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Abstract: Many UML CASE tools allow software engineers to draw diagrams and gen-
erate code skeletons from them. But often advanced users want to do more with their UML
models, e.g., apply specific design patterns, generate code for embedded systems, simulate
the functional and non-functional behavior of the system, run validation tools on the model,
etc. which are very difficult to do with the scripting facilities offered in most UML case tools.
In this paper, we describe UMLAUT, a freely available UML Transformation Framework
allowing complex manipulations to be applied to a UML model. These manipulations are
expressed as algebraic compositions of reified elementary transformations. They are thus
open to extensions through inheritance and aggregation. To illustrate the interest of our
approach, we show how the model of an UML distributed application can be automatically
transformed into a labeled transition system validated using advanced protocol validation
technology.
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UMLAUT: un Framework Extensible pour la
Transformation de Modéle UML

Résumé :  De nombreux Ateliers de Génie Logicile (AGL) pour UML permettent aux
ingénieurs logiciels de tracer des diagrammes et de générer des squelettes de code & partir
de ceux-ci. Mias souvent les utilisateurs avertis voudraient faire plus de chose avec leurs
modéles UML, comme par exemple appliquer des design patterns spécifiques, générer du
code pour des systémes embarqués, simuler des aspects fonctionnels ou non fonctionnels du
systéme, ou encore passer des outils de validation sur le modéle; activités difficiles & mener
en utilisant les facilités de scriptage offertes par la plupart des AGL. Dans ce rapport, nous
décrivons UMLAUT, un framework de transformation de modéles permettant d’appliquer
des manipulations complexes & un modéle UML. Ces manipulations sont exprimés comme des
compositions algébriques de transformations élémentaires réifiées. Elle sont donc extensibles
au travers des mécanismes classiquess d’héritage et d’aggrégation. Pour illustrer I’intérét de
notre approche, nous montrons comment le modéle UML d’une application répartie peut
étre automatiquement transformé en un systéme de transitions étiquetées afin d’étre validé
par des outils avancés de validation de protocoles.

Mots-clé :  Frameworks Orienté Objet, UML, Transformation, Validation
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1 The need for formal manipulation of UML models

1.1 UML: the silver-bullet of modeling notations ?

Since it was standardized by the OMG in 1997, UML has been on its way to become also
a de-facto standard, as support for its diagrammatic notations in object-oriented modeling
tools keeps growing. Its use will range from basic applications for personal computers to
large and complex software. This spectrum of UML-modelizable systems will grow up with
the next projected releases of the notation. For example, future extensions to the UML will
cover real-time, scheduling and performance[11], or enterprise distributed object computing
(EDOCIJ10]). It is likely that such additions to the UML will push designers to use it for
even larger, and more critical software.

1.2 Complex software needs validation and test

Unfortunately, extending the notation will not be sufficient to improve the quality of such
large, distributed systems. Indeed, distributed systems raise their own issues, due to the
complexity of their communication mechanisms: in the case of asynchronous communica-
tions, messages may be never delivered, race conditions or deadlocks may happen...

The reliability of these intrinsically concurrent systems can be enhanced with the use of
formal techniques, such as model-checking, simulation or test generation. This is particularly
true for telecommunication systems, a context that has been widely explored for several years
and gave birth to standardized Formal Description Techniques (FDT) and associated tools.
There is obviously a lack in the UML for similar concepts, and the integration of already
existing validation techniques into the UML is not an easy process. This is mainly due
to the facts that FDT don’t fit well into the object-oriented concepts of the UML, have a
steep learning curve and impose restrictions to the model (for example, the semantics of
communication in FDT is often restricted).

This is why we advocate for the use of UML as a formal language. Of course, we must
keep in mind that the UML is not as formalized as FDT, and first its semantics has to be
enforced to ensure models can be validated and tested. But UML has some strong advantages

its notation is very expressive,

it is an OMG adopted standard,

it has some support for distributed systems (asynchronous calls, deployment diagram-

S...),

e some parts of the UML have their semantics defined.

The validation of software should not be seen as a kind of “post-phase” in the development
process, but rather as a continuous activity that has its roots in the early specification phases
and builds gradually, following the refinement process. This is another point in favor of a
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formalization of UML: the validation is achieved partly through traceability between the
refined models. Such a traceability requires that a refined model and the model it derives
from can be compared: formalization is the way to prove two models reflect the same
specification. The next step is the generalization of such traceability links in order to build
libraries of generic model transformations that can be proven equivalent for a refinement
relationship.

1.3 UML in tools: what’s behind the notation ?

The lack of formalization in the UML implies weaknesses in current tools, which most of the
time limit themselves to powerful graphical editors with many bells and whistles, but behave
poorly in the process of automating some painful and error-prone tasks, let alone validation.
Code generators are good examples: the static part of the notation is often well-understood,
and most tools allow for the generation of class skeletons from class diagrams. Then it’s
often up to the programmer (we can’t speak here of a designer !) to manually fill in the gaps
with hand-written code to get a complete and sometimes running program. We think the
role of tools should not be limited to help the designer in the implementation phase of the
development process, but to better assist him during the whole software development cycle.

Some CASE tools editors have recognized the needs for more automation capabilities
and provide some scripting capabilities in their software. This allows for basic operations
on models such as adding a method to many classes. But it still remains difficult to express
complex operations such as the application of a design-pattern to a model.

The choice of another scripting language would not help that much; it is not only a lan-
guage problem, but also a consistency problem: even in the case of an elementary operation,
there is no means to check for the validity of such a transformation. Most of the time, tools
allow any operation to be performed on a model, provided the result is syntactically correct.
No semantics checks can be performed, no traceability from the original model is realized.

In this paper, we describe UMLAUT, a freely available UML transformation framework
allowing complex manipulations to be applied to a UML model (Section 2). These manipula-
tions are expressed as algebraic compositions of reified elementary transformations (Section
3). They are thus open to extensions through inheritance and aggregation. To illustrate
the interest of our approach, we show (Section 4) how the model of an UML distributed
application can be automatically transformed into a labeled transition system validated us-
ing advanced protocol validation technology. Then we conclude on the perspectives open by
this approach (Section 5).

2 UMLAUT : An extendible transformation framework

UMLAUT is a tool dedicated to the manipulation of UML models. It has the ability to
import and export model descriptions in various formats. The fact that it’s available for
free and some of the known formats are well-documented and/or standardized (such as
CDIF, and XMI in the future) ensures that our tool is open and ready for being integrated
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UMLAUT: an Extendible UML Transformation Framework 5

as a background processor in other popular modelers. It can also work as a standalone
application driven by a portable GUI built with Java and the Swing libraries.

2.1 General architecture

UMLAUT is a generic framework composed of a core engine which communicates with its
surroundings via hot-spots (i.e.. interfaces), where functional modules can be plugged in
order to specialize the behavior to meet specific requirements (see figure 1). Some ready-
to-use plug-ins already exist and are provided with the tool: they cover various topics such
as code-generation aspects (Eiffel or Java), communications via interchange format (CDIF
or MDL), or transformations of models dedicated to the validation of distributed reactive
systems.

UML meta-model BDL
: extension

=
UMLAUT

Protocol

\ Application of
transformation = = = o

Commercial Toih

)
rules

Java/Eiffel/C(+ |

/
el
I UMLAUT
Protocol

Validation Engines (Open CAESAR)

Figure 1: UMLAUT Architecture

2.2 Core engine

Basically, the UMLAUT Core Engine is a set of collaborative classes that implements the
UML meta-model, as described in[9]. This meta-model is defined with a set of UML class
diagrams, which contain classes and associations between these classes.

It is easy to deduce a simple code generator for such a static model: the UML classes
immediately map into a set of Eiffel classes. The associations map into attributes which
contain an object or a collection of objects, depending on the multiplicity of the association
ends. The following example highlights this process:

e an instance of a class UML_PACKAGE will be created to represent a Package in a model.
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e the association ownedElement from Package to ModelElement will expand into an
attribute ownedElement in class UML_PACKAGE of type
COLLECTION [UML_MODEL_ELEMENT], and conversely an attribute package of type UML_PACKAGE
in class UML_MODEL_ELEMENT.

Of course, some different implementations are possible, such as one that would reify asso-
ciations between objects as true objects, instead of using references which are clumsy to
maintain (because the two or more ends in an association must be updated consistently).

The choice of a specific meta-model implementation is not really a problem, since our
tool is capable of reading model description (and thus it can read the whole UML meta-
model, which expresses itself in UML), and generating the adequate Eiffel code. The way
to deal with associations is just a matter of specializing the generator.

But the Core Engine is more than a repository for elements in a model. Once a model
has been loaded, it lives in memory as an Abstract Syntax Tree. Some utilities and tools are
available to ease the building of plug-ins, by providing specific functions for the manipulation
of this Abstract Syntax Tree. For example, it offers a hierarchy of wvisitor design-patterns
which implement different traversal strategies of a model. A code generator is a specialization
of an abstract 00_CODE_GENERATOR which overrides utilities methods such as wvisit_ class or
visit_ operation.

3 A Framework for Automatic Transformation of UML
models

A UML model consists of a large collection of modeling entities. In order to facilitate
the transformation of such a model, we propose an object oriented framework that auto-
mates the tedious tasks involved with such a transformation. We propose the use of a
mixed object-oriented and functional programming paradigm to develop a reusable tool-
box of transformation operators. The functional paradigm has a strong orientation towards
generic composition of operators while an object-oriented provides an intuitive extension
mechanism via inheritance and aggregation. In general, transformation involves two distinc-
t operations. First, the collection of meta-model elements in a given UML model needs to
be traversed. During traversal, a given set of meta-model elements that conforms to a given
criterion is selected and a transformation operator applied to it.

3.1 Iterating Model Elements

Each UML model is made up of an instance of a collection of meta-classes from the meta-
model[9]. This meta-class collection forms a complex network of associations among one
another. Among all these associations, we are particularly interested in the composition
relation of these meta-model elements. This composition relation forms a spanning tree of
all UML meta-model elements in the model. In the transformation framework, we apply an
iterator over this spanning structure to produce a “linear” sequence of meta-model elements.
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2. visit(2) : 1. visit(1)
visit order:
K visit(1)
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Figure 2: Depth-first traversal of Iterator

The “linearization” of the spanning tree allows us to apply standard list processing techniques
for our transformation.

To understand how we “linearize” a spanning tree, it is necessary to know that our
iterator implements the Visitor design pattern[7]. A typical iterator will “visit” a given root
node of the meta-model spanning tree, which in turn request the iterator to “visit” its sub-
nodes. This process is repeated recursively, completely traversing the spanning structure in
depth-first order (see figure 2).

We designed our iterator to be driven externally, allowing our transformation operators
to “see” the iterator as providing a “linear” sequence of elements. Once we have “virtually”
linearized our meta-model instance, we can proceed with the description of the transforma-
tion operation itself.

3.2 Transformation Using An Applicative Approach

Our intention is to address the problem of providing a mechanism that separates the concerns
of flexibly recombining transformation operations and their algorithmic details. We have
identified three axes or aspects to this problem - Iteration of UML models, The manipulation
operations, and the problem of flexibly and generically composing these operations. These
goals are in line with making UMLAUT a powerful tool for manipulating UML models. A
close look at the functional programming paradigm provides an interesting perspective to
our problems.

In the context of the theory of lists[1], it has been shown that any operation can be
expressed as the algebraic composition of a small number of polymorphic operations like map,
filter and reduce. This idea has been exploited in the object oriented context by Pacherie
in his thesis[17]. He propose to reify each of map, filter and reduce in the construction of a
toolbox of algebraic operators for an object oriented framework for parallel computation[13].
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We propose to extend these ideas to handle the object-oriented structures described by the
UML meta-model.

In our transformation framework, the fundamental abstraction is a function mapping.

We conceptualize a function fun as
fun:a—b

which evaluates an object of type a to yield a result of type b. We can generically
compose different functions as long as their type signatures match. Le. given f : a — b and
g : ¢ — d, we can compose g and f asin go f as long as the type of b matches the type of c.
This lets us generically build complex transformation operations out of simpler primitives.
It is independent of the details of what the operator does, or how it does it. The result is a
framework of programming where a programmer deals only with the input parameter, the
algorithm of the operation, and its result.

In the transformation of UML models, we will often consider collections of model ele-
ments. It would be practical to be able to apply the functional operators described previously
on different types of collections while preserving the ’black box-ness’ of the function. The
approach we take is to use the map operator. It is a polymorphic operator that applies a
function onto each element of a list and returns a list of result elements. The definitions of
map is

map : (a = b) — ([a] — [b])

where [a] denotes a sequence of elements of type a, and (a — b) represents a function
from a to b. Thus, we can view the application of map on a function yields a new function
that works on sequences instead of singular entities. i.e. if f: (¢ — b) then map f : ([a] =
[b]). This abstraction works for any given function and preserves the generic composability
described earlier for functions. Given these advantages, we implemented our map abstraction
as in figure 3. The blocks each represent a specific functional abstraction. Applying map
on f (i.e. fis an argument to the function map) yields a new composite function map f, as
per definition of map above. The result is the polymorphic abstraction of ’apply f to every
element in the list’. And it can be applied for any f and any list of elements of conforming

T S-Sy -55

f:a->b  map:(a->b)->([a]->[b]) map f: [a]->[b]
Figure 3: Map implementation

Similarly, we implement filter and reduce according to their definitions:
filter : (a = boolean) — ([a] — [a])
reduce : (a = a = a) — ([a] = a)
Filter allows us to select elements based on a criterion and reduce helps us validate our
model after transformation by collapsing the sequence into a single result.
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3.3 Transformation Semantics

The transformation of a UML model can be summarized to consist of:

1. Addition of new elements to an existing model
2. Removal of model elements from an existing model

3. Modification of properties on an existing model element.

(1) and (2) are operations that modify the spanning tree structure of the UML model. As our
iterator employs “lazy” traversal over this same structure, its modification during traversal
presents a problem of ensuring “robust iteration”. The use of “lazy” traversal is a trade-off
between traversal efficiency and complexity.

(3), however, is an operation that yields no result. Its sole purpose is to produce an
in-place update of model elements. Such an operation is widely known as “side-effect” in
functional programming and we model operators belonging to this category using a Void
return type. This hinders careless composition with a side-effect function. In summary, these
two issues provide a strong motivation for further research on our transformation framework
to derive a set of formal semantics for UML transformation operations.

4 Simulation and Validation of a UML model

4.1 A Distributed Multimedia Application Example

<<Interface>>
PLAYER

CLIENT

+ play()
+ stop()

Figure 4: UML model of a media player

The example model is a video-on-demand application, shown in figure 4. CLIENT and
PLAYER are remotely located and interact via a network.

The aim is to transform the initial UML model in figure 4 into an executable model
representing the simulator, shown in figure 5. The new model contains abstract classes that
represent reification of the concepts relevant to simulation (states, messages, timers) and
classes representing the simulation engine that manipulates them. Those classes form a wval-
idation framework[12] that is configurable as per requirements. For example, to generate the
PLAYER_X_COMMAND’s from the PLAYER class, we need to apply the following manipulations:

1. Given the sequence of all elements in our model, we isolate classes with the <interface>>
stereotype.
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<<Interface>>
PLAYER SIMULATOR
(from VALOOD)
+ play()
PLAYER_PROXY + stop() PLAYER_IMPL
CLEENT + play() Z} + play()
+ stop() + stop_()
+ receive() ACTIVABLE
+upper_|ayer (from VALOOD)
+ labels()
PORT +peer PORT /7 + guards()
(from VALOOD) (from VALOOD) + action()

+ﬁfj

COMMAND
(from VALOOD)

PLAYER_PLAY_COMMAND

PLAYER_COMMAND

—1

PLAYER_STOP_COMMAND + execute()

Figure 5: VALOODER validation framework

2. Extract the operations from this class. This results in a sequence of elements repre-
senting the class’ operations.

3. Apply a COMMAND class generator over each operation for each class to produce the
corresponding derived COMMAND class.

Using our operators, we will describe the transformation, T, as follow:

T=(map (map makeCmdClass))o(map getOps)o( filter isIntfClass)

Note that the last step involves a nested map. This is necessary because each class
contains a set of operations. The functional abstractions from which we base our operators
allow us to realize nested iterations simply by means of function application. The frame-
work has virtually decoupled the concerns of iteration, operator composition and operator
algorithm. It allows each aspect to be treated separately, giving a flexible programming
structure. By composing different transformation blocks from our library of operators, we
apply each incrementally over our original model of fig. 4 and we arrive at the final model
of figure 5.

4.2 Accessibility graph of a UML model

The validation techniques we want to apply to UML models are based on Labeled Transition
Systems (LTS). The accessibility graph of a model describes the evolution of a system in
terms of states and transitions labeled by events (operation calls, timer expirations, message
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exchanges). The accessibility graph is seldom a finite graph, and so is not built exhaustively.
Instead, it is explored progressively, as needed, starting from the initial state of the system
(the root of the graph), then querying fireable transitions going out of a given state and
choosing or discarding some of them following specific criterion.

4.3 The OPEN/CAESAR toolbox

Many tools such as model-checkers or test generators operate on the LTS formalism. They al-
ready have proven useful to validate LOTOS or SDL specifications. Adapting them for UML
would provide UML users with an interesting choice of mature and robust validation tools.
In this context, the OPEN/CAESAR toolbox[6] is particularly appealing. OPEN/CAESAR
is a collection of validation tools based on a common interface offering services to build
the accessibility graph of a specification. This interface is language independent, and sev-
eral compilers are provided that compile specifications in LOTOS or SDL and make them
available to validation tools through the standard graph library interface. Thanks to this
separation of concerns, existing tools can be reused for a new language without change by
implementing the corresponding compiler.

4.4 From UML models to simulation code

The transformation framework presented in section 3 is at the heart of the compiler that
generates the simulation code for UML specifications. Basically, the compilation consists in
transforming the initial UML model into an executable model representing the simulator.
The new model contains abstract classes that represent reification of the concepts relevant
to simulation (states, messages, timers) and classes representing the simulation engine that
manipulates them. Those classes form a validation framework[12] that needs to be tailored
for the particular model to be simulated. This is done by specialization of the framework’s
abstract classes. Transformations inspired by classical design-patterns[7] are used to refine
the original model. For instance, the State design-pattern is used to implement objects’ be-
havior, using specializations of the framework’s STATE class. Similarly, messages exchanged
among objects are reified as specializations of the framework’s MESSAGE class, along the
lines of the Command design-pattern.

4.5 Using validation tools on a UML model

Once the original model is immerged in the validation framework, UMLAUT’s code genera-
tors provide an executable simulator conform to OPEN/CAESAR’s graph library interface.
OPEN/CAESAR’s tools are then available to exercise the UML specification. Figure 6
shows OPEN/CAESAR’s interactive simulation tools, in which the user can click on fireable
transitions to drive the system.

Figure 7 has been obtained by OPEN/CAESAR’s “generator” tool which builds the
complete accessibility graph of a finite LTS. The UML specification represents a video-on-
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OPEN/CAESAR XSIMULATOR
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Pause

Stop
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Figure 6: Interactive simulation (xsimulator)
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demand application (here with a single user watching a film that contains only a few frames,
so that the graph is not too big.)

4.6 Future improvements of the UML simulator

Currently, only a subset of UML is taken into account by the simulator. Among the current
limitations, we shall mention that only class diagrams and statecharts are accounted for in
order to determine the behavior of the system. Moreover, statemachines communication is
limited to asynchronous messages. Support for procedural nested flows of control is planned
for a future release. We are actively working on extending support for the other behavioral
views of UML models (collaborations, interactions, and activity graphs).

5 Related Work

Integrating the functional programming paradigm into an object-oriented context has been
well studied by [2] and [16]. [3] also presents a graphical notation for visualizing func-
tional composition. In particular, [17] and [14] show the increased versatility of iterators
implemented in a functional manner.

With respect to UML model transformations, [4] propose the use of hypergenericity to
describe model transformation. Hypergenericity is “the ability to automatically refine or
transform a model by applying an external knowledge”. This approach is supported by an
object oriented interpreted language H' that allows the manipulation of UML model at
the meta-model level. The constructs in H allow an expert to specify transformation rules
that perform operations on the meta-model elements similar those of our proposed algebraic
operators does.

A good source of reference for model transformation can be found in [8] where a set of
equivalence rules for UML class diagrams and associations are presented. These rules can
be integrated for model transformers prior to code generation because they express complex
UML features using the basic core features that can be mapped directly to object oriented
language constructs.

There are also a number of papers [15][5] that attempt to formalize some transformation
rules on UML diagrams. We believe that model transformation in UML is a new subject
of research and we believe that it is important to develop a set of general semantics that
formalizes it. We hope to continue our work in using an applicative approach to address
the formalism underlying model transformation and the semantics of the transformation
operators.

1H is a language defined for manipulating a metamodel in the commercial CASE tool “Objecteering” by
Softeam.
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6 Conclusion

In this paper, we have outlined the functionalities and architecture of UMLAUT, a freely
available UML Transformation Framework allowing complex manipulations to be applied
to a UML model. These manipulations are expressed as algebraic compositions of reified
elementary transformations. They are thus open to extensions through inheritance and
aggregation. We have illustrated the interest of our approach by showing how the model of
an UML distributed application can be automatically transformed into a labeled transition
system validated using OPEN/CAESAR, a pre-existing protocol validation tool.

A preliminary version of UMLAUT is available on the web site of the UMLAUT project:
http://www.irisa.fr/pampa/UMLAUT. Future work will be pursued in three directions: (1)
to take into account UML more thoroughly, (2) to extend the transformation framework,
(3) to make the UMLAUT software package more user-friendly and easier to use with main-
stream UML modeling tools.
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