
CANDLE: A Tool for Efficient Analysis of CAN

Control Systems

David Kendall

Department of Computer Science, University of Durham, Science Laboratories,
South Road, Durham, DH1 3LE, UK

david.kendall@durham.ac.uk

Abstract. Construction and analysis of formal system models is in-
creasingly accepted as a valuable technique in the rigorous development
of real-time control systems. The effectiveness of modelling with timed
automata and analysis via model-checking has been demonstrated often
in practice. An obstacle to greater industrial uptake of this approach
is the low-level character of the language of timed automata which can
make the burden of model construction prohibitively onerous. CANDLE

is a high-level language and development environment for CAN control
systems. It is designed to integrate the production of a CAN system
implementation and its formal model. This paper describes the core of
an OPEN/CÆSAR-compliant compiler for CANDLE which provides an
interface to a reachability analyser and established tools such as CADP
and OPEN/KRONOS.

1 Introduction

This paper describes the core of an OPEN/CÆSAR-compliant compiler [9] for
CANDLE [13] which provides an interface to a reachability analyser and es-
tablished tools such as CADP [7] and OPEN/KRONOS [16]. CANDLE is a
high-level programming language and development environment for control sys-
tems implemented using the Controller Area Network (CAN) communication
protocol [11]. It is designed to integrate the production of a CAN system im-
plementation and its formal model. CAN provides multi-master, priority-based
bus access based on a CSMA/CR protocol whose deterministic collision resolu-
tion policy makes it suitable for use in hard real-time systems. Use of CAN is
widespread in the automotive industry and in other sectors where the require-
ment for high assurance systems provides a strong incentive for the application
of formal development methods. The work described in this paper is part of a
project which is intended to promote the use of modelling and analysis tech-
niques based on timed automata (TA) [2] in the development of CAN systems.
An understanding of timed automata and standard techniques for their analysis
is assumed. The reader requiring an introduction is referred to [18].

A CANDLE program consists of a high-level description of the behaviour of
system processes and the structure of the network via which they communicate.
It is not possible to provide details of CANDLE here; a detailed presentation

appears in [12]. This paper introduces the essential features of the low-level
model which is at the core of the compiler. The low-level model comprises three
components: a data model, a network model and a control model. These are
introduced in the following sections. There follows a discussion of the principles
of the compilation techniques and the results of using the compiler on a number
of examples. The paper concludes with a summary of the lessons learned so far.

2 The data model

The data model of a CANDLE program must be derived from its expression in
some suitable external data language. This section does not discuss the details
of a particular derivation but introduces only the essential features of a data
model.

Let V be a set of data values and Var a finite set of data variables where
each variable x ∈ Var takes its value from some non-empty, finite set of values
type(x) ⊆ V . We assume that V contains at least the distinguished value ⊥,
where ⊥ /∈

⋃
x∈Var type(x), which is taken to be the “undefined” data value. In

modelling the behaviour of a system, the current valuation of the data variables is
given by a total function from variables to values. The set Valuation of valuations
is defined by Valuation =̂ Var → V , where for any val ∈ Valuation and x ∈ Var

either val(x) ∈ type(x) or val(x) = ⊥. During system execution, a valuation of
the data variables may be modified by executing a data operation or tested by a
data predicate. The finite sets Ω of operation names and Γ of predicate names
are introduced to model data operations and predicates, respectively. A data

environment D is a tuple (type, operation, predicate, val) where

– type : Var → 2V is a total function, giving for each variable x ∈ Var , a
non-empty, finite set of data values type(x) ranged over by x ;

– operation : Ω → 2Valuation×Valuation is a total function giving for each oper-
ation name ω ∈ Ω a relation operation(ω) which interprets it;

– predicate : Γ → 2Valuation is a total function, giving for each predicate name
γ ∈ Γ , a set of valuations predicate(γ) which interprets it;

– val : Var → V is a total function which, for each variable x ∈ Var , gives the
current valuation of x , where val(x) ∈ type(x) or val(x) = ⊥.

It is assumed that type, operation and predicate are fixed for the lifetime of a
system but that val may change as the system evolves.

Notation. It is convenient to establish some notational conventions. Let D =
(type, operation, predicate, val) be a data environment. Let x , y ∈ Var be data
variables, and v ∈ V a data value.

– D . type, D . operation, D . predicate and D .val denote type, operation, predicate

and val, respectively.
– D .x denotes the value val(x).
– D [x := v] denotes the data environment D ′ = (type, operation, predicate, val′)

where val′(x) = v and val′(y) = val(y) if y is not syntactically identical to x .

– D
ω

−→dD
′ abbreviates the condition

(val, val′) ∈ operation(ω) ∧ D ′ = (type, operation, predicate, val′)

– D |= γ abbreviates the condition val ∈ predicate(γ).

This framework is general enough to allow the derivation of data models from
a variety of practical data languages. For example, a similar approach has been
applied in using VDM as an external data language with the process language
AORTA [5].

3 The network model

3.1 Structure

A network model is an abstraction of a CAN network [11]. It consists of one or
more broadcast channels, each implementing an abstraction of the CAN proto-
col in which it is assumed that any node is capable of transmitting messages
atomically, without errors or failures, to one or more receiving nodes. Messages
comprise a message identifier and a data value. The identifier serves both to
identify the type of data contained in the message and also to give a priority to
the message for use in the arbitration of transmission collisions. Let I be a finite
set of message identifiers and V a set of data values. A set of messages is any
finite subset M ⊆ I ×V . A priority ordering ≺ is a strict, total ordering on mes-
sage identifiers, where i ≺ i ′ is interpreted to mean that identifier i is of higher
priority than identifier i ′. In the event of a transmission collision, the message
with the highest priority identifier continues transmission to completion while
other messages are required to wait. During the transmission of a message on a
channel, all nodes connected to the channel act as receivers of the message. At
some point in the transmission, each node performs a test based on the message
identifier to determine whether it wishes to accept the message or ignore it. This
acceptance test has the effect of creating three phases of message transmission:
a pre-acceptance phase which extends from the start of transmission to the mo-
ment of the acceptance test, an instantaneous acceptance phase which is just the
moment when the acceptance test is initiated and a post-acceptance phase which
extends from the acceptance phase to the instant at which the transmission is
completed and the channel becomes idle. The transmission latency of a message
is the time which passes during the pre-acceptance and post-acceptance phases
of message transmission. Bounds on transmission latency are given by a function
δ : M → N∞ × N∞ × N∞ × N∞, where δ(m) = (l , u, l ′, u ′) implies that l ≤ u,
l ′ ≤ u ′ and that the lower and upper bounds on the pre- (resp. post-) acceptance
phase of the transmission of m are given by l and u (resp. l ′ and u ′). The derived
functions δlb, δub, δlB, δuB : M → N∞ satisfy

∀m ∈ M . δlb(m) = l ∧ δub(m) = u ∧ δlB(m) = l ′ ∧ δuB(m) = u ′

⇔ δ(m) = (l , u, l ′, u ′)

Notation. The notation lb (resp. ub, lB, uB) will be used as an abbreviation for
δlb(m) (resp. δub(m), δlB(m), δuB(m)) when m is clear from the context.

The transmission status of a channel identifies whether the channel is free or
is transmitting a message and, if transmitting a message, whether it is in the
pre-acceptance, acceptance or post-acceptance phase. If a channel is in its pre-
acceptance or post-acceptance phase, the bounds on the time to completion of
the phase are deemed to be part of its transmission status, since they determine
the time at which the channel may next influence the behaviour of a system.
The notation shown in Table 1 is used to denote transmission status.

Notation ASCII Transmission Status

↓ \/ FREE, no message is in transmission
lb,ub

; m --lb,ub->m pre-acceptance phase of transmission of message m
with bounds δlb(m), δub(m) on time to completion

↑m /\m acceptance point in transmission of m

m
lB,uB

; m--lB,uB-> post-acceptance phase of transmission of message m
with bounds δlB(m), δuB(m) on time to completion

Table 1. Transmission Status Notation

If it is attempted to transmit a message on a channel which is not free, the
message must be stored and offered for transmission again some time after the
current transmission has finished. Since messages succeed in their transmission
attempts according to their priority, the storing of messages is modelled naturally
as a priority ordered queue. If it is necessary to enqueue a message m, whose
identifier is the same as that of some other message m ′ which is already in the
message queue, then m replaces m ′ in the queue and m ′ is lost forever, i.e. m ′

is ‘overwritten’ by m. This represents the behaviour of most implementations of
the CAN protocol and has the useful side-effect of ensuring that message queues
remain of finite length.

Notation. An empty queue is denoted 〈〉. A queue with highest priority message
m and remaining messages u is written m:u. The priority-ordered insertion of
the message m into the queue u is denoted u " m.

It is now possible to define a channel as a tuple (M ,≺, δ, s , u) where M is
the set of messages which can be transmitted by the channel, ≺ is the priority
ordering of the message identifiers, δ gives the transmission latencies of the
messages in M , s is the transmission status and u is the queue of messages
currently awaiting transmission. A network is collection of channels where each
channel is uniquely identified by an identifier taken from some finite set K of
channel identifiers.

Notation. Let N be a network and k ∈ K a channel identifier. Then Nk denotes
the channel associated with the identifier k in the network N .

3.2 Behaviour

Each channel in a network can act independently by making a discrete change
in its transmission status or its message queue. Alternatively, the state of the
whole network may be such that it allows time to pass. Since the intention here is
to generate a TA which models network behaviour, it is convenient to describe
possible discrete changes in network state by giving the inference rules which
generate appropriate edges in the TA, and to state time progress conditions as
location invariants. With this in mind, a distinct clock variable is associated with
each network channel in order to allow the expression of its clock guards and
invariants. Let H be the set of clock variables and h range over H. Let hu be
a distinct clock variable which is used in the statement of urgency conditions.
Then, the rules for the network edges are given by Figure 1.

E N.1
Nk = (↓,m : u)h

N
tt,k;m,{hu ,h}

−→n N [k := (
lb,ub

; m, u)h]

E N.2
Nk = (

t1,t2
; m, u)h ∧ t1 ∈ N

N
h≥t1,k↑m,{hu}

−→n N [k := (↑m, u)h]

E N.3
Nk = (↑m, u)h

N
tt,m;k,{hu ,h}

−→n N [k := (m
lB,uB

; , u)h]

E N.4
Nk = (m

t1,t2
; , u)h ∧ t1 ∈ N

N
h≥t1,k↓,{hu}

−→n N [k := (↓, u)h]

Fig. 1. Rules for network edges

Notice that the network rules mention only the dynamic components of each
network channel, i.e., a channel (M ,≺, δ, s , u) appears as (s , u); the static com-
ponents (M ,≺ and δ) are unchanging throughout and are assumed when re-
quired. The clock variable assigned to a channel is shown as a superscript, as
in (↓,m : u)h . The notation N [k := η] is used to refer to a network in which
channel identifier k is mapped to channel η and all other channels are the same
as in network N .

Consider the rule E N.1 in Figure 1. It is used to generate an edge for a
network N in which some channel k is free and has a highest priority message m

in its message queue. In this case, there is an edge to a location in which k is in
the pre-acceptance phase of the transmission of m, with bounds δ lb(m), δub(m)
on the time to completion of the phase, and m is no longer in the message

queue, i.e. the location N [k := (
lb,ub
; m , u)h]. The guard of the edge is tt, since a

transition via this edge can occur immediately. The label of the edge is k;m,

which identifies a transition via this edge as a change in the status of k to the
pre-acceptance phase of transmission of m. The reset set of the edge is {hu , h}:
the urgent clock hu is reset by every edge; the channel clock h is reset so that
it can be used to measure the pre-acceptance delay in the target location. The
rules E N.2, E N.3 and E N.4 are interpreted similarly.

The network invariant function is given by Figure 2. Consider the definition

I (N) =̂
∧

k∈K

I (Nk)

I (↓, 〈〉)h =̂ tt

I (↓,m : u)h =̂ hu ≤ 0

I (
t1,t2
; m, u)h =̂ if t2 ∈ N then h ≤ t2 else tt

I (↑m, u)h =̂ hu ≤ 0

I (m
t1,t2
; , u)h =̂ if t2 ∈ N then h ≤ t2 else tt

Fig. 2. Invariant function: network

I (↓,m : u)h =̂ hu ≤ 0. It is used to assert the urgency of a location containing
a free channel with a non-empty message queue – transmission of the highest
priority queued message must begin immediately. The other invariant conditions
are interpreted similarly.

4 The basic process model

There are four kinds of basic process in CANDLE:

k !i .x — non-blocking send : immediately puts the message i .v into the message
queue for channel k , where v is the current value of x , then terminates;

k?i .x — blocking receive: idles until k is in the acceptance phase of transmission
of a message i .v , then immediately assigns v to x and terminates;

[ω : t1, t2]
h — time-bounded computation: terminates not earlier than t1, and not

later than t2, time units after beginning execution – as measured by the clock
variable h – atomically transforming the data state at the instant of termination
as specified by the operation ω;
〈γ〉 — data guard : idles until the state of the data variables satisfies the predicate
γ, then terminates immediately.

The distinguished process X is used just in giving the semantics of basic pro-
cesses. It represents the terminated process which is incapable of any discrete
action and even blocks the progress of time. As with network behaviour, it is
convenient to define basic process behaviour formally by giving rules for the
generation of TA edges and location invariants (see Figures 3 and 4).

E Snd
Nk = (s, u) ∧ v = D .x

(k !i .x , N ,D)
tt,k!i.v,{hu}

−→ (X,N [k := (s, u " i .v)], D)

E Rcv
Nk = (↑ i .v ,)

(k?i .x , N ,D)
tt,k?i.v,{hu}

−→ (X,N ,D [x := v])

E Comp
D

ω

−→dD
′ ∧ t1 ∈ N

([ω : t1, t2]
h
,N ,D)

h≥t1,ω,{hu}
−→ (X,N ,D ′)

E Gu
D |= γ

(〈γ〉,N ,D)
tt,γ,{hu}
−→ (X,N ,D)

Fig. 3. Rules for basic process edges

I (k !i .x ,D) =̂ hu ≤ 0

I (k?i .x ,D) =̂ tt

I ([ω : t1, t2]
h
,D) =̂ if t2 ∈ N then h ≤ t2 else tt

I (〈γ〉,D) =̂ if D |= γ then hu ≤ 0 else tt

Fig. 4. Invariant function: basic processes

5 The control model

The control of a system model is represented in the CANDLE compiler as a
kind of Petri net [14]. The net is derived automatically by translation from the
CANDLE program (see [12] for details of this translation). This approach has
been adopted also by Garavel [8] and Yovine [17] in their compilers for LOTOS
and ATP, respectively. It has the advantage of giving a compact representation
of the control aspects of the system.

The nets which are used in CANDLE are similar to the extended nets of [17].
As usual, a net consists of a set of places and a set of transitions ; the conven-
tion used here is to denote a set of places by W ,W ,W ′,W1 etc. and a set of
transitions by Θ, Θ′, Θ1 etc. Two main extensions are introduced whereby each
transition is associated with

1. an attribute which is used in determining whether the transition is fireable

in a given system context and what are the effects of its firing on its context;
2. a set of places which are said to be vulnerable to the firing of the transition.

In firing a transition, a token is removed not only from the places in its
source set but also from all those places in its vulnerable set.

These extensions are designed to assist in the construction of a compact net
representation for CANDLE processes. The usual conventions are extended in
drawing the diagram of a net: places and transitions are drawn as circles and
boxes, respectively; the flow relation is shown using directed edges; additionally,
the attribute of a transition is written inside its box and its vulnerable set is
written just below.

Figure 5 shows an example net for a simple system for regulating the flow
of liquid through a pipe. One process periodically samples a flow sensor and
broadcasts its value in a flow message. It is assumed that the implementation
requires between 85 and 90 µsecs to sample the flow sensor, condition the signal
and configure a CAN controller to transmit the flow message. A hardware timer,
which implements the periodic behaviour of the process, interrupts at intervals
of approximately 10 msecs. A second process repeatedly waits to receive a flow

message, tests the received value to determine whether the flow is low , normal

or high and instructs an actuator to adjust a valve accordingly. It takes between
200 to 300 µsecs from receipt of a flow message to the configuration of the valve
actuator.

idle

<IsFlowLow> [OpenValve:200,300]^H4

[CloseValve:200,300]^H4<IsFlowHigh>

<IsFlowNormal>

1 2 3

6

4

k!flow.x[ReadSensor:85,90]^H3

[Period:10000,10250]^H5

k?flow.y5

7

8

9 10

{8,9}

{6,10}

{6,8}

{1,2,3}

Fig. 5. Flow regulator net

5.1 Definitions and Notation

Transition attributes are just basic processes, as introduced earlier. The set
Attribute of transition attributes is defined by the grammar

α ::= k !i .x | k?i .x | [ω : t1, t2]
h | 〈γ〉

where k , i , x , ω, t1, t2, h and γ range over the usual sets. The set of clocks asso-
ciated with the transition attribute α is denoted clk(α), where clk([ω : t1, t2]

h) =̂
{h} and clk(α) =̂ ∅ for α ∈ {k !i .x , k?i .x , 〈γ〉}. A net R is a tuple (W , Θ,WI)
where

– W is a finite set of places. It is assumed that W contains a distinguished
place X (drawn as a shaded circle) which is used in the representation of the
terminal process X.

– Θ ⊆ W×2W×Attribute×2W is a set of transitions. Let θ = (w ,WV , α,WT) ∈
Θ. The place w is the trigger of θ; WV is the set of places vulnerable to θ;
α is the attribute of θ, denoted αθ; and WT is the target set of θ.

– WI ⊆ W is the set of initial places.

In the nets which are used here, every place (except X) is the trigger of exactly
one transition, where the transition triggered by the place w is denoted θw . A
marking is a set W ⊆ W of places. The marking WI is the initial marking. The
set of clocks associated with a marking W is denoted clk(W), where clk(W) =̂⋃

w∈W clk(αθw).

5.2 Behaviour

The behaviour of a net R is given with respect to a system context comprising
a network and a data environment. As before, behaviour is expressed by giving
the rules which generate the edges and location invariants in the TA derived
from the system description. A location in the derived TA is a tuple (W ,N ,D)
where W ⊆ W is a marking of R, N is a network and D is a data environment.
Intuitively, a system can evolve from one location (W ,N ,D) to another location
(W ′,N ′,D ′) as the result of a transition via a process edge or a network edge.

For a process transition, assume w ∈ W and that w is the trigger of some
transition θ. If the context N ,D satisfies the conditions required by the attribute
αθ, then a new marking W ′ is created from W by removing w and any places
which are vulnerable to θ, and then including all of the target places of θ. The
new context, N ′,D ′ is created according to the rule for the attribute αθ, as given
in Figure 3.

In the case of a network transition, the system may evolve to a new loca-
tion in which the network component is modified according to one of the rules
in Figure 1. The marking and data environment remain unchanged by the net-
work transition. In order to ensure that the intended broadcast semantics are
preserved, the following restriction is imposed:

– a message offer cannot be removed by a network transition if some process is
ready to accept the message, i.e., a network transition to the post-acceptance
phase of transmission of a message with identifier i on a channel k is inhibited
if the current marking contains a place which is the trigger of a transition
whose attribute is k?i .x .

Now, the process edges of (W ,N ,D) are given by the rule:

R.1

w ∈ W ∧ (w ,WV , α,WT) ∈ Θ ∧ (α,N ,D)
ζ,λ,H′

−→ (X,N ′,D ′) ∧
W ′ = W \ ({w} ∪ WV) ∪ WT ∧ H = H′ ∪ clk(WT)

(W ,N ,D)
ζ,λ,H
−→R(W ′,N ′,D ′)

and the network edges by the rule:

R.2

N
ζ,λ,H
−→nN

′ ∧
∀ k ∈ K , i ∈ I . (¬ awaited(W , k , i) ∨ Nk 6= (↑ i . ,) ∨ Nk = N ′

k)

(W ,N ,D)
ζ,λ,H
−→R(W ,N ′,D)

where

– the relations −→n and −→ are as defined in Figures 1 and 3, respectively.
– awaited(W , k , i) holds iff, in the marking W , it is possible to receive from

channel k a message with identifier i . Formally,
awaited(W , k , i) =̂ {w ∈ W | αθw = k?i . } 6= ∅

The invariant of a location (W ,N ,D) is denoted I (W ,N ,D) which is defined
by

I (W ,N ,D) =̂ I (W ,D) ∧ I (N)

I (W ,D) =̂
∧

w∈W

I (αθw ,D)

where I (N) and I (α,D) are as in Figures 2 and 4, respectively.

6 Principles of analysis

Given a system model as a net R = (W , Θ,WI), a network N and a data
environment D , the relation −→R and the invariant function I implicitly define
a TA which represents the intended system behaviour. The TA can be made
explicit quite simply: start from the initial location qI =̂ (WI ,N ,D) and visit
all locations which are reachable under the relation −→R, using I to calculate the
invariant of each reached location. This approach has been implemented and used
to verify simple CAN systems using KRONOS [3] (see [12] for details). However,
it suffers from a number of disadvantages, the most serious being that it allows
the generation of redundant locations and edges and can produce extremely
large TA. Similar approaches to translation from process languages to TA have
appeared in the literature and all suffer the same problem [4, 10, 17]. A more
interesting technique is to avoid explicit generation of a TA and to proceed
directly to the generation of the simulation graph [18] of the implicitly defined
TA. A node in the simulation graph is a pair (q , ζ) where q = (W ,N ,D) is a
location and ζ is a clock zone. In calculating graph nodes, the usual operations
on clock zones are used: ↗ ζ, ζ[H := 0], closec(ζ) and ζ ∩ ζ ′, denoting forward
projection, clock reset, c-closure and intersection, respectively. The operation

sucqτ (ζ) =̂ ↗ ζ ∩ I (q) defines the clock zone which can be reached from ζ as
time progresses while control remains at location q . The operation suce(ζ) =̂
(ζ ∩ ζ ′)[H := 0] defines the clock zone which can be reached from ζ by following
the edge e where the guard and reset set of e are ζ ′ and H, respectively. Now,

the initial graph node is given by (qI , sucq
I

τ (zero)) and there is a successor node
(q ′, ζ ′) from any node (q , ζ) iff an edge e = (q , ζ ′′, λ, H, q ′) can be exhibited

from the inference q
ζ′′,λ,H
−→Rq ′, and ζ ′ = closec(sucqτ

′(suce(ζ))) 6= ∅, where c is the
largest constant appearing in a computation [ω : t1, t2] of R or a transmission
latency function δ of N .

In order to improve memory usage during ’on-the-fly’ generation of the sim-
ulation graph, it is very helpful to apply the well-known clock activity abstrac-
tion [6]. This requires that it be possible to compute the active clocks of locations
‘on-the-fly’. Fortunately, this is very simple for CANDLE locations. It is shown
in [12] that the only clocks which are active in any CANDLE location q are just
those clocks which are tested in q , i.e., which occur in an outgoing edge of q or
in its invariant condition. Given a net R and a location q = (W ,N ,D), it is
trivial to determine the set tclk(q) of tested clocks of q from the structure of
the net and the components of the location (see [12]). In this case, it is simple
to apply the clock activity abstraction by computing each successor (q ′, ζ ′) of
a node (q , ζ) as described above and restricting the representation of ζ ′ to the
clocks in tclk(q ′). The inclusion and convex hull abstractions of [6] can also be
applied ‘on-the-fly’, although this remains to be implemented.

An exploration module has been implemented which allows simple reachabil-
ity analysis of the simulation graph. Further analysis is possible using the CADP
tools [7] and a connection to profounder [16] for checking TBA-emptiness should
be straightforward.

7 Experiments

In order to test the effectiveness of this approach to analysis, a compiler has
been implemented which takes as its input a CANDLE program together with
a set of C type definitions and functions implementing the program data model.
The compiler translates the CANDLE program to a net from which it generates
a C program which implements the OPEN/CÆSAR graph API [9] as its out-
put. The OPEN/CÆSAR program provides functions for generating the initial
simulation graph node and iterating over the simulation graph successors of a
node by directly implementing the ideas described above, using both standard
and variable-dimension DBMs [16, 18] to represent clock zones. The simulation
graphs of a number of examples have been generated, both with and without
clock activity reduction, including

flow the system from Figure 5,
sboiler a simplified version of the steam boiler problem [1], and
disbmutex a 3 process version of the centralised algorithm for distributed mutual

exclusion from [15].

For the purposes of comparison, an attempt has been made to generate an ex-
plicit TA for the same examples. The results are summarised in Table 2.

TA NOACT ACT

#locs #clocks #states #clocks #states

flow 2256 5 84 3 55
sboiler 573683 12 74859 5 2029
disbmutex – 6 >1065000 6 223604

Table 2. Experimental results

The TA column gives the total number of locations in the generated TA,
the NOACT column gives the maximum number of clocks required and the
total number of states in the simulation graph generated without clock activity
reduction; the ACT column gives the corresponding data when clock activity
reduction is applied. It can be seen, as expected, that direct generation of the
simulation graph using clock activity reduction performs much better in each
case. For the disbmutex program, it was not possible to generate the explicit
TA and the generation of the simulation graph without activity reduction was
halted after 1,065,000 states.

8 Conclusions

Several lessons have been learned as a result of our experiences so far with
the CANDLE compiler. The general approach of translation from a high-level
language through a number of intermediate stages to C source code implementing
the OPEN/CÆSAR API has proved to lead to an effective decomposition of the
translation problem, providing opportunities for optimisation at every stage and
resulting in programs which can be connected easily with a variety of analysis
tools. Our experience is that this approach clearly outperforms methods in which
a TA is constructed explicitly. The applicability and utility of clock activity
reduction for CANDLE programs is apparent. Future work will be aimed at
producing a systematic evaluation of further techniques from the literature in
terms of their impact on the control of state explosion on a range of CAN control
systems.

References

1. J.-R. Abrial, E. Börger, and H. Langmaack, editors. Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, volume 1165
of Lecture Notes in Computer Science. Springer Verlag, 1996.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–236, 1994. Preliminary version appears in Proceedings of 17th ICALP,
1990, LNCS 443.

3. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
a model-checking tool for real-time systems. In A. Hu and M. Vardi, editors,
Proceedings of the 10th International Conference on Computer Aided Verification
(CAV’98), volume 1427 of Lecture Notes in Computer Science, pages 546–550.
Springer Verlag, 1998.

4. S. Bradley, W. Henderson, D. Kendall, and A. Robson. Validation, verification
and implementation of timed protocols using AORTA. In P. Dembinski, editor,
Proceedings of the Fifteenth International Symposium on Protocol Specification,
Testing and Verification, pages 205–220. Chapman and Hall, June 1995.

5. S. Bradley, W. Henderson, D. Kendall, and A. Robson. A formal design language
for real-time systems with data. Science of Computer Programming, 40(1):3–29,
May 2001.

6. C. Daws and S. Tripakis. Model checking of real-time reachability properties using
abstractions. In B. Steffen, editor, Proceedings of 4th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98),
volume 1384 of Lecture Notes in Computer Science, pages 313–329. Springer Verlag,
1998.

7. J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu.
CADP a protocol validation and verification toolbox. In Proceedings of the 8th
International Conference on Computer Aided Verification (CAV’96), volume 1102
of Lecture Notes in Computer Science, pages 437–440. Springer Verlag, 1996.

8. H. Garavel. Compilation et Vérification de Programmes LOTOS. PhD thesis,
Institut National Polytechnique de Grenoble, July 1992.

9. H. Garavel. OPEN/CÆSAR: An open software architecture for verification, sim-
ulation and testing. In B. Steffen, editor, Proceedings of 4th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’98), volume 1384 of Lecture Notes in Computer Science, pages 68–84.
Springer Verlag, March 1998.

10. C. Hernalsteen. Specification, Validation and Verification of Real-Time Systems in
ET-LOTOS. PhD thesis, Université Libre de Bruxelles, August 1998.

11. ISO/DIS 11898: Road Vehicles – interchange of digital information – Controller
Area Network (CAN) for high speed communication, 1992.

12. D. Kendall. Formal Modelling and Analysis of Broadcasting Embedded Control
Systems. PhD thesis, Department of Computing Science, University of Newcastle
upon Tyne, UK, September 2001. (Forthcoming).

13. D. Kendall, S. Bradley, W. Henderson, and A. Robson. CANDLE: A high level
language and development environment for CAN control systems. In Proceedings
of 4th International Workshop on Discrete Event Systems (WODES’98), Cagliari,
Italy. IEE, 1998.

14. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

15. A. Tanenbaum. Modern Operating Systems. Prentice Hall International, 1992.
16. S. Tripakis. The Formal Analysis of Timed Systems in Practice. PhD thesis,

Université Joseph Fourier, Grenoble, December 1998.
17. S. Yovine. Méthodes et Outils pour la Vérification Symbolique de Systèmes Tem-

porisés. PhD thesis, Institut National Polytechnique de Grenoble, May 1993.
18. S. Yovine. Model checking timed automata. In G. Rozenberg and F. Vaandrager,

editors, Embedded Systems, Papers from the European Educational Forum School
on Embedded Systems, Veldhoven, The Netherlands, volume 1494 of Lecture Notes
in Computer Science, pages 114–152. Springer Verlag, 1997.

