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Abstract. Fault trees are a popular industrial technique for reliability
modelling and analysis. Their extension with common reliability pat-
terns, such as spare management, functional dependencies, and sequenc-
ing — known as dynamic fault trees (DFTs) — has an adverse effect on
scalability, prohibiting the analysis of complex, industrial cases by, e.g.,
probabilistic model checkers. This paper presents a novel, fully auto-
mated reduction technique for DFTs. The key idea is to interpret DFTs
as directed graphs and exploit graph rewriting to simplify them. We
present a collection of rewrite rules, address their correctness, and give
a simple heuristic to determine the order of rewriting. Experiments on a
large set of benchmarks show substantial DFT simplifications, yielding
state space reductions and timing gains of up to two orders of magnitude.

1 Introduction

Probabilistic safety assessment is common practice in the design and monitoring
of safety-critical systems, and often required by law. Typical measures of interest
are the system reliability (what is the probability that the system is operational
up to time t?) and availability (what is the expected up time?).

Fault tree analysis [38] is one of the most prominent safety assessment tech-
nique. It is standardized by the IEC [21], and deployed by many companies and
institutions, like FAA, NASA, ESA, Airbus, Honeywell, etc. Fault trees (FTs)
model how failures propagate through the system: FT leaves model component
failures and are equipped with continuous probability distributions; FT gates
model how component failures lead to system failures. Due to, e.g., redundancy,
not every single component failure leads to a system failure.

Dynamic fault trees (DFTs) [13,38] are a well-known extension to standard
fault trees that cater for common dependability patterns, such as spare manage-
ment, functional dependency, and sequencing. Analysis of DFTs relies on extract-
ing an underlying stochastic model, such as Bayesian networks [3,6], continuous-
time Markov chains (CTMCs) [14], stochastic Petri nets [32,2], and interactive
Markov chains [4]. Stochastic model checking is an efficient technique to analyse
these models [25,33]. Since the order in which the DFT components fail matters,
these approaches severely suffer from the state space explosion problem.
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This paper presents a novel technique to reduce the state space of DFTs
prior to their analysis. The key idea is to consider DFTs as (typed) directed
graphs and manipulate them by graph transformation [15], a powerful technique
to rewrite graphs via pattern matching. We present a catalogue of 28 (families of)
rules that rewrite a given DFT into a smaller, equivalent DFT, having the same
system reliability and availability. Various rewrite rules are context sensitive.

We have implemented our techniques on top of the graph transformation tool
groove [17] and the DFT analysis tool DFTCalc [1], yielding a fully automated
tool chain for graph-based DFT reduction and analysis. A simple heuristic deter-
mines the order to apply the rewrite rules. We have analysed several variations
of seven benchmarks, comprised of over 170 fault trees in total, originating from
standard examples from the literature as well as industrial case studies from
aerospace and railway engineering. Rewriting enabled to cope with 49 DFTs
that could not be handled before. For the other fault trees rewriting pays off,
being much faster and more memory efficient, up to two orders of magnitude.
This applies to both the peak memory footprint and the size of the resulting
Markov chain (see Figures 9(b) and 9(c), page 15). This comes at no run-time
penalty: graph rewriting is very fast and the stochastic model generation is sig-
nificantly accelerated due to the DFT reduction.

Related Work. Reduction of fault trees is well-investigated. An important tech-
nique is to identify independent static sub-trees [31,26,19,39,35]. These static
sub-trees are analysed using efficient techniques (such as BDDs), whereas the
dynamic parts require more complex methods, as mentioned above. While such
modular approaches yield significant speed ups, they largely depend on the DFT
shape. Shared sub-trees, or a dynamic top-node, inhibits the application of these
techniques. Merle et al. [28,29] map DFTs onto boolean algebra extended with
temporal operators. The resulting expressions can then be minimised via syntac-
tic manipulation. This approach imposes several restrictions on the DFTs. Para-
metric fault trees [32,2] exploit the symmetry in replicated sub-trees while trans-
lating DFTs (using graph transformation) to generalized stochastic Petri nets.
Finally, DFTCalc exploits compositional aggregation, of (interactive) Markov
chains using bisimulation [4].

2 Dynamic Fault Trees

A dynamic fault tree (DFT) is a tree (or more generally, a directed acyclic
graph) that describes how component failures propagate through the system.
DFT leaves represent component failures, called basic events (BEs; drawn as
ellipses).

Fail-safe components and components that have failed already, are denoted
respectively by CONST(⊥) and CONST(�).

Gates, depicted in Figure 1, model failure propagation. The static gates OR,
AND, VOT(k) fail if respectively one, all or k of their inputs fail. The PAND,
SPARE and FDEP are dynamic gates. A PAND-gate fails if the inputs fail from
left to right; if the components fail in any other order, then no failure occurs.
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(a) OR (b) AND (c) VOT(k) (d) PAND (e) SPARE (f) FDEP

Fig. 1. Dynamic fault tree gates.

A SPARE-gate contains one primary, and one or more spare inputs. If the primary
input fails, then a spare takes over its functionality, putting the spare from
dormant into active mode. If all spares have failed as well, then the SPARE-gate
fails. Note that (1) primary and spares can be subsystems; and (2) spares can
be shared among several components. An FDEP-gate contains a trigger input,
which triggers the failure of all its dependent events.

We follow the standard approach and model component failure by expo-
nential probability distributions. Since dormant spare components fail less fre-
quently, we equip each leaf node with a failure rate λ ∈ R

+ and a dormancy
factor α ∈ [0, 1], reducing the failure rate of a dormant component. Thus, the
probability for an active component to fail with time t equals 1 − e−λt; for a
dormant component this is 1 − e−αλt.

Example 1. The DFT in Figure 2 represents the (simplified) failure behaviour
of a railway level crossing [18], consisting of three subsystems: the sensors, the
barriers and the controller. The crossing fails if either of these subsystems fails.
The sensor system fails if at least two out of the four redundant sensors fail
Furthermore, there can be a detection problem due to a disconnection of the
cables, making all sensors unavailable, modelled by the FDEP-gate No detection
specifying that the trigger Disconnection causes the failure of its dependent events
Sensor1–Sensor4. Finally, the barriers fail if either the main and spare motor fail,
modelled by the SPARE-gate Motors, or if the switch and then a motor fails.

Well-Formedness. As usual, DFTs must be well-formed, meaning: (a) the DFT is
acyclic; (b) leaves have leaf-types, other nodes have gate-types; (c) VOT(k)-gates

Fig. 2. Railway crossing DFT.
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(a) DFT with AND (b) DFT with SPARE (c) DFT with AND & FDEP

(d) IMC for 3(a) (e) IMC for 3(b) (f) IMC for 3(c)

Fig. 3. Example DFT to IMC transformations

have at least k inputs; (d) the top level event is not an FDEP; (e) FDEPs have
no parents; (f) all dependent events of an FDEP are BEs; (g) spare modules, i.e.,
sub-trees under a SPARE-gate, are independent; (h) primary spare modules, i.e.,
sub-trees under the primary input of a SPARE-gate, do not contain CONST(�)-
nodes; (i) primary spare modules are never shared between SPARE-gates.

DFT Semantics. The semantics of a DFT F is — like in [10] — expressed using
a transition system CF , where transitions correspond to the failure of a BE and
states to sequences of distinct BEs. As the properties of interest are stochastic in
nature, CF is an interactive Markov chain (IMC) [20]. This IMC has two types of
transitions: interactive (here: immediate τ -transitions) and Markovian (labelled
with a rate λ, being the parameter of an exponential distributed delay).

The formal definitions and the construction of CF are given in [22]. Here, we
illustrate the principle by three small examples, depicted in Figure 3. For ease
of reference, we have labelled each state with the sequence of failed BEs. The
DFT in Figure 3(a) fails if BE A and then B (upper path in 3(d)) fails, or if
first B and then A fails (lower path in 3(d)). The DFT in Figure 3(b) fails if
BEs A and B fail, as above. However, if A has not yet failed, then the failure
rate of B is reduced by factor αB. Thus, B is initially dormant, and failes with
rate λB · αB (see 3(e)). The DFT in Figure 3(c) also fails if BEs A and B fail.
However, the failure of A causes B to fail immediately afterwards, as realized by
the τ -transition in Figure 3(f).

DFT Analysis. A wide variety of qualitative and quantitative DFT analysis
techniques are available, see [36] for an overview. We concentrate on two of the
most common quantitative measures: the reliability until a given mission time
t, i.e., the probability that no failure occurs within time t, and the mean time to
failure (MTTF), i.e., the expected time until the first system failure. Example
measures for the DFT in Figure 2 are: “what is the reliability of the level crossing
for a time frame of 10 years after deployment?”, or “what is the mean time until
a first failure of the level crossing occurs?”.

We define the probability measures on a DFT F in terms of CF . Let Fail be
the set of states in IMC CF in which the top event in F has failed. If a state has
multiple dependent events, their order is non-deterministically resolved. This is
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formalised using a policy (or scheduler) P on CF , resulting in a continuous-time
Markov chain CF [P].

Definition 1 (Relevant measures). Given a DFT F , a policy P on F, and
a mission time t ∈ R, the reliability of F under P given t, RELY t

F [P], is given
by PrCF [P](�≤tFail). The mean time to failure in F under P MTTFF [P] is given
by ETCF [P](�Fail), where ET is defined as the expected time.

3 Rewrite Rules for Dynamic Fault Trees

DFTs tend to be verbose. They are often based on the system architecture,
therefore reflecting their sub-system structure [38]. Moreover, modern techniques
automatically generate DFTs from architectural description languages [7], also
yielding rather verbose DFTs. Given that state-of-the-art algorithms construct
the underlying IMC by a parallel composition of IMCs corresponding to gates, it
is a natural idea to shrink DFTs prior to their analysis. Observe that simplifying
static fault trees (SFTs) can be done by simple Boolean manipulations [38]. This
remains true for FDEPs, but no longer holds in the presence of dynamic gates
such as SPARE- and PAND-gates.

We have identified a set of 28 rewrite rules valid for DFTs, which include
the (now context-sensitive) rules for SFTs originating from the bounded lattice
axioms. Other rules consider combination of dynamic gates which can be simpli-
fied. Each rule contains a left-hand (lhs) and a right-hand (rhs) sub-DFT; they
are applied by matching the lhs in a given DFT and replacing it by the rhs. Rule
application fails if it results in a non-well-formed DFT: in particular, if deletion
of a node produces a dangling edge, then the rule cannot be applied. Techni-
cally, the mappings between the nodes are defined by a few graph morphisms
and context restrictions. For details, see Section 4.

All rules can be used in both directions, i.e., from left to right or from right
to left. Below, we present a few key rules and discuss the main issues involved,
including the correctness of the rules. Please, notice that the application of some
rules might cause an intermediate growth in the number of elements of the DFT,
but makes other rules applicable. In this paper, we display rules only graphically.
The complete set of formally defined rules can be found in [22].

Left-Flattening. The first rewrite rule is rather simple and indicates how a DFT
with root A (lhs) can be flattened into a DFT with root A′ (rhs). In fact, we define
a family of rules here, as A can be an AND-, OR-, or PAND-gate. The rule asserts
that if A’s first successor B has the same type as A, the DFT can be flattened
such that B’s successors become A’s successors (instead of its grandchildren).
The rule’s correctness in case A is an AND- or OR-gate is obvious; in fact, it
can then be applied to any successor of A, not just the first. If A is a PAND-
gate, the correctness follows from the fact that the ordering of B’s successors is
maintained. In this case, the restriction to the first successor is essential.
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Flattening of PAND-gates. If a PAND-gate has a PAND-successor which is not
necessarily its first successor, then the following rule applies. The ordering of C1

and C2 is ensured by C ′ (rhs) whereas the fact that B should fail prior to C1 and
C2 (in that order) is guaranteed by the PAND-gate A2 (rhs). This PAND-gate
also ensures that B and C2 should fail before D1–Dk fail. (Note that successor
B is optional.)

PAND-gates with a First OR-successor. This rewrite rule illustrates a distribu-
tion rule for PAND-gates. If the first successor C is an OR-gate with successors
C1 and C2, then the DFT can be rewritten into a disjunction of two PAND-gates
where the first one takes care of the failure of C1 whereas the second PAND
considers the failure of C2. Although this rule does not give rise to a reduction
of the number of DFT elements, it may enable other rewrite rules.

The rules so far are context-free: they can be applied to any sub-DFT match-
ing the lhs. We now give an example of a context-sensitive rewrite rule.
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Conflicting PAND-gates. Consider a DFT rooted by an AND-gate which has
two PAND-successors whose ordering requirements conflict: D1 requires B to
fail before C, whereas D2 requires the opposite. In contrast to the rule above,
the rewrite rule for this case is context-sensitive: under the assumption that the
successors never fail simultaneously (indicated as B and C having independent
inputs), the PAND-gates D1 and D2 can never both fail. Therefore, the AND-root
cannot fail, and the entire DFT is reduced to the DFT on the right. Note that
nodes B and C are not eliminated, as they may be connected to other elements
of the DFT. However, elimination of the edges may prevent the activation of
elements in the sub-tree. Therefore, the rule may only be applied if, e.g., the
sub-trees are activated via another path or if the sub-trees were never activated
in the original DFT, as required by the context restriction ActivationConnection.

Simplifying of FDEP-gates. If the trigger event C of the FDEP occurs, then the
dependent events B1– Bm all fail, yielding a failure of the AND A. The right DFT
emulates this behaviour by adding X – which only fails once trigger C occurs.
The root thus fails if either all basic elements Bi fail, or trigger C occurs. This
rule is context-sensitive, as its correctness depends on the fact that the successors
B1 through Bm do not have other predecessors besides the AND-gate A. Further
rule allow us to get rid of both the FDEP and X in subsequent steps.

Rewriting Order. A DFT is rewritten by applying a series of rules, with the inten-
tion to end up with a simpler, equivalent model. We first consider an example.
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A

B C

A

D1

B C

A

D2 D3

B C

⊥

A

B C

rule 1
reverse rule 2

Fig. 4. Steps for rewriting PAND with a duplicate successor.

Example 2. Consider the DFT in Figure 4 (left). The second DFT results from
applying rewrite rule 1 in the reverse direction. Note that this DFT is larger
than the first, but enables the application of rule 2, which yields a DFT with a
conflicting PAND with independent successors. Applying rule 4 finally allows us
to remove the two PAND-gates.

Typically, for a given DFT many different rules are applicable, some of which
may be conflicting (in the general sense of rewriting theory [12], meaning that the
application of one rule makes the other inapplicable). For instance, in Figure 4,
instead of applying rule 2 as a second step, we could also have applied rule 1,
thereby returning to the original DFT. Our overall aim of rewriting any given
DFT to a structurally simpler one can in fact be seen as a search problem in
the space of DFTs, where the search steps are rule applications. In this paper,
we have chosen a fixed, deterministic search strategy. We classified the rewrite
rules in three groups, roughly corresponding to the notions of cleaning (e.g.,
removal of disconnected elements), elimination (e.g., rule 1), and rewriting (e.g.,
rule 2). Our heuristic is to apply rules from these groups as long as possible,
with descending priority.

Correctness. In [22] it is shown that the all 28 rule families are correct, in the
sense of preserving the measures-of-interest (see Definition 1).

Theorem 1. All rewrite rules in [22] preserve all RELY- and MTTF-properties.

The proof (cf. [22]) amounts to showing that local equivalence of lhs and rhs,
consisting of a number of local conditions and context restrictions, implies global
equivalence with respect to RELY and MTTF of the source and target DFT of
any rule application. These local conditions are then proven to be fulfilled by
the rule under consideration — much like the explanations given above.

Theorem 1 means that after rewriting a DFT F into DFT F ′ using our
heuristic strategy (or, indeed, any sequence of rewrite rules whatsoever), we
may establish F ’s properties by analysing the — generally smaller — F ′. We
notice that these results remain true even if the set of used rules is incomplete
(in the sense that not all equivalent DFTs can be transformed into each other).
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Fig. 5. Operationalising DFT rewriting via graph rewriting.

4 Rewriting DFTs via Graph Transformation

Operationalising our rewrite rules is a non-trivial step. Essentially, we need to
ensure that the implementation correctly reflects the rules as formally defined.
Ideally, one would like to be able to use the rule definitions themselves as exe-
cutable specifications. In this paper, we have approached that ideal by using
graph transformation (GT) as a framework in which to encode the rules, and
groove [17] as rule engine. Therefore, we encode the DFTs as graphs and
encode rewrite rules by a sequence of GT rules (called recipes in groove). The
operational framework is depicted in Figure 5.

DFTs as Simple Graphs. DFTs are directed acyclic node-typed graphs with
an ordering imposed on the successors (children) of every node. The graphs in
our graph transformation framework, commonly called simple graphs, are slightly
different: on the one hand they are more basic, since they do not directly support
node ordering. Thus, to represent the ordering of dynamic gate successors, we
use auxiliary intermediate nodes connected by next-edges. On the other hand,
simple graphs are edge-labelled, offering opportunities for compact encodings.
In particular, functional dependencies can be encoded as (sets of) edges rather
than as nodes, leading from trigger to dependent events.

We have to omit the formal definition of simple graphs and of the DFT
encoding. Instead, Figure 6 (slightly simplified for presentation purposes) shows
the types of nodes and edges that may occur in a graph-encoded DFT. The
italic node types are abstract (in the programming language sense, meaning
that only their subtypes can be concretely instantiated). BE-typed nodes repre-
sent basic events, with corresponding failure rate and dormancy factor, whereas

Fig. 6. Type graph for encoded DFTs (slightly simplified)
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Fig. 7. Example DFT and rewrite rule encodings.

Value-typed nodes represent CONST(�) or CONST(⊥), depending on the val
flag. Ord-nodes encode the child ordering of a dynamic gate, and the fdep-edges
the functional dependencies, as discussed above. Figure 7(a) shows the encoding
of a fragment of the Railway Crossing DFT of Figure 2.

Rewriting Through GT Rules. Our GT rules have a structure very similar to the
DFT rewrite rules they encode. Each rule consists of a left hand side (lhs) and a
right hand side (rhs); the difference between them specifies which nodes or edges
should be deleted and which should be created upon application of the rule.
groove uses a graphical syntax in which lhs and rhs are combined into a single
graph and color coding is used to indicate deletions and creations. In particuar,
dashed blue nodes/edges should be deleted, whereas fat green nodes/edges are
created upon rule application. For example, Figure 7(b) shows the encoding
of the left-flattening of Or-gates in rule 1. A feature of groove that is very
convenient in this context is the ability to universally quantify over substructures
[34]: in the case of left-flattening, all successors of the redundant Or-gate should
be added to the root Or. The context-sensitive side conditions of, for instance,
rules 4 and 5 are directly encoded as part of the GT rules (which are themselves
context sensitive in general). The heuristic search strategy described in Section 3
is implemented in groove using a control program, which is a mechanism to
specify a dedicated schedule of rule applications.

Implementation. We have developed prototypical tool-support1 exploiting the
tools groove [17] for graph rewriting, and DFTCalc [1] for the analysis of DFTs.
As shown in Figure 8, our tool chain takes as input a DFT and a measure, i.e.,

1 Available online at http://moves.rwth-aachen.de/ft-diet/.

http://moves.rwth-aachen.de/ft-diet/
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Fig. 8. Tool chain for rewriting and model checking dynamic fault trees.

the reliability up to time t, or the MTTF. We translate the DFT into the input
format of groove and the output of groove, i.e., the rewritten graph, back
into a DFT that then is analysed by DFTCalc. DFTCalc exploits CADP [16] for
compositional state space generation and reduction (using bisimulation minimi-
sation) of the underlying IMC of the DFT. Finally, the resulting Markov chain
is analysed for the user-specified measure by the probabilistic model checker
MRMC [24].

5 Experiments

We have selected a set of benchmarks for DFTs from the literature and from
industrial case studies. We have considered four sets of benchmarks that are
scalable in a natural manner, to show the scalability of the approach. Several
variations of these four benchmarks have been considered, yielding in total 163
cases. We have considered another three industrial cases, yielding an additional
20 cases. All benchmarks are shortly described below; Fig. 9(d) shows, in brackets
after the acronym, for each case how many instances were analysed. Full details
and DFTs of the case studies, as well as all statistics can be found at http://
moves.rwth-aachen.de/ft-diet/.

For each benchmark, we compared the performance of base and rewriting
(rw) executions, the difference being whether or not the groove component of
Figure 8 was invoked before DFTCalc was run. We investigated the influence
of rewriting on (1) the number of nodes in the DFT, (2) the peak memory
consumption, (3) the total analysis time (including model generation, rewriting,
and analysis), as well as (4) the size of the resulting Markov chain. As can be
seen in Figure 9(a)-(c), rewriting DFTs improves the performance for all these
criteria in almost all cases. In particular, 49 cases could be analysed that yielded
a time-out or out-of-memory in the base setting.
HECS. The Hypothetical Example Computer System (HECS) stems from the
NASA handbook on fault trees [38]. It features a computer system consisting of a
processing unit (PU), a memory unit (MU) and an operator interface consisting
of hardware and software. These subsystems are connected via a 2-redundant
bus. The PU consists of two processors and an additional spare processor which
can replace either of the two processors, and requires one working processor.
The MU contains 5 memory slots, with the first three slots connected via a
memory interface (MI) and the last three connected via another MI. Memory
slots either fail by themselves, or if all connected interfaces have failed. The MU

http://moves.rwth-aachen.de/ft-diet/
http://moves.rwth-aachen.de/ft-diet/
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requires three working memory slots. We consider a system which consists of
multiple (m) (identical) computer systems of which k ≤ m are required to be
operational in order for the system to be operational. Furthermore, we vary the
MI configuration, and consider variants in which all computers have a power
supply which is functionally dependent on the power grid.
MCS. The Multiprocessor Computing System (MCS) contains computing mod-
ules (CMs) consisting of a processor, a MU and two disks. A CM fails if either
the processor, the MU or both disks fail. All CMs are connected via a bus. An
additional MU is connected to each pair of CMs, which can be used by both
CMs in case the original memory module fails. The MCS fails, if all CMs fail
or the bus fails. The original MCS model was given as a Petri net [27], a DFT
has been given in [30]. The latter includes a power supply (whose failure causes
all processors to fail) and assumes the usage of the spare memory component to
be exclusive. This is the case we consider. Variations of this model have been
given in [1,32]. Based upon these variations we consider several cases. Therefore,
we consider a farm of m MCSs of which k are required to be operational. Each
MCS contains n CMs (for n uneven, one spare MU is connected to three CMs).
Each system has its own power supply. Which is either single power (sp, no
redundancy) or double power (dp, one redundant supply for each computer).
RC. The Railway Crossing (RC) is an industrial case modelling failures at level
crossing [18] (cf. Figure 2). We consider an RC that fails whenever any of the
sensor-sets fail, or any of the barriers fail, or the controller fails. We obtain scal-
able versions with b identical barriers and s sets of sensors (each with their own
cable which can cause a disconnect). Either the controller failure is represented
by a single basic event or by a computer modeled as in HECS.
SF. The Sensor Filter (SF) benchmark is a DFT that is automatically generated
from an AADL (Architecture Analysis & Design Language) system model [7].
The DFT is obtained by searching for combinations of basic faults which lead
to the predefined configurations in the given system. The SF benchmark is a
synthetic example which contains a number of sensors that are connected to
some filters. The set contains a varying number of sensors and filters.
Other Case Studies. In addition to these scalable benchmarks we have con-
sidered other industrial cases such as a Section of an Alkylate Plant (SAP) [9],
a Hypothetical Cardiac Assist System (HCAS) [5], and some DFTs (MOV) of
railway systems from the Dutch company Movares.

Experimental Results. All experiments were run on an Intel i7 860 CPU with
8GB RAM under Debian GNU/Linux 8.0. Figure 9(a) indicates the run time
for all 163 benchmarks comparing the case with rewriting (x-axis) and without
rewriting (y-axis). Note that both dimensions are in log-scale. The dashed line
indicates a speed-up of a factor ten. The topmost lines indicate an out-of-memory
(MO, 8000 MB) and a time-out (TO, two hours), respectively. Figure 9(b) indi-
cates the peak memory footprint (in MB) for the benchmarks using a similar
plot. The dashed line indicates a reduction in peak memory usage of a factor 10.
Finally, Figure 9(c) shows the size of the resulting Markov chain (in terms of
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(a) run time (seconds) (b) memory footprint (MB)

(c) # states in MC
(d) timing (bs = base)

Fig. 9. Overview of the experimental results on four different benchmark sets.

the number of states), i.e., the model obtained by DFTCalc after bisimulation
minimisation. The dashed line indicates a reduction of the Markov chain size by
one order of magnitude.

Fig. 9(d) indicates for all 7 case studies how many instances could be handled
in the base setting (second column), with rewriting (third column), the total time
(in hours) in the base (fourth column), the total time with rewriting for those
cases that also could be handled in the base (fifth column), and the total time
for the cases that could be only dealt with rewriting (sixth column), and the
average reduction in number of nodes of the DFTs (last column).

Analysis of the Results. In most cases, the reduction of the peak memory foot-
print as well as the size of the resulting Markov chain is quite substantial, where
reductions of up to a factor ten are common with peaks of up to several orders
of magnitude. Rewriting enabled to cope with 49 out of 183 cases that yielded
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Fig. 10. Effect of rewriting on MCS (n = # CMs, sp/dp = single/double power).

a time-out or out-of-memory in the standard setting. For a few cases, rewriting
does not give a memory or model reduction, see the points below the diagonal
in Figures 9(b) and 9(c). This is mainly due to the fact that CADP exploits
compositional bisimulation minimisation, where the order in which sub-Markov
chains are composed and minimised is determined heuristically [11]. It may thus
occur that equivalent, but structurally different DFTs yield different minimisa-
tion orders (and thus peak memory consumption) and distinct minimal Markov
chains. In terms of run time, rewriting comes almost for free. In more than
99% of the cases, rewriting speeds up the model construction and analysis, see
Figure 9(a). A more detailed analysis reveals that the graph rewriting with
groove is very fast, typically between 7 and 12 sec. Most time is devoted to
the Markov chain construction and bisimulation minimisation (using CADP).
The verification time of the resulting Markov chain with the probabilistic model
checker MRMC is negligible. The results summarised in Fig. 9(d) underline these
trends. The scalability of our approach becomes clear in Figure 10 that shows,
for two variants of the MCS benchmark, the time, peak memory usage, and size
of the resulting Markov chain (y-axis) versus the number of CMs (x-axis). The
left plot shows that analysis time is decreased drastically, whereas the right plot
shows that the size of the Markov chain is always very close. Plots for the other
case studies show similar improvements. The results indicate that systems with
two to four times more components become feasible for analysis.

6 Conclusions and Future Work

This paper presented a novel reduction technique to minimise DFTs using graph
rewriting. Application to a large number of benchmarks showed that the savings
in terms of time and memory consumption can be drastic, up to two orders of
magnitude. Our rewriting approach is applicable too for alternative DFT analysis
techniques (rather than DFTCalc). We firmly believe that rewriting can further
improve techniques [31,26,19,39,35] that isolate static sub-trees and is applicable
to trees similar to DFTs, e.g., dynamic event/fault trees [23], extended FTs [8]
and attack trees [37]. Future work is needed to substantiate these claims, as well
as to study completeness of the rewrite rules.
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