }\} N 2, \rho_{v a r}, \mu_{12} \stackrel{\epsilon}{\rightarrow}_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}}{} \begin{array}{l}
\{\text { not (last1) }\} \rho_{\text {var }} \rightarrow_{\mathrm{e}} \text { false } \\
\left\{\begin{array}{l}
\text { on } z 2->\text { last1 }:=\text { false }\} N 2, \rho_{v a r}, \mu_{12} \xrightarrow{z 2}_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }} \\
z 2 \in \operatorname{dom}\left(\rho_{\text {var }}\right)
\end{array}\right. \\
\left\{\begin{array}{l}
\text { if not }(\text { last1) then } \\
\text { on } z 1->\text { last1 }:=\text { true } \\
\text { else } \\
\text { on } z 2->\text { last1 }:=\text { false } \\
\text { end if }
\end{array}\right\} N 2, \rho_{v a r}, \mu_{12} \xrightarrow{z 2}_{\mathrm{i}} \rho_{\text {body }}, \mu_{\text {body }}
\end{array}
\end{array} \tag{R8}\\
& \{N 2(c 1 \mid c \mathcal{Z})\} \epsilon, \rho_{12}, \mu_{12} \xrightarrow{c 2} \rho_{12}, \mu_{13}
\end{align*}
$$

Variable "last1" is evaluated to "false" in the store $\rho_{v a r}$, then the conditional statement allows only the execution of the signal "on $z 1->$ last1 $:=$ true" guarded by the condition "not (last1)" (rule R81). However, variable $z 1$ can not be evaluated in the store $\rho_{v a r}\left(z 1 \notin r h o_{v a r}\right)$. Rule R81 can not be crossed blocking the execution of environment N 2 , and no store neither memory can be produced. Consequently, the execution of block $B 2$ is cancelled and the global memory of the system S is not updated since it requires the execution of the block and all its connected actors to be performed normally and atomically.

Construction of the transition. We have shown previously that only block $B 1$ can be executed from the initial state μ_{0} of the system. The label corresponding to the first transition of the system is obtained using function label as follows.

$$
\begin{aligned}
\operatorname{label}\left(B 1\left(a 1, b 1 ; ? c 1 ; ?_{-}\right), \rho_{1}\right)= & \text { B1 }\left(\operatorname{label}\left(\left\langle\langle a 1, b 1\rangle, ? c 1, ?{ }_{-}\right\rangle, \rho_{1}\right)\right) \\
= & \operatorname{B1}\left(\operatorname{label}\left(a 1, \rho_{1}\right), \operatorname{label}\left(b 1, \rho_{1}\right) ;\right. \\
& \left.\operatorname{label}\left(? c 1, \rho_{1}\right) ; \operatorname{label}\left(?-, \rho_{1}\right)\right) \\
= & \text { B1 }\left(\rho_{1}(a 1), \rho_{1}(b 1) ; ? \rho_{1}(c 1) ; ? ?_{-}\right) \\
= & \text {B1 }\left(\text { ea1; eb1; ?ea1+eb1; ? }{ }_{-}\right)
\end{aligned}
$$

The LTS of the system after the execution of $B 1$ is the following.

C.2.3 Execution of the second transition.

Block $B 1$ behaves similarly to block $B 2$ in the first round (transition), and conversely.
Execution of block $B 2$ and its connected actors. Connections of $B 2$ with other actors are as defined in the previous section: $\mathcal{R}_{1}=\epsilon, \mathcal{S}_{1}=\epsilon, \mathcal{I}_{1}=\epsilon, \mathcal{O}_{1}=\{1\}$ and $\operatorname{link}\left(1, \mathcal{O}_{1}\right)=\{c 2\}$, $\mathcal{A}_{1}=\{0\}$. The initial store is $\rho_{0}=[a 2 \leftarrow e a 2, b 2 \leftarrow e b 2]$ where $e a 2 \in$ nat and eb2 \in nat. The execution of system S is governed by the following rule:

$$
\begin{align*}
& \left\{\text { B2 }\left(a 2, b 2 ; ? c 2 ; ? _\right)\right\} \epsilon, \rho_{0}, \mu_{11} \xrightarrow[\rightarrow]{\epsilon}_{c} \rho_{11}, \mu_{12} \\
& \{N 2(c 1 \mid c 2)\} \epsilon, \rho_{12}, \mu_{13} \xrightarrow{c 2}_{c} \rho_{12}, \mu_{14} \tag{R7}\\
& \mu_{1} \xrightarrow{\text { B2(ea2, eb2; ?ea2+eb2; ? } \left.)_{-}\right)} \\
& s
\end{align*} \mu_{2}
$$

Block $B 2$ is executed in the initial store ρ_{0} and the memory μ_{11}, and terminates by producing the store ρ_{11} and the memory μ_{12} exactly in the same way as block $B 1$ execution in the previous section since its the first execution of $B 2$ together with its connected actors (see rule R5 above for intermediate computations).

$$
\begin{aligned}
\mu_{11} & =[] \quad \text { since } B 2 \notin \operatorname{dom}\left(\mu_{1}\right) \\
\rho_{11} & =[a 2 \leftarrow e a 2, b 2 \leftarrow e b 2, c 2 \leftarrow e a 2+e b 2] \\
\mu_{12} & =[B 2 \leftarrow[p \leftarrow 1]]
\end{aligned}
$$

Environment $N 2$ is executed in the store ρ_{12} and the memory μ_{13} defined below and terminates by keeping unchanged the store ρ_{12}, producing the memory μ_{14} (See rule R10 below for ρ_{12} and μ_{14} computation), and passing the label $c 2$ to its context.

$$
\begin{aligned}
\rho_{12} & =\rho_{11} \cdot \operatorname{link}\left(1, \mathcal{O}_{1}\right) \\
& =[c 2 \leftarrow e a 2+e b 2] \\
\mu_{13} & =\mu_{1}(N 2) \text { since } 1 \notin \mathcal{I}_{1} \text { and } N 2 \in \operatorname{dom}\left(\mu_{1}\right) \\
& =[N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]] \\
\mu_{14} & =[N 2 \leftarrow[\text { last } 1 \leftarrow \text { false }]]
\end{aligned}
$$

Execution of environment $N 2$. The invocation of $N 2$ is triggered by the reception of the value " $e a 2+e b 2$ " from block $B 2$ over the actual channel " $c 2$ ". Intermediate stores that $N 2$ needs to compute are as the following.

$$
\begin{aligned}
\rho_{\text {global }} & =[] \\
\rho_{\text {const }} & =[] \\
\rho_{\text {input }} & =[z 2 \leftarrow e a 2+e b 2] \\
\rho_{\text {perm }} & =\mu_{13}(N 2) \quad \text { since } N 2 \in \operatorname{dom}\left(\mu_{13}\right) \\
& =[\text { last } 1 \leftarrow \text { true }] \\
\rho_{\text {temp }} & =[] \\
\rho_{\text {var }} & =\rho_{\text {global }} \oplus \rho_{\text {const }} \oplus \rho_{\text {input }} \oplus \rho_{\text {perm }} \oplus \rho_{\text {temp }} \\
& =[] \oplus[] \oplus[z 2 \leftarrow \text { ea } 2+\text { eb } 2] \oplus[\text { last } 1 \leftarrow \text { true }] \oplus[] \\
& =[z 2 \leftarrow \text { ea } 2+\text { eb } 2, \text { last } 1 \leftarrow \text { true }]
\end{aligned}
$$

The body of $N 2$ can then be executed in the store $\rho_{\text {var }}$ and the memory μ_{13} and terminates by producing the store $\rho_{b o d y}$ and the memory $\mu_{\text {body }}$ according to the following rule:

(R10)
$\{N 2(c 1 \mid c 2)\}, \rho_{12}, \mu_{13} \xrightarrow{2} \rho_{12}, \mu_{14}$

Store $\rho_{b o d y}$ together with memories $\mu_{b o d y}$ and ρ_{13} are defined as follows.

$$
\begin{aligned}
\rho_{\text {body }} & =\rho_{\text {var }} \oplus[\text { last } 1 \leftarrow \text { false }] \\
& =[z 2 \leftarrow \text { ea } 2+\text { eb2, last } 1 \leftarrow \text { true }] \oplus[\text { last } 1 \leftarrow \text { false }] \\
& =[z 2 \leftarrow e a 2+\text { eb } 2, \text { last } 1 \leftarrow \text { false }] \\
\mu_{\text {body }} & =\mu_{13} \\
& =[N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]] \\
\mu_{14} & =\mu_{\text {body }} \oplus\left[\text { N2 } \leftarrow \rho_{\text {body }} \cdot \operatorname{vars}(\text { last } 1: \text { bool }:=\text { false })\right] \\
& =[\text { N2 [last } 1 \leftarrow \text { false }]]
\end{aligned}
$$

Final store and memory. The execution of block $B 2$ and its connected environment $N 2$ terminates by producing the store ρ_{2} and the memory μ_{2}.

$$
\begin{aligned}
\rho_{2} & =\rho_{11} \\
& =[a 2 \leftarrow e a 2, b 2 \leftarrow e b 2, c 2 \leftarrow e a 2+e b 2] \\
\mu_{2} & =\mu_{1} \oplus \mu_{12} \oplus \mu_{14} \\
& =\left[\begin{array}{l}
B 1 \leftarrow[p \leftarrow 1] \\
N 2 \leftarrow[\text { last } 1 \leftarrow \text { true }]
\end{array}\right] \oplus[B 2 \leftarrow[p \leftarrow 1]] \oplus[N 2 \leftarrow[\text { last } 1 \leftarrow \text { false }]] \\
& =\left[\begin{array}{l}
B 1 \leftarrow[p \leftarrow 1] \\
B 2 \leftarrow[p \leftarrow 1] \\
N 2 \leftarrow[\text { last } 1 \leftarrow \text { false }]
\end{array}\right]
\end{aligned}
$$

Execution of block $B 1$ and its connected actors. The execution of block $B 1$ is blocked in memory μ_{1} in the same way as the execution of block $B 2$ in memory μ_{0} (See rule R8 above for details).

Construction of the transition. Only block $B 2$ can be executed from the state μ_{1} of the system. The label corresponding to the second transition of the system is obtained as follows.

$$
\operatorname{label}\left(B 2\left(a 2, b 2 ; ? c 2 ; ? _\right), \rho_{1}\right)=\text { B2 (ea2; eb2; ?ea2+eb2; ?_) }
$$

The LTS of the system after the execution of $B 2$ is the following.

C.2.4 Construction of the whole LTS.

The remainder of the LTS is constructed as detailed above. Each state corresponds to the actual memories of blocks $B 1$ and $B 2$ and environment $N 2$. Transitions correspond to either the invocation of $B 1$ or the invocation of $B 2$, the alternation being ensured by environment $N 2$. Note that environment $N 1$ is never invoked since not connected to neither $B 1$ nor $B 2$ and variables $d 1$ and $d 2$ are not considered in computations.

RESEARCH CENTRE
GRENOBLE - RHÔNE-ALPES
Inovallée
655 avenue de l'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105-78153 Le Chesnay Cedex
inria.fr

